
Incorporating Decision Nodes into Conditional
Simple Temporal Networks
Massimo Cairo1, Carlo Combi2, Carlo Comin2, Luke Hunsberger4,
Roberto Posenato5, Romeo Rizzi6, and Matteo Zavatteri7

1 Department of Mathematics, University of Trento, Trento, Italy
massimo.cairo@unitn.it

2 Department of Computer Science, University of Verona, Verona, Italy
carlo.combi@univr.it

3 Department of Computer Science, University of Verona, Verona, Italy
carlo.comin@univr.it

4 Department of Computer Science, Vassar College, Poughkeepsie, NY, USA
hunsberger@vassar.edu

5 Department of Computer Science, University of Verona, Verona, Italy
roberto.posenato@univr.it

6 Department of Computer Science, University of Verona, Verona, Italy
omeo.rizzi@univr.it

7 Department of Computer Science, University of Verona, Verona, Italy
matteo.zavatteri@univr.it

Abstract
A Conditional Simple Temporal Network (CSTN) augments a Simple Temporal Network (STN)
to include special time-points, called observation time-points. In a CSTN, the agent executing
the network controls the execution of every time-point. However, each observation time-point
has a unique propositional letter associated with it and, when the agent executes that time-point,
the environment assigns a truth value to the corresponding letter. Thus, the agent observes, but
does not control the assignment of truth values. A CSTN is dynamically consistent (DC) if there
exists a strategy for executing its time-points such that all relevant constraints will be satisfied
no matter which truth values the environment assigns to the propositional letters.

Alternatively, in a Labeled Simple Temporal Network (Labeled STN) – also called a Temporal
Plan with Choice – the agent executing the network controls the assignment of values to the so-
called choice variables. Furthermore, the agent can make those assignments at any time. For
this reason, a Labeled STN is equivalent to a Disjunctive Temporal Network.

This paper incorporates both of the above extensions by augmenting a CSTN to include
not only observation time-points but also decision time-points. A decision time-point is like an
observation time-point in that it has an associated propositional letter whose value is determined
when the decision time-point is executed. It differs in that the agent – not the environment –
selects that value. The resulting network is called a CSTN with Decisions (CSTND). This paper
shows that a CSTND generalizes both CSTNs and Labeled STNs, and proves that the problem
of determining whether any given CSTND is dynamically consistent is PSPACE-complete. It
also presents algorithms that address two sub-classes of CSTNDs: (1) those that contain only
decision time-points; and (2) those in which all decisions are made before execution begins.

1998 ACM Subject Classification G.2.2 Graph Theory, I.2.8 Problem Solving, Control Methods,
and Search

Keywords and phrases Conditional Simple Temporal Networks with Decisions, Dynamic Con-
sistency, SAT Solver, Hyper Temporal Networks, PSPACE

Digital Object Identifier 10.4230/LIPIcs.TIME.2017.9

© Massimo Cairo, Carlo Combi, Carlo Comin, Luke Hunsberger, Roberto Posenato, Romeo Rizzi,
and Matteo Zavatteri;
licensed under Creative Commons License CC-BY

24th International Symposium on Temporal Representation and Reasoning (TIME 2017).
Editors: Sven Schewe, Thomas Schneider, and Jef Wijsen; Article No. 9; pp. 9:1–9:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TIME.2017.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


9:2 Incorporating Decision Nodes into CSTNs

1 Introduction

Temporal networks have long been employed for the representation, validation, and execution
of plans affected by temporal constraints [1, 5, 8, 10, 11, 17, 23]. A temporal network con-
stains time-points and temporal constraints. Time-points are real-valued variables; temporal
constraints are binary difference constraints that specify lower or upper bounds on the
temporal distance between pairs of time-points [16]. The execution of a time-point (i.e., the
assignment of a real value to it) models the (instantaneous) occurrence of an event. An agent
executing a temporal network aims to execute its time-points so that all relevant temporal
constraints are satisfied.

A Simple Temporal Network (STN) is the most studied and used kind of temporal network
due to its simplicity, efficiency, and general applicability [16]. An STN is typically used in
planning applications where all time-points must be executed (i.e., must play their role in
the plan) and where the agent controls their execution. An STN is consistent if the network
can be executed in such a way that all of its constraints are satisfied.

