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Abstract
Simple Temporal Networks with Uncertainty (STNUs) are a well-studied model for representing
temporal constraints, where some intervals (contingent links) have an unknown but bounded
duration, discovered only during execution. An STNU is dynamically controllable (DC) if there
exists a strategy to execute its time-points satisfying all the constraints, regardless of the actual
duration of contingent links revealed during execution.

In this work we present a new system of constraint propagation rules for STNUs, which is
sound-and-complete for DC checking. Our system comprises just three rules which, differently
from the ones proposed in all previous works, only generate unconditioned constraints. In par-
ticular, after applying our sound rules, the network remains an STNU in all respects. Moreover,
our completeness proof is short and non-algorithmic, based on the explicit construction of a
valid execution strategy. This is a substantial simplification of the theory which underlies all the
polynomial-time algorithms for DC-checking.

Our analysis also shows: (1) the existence of late execution strategies for STNUs, (2) the
equivalence of several variants of the notion of DC, (3) the existence of a fast algorithm for real-
time execution of STNUs, which runs in O(KN) total time in a network with K ≥ 1 contingent
links and N ≥ K time points, considerably improving the previous O(N3)-time bound.
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1 Introduction

A Simple Temporal Network (STN) is a model for representing temporal constraints: it
comprises a set of time-points {P,Q,R, . . . } and a collection of binary difference constraints
of the form Q ≤ P + w with w ∈ R. A planning agent wants to schedule the execution of
time-points, i.e., assign a real value to each variable P,Q,R, . . . representing its execution
time, so that all the constraints in the network are satisfied.

Simple Temporal Networks with Uncertainty (STNUs) extend STNs to incorporate
uncertainty in the duration of some time intervals. In an STNU some of the time-points,
called contingent time-points, are not under the control of the planning agent but are executed
by the environment. The execution time of a contingent time-point C is regulated by a
contingent link (A, l, u, C), whose meaning is that C will be executed some time ∆ ∈ [l, u]
after the time-point A. The value ∆ is called the duration of the contingent link, and is
unknown to the planner until C is actually executed. An STNU is said to be dynamically
controllable (DC) if the agent holds a strategy to execute all the time-points in the network,
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8:2 Dynamic Controllability Made Simple

such that all constraints are satisfied regardless of the duration of the contingent links. This
strategy has to be dynamic, in the sense that the execution time of a time-point X can
only depend on the duration of contingent links (A, l, u, C) whose contingent time-point C is
executed before X.

Two main problems are considered: checking whether a given network is DC and, if this
is the case, executing its time-points in real-time, reacting dynamically to the durations
revealed by the environment.

Previous work. Remarkably, it is possible to check in polynomial time whether a given
network is DC. The best upper bound on the running time, for a network with N time-points,
has been improved from pseudo-polynomial [10] (an “incremental” algorithm proposed in [15],
as fixed in [11], also runs in pseudo-polynomial time), to O(N5) [9], O(N4) [7] (an incremental
algorithm in [12] also runs in O(N4) time) and finally to O(N3) [8] (an incremental algorithm
in [13] also runs in O(N3) time). The key tool to achieve a polynomial-time algorithm is
propagation of binary constraints, i.e., generation of new constraints from existing ones
according to some sound rules.

A system of constraint propagation rules has been proposed first by Morris, Muscettola
and Vidal [10], and proven to be sound and complete. Soundness means that the system
only generates constraints which must be satisfied by any dynamic execution strategy, as
a logical consequence of existing constraints. Completeness means that, if, at some point,
no tighter constraints can be generated by the rules, then the resulting network is DC. The
system, in the revised and simplified version given in [9], consists of four propagation rules
which generates both ordinary, unconditioned constraints (i.e., having the same form as input
constraints) and conditional constraints marked with labels. A fifth rule transforms labeled
constraints into ordinary constraints, when some conditions apply. We refer to this system of
rules as MMV, and provide an illustration it in Table 1. The proof of completeness of MMV
relies on the description of an algorithm, sketched in [10], improved and fully described in [5],
which executes the time-points in the network in real-time.

Being such a simple and flexible model, STNUs have been extended in several ways in the
literature (see, e.g., [14, 6, 2, 3, 1]). All these extension rely on the theory of DC-checking
and executions developed for STNUs, and this theory, both for DC-checking and real-time
execution, hinges on the system of constraint propagation rules. Indeed, to the best of our
knowledge, all the existing DC-checking and real-time execution algorithms for STNUs work
by applying propagation rules, implicitly or explicitly, and their correctness proof is based
on the soundness and completeness of this rule system.

Issues with MMV system. The MMV system, as introduced in [10] and improved in [9],
has still many points of weakness. First of all, the system itself is rather complex. The main
reason is that it generates, besides ordinary constraints, also labeled constraints: these labeled
constraints are not part of the STNU model, hence their interpretation is not immediately
clear and requires further definitions and explanations. Moreover, the system comprises an
arguably large number of rules: four constraint-propagation rules and one label-removal
rule, which combine labeled and unlabeled constraints in several possible ways. Besides the
intrinsic complexity of the system, the related theory is also somewhat intricate. Specifically,
the proof of completeness is based on the description of an execution algorithm which,
even after the improvement given in [5], is still quite involved, manipulating the network in
non-trivial ways during its execution. Instead, as a completeness proof, it would be desirable
to a have a simple, static description of an execution strategy which witnesses the dynamic
controllability of a network, when no more application of the rules is possible.
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Table 1 The MMV system of constraint-propagation rules [10, 9], in a graphical representation.
In each of the rules, the original edges are drawn solid and the generated edge is drawn dotted.