Since STNs were proposed, several authors have introduced extensions to STNs to
augment their expressiveness. Among them, we mention here: (i) Simple Temporal Networks
with Uncertainty (STNUs) [24], (ii) Conditional Simple Temporal Networks (CSTNs) [22, 25],
and (iii) Conditional Simple Temporal Networks with Uncertainty (CSTNUs) [21].

A Simple Temporal Network with Uncertainty extends an STN by incorporating contingent
links to model uncontrollable, but bounded temporal durations. A contingent link has the
form (A, x, y, C), where A is the activation time-point, x and y are real numbers such that
0 < x < y < ∞, and C is the contingent time-point. Typically, the agent controls the
execution of A, but once A has been executed, the execution of C is beyond the agent’s
control because the time of its execution is decided by the environment. Indeed, C may
be executed at any time such that x ≤ C − A ≤ y. Thus, the agent merely observes the
execution of C when it occurs. The agent aims to execute the time-points under its control
such that all constraints will be satisfied no matter how the contingent durations turn out.
Crucially, the agent may react to the contingent durations it observes, adapting its execution
of the remaining unexecuted time-points (i.e., it may use a dynamic execution strategy [24]).

A Conditional Simple Temporal Network extends an STN in a different direction by
specifying the time-points/constraints must be executed/satisfied in various scenarios. Each
scenario is represented by a conjunction of (positive or negative) propositional literals, where
each proposition represents some condition. The agent executing a CSTN aims to execute the
time-points relevant to the unfolding scenario, while satisfying all of the relevant constraints.
Each propositional letter p has a corresponding observation time-point P? When the agent
executes P?, the environment sets the value of p. Since these values are only observed in
real time, the agent aims to satisfy all relevant constraints no matter how the conditions
turn out during execution [21, 25]. Hence, for a CSTN, the agent typically uses a dynamic
execution strategy with respect to the uncontrollable condition values [22].

A Conditional Simple Temporal Network with Uncertainty generalizes both STNUs and
CSTNs in order to deal with both kinds of uncertainties simultaneously [21].

For temporal networks with uncontrollable features (e.g., STNUs, CSTNs and CSTNUs),
dynamic properties, named dynamic controllability or dynamic consistency, have been studied
and some related algorithms have been proposed. These properties specify whether it is
possible to execute all time-points under the agent’s control while satisfying all relevant
constraints, by dynamically reacting to the uncertainties (whether the duration of a contingent
link or the setting of a boolean value) as they are revealed in real time.



M. Cairo et al. 9:3

B!
[�]

L1
[b]

L2
[¬b]

E?
[�]

H!
[e]

S
[¬e]

I2
[e¬h]

I1
[eh]

[0, 2], b

[0, 2],¬b

[4, 5], b

[3, 7],¬b

[1, 1], e

[3, 5],¬e
[1, 3], eh

[2, 4], e¬h

[0, 6], be¬h

Figure 1 A CSTN with Decisions modeling the example discussed in the text. The propositions
b, e and h correspond to the time-points B!, E? and H!, respectively.

Conrad and Williams [14] present Drake, a dynamic executive for temporal plans that
include discrete choices. In Drake, the executive sets the values for the propositional letters –
hence the name choice – and the goal of the system is to both schedule events and make
discrete choices as the execution unfolds. The ability to make discrete choices enriches an
executive by offering it the ability to order activities, and choose between alternate methods
(sub-plans) for achieving goals. Consistency analysis aims to determine a set of choices that
will enable the executive to satisfy the relevant constraints.

Thus, STNUs, CSTNs and CSTNUs address uncontrollable parts, whereas Drake addresses
controllable parts only. No temporal network discussed so far has addressed the arising
interplay that occurs when controllable and uncontrollable conditions may mutually influence
one another. This paper focuses on this issue and makes the following contributions.
1. A new model, Conditional Simple Temporal Network with Decision (CSTND), that ac-

commodates contingent propositional variables (conditions) and controllable propositional
variables (decisions). During execution, the decisions made by the agent, together with
the conditions specified by the environment, determine the unfolding scenario.

2. A proof that the decision problem of establishing whether or not any CSTND is dynami-
cally consistent is PSPACE-complete.

3. Algorithms addressing two sub-classes of CSTNDs: (i) those containing decisions only,
and (ii) those in which all decisions must be set before starting to execute the network.