Rule Graph representation Applicability conditions

No Case
P Q R

v w

v + w
(none)

Upper Case
P Q AC

v C : w

C : v + w

P 6= C

Lower Case
AC C R

wc : l

l + w

w ≤ 0, R 6= C

Cross Case
AC C AD

D : wc : l

D : l + w

w ≤ 0, C 6= D

Label Removal
P AC

C : z

z
z ≥ −lC

Our contributions. In this paper, we present a new, sound-and-complete system of con-
straint-propagation rules, called RUL, which solves all the above problems. Our system
contains only three rules (called Relax, Upper and Lower), with simple applicability
conditions, which only generate new ordinary (i.e., unlabeled) constraints. This means that,
with any application of the rules, the network remains an STNU in all respects, so no further
explanation is necessary about the interpretation of generated constraints. We also provide a
short, non-algorithmic proof of the completeness of our system, exhibiting a valid execution
strategy explicitly. An illustration of the RUL system is given in Table 2 for comparison:
the notation is explained in the next sections.

We perform a thorough analysis of our system of rules, proving both soundness and
completeness in a simple but rigorous way. The proof of soundness is given with a minimal
set of assumptions, which strictly extends its realm of applicability beyond the usual notion of
DC in STNUs. In particular, our rules are sound even if the environment reveals the duration
of a contingent link (A, l, u, C) right away at time A+ l, i.e., at the lowest possible execution
time of C, instead of its actual (contingent) execution time. This makes the soundness
result strictly stronger, since any constraint deduced in this setting must apply also in the
traditional setting, where the planner is only provided with less information. Moreover, for
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Table 2 The RUL system of constraint propagation rules, in a graphical representation. In each
of the rules, the original edges are drawn solid and the generated edge is drawn dotted.

Rule Graph representation Applicability conditions

Relax
P Q R

v w

v + w
(none)

Upper
P C AC

v

l

−u

max{v − u,−l}
(none)

Lower
AC C R

wl

−u

l + w

w ≤ 0 for R ∈ TX

w ≤ uR for R ∈ TC \ {C}

soundness, we only assume that each duration ∆ can take its extremal values l and u; we do
not need to take into account intermediate values l < ∆ < u. Again, this allows to apply our
rules in a strictly more general setting, where the durations ∆ are restricted to assume only
specific values (if any) beyond the extremal ones. By considering relaxed assumptions, we
address in one shot several variants of the notion of DC, and the traditional notion among
them as a special case.

As for completeness, we consider the notion of late execution strategy, where each time-
point is executed at the latest possible time among all valid dynamic execution strategies
which finish within a fixed time horizon. The existence of a valid late execution strategy is
non-trivial and, to the best of our knowledge, has not been observed in previous work. The
proof of completeness of our rules is obtained by constructing explicitly the late execution
strategy of the given STNU, which is used without modifications as a witness of dynamic
controllability in all the settings considered for soundness. This not only proves the existence
of the late execution strategy, but also proves the equivalence of several variants of the notion
of DC for STNUs. Thus, the late executions strategy serves as a unifying theoretical tool
for studying STNUs, besides its potential practical usage, being both easier to define and
more generally applicable than the early execution strategy. Indeed, despite being possibly
more useful in practice, the early strategy requires a more involved construction, and might
vary among different but equivalent variants. Actually, there are several notions of “early
execution strategies”, varying according to the specific variant of controllability, while the
late strategy has a unique, simple construction which applies to all the variants and thus
proves their equivalence.

Finally, we propose an algorithm for executing the late strategy in real time. Thanks
to the simple and explicit definition of late execution strategy, our algorithm is intuitive
and amounts to instantiating the definition in a computationally efficient way. With our
algorithm, we achieve a running time of O(KN) for executing a network of N time-points
and 1 ≤ K < N contingent links. This is a considerable improvement over the previous best
upper bound of O(N3) time for executing a network, achieved using the early strategy.
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Paper outline. We introduce concepts and notations for STNUs in Section 2. Then, in
Section 3, we describe our system of rules RUL. We prove soundness in Section 4 and
completeness in Section 5. Finally, we show our real-time execution algorithm in Section 6.

2 Preliminaries and notation

An STNU is a tuple Γ = (T , C,L) where: T is a finite set of real-valued temporal variables
called time-points (here denoted with capital letters P,Q,R, . . . ), C is a finite set of constraints
of the form Q ≤ P + w, for P,Q ∈ T and w ∈ R, and L is a finite set of contingent links,
i.e., tuples of the form (A, l, u, C), for A,C ∈ T and l, u ∈ R with 0 < l ≤ u < ∞. In a
contingent link (A, l, u, C), A is the activation time-point, l is the duration lower bound, u is
the duration upper bound, and C is the contingent time-point. Distinct contingent links
have distinct contingent time-points. Given the contingent time-point C of a contingent
link (A, l, u, C) ∈ L we define AC = A, uC = u, lC = l. The set of contingent time-points is
TC := {C | (A, l, u, C) ∈ L}, while the set of executable time-points is TX = T \ TC. In the
following we assume that an STNU Γ = (T , C,L) is given.

A situation is a function s : TC → R, which assigns a duration ∆C
s := s(C) ∈ [lC , uC ]

to each contingent link (AC , lC , uC , C) ∈ L. The set of all possible situations is Ωall :=∏
C∈TC

[lC , uC ]. For increased generality, the following definitions are given with respect
to a fixed, non-empty subset of the situations Ω ⊆ Ωall. (The usual notions are obtained
simply by choosing Ω = Ωall.) An execution strategy is a function σ : (Ω, TX) → R that
assigns an execution time Xσ

s := σ(s,X) to each executable time-point X, in each possible
situation s ∈ Ω. Moreover, we define the execution time of a contingent time-point C ∈ TC
to be Cσs := ACs

σ + ∆C
s . In general, Pσs ∈ R denotes the execution time of the (executable or

contingent) time-point P ∈ T in the situation s with the strategy σ. The superscript σ is
omitted when clear from the context. Also, in some equations we replace the subscript s
with ∗, meaning that the specific equation holds for every situation s ∈ Ω.

An execution strategy σ is viable if Q∗ ≤ P∗ + w for every constraint Q ≤ P + w in C.
It is dynamic if, for any two situations s, r ∈ Ω and executable time-point X ∈ TX, if
{〈C,∆C

s 〉 | Cs < Xs} = {〈C,∆C
r 〉 | Cr < Xs} then Xr = Xs. This definition correctly

captures the intuitive notion that the execution time of X can only depend on the duration
of contingent links whose contingent time-point is executed before X [4]. An STNU is said
to be dynamically controllable (DC) if it admits an execution strategy which is both dynamic
and viable.

We assume without loss of generality to have at most one constraint Q ≤ P + wPQ in C
for any two time-points P,Q ∈ T : to this end, it is sufficient to take wPQ := min{w | (Q ≤
P + w) ∈ C}. By convention wPQ =∞ if there are no constraints (Q ≤ P + w) ∈ C.

An STNU is represented as a graph on node set T with three classes of weighted edges:
ordinary edges E0 = {(P,Q,wPQ) | wPQ < ∞}, lower bound edges E− = {(AC , C, lC) |
C ∈ TC} and upper bound edges E+ = {(C,AC ,−uC) | C ∈ TC}. When convenient, this
graph-based notation is used to describe the constraints and contingent links in an STNU.

We borrow an example of STNU from [5] to use as a running example for our rule system.
The example is shown in Figure 1 with two different graphical notations. In the notation on
the left, used by previous work, contingent links are represented with a pair of edges labeled
with upper-case and lower-case labels. Since in this work we do not need to generate other
labeled edges in any given network, we prefer to use a different notation, as shown on the
right. Contingent links are still represented as a pair of parallel edges, one lower bound edge
and one upper bound edge: this is convenient in describing the rules, ensuring that rules
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A1 A2

X C1 C2
−1 2

c 1
:
2

C
1
:
−
9

c 2
:
3

C
2
:
−
7

A1 A2

X C1 C2
−1 2

2 −9 3 −7

Figure 1 An STNU used as running example (borrowed from [5]). On the left, contingent links
are represented as labeled constraints. On the right, they are represented using our notation.

always combine consecutive edges pointing in the right direction. However, the three types
of edges, ordinary, lower and upper, are distinguished using a different graphical notation,
and not by the addition of labels.

3 The RUL system

We introduce a system of three constraint-propagation rules: Relax, Upper and Lower.
Each of these rules takes two consecutive edges (P,Q, v) and (Q,R,w) of the network and, if
some conditions are satisfied, generates a new ordinary edge from P to R.

The Relax rule takes two ordinary edges (P,Q, v) and (Q,R,w) and generates the
ordinary edge (P,R, v + w).

The Upper rule takes an ordinary edge (P,C, v) and an upper bound edge (C,AC ,−uC)
and generates the ordinary edge (P,AC ,max{v − uC ,−lC}).

The Lower rule takes a lower bound edge (AC , C, lC) and an ordinary edge (C,R,w)
and generates the ordinary edge (AC , R, lC + w), if the following preconditions are satisfied:
either R ∈ TX and w ≤ 0, or R ∈ TC \ {C} and w ≤ uR.

This system of constraint-propagation rules is called RUL and is illustrated in Table 2.

Comparison with MMV. The reader can compare the RUL system and the MMV system
with the help of Table 1 and Table 2.

The Relax rule in RUL is identical to the No Case rule in MMV, and was renamed only
for uniformity.

The Upper rule in RUL can be thought of as a combination of the Upper Case and
Label Removal rules in MMV. Indeed, any edge (P,AC ,max{v − uC ,−lC}) obtained by
Upper can be obtained with Upper Case and Label Removal in three steps.
1. If v < uC − lC , then take the unlabeled edge (P,C, v) and transform it into the weaker

edge (P,C, uC − lC). This is legal since the constraint C ≤ P + v subsumes the constraint
C ≤ P + (uC − lC). In general, we end up with the edge (P,C,max{v, uC − lC}).