2 Motivating Example

Fig. 1 depicts a simplification of an example from the healthcare domain. The nodes in the
graph represent time-points; the edges represent constraints. Time-points and constraints
are relevant whenever their propositional labels are consistent with the unfolding scenario.
Temporal ranges are in minutes. For instance, the annotation [0, 2], b on the edge from B!
to L1 represents that in scenarios where b is true, the difference L1 − B! must be in the
interval [0, 2] (i.e., L1 must be executed between zero and two minutes after B!).

The plan applies to patients suffering from hematological diseases. It starts by having
a patient’s blood tested. There are two labs in the hospital, Lab1 and Lab2, but only one
of them will analyze the blood sample, to be determined by the value the executing agent
assigns to b, when B! is executed. If b is > (resp., ⊥), then Lab1 (resp., Lab2) will analyze
the sample. The execution of either L1 or L2 models this task. Depending on the result
of the blood test, a physician (who represents the environment in this example) evaluates
whether the patient needs urgent care. This evaluation is represented by the time-point E?.
The environment setting e = ⊥ represents that the physician determined that the patient
does not need urgent care. In that case, the plan concludes with a standard treatment,
represented by the execution of S. However, if e = >, then a hospitalization process is

TIME 2017



9:4 Incorporating Decision Nodes into CSTNs

engaged, represented by the time-points H!, I1 and I2. There are two Intensive Care Units
in the hospital, ICU1 and ICU2, but only one of them will be used, depending on the value
for h, which is determined when H! is executed. If h = > (resp., h = ⊥), then the patient
is hospitalized in ICU1 (resp., ICU2). Note that if b = e = >, and h = ⊥, then I2 must be
executed no more than 6 minutes after B!, the time-point modeling the start of the plan.

Our goal is to determine whether such networks are dynamically consistent. Note that
if the values of b and h were set by the environment, then the network in Fig. 1 would
be inconsistent. For example, in the scenario be¬h, the lower bound of I2 is 7, which is
inconsistent with the constraint B! [0, 6], be¬h

I2. However, if b and h are set by the agent,
then the plan is dynamically consistent. Indeed, there are two significant possibilities: if
b = ⊥ and e = >, then h can be > or ⊥ without any problem; but if b = e = >, then h must
be >, because the scenario be¬h would introduce the same inconsistency discussed above.

3 Conditional Simple Temporal Network with Decisions

This section introduces the formal definitions of a Conditional Simple Temporal Network
with Decisions (CSTND) and the corresponding dynamic consistency property. We begin by
recalling Simple Temporal Networks (STNs) [16], a well-known model for representing and
reasoning about temporal constraints. An STN is a pair (T , C), where T is a set of real-valued
variables, called time-points, and C is a set of binary constraints on those variables, each
having the form, (Y −X ≤ δ), where X,Y ∈ T and δ ∈ R. A constraint (Y −X = δ) can
be represented by the constraints, (Y −X ≤ δ) and (X − Y ≤ −δ). The Simple Temporal
Problem (STP) is that of determining whether an STN is consistent (i.e., has a solution).

Tsamardinos et al. [25] extended STNs to include time-points and temporal constraints
that apply only in certain scenarios, where each scenario is represented by a conjunction
of propositional literals. In their work, each time-point has a label that concisely specifies
the scenarios in which that time-point must be executed. During execution, the execution
of so-called observation time-points non-deterministically generates truth values for the
corresponding propositional variables. Thus, the scenario is incrementally revealed. Later,
Hunsberger et al. [21, 22] augmented their model to also allow constraints to have labels
that specify the scenarios in which they must be satisfied. The result was a Conditional
STN (CSTN). A CSTN is called dynamically consistent if there is a strategy for executing
its time-points such that all relevant constraints will be satisfied no matter which scenario is
incrementally revealed. They also formalized several well-definedness properties that had
been only informally expressed in the earlier work.

This paper generalizes a CSTN by allowing some of the propositional variables to be
assigned values not by the environment, but by the agent executing the network.

I Definition 1 (Label). Let P be a set of propositional letters. A label ` over P is a (possibly
empty) conjunction, ` = l1∧· · ·∧ lk, of (positive or negative) literals li ∈ {pi,¬pi} on distinct
variables pi ∈ P. The empty label is denoted by �. P∗ denotes the set of all labels over P.