2. Apply the Upper Case rule, obtaining the labeled edge (P,AC , C : max{v, uC−lC}−uC) =
(P,AC , C : max{v − uC ,−lC}).

3. Apply the Label Removal rule, valid since max{v−uC ,−lC} ≥ −lC , to obtain the desired
edge (P,AC ,max{v − uC ,−lC}).

As for the Lower rule, we have two cases. For R ∈ TX, it is identical to the Lower Case rule.
However, for R ∈ TC, it extends strictly the domain of applicability of Lower Case. This is a
crucial addition given by the RUL system with respect to MMV, since the edges generated by
Lower cannot in general be obtained using MMV only. It is thanks to this addition that we
can avoid generating labeled edges with the Upper Case rule, and still achieve completeness.
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A1 A2

X C1 C2
−1 2

c 1
:
2

C
1
:
−
9

c 2
:
3

C
2
:
−
7

1
(1)

1

(2)

C 1
: −
7

(3)

C1 : −4

(4)

A1 A2

X C1 C2
−1 2

2 −9 3 −7

1
(1)

1

(2)
5

(3)

−2

(4)

Figure 2 Examples of application of MMV (left) and RUL (right) on the example STNU.

Application examples. In Figure 2, we compare the application of the MMV and RUL
systems on the example network.
MMV:

1. The No Case rule is applied to (C2, C1, 2) and (C1, X,−1) to obtain (C2, X, 1).
2. The Lower Case rule is applied to (A1, C1, c1 : 2) and (C1, X,−1) to obtain (A1, X, 1).
3. The Upper Case rule is applied to (C2, C1, 2) and (C1, A1, C1 : − 9) to obtain the

labeled edge (C2, A1, C1 : − 7).
4. The Cross Case rule is applied to (A2, C2, c1 : 3) and (C2, A1, C1 : − 7) to obtain

(A2, A1, C1 : − 4).
RUL:

1. The Relax rule is applied to (C2, C1, 2) and (C1, X,−1) to obtain (C2, X, 1).
2. The Lower rule (in the case R ∈ TX) is applied to (A1, C1, 2) and (C1, X,−1) to

obtain (A1, X, 1).
3. The Lower rule (in the case R ∈ TC) is applied to (A2, C2, 3) and (C2, C1, 2) to obtain

(A2, C1, 5).
4. The Upper rule is applied to (A2, C1, 5) and (C1, A1,−9) to obtain (A2, A1,max{5−

9,−2}) = (A2, A1,−2).
The edges (C2, X, 1) and (A1, X, 1) are generated by both systems, respectively using the
No Case and Relax rules, and the Lower Case and Lower rules with R ∈ TX.

As for the other edges, on one hand, the MMV system generates the labeled edges
(C2, A1, C1 : − 7) and (A2, A1, C1 : − 4) which are not generated using RUL. On the other
hand, the RUL system generates the edge (A2, C1, 5), with the Lower rule in the case
R ∈ TC, which cannot be generated with MMV, and only gets a value −2 on the edge from
A2 to A1, the strongest bound that can be given unconditionally, instead of the labeled edge
(A2, A1, C1 : − 4). Observe, however, that the edge (A2, A1, C1 : − 4) could be obtained,
in a single step, from the edges (A2, C1, 5) and (C1, A1, C1 : − 9), with an application of
the Upper Case rule, so it is somewhat implicit in the edge (A2, C1, 5). In general, when
replacing the MMV system the RUL system, the labeled edges, with head in an activation
time-point, are replaced with unlabeled edges with head in the corresponding contingent
time-point.

4 Soundness

We commit to prove soundness of all three rules comprising RUL, in the most general sense.
Specifically, we partially relax the following assumptions: (1) that Ω = Ωall, i.e., that every
possible situation s ∈ Ωall can be realized by the environment, and (2) that the duration ∆C

s
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is revealed only at time Cs. Proving soundness under our weaker assumptions is a stronger
result, which not only implies soundness in the usual sense, but also helps applying the model
of STNUs to a wider range of scenarios.

To express our assumptions precisely, the following notion is needed.

I Definition 1. Given a situation s, a contingent time-point C0 ∈ TC and a value d ∈
[lC0 , uC0 ], define the situation s[d/∆C0 ] = r where ∆C0

r = d and ∆C
r = ∆C

s for every
C ∈ TC \ {C0}.

We first state a condition on the set Ω.

I Definition 2. The set Ω ⊆ Ωall is extremal-closed if, for every s ∈ Ω, also s[uC/∆C ] ∈ Ω
and s[lC/∆C ] ∈ Ω.

For soundness, we need to assume that Ω is extremal-closed. This means that, even if
not all situations may be realized by the environment, each duration ∆C can at least assume
the extremal values lC and uC , and do so independently of the other durations. Observe
that this is the case for Ω = Ωall, where all the situations are possible. However, there are
other, interesting examples of sets Ω that are extremal-closed: e.g., Ω =

∏
C∈TC

{lC , uC},
where each duration ∆C can only assume the extremal values lC and uC . Hence, with this
assumption, we strictly increase the generality with respect to the case Ω = Ωall addressed
by previous work.

A relaxed notion of dynamic execution strategy is also introduced, where the duration of
a contingent link (A, l, u, C) ∈ L in the situation s is revealed at time As + l instead of Cs.

I Definition 3. An execution strategy σ is upfront-dynamic if, for any two situations s, r ∈ Ω
and executable time-point X ∈ TX, we have that Xr = Xs if {〈C,∆C

s 〉 | ACs + lC < Xs} =
{〈C,∆C

r 〉 | ACr + lC < Xs}.