I Definition 2 (CSTND). A Conditional Simple Temporal Network with Decisions (CSTND)
is a tuple Γ = 〈T ,P, CP,DP, C,OT ,O〉 where:
T is a finite set of temporal variables or time-points;
P is a finite set of propositional letters/variables;
(CP,DP) is a partition of P into contingent propositional variables (conditions) CP and
controllable propositional variables (decisions) DP;



M. Cairo et al. 9:5

C is a finite set of labeled constraints, each of the form, (Y −X ≤ δ, `), where X,Y ∈ T ,
δ ∈ R, and ` ∈ P∗;
OT ⊆ T is the set of disclosing time-points; and
O : P → OT is a bijection that associates each propositional variable p ∈ P to a disclosing
time-point O(p) ∈ OT . If p ∈ CP, then its disclosing time-point is called an observation
time-point; but if p ∈ DP, its disclosing time-point is called a decision time-point.

When an observation time-point is executed, the corresponding propositional variable (condi-
tion) is assigned a truth value by the environment; however, when a decision time-point is
executed, the corresponding variable (decision) is assigned a truth value by the agent. To
highlight the correspondence between propositional variables and their disclosing time-points,
a decision time-point for any variable p is notated as P !, while an observation time-point for
any variable q is notated as Q?, as illustrated in Fig. 1.

It is worth pointing out that in the definition of CSTND only constraints are labeled,
not time-points. This restriction does not limit the expressivity of CSTNDs, as it has been
recently shown that labeling constraints is sufficient to represent any possible CSTN [3].
Moreover, since time-points in CSTNDs do not have labels, the well-definedness properties
formalized by Hunsberger et al. [22] become vacuous, which simplifies subsequent definitions.

To facilitate defining the dynamic consistency property for CSTNDs, we refine the
supporting definitions of scenarios, projections and schedules to distinguish condition variables
from decision variables.

I Definition 3 (Scenario). A (combined) scenario over P is a total assignment s : P → {⊥,>}
of truth values to propositional variables. Each scenario s also determines a truth value for
each label ` ∈ P∗. If s(`) = >, we may write s � `. The set of all scenarios over P is denoted
by ΣP . When a scenario is restricted to the subset CP ⊆ P of conditions, then it may be
called a condition scenario; similarly, when a scenario is restricted to the subset DP ⊆ P
of decisions, it may be called a decision scenario. The sets of all condition and decision
scenarios are denoted by ΣCP and ΣDP , respectively.

A CSTND projection is an STN that contains the constraints applicable in a given scenario.

I Definition 4 (Projection). Let Γ = 〈T ,P, CP,DP, C,OT ,O〉 be any CSTND, and let s
be any (combined) scenario. The projection of Γ over s is the STN Γs = (T , Cs) where
Cs = {Y −X ≤ δ | (Y −X ≤ δ, `) ∈ C and s � `}.

I Definition 5 (Schedule). A schedule over a set T of time-points is a total assignment
ψ : T → R of real values to those time-points. Hereinafter, the value ψ(X) will be notated
as [ψ]X . A schedule ψ over T is said to be feasible for an STN (T , C) if ψ satisfies all of the
constraints in C. The set of schedules over T is denoted by ΨT .

The agent executing the network must (1) schedule time-points, and (2) assign values to
decision variables. In addition, the agent is able to react in real time to conditions set by the
environment. Therefore, we define a two-part execution strategy, as follows.

I Definition 6 (Execution Strategy). A temporal strategy for a CSTND Γ is a function
σt : ΣCP → ΨT that maps each condition scenario cs ∈ ΣCP to a (complete) schedule σt(cs)
over T . A decision strategy for Γ is a function σd : ΣCP → ΣDP that maps each condition
scenario cs ∈ ΣCP to a decision scenario ds = σd(cs) ∈ ΣDP . An execution strategy is a pair
σ = (σt, σd) where σt is a temporal strategy and σd is a decision strategy. An execution
strategy σ = (σt, σd) is viable if, for every condition scenario cs ∈ ΣP , letting ds = σd(cs)
and s = cs ∪ ds, the schedule σt(cs) is feasible for the projection Γs.