By Lemma 4, working with upfront-dynamic strategies yields no loss in generality with
respect to dynamic execution strategies.

I Lemma 4. Any dynamic execution strategy is upfront-dynamic.

Proof. The statement is clear if we consider that C∗ ≥ AC∗ +lC , so upfront-dynamic strategies
can only have more information at any time, whence more freedom, with respect to dynamic
strategy.

A formal proof is provided for reference. The proof is by contradiction: assume σ is
dynamic but not upfront-dynamic. Fix any two scenarios s, r ∈ Ω and suppose Xs 6= Xr for
some X ∈ TX. Assume without loss of generality that Xs = t < Xr and that t is minimal,
i.e., Ys = Yr for any Y ∈ TX such that either Ys < t or Yr < t.

Since σ is dynamic, we have {〈C,∆C
s 〉 | Cs < t} 6= {〈C,∆C

r 〉 | Cr < t}. Consider any C in
the difference. Either ACs < t or ACr < t, then actually1 ACs = ACr , by minimality of t. Thus,
∆C
s 6= ∆C

r , so {〈C,∆C
s 〉 | ACs + lC < Xs} 6= {〈C,∆C

r 〉 | ACr + lC < Xs}, closing the proof. J

Lemma 5 is the last ingredient needed for our soundness proof.

I Lemma 5. Consider an upfront-dynamic execution strategy σ and situations s, r ∈ Ω,
where r = s[d/∆C0 ] for some contingent time-point C0 ∈ TC and duration d ∈ [lC0

, uC
0 ].

Then, Pr = Ps for any P ∈ T \ {C0} such that Ps ≤ AC0
s + lC0 . In particular, AC0

s = AC0
r .

1 For simplicity, here we are assuming AC ∈ TX, as common in the context of STNUs. The proof can be
easily adapted if this assumption does not hold.
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Proof. By contradiction. Fixed s and r, choose P so that Ps ≤ AC0
s + lC0 , Ps 6= Pr, and Ps

is smallest possible. Then ACs = ACr for every C ∈ TC such that ACs < Ps. Also, ∆C
r = ∆C

s

for every C ∈ TC \{C0}. If P ∈ TC \{C0}, then Ps = APs + ∆P
s = APr + ∆P

r = Pr. Otherwise,
if P ∈ TX, then Ps = Pr by Definition 3, since AC0

s + lC0 ≥ Ps. J

Soundness is proven in Lemma 6, where each of the three rules comprising RUL is
proven to be sound, even for upfront-dynamic execution strategies, and for any extremal-
closed Ω ⊆ Ωall.

I Lemma 6. Assume Ω is extremal-closed. Let σ be a viable upfront-dynamic execution
strategy. Consider an edge (P,R, x) generated using RUL. Then, Rσ∗ ≤ Pσ∗ + x.

Proof. Relax. Clearly, Q∗ ≤ P∗ + v and R∗ ≤ Q∗ + w imply R∗ ≤ P∗ + (v + w).
Upper. Assume C∗ ≤ P∗ + v. Fix any situation s ∈ Ω: we need to prove ACs ≤

PCs + max{v − uC ,−lC}. If ACs < Ps − lC we are done, hence assume ACs ≥ Ps − lC . Take
r = s[uC/∆C ] and observe that ACr = ACs by Lemma 5. Moreover, Ps ≤ ACs + lC , so also
Pr = Ps by Lemma 5. Then,

ACs = ACr by Lemma 5
= Cr − uC as Cr = ACr + ∆C

r = ACr + uC

≤ Pr + v − uC by assumption C∗ ≤ P∗ + v

= Ps + v − uC as Ps = Pr by Lemma 5.

Lower. Assume R∗ ≤ C∗ + w. Fix any situation s ∈ Ω: we need to prove that
Rs ≤ ACs + (lC + w). Take r = s[lC/∆C ] and observe that ACr = ACs by Lemma 5. We now
prove that Rr = Rs, in two cases.
Case 1: R ∈ TX and w ≤ 0.

Consider that Rr ≤ Cr + w = ACr + lC + w ≤ ACr + lC since w ≤ 0. Hence, Rs = Rr by
Lemma 5.

Case 2: R ∈ TC \ {C} and w ≤ uR.
Take q = r[uR/∆R] and observe that ARq = Rq − uR ≤ Cq + w − uR ≤ Cq = ACq + lC ,
whence2 ARs = ARr = ARq by Lemma 5 and Rs = ARs + ∆R

s = ARr + ∆R
r = Rr.

Then,

Rs = Rr proven separately in the two cases
≤ Cr + w by assumption R∗ ≤ C∗ + w

= ACr + lC + w as Cr = ACr + ∆C
r = ACr + lC

= ACs + lC + w as As = Ar by Lemma 5. J

5 Completeness via late execution strategy

For completeness, we need to assume, as usual in temporal networks, to have a special time-
point Z which is due to be executed at time 0 and before any other time-point. Moreover, it
will be useful to consider Z as a contingent node for uniformity.

2 Let us spend some extra words to explain, in a more intuitive way, this step of the proof, which is
crucial for our system of rules and arguably is the most involved. In the situation q, where ∆C

q = lC and
∆R

q = uR, the activation node AR for R must be executed before or at time AC
q + lC

q : this is a direct
consequence of the existing constraint R ≤ C + w with w ≤ uR. Hence, at the time AR

q , neither the
duration ∆R (trivially) nor ∆C are known to the planner. Thus, the time AR cannot change depending
on those durations, i.e., AR

s = AR
r = AR

q as claimed.
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Table 3 Extra restrictions for the rules Relax+ and Upper+.

Rule Extra restrictions
Relax+ P ∈ TC Q ∈ TX v > 0
Upper+ P ∈ TC v > uC

Table 4 RUL+ sub-system of RUL.

Rule Graph representation Applicability conditions

Relax+
P Q R

v w

v + w
P ∈ TC Q ∈ TX v > 0

Upper+
P C AC

v

l

−u

v − u
P ∈ TC v > uC

Lower
AC C R

wl

−u

l + w

w ≤ 0 for R ∈ TX

w ≤ uR for R ∈ TC \ {C}

I Definition 7. An STNU is pointed if it contains distinguished time-points AZ ∈ TX,
Z ∈ TC, and a contingent link (AZ , 1, 1, Z) ∈ L, with wPZ < 0 and wZP > 0 for any
P ∈ TX \ {AZ}. If also wZP <∞ for every P ∈ TX \ {AZ}, then it is upper-bounded.

Any network can be made pointed, without loss of generality, by adding the contingent
link (AZ , 1, 1, Z) ∈ L between dummy nodes AZ and Z, and setting wPZ = −1 and wZP =∞
for every P ∈ TX \ {AZ}. To make it upper-bounded, it is sufficient to pick a sufficiently
large horizon time h > 0, and set wZP = h for every P ∈ TX \ {AZ}.

The completeness of the RUL system is proven by exhibiting an explicit execution strategy
for any upper-bounded network Γ which is closed under them. Actually, Γ only needs to
be closed under a subset of the RUL system, called RUL+. In the sub-system RUL+, we
only apply the Relax and Upper rules when P ∈ TC is contingent. Moreover, we require
v > 0 and Q ∈ TX for the Relax rule, and v > uC for the Upper rule. The restricted rules,
called Relax+ and Upper+, are illustrated in Table 3. Together with the unrestricted rule
Lower, they constitute the RUL+ system (Table 4).

The strategy we exhibit is a late execution strategy, as opposed to the commonly used
early execution strategy.

I Definition 8. In an upper-bounded network Γ, a viable dynamic execution strategy σ is
the late execution strategy if, for any other viable dynamic execution strategy τ , Pσs ≥ P τs
for each s ∈ Ω and P ∈ T . (It is implicitly assumed AZ∗ = −1 for both σ and τ .) I.e., in the
late execution strategy each time-point is executed at the latest possible time over all viable
dynamic execution strategies.
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It follows from the definition that the late execution strategy, if it exists, is unique.
However, it is not at all implied by the definition that a given dynamically controllable
network, even if upper-bounded, admits a late execution strategy. Indeed, in principle it
could be that the strategy defined as

Xσ
s := max{Xτ

s | dynamic and viable τ with AZ∗ = −1},

i.e., the only candidate to be the late execution strategy, is not itself dynamic and viable.3
It is obtained, as a consequence of the analysis of our system of rules, that indeed, for the
case of STNUs, the late execution strategy always exists, provided the network is DC and
upper-bounded. Working with late execution strategies – it turns out – is very convenient,
since we do not have to deal with “wait” (or labeled) edges; this will allow for a short and
self-contained non-algorithmic proof of the completeness of RUL.

Notice that a strategy satisfying the following equation would trivially be the late execution
strategy, if only it were dynamic and viable:

Y∗ = min
C∈TC
wCY >0

C∗ + wCY (1)

for every Y ∈ TX \ {AZ}, and AZ∗ = −1.

I Lemma 9. Assume Γ is upper-bounded. Then, there exists a unique execution strategy σ
satisfying Equation 1. Moreover, σ is dynamic.

Proof. The reason why the lemma holds is simple: Equation 1 defines the execution time
of each executable time-point in terms of time-points with a strictly lower execution time,
hence σ is well-defined and unique. Remarkably, the very same observation also shows that
σ is dynamic. Notice that boundedness (i.e., 0 < wZP < ∞ for every P ∈ TX \ {AZ}) is
necessary to ensure that the right-hand side of Equation 1 is finite. Also, the assumption
AZ∗ = −1 is necessary for σ to be unique.

To insist on a formal proof, we can rewrite Equation 1 as follows:

Ys = t ⇐⇒ min
C∈TC
wCY >0
Cs<t

Cs + wCY = t ∀Y ∈ TX, s ∈ Ω.

In this writing, the dependency on the time t ∈ [0,∞) is made explicit and allows for an
inductive construction of the solution σ for increasing t, which is thus proven to be unique.
To prove that σ is also dynamic, suppose Xs < Xr for some X ∈ TX and s, r ∈ Ω. Also,
choose a minimal Xs, i.e., assume Ys = t ⇐⇒ Yr = t for every t < Xs and Y ∈ TX. Take
C ∈ TC such that Xs = Cs + wCX and wCX > 0 (i.e., the arg min of Equation 1). By
definition of σ, we have Xr ≤ Cr + wCX , so Cs + wCX = Xs < Xr ≤ Cr + wCX , whence
Cs < Cr. By minimality of Xs we have4 ACs = ACr , so it must be ∆C

s < ∆C
r . This proves

that {〈C,∆C
s 〉 | Cs < t} 6= {〈C,∆C

r 〉 | Cr < t} for every t ≥ Xs, concluding the proof. J

I Lemma 10. Assume Γ is upper-bounded and closed under RUL+. Then, the strategy σ
defined by Equation 1 is viable.