TIME 2017



9:6 Incorporating Decision Nodes into CSTNs

To ensure that the schedules and decisions generated by an execution strategy only
depend on past observations, a dynamic execution strategy is subject to restrictions expressed
in terms of condition scenario histories, as follows.

I Definition 7 (Condition Scenario History). Given a temporal strategy σt, a condition
scenario cs ∈ ΣCP , and a time value t ∈ R, the condition scenario history at t in the
condition scenario cs for the temporal strategy σt – notated as scHst(t, cs, σt) – is the set
of contingent variable assignments made by the environment before time t according to the
schedule σt(cs): scHst(t, cs, σt) = {(p, cs(p)) | p ∈ CP and [σt(cs)]O(p) < t}.

I Definition 8 (Dynamic Execution Strategy). A temporal strategy σt is dynamic if for any
pair of condition scenarios cs ∈ ΣCP and cs′ ∈ ΣCP , and any time-point X ∈ T :

let: t = [σt(cs)]X ,
if: scHst(t, cs, σt) = scHst(t, cs′, σt),
then: [σt(cs′)]X = t.

Similarly, a decision strategy σd is dynamic if for any condition scenarios cs ∈ ΣCP and
cs′ ∈ ΣCP , and any decision variable p ∈ DP:

let: t = [σt(cs)]O(p),
if: scHst(t, cs, σt) = scHst(t, cs′, σt),
then: σd(cs)(p) = σd(cs′)(p).

An execution strategy is dynamic if its temporal and decision strategies are both dynamic.

Now, it is possible to formally introduce the concept of dynamic consistency for CSTNDs.

I Definition 9 (Dynamic Consistency). A CSTND is dynamically consistent (DC) if it admits
a dynamic and viable execution strategy. The CSTND-DC problem is that of checking
whether any given CSTND is dynamically consistent.

4 Computational Complexity of the CSTND-DC Problem

This section shows that the CSTND-DC problem is PSPACE-complete.

4.1 PSPACE-hardness
Cairo and Rizzi [4] showed that the DC-checking problem for CSTNs is PSPACE-hard. This
section presents a simpler proof of that result by providing a direct reduction from the
Quantified Boolean Formula (QBF) problem to the CSTND-DC problem.

Consider any quantified boolean formula of the form, Φ = ∃x1∀y1 · · · ∃xn∀yn ϕ, where
ϕ is a formula in conjunctive normal form, each clause of which is limited to at most three
literals over a finite set of propositional variables x1, y1, . . . , xn, yn (i.e., ϕ is a 3SAT formula).
More specifically, ϕ is a conjunction of the form

∧m
j=1(lj,1 ∨ lj,2 ∨ lj,3), where each literal lj,k

is either a positive or negative instance of one of the quantified variables.
The reduction involves the construction of a corresponding CSTND instance Γ such that Γ

is DC if and only if Φ is true. To begin, define the sets of decision and condition variables to
be DP = {x1, . . . , xn} and CP = {y1, . . . , yn}, respectively. Thus, the disclosing time-points
of the network are given by OT = {X1!, . . . , Xn!, Y1?, . . . , Yn?}. The only other time-point,
W , is discussed below. Thus, T = OT ∪ {W}. Finally, the set of constraints is given by:

C = (
⋃

i=1,...,n
{(Xi!− Yi? = −1,�), (Yi?−Xi+1! = −1,�)}) ∪

(
⋃

i=1,...,n
{(W −W ≤ −1,¬li,1 ∧ ¬li,2 ∧ ¬li,3)}) ∪ {X0! = 1,W = 2n+ 1}



M. Cairo et al. 9:7

Z X1! Y1? X2! Y2?

W

〈1,�〉

〈−1,�〉

〈5,�〉

〈−5,�〉

〈1,�〉

〈−1,�〉

〈1,�〉

〈−1,�〉

〈1,�〉

〈−1,�〉
〈−1, x1¬y1¬y2〉

〈−1,¬x2y1¬y2〉

Figure 2 The CSTND obtained from the quantified boolean 3SAT formula

Φ ≡ ∃x1∀y1∃x2∀y2(¬x1 ∨ y1 ∨ y2) ∧ (x2 ∨ ¬y1 ∨ y2) .