3 In some other temporal network models, such as CSTNs, it is possible to construct examples of
upper-bounded networks which admit an early execution strategy but no late execution strategy.

4 For simplicity, here we are assuming AC ∈ TX, as common in the context of STNUs. The proof can be
easily adapted if this assumption does not hold.
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Table 5 Cases in the proof of Lemma 10.

Constraint R ≤ P + wP R Case
P ∈ TX Relax+

P ∈ TC

R ∈ TX
wP R > 0 By-Construction
wP R ≤ 0 Lower

R ∈ TC
wP R > uR Upper+

wP R ≤ uR Lower

Proof. Fix a situation s. We prove that Rs ≤ Ps + wPR by induction on the times Ps
and Rs.

The following four cases (By-Construction, Relax+, Lower, Upper+) cover all the
possibilities, as illustrated in Table 5.

Case By-Construction: Y ≤ C + wCY with C ∈ TC, wCY > 0 and Y ∈ TX.
We have Ys ≤ Cs + wCY by Equation 1.

Case Relax+: R ≤ X + wXR with X ∈ TX.
Take C ∈ TC such that Xs = Cs + wCX with wCX > 0. Then,

Rs ≤ Cs + wCR by induction, since Cs < Xs = Cs + wCX

≤ Cs + wCX + wXR by Relax+ applied to C,X,R
= Xs + wXR by assumption Xs = Cs + wCX .

Case Lower: R ≤ C+wCR with C ∈ TC, and either R ∈ TX and wCR ≤ 0, or R ∈ TC \{C}
and wCR ≤ uR.
Then,

Rs ≤ ACs + wACR by induction, as ACs < Cs = ACs + ∆C
s

≤ ACs + (wCR + lC) by Lower applied to C,AC , R
≤ Cs + wCR since Cs = ACs + ∆C

s ≥ AC + lC .

Case Upper+: C ≤ P + wPC , with C ∈ TC and wPC ≥ uC .
Then,

Cs ≤ ACs + uC as Cs = ACs + ∆C
s and ∆C

s ≤ uC

≤ Ps + wPAC + uC by induction, as ACs < Cs = ACs + ∆C
s

≤ Ps + (wPC − uC) + uC by Upper+ applied to P,AC , C
= Ps + wPC . J

To complete our analysis, we need to show that a DC network admits a closure under
RUL+. More precisely:

I Lemma 11. If a network admits a viable upfront-dynamic execution strategy, then it
admits a closure under RUL.

This fact is quite intuitive: just continue to apply the rules, as long as possible, until
closure is reached. Since the rules are sound, and the network admits a viable and dynamic
execution strategy σ, then at some point it should become impossible to deduce stricter and
stricter constraints, as they must be satisfied at least by σ. However, to prove that closure is
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reached in a finite number of steps requires (explicitly or implicitly) the description of an
actual algorithm to perform the propagations, which is beyond the scope of this work. The
authors verified that the existing DC checking algorithms can be adapted to use the RUL
system, and indeed produce the closure under RUL of a given input network, provided it is
DC.

We explore here the consequences of Lemma 11.
I Theorem 12. Let Γ be an upper-bounded STNU. The following are equivalent:
1. Γ is dynamically controllable (admits a viable dynamic execution strategy),
2. Γ admits a viable upfront-dynamic execution strategy,
3. Γ admits a closure under the RUL system (without negative self-loops),
4. Γ admits a closure under the RUL+ system (with only positive edges from Z).
Proof. Consider the following implications:

1 =⇒ 2, by Lemma 5,
2 =⇒ 3, by Lemma 11,
3 =⇒ 4, trivial,
4 =⇒ 1, by the construction of the late execution strategy (Lemma 9 and Lemma 10).

J

I Corollary 13. Every dynamically controllable upper-bounded STNU admits a late execution
strategy.
I Corollary 14. The property of being dynamically controllable does not change if the
duration ∆C

s of contingent links is revealed at any time between ACs + lC and Cs, nor if the
duration ∆C

s is restricted to assume only the extremal values lC and uC .
Proof. Consider that the property of admitting a closure under the RUL system is unvaried,
and the RUL system is sound-and-complete for all these variants. J

I Corollary 15. DC-checking for an STNU with N time-points, M constraints, and K con-
tingent links admits a certificate of YES of size O(KN), verifiable in O(K2N +KM) time
and logarithmic space.
Proof. The closure of the network under RUL+ is a certificate of YES. Only O(KN) new
edges may be generated, since they all have tail in either a contingent time-point or an
activation time-point, and this suffices for the size bound. To verify the closure under the
Relax rule, one can guess a constraint R ≤ Q+w (either original or in the closure) and the
time-point P ∈ TC, and verify that the rule does not generate any stronger constraint. This
takes O(K2N +KM) time (a factor KN +M to guess the original or generated constraint,
times a factor K to guess the time-point P ). Similarly, to verify the closure under the Lower
rule, one can guess C ∈ TC and R ∈ T , in O(KN) total time, while verifying the Upper
rule only require O(K2) ≤ O(KN) time to guess P,C ∈ TC. Finally, the space required for
verification is clearly logarithmic. J

I Corollary 16. If the network is integer, i.e., wPQ ∈ Z ∪ {∞} for every P,Q ∈ T , there
there exists a strategy where each execution time Xs satisfies either:

Xs ∈ Z is integer, or
Xs = Cs + k for some C ∈ TC with integer k ∈ Z.