The constraints, (Xi!− Yi? = −1,�) and (Yi?−Xi+1! = −1,�) for i ∈ {1, . . . , n}, impose
the order X1! < Y1? < . . . < Xn! < Yn? on the disclosing time-points, which mirrors the
order of the alternating quantifiers x1, y1, . . . , xn, yn in Φ. Furthermore, together with the
constraint, X0! = 1, they ensure that any viable temporal strategy must make the fixed
assignments, X0! = 1, Y0? = 2, . . . , Xn! = 2n− 1, Yn? = 2n, across all (combined) scenarios.
Note that any such temporal strategy is trivially dynamic.

The constraints of the form, (W −W ≤ −1,¬li,1 ∧ ¬li,2 ∧ ¬li,3) are negative self-loops
on the extra time-point W , each of which has a label that is the logical negation of one of
the clauses in the boolean formula ϕ.

Fig.2 depicts a simple example of the reduction from a QBF to the corresponding CSTND,
where Φ ≡ ∃x1∀y1∃x2∀y2(¬x1 ∨ y1 ∨ y2) ∧ (x2 ∨ ¬y1 ∨ y2).

In any (combined) scenario cs, the labeled negative self-loops at W are satisfied if and
only if cs assigns the value ⊥ to each of their labels. That happens if and only if the formula
ϕ evaluates to > in the scenario cs. Therefore, Γ admits a viable execution strategy if and
only if Φ is true.

Given the fixed ordering of the disclosing time-points, a decision strategy is dynamic
if and only if the assignment of each decision variable xi depends only on the preceding
condition variables, y1, . . . , yi−1. This mirrors the semantics of the nested quantifiers, where
each xi is existentially quantified, and each preceding yj is universally quantified. Thus, Γ
has a dynamic execution strategy if and only if Φ is true.

4.2 A Polynomial-Space Algorithm for the CSTND-DC Problem
This section presents a polynomial-space algorithm for the CSTND-DC problem, which
extends the algorithm for CSTNs from prior work [4], assuming that time is discretized.
As already discussed in [4], such assumption does not limit the generality of the algorithm.
Together with the PSPACE-hard result from the preceding section, this proves that the
CSTND-DC problem is PSPACE-complete.

We begin by showing that, under certain conditions, a DC CSTND admits a discrete
execution strategy (i.e., one that only schedules time-points at rational multiples of some
fixed real number ε, where the granularity of the rational factors is bounded). This result,
whose proof is in the Appendix, adapts a similar result for CSTNs from prior work [4].

I Lemma 10. Suppose that Γ is a CSTND such that, for some ε ∈ R+ and W ∈ Z+,
each constraint (Y −X ≤ w) in Γ satisfies w = kε for some k ∈ Z, where −W < k < W .
If Γ is dynamically consistent, then Γ admits a viable and dynamic execution strategy
σ = (σt, σd) such that for each scenario cs and each X ∈ T , [σt(cs)]X = k′ε/K, for some
k′ ∈ {0, 1, . . . , 2K2W}, where K = |T | · 2|P|.

TIME 2017



9:8 Incorporating Decision Nodes into CSTNs

Algorithm 1: CSTND Dynamic Consistency checking in polynomial space
1 Function DC(Γ)

Input : Γ is a CSTND satisfying the conditions of Theorem 10 for some values ε > 0 and
W ∈ Z+

Returns : true if Γ is dynamic consistent, false otherwise
2 c0 ← (0, ∅, ∅) . Initial configuration
3 return DC-From(Γ, c0)

4 Recursive Function DC-From(Γ, c)
Input : Γ is a CSTND satisfying the conditions of Theorem 10 for some values ε > 0 and

W ∈ Z+, c = (kε/K,ψ, h) is a configuration with k ∈ {0, 1, . . . , 2K2W} and
K = 2|P| · |T |.

Returns : true if Γ is dynamically consistent from c, false otherwise
5 if Dom(ψ) = T then return (true if ψ is feasible for Γ+

h else false) . Base case
6 foreach Tnext ⊆ T \Dom(ψ) not empty do . Recursive case. Enumerate all next actions (∃)
7 CPnext ← {p ∈ CP | O(p) ∈ Tnext}
8 DPnext ← {p ∈ DP | O(p) ∈ Tnext}
9 foreach knext ∈ {k + 1, . . . , 2K2W} do . Enumerate all discrete times (∃)