I Corollary 17. If the network is integer, i.e., wPQ ∈ Z ∪ {∞} for every P,Q ∈ T , and the
durations are constrained to be integers, i.e., lC , uC ∈ Z and Ω =

∏
C∈TC

{lC , lC + 1, . . . , uC},
then the network admits an integer execution strategy, i.e., where P∗ ∈ Z for every P ∈ T .
Proof. Consider the late execution strategy. J

TIME 2017



8:14 Dynamic Controllability Made Simple

6 Real-time execution

We have shown that a network closed under RUL+ admits a late execution strategy, defined
by Equation 1. We next show that the late execution strategy can be also executed in
real-time, with a total running time O(KN). We only need to assume that, for every C ∈ TC,
we have stored the values wCX , for every X ∈ TX such that wCX > 0, in a list LC , sorted
by increasing numerical value of wCX . These lists LC , for C ∈ TC, can be compiled in a
preprocessing step (by sorting and filtering all the values wCX , X ∈ TX), in O(KN logN)
total time. This cost should not be accounted for in the real-time execution running time: it
is better regarded as a light postprocessing of the DC-checking step, having lower asymptotic
time and space complexity.

The algorithm works by maintaining the value

X◦ := min
C∈XC
wCX>0

C• + wCX

for every X ∈ TX , where XC is the set of already executed contingent time-points (initially
containing only Z), C• is the execution time of the time-point C, and X◦ represents the
current scheduled time for the time-point X. During the real-time execution of the network,
the values X◦ can only decrease monotonically, and have to be updated whenever a contingent
time-point gets executed. The values X◦ are maintained in a list S sorted by increasing
numerical value of X◦, which can be regarded as an event queue representing the current
candidate schedule of executable time-points.

At the beginning XC = {Z}, and the list S is built simply by copying LZ , setting
X◦ = wXZ for every X ∈ TX. The algorithm works by repeatedly executing the time-point
X̄ which appears first in the list S, at time X̄◦, unless a contingent time-point is executed
before that time. When a contingent time-point C̄ is executed, the values X◦ and the list
S need to be updated before resuming the execution. This can be done in O(N) time by
merging the new candidate values C̄• +wC̄X with the list S. More precisely, a new list SC̄ is
built from LC̄ , containing the values

XC̄
◦ := C̄• + wC̄X

for every X ∈ TX such that wC̄X > 0. The list SC̄ is constructed preserving the increasing
order given by LC̄ . Observe that the new value of X◦ is obtained as

Xnew
◦ := min{Xold

◦ , XC̄
◦ }.

To obtain a sorted list with the new values, first merge the lists S and SC̄ as in the Merge
Sort algorithm. Then, scan the merged list to remove duplicates. For each duplicated
time-point X, keep only the first occurrence in the list, i.e., the one with smaller numerical
value min{Xold

◦ , XC̄
◦ }, and set that value as the new value of X◦. With this pass we obtain

the updated list Snew, already sorted, containing the updated values Xnew
◦ which take into

account the execution of C. Since we pay O(N) time for each of the K contingent time-points
and only O(1) for each executable time-point, the total time is O(KN).

7 Conclusions

We have presented a new, sound-and-complete system of constraint propagation rules, called
RUL, for checking the dynamic controllability of STNUs. Soundness has been proven, for
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each of the rules, in its most general version, and holds even if we take into account upfront-
dynamic execution strategies besides dynamic execution strategies. As for completeness, we
have proven that closure under a subset of the rules, called RUL+, is sufficient to guarantee
the existence of a viable dynamic execution strategy. Specifically, we considered the strategy
which executes each time-point at the latest time allowed by positive edges from contingent
nodes. We defined this strategy explicitly, with a single equation; then, we provided a short
proof that it is viable, i.e., it satisfies every other constraint in the network, assuming closure
under RUL+. This strategy is the late execution strategy, since moving the execution time
of any time-point further in the future would violate at least one constraint. Finally, we
showed how to execute the late execution strategy in real-time, paying only O(KN) time in
total for a network with N time-points and K contingent links. With the introduction of the
RUL system, this paper helps making STNUs not only simpler, and better understood, but
also more generally applicable.

In this work, we did not provide any new DC-checking algorithm. However, existing
algorithms can be adapted to use the RUL system, and produce the closure under RUL
of a given input network, if it is DC, without incurring in any additional complexity cost.
Furthermore, the added simplicity of the new rules allows for a cleaner approach to DC-
checking, which yields improved algorithms as for both simplicity and efficiency, beyond the
scope in this work. We opted for a short and clean description of the RUL system, which
is proposed as a new foundation for the theory of DC-checking and real-time execution of
STNUs, and their numerous extensions.
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