10 tnext ← knext ε

11 ψ′ ← ψ[tnext/Tnext ]
12 foreach d : DPnext → {>,⊥} do . Enumerate all decisions (∃)
13 AllObsDC← true
14 foreach o : CPnext → {>,⊥} do . Enumerate all observations (∀)
15 h′ ← h ∪ o ∪ d
16 c′ ← (tnext , ψ

′, h′)
17 if not DC-From(Γ, c′) then AllObsDC← false . Recursion
18 if AllObsDC then return true

19 return false

The execution of a CSTND can be viewed as a two-player game between the agent and the
environment. The agent aims to make decisions and schedule time-points to satisfy all relevant
constraints; the environment aims to assign values to conditions that will thwart the agent.
Our DC-checking algorithm, whose pseudo-code is given in Algorithm1, recursively explores
all possible configurations of the game. Each configuration is a tuple c = (t, ψ, h), where t is
the current time, ψ : T ′ → [0, t) (with T ′ ⊆ T ) is a partial schedule, and h : P ′ → {>,⊥}
(with P ′ = {p ∈ P | O(p) ∈ Dom(ψ)}) is the partial (combined) scenario known at time t.

By Lemma 10, we may assume that each t satisfies t = k·ε/K for some k ∈ {0, 1, . . . , 2K2W}
and [ψ]X = kX · ε/K, where kX ∈ {0, . . . , k − 1} for every X ∈ T .

The base case of our recursive procedure corresponds to a final configuration of the game,
which occurs when all the time-points have been executed (i.e., T ′ = T ) and, hence, all
propositional variables have been assigned. The agent wins if and only if the total schedule
ψ is feasible for the projected network Γ+

h over the total combined scenario h.
In the recursive step, the algorithm enumerates all possible moves of the agent and all

possible counter-moves of the environment. A move of the agent consists of:
1. the set Tnext ⊆ T \Dom(ψ) of time-points to execute next,
2. the time t′ > t at which these time-points are executed, and
3. the decisions to take at time t′ (i.e., an assignment d : DPnext → {>,⊥} of the variables

in DPnext = {p ∈ DP | O(p) ∈ Tnext}, which must be decided at time t′.
Thanks to Lemma 10, we can assume t′ = k′ · ε/K for k′ ∈ {k+ 1, . . . , 2K2W}. This ensures
that there are a finite number of possible moves, and that each move can be described with
a polynomial number of bits.



M. Cairo et al. 9:9

The counter-move of the environment sets the values for the conditions to be revealed to
the agent at time t′ (i.e., an assignment o : CPnext → {>,⊥} of the propositional variables
in CPnext = {p ∈ CP | O(p) ∈ Tnext} observed at time t′.

Checking the dynamic consistency of a network amounts to determining the winner of
the game from the initial configuration c0 = (0, ∅, ∅), where the current time is 0 and no
time-points have yet been executed.

5 An Algorithm for CSTNDs having no Condition

In this section we propose an algorithm for solving the DC problem for CSTNDs having
no contingent propositional variable, i.e., when CP is empty. Hereinafter we refer to this
subclass of CSTND as the class of Simple Temporal Network with Decisions (STND).

I Definition 11 (STND). A Simple Temporal Network with Decisions (STND) is a CSTND
Γ = 〈T ,P, ∅,DP, C,OT ,O〉 having CP = ∅. An STND Γ is consistent if and only if there
exists a decision scenario ds ∈ ΣDP for which the projection STN Γds is consistent.

Since contingent propositional variables are not present, it is possible to check the
consistency of the network in a static way. The approach we are about to discuss synthesizes
such an assignment offline, i.e., before the execution of the STND starts.

Basically, the proposed algorithm (Algorithm2) checks whether an STND Γ is consistent
by looking for one ds ∈ ΣDP for which the projection STN Γds is consistent. This search
is performed by maintaining a support CNF φ, which, roughly speaking, represents the
complementary of the space of all decision scenarios for which Γ is already known to be
inconsistent; to satisfy φ means to find a decision scenario outside that space.

Therefore, Algorithm2 (STND-CC) takes as input an STND Γ and it employs an approach
working in rounds. Throughout the rounds, STND-CC maintains a formula φ in CNF rep-
resenting all decision scenarios for which Γ is already known to be inconsistent. STND-CC
keeps trying to guess a decision scenario ds ∈ ΣDP until either ds 6|= φ, or ds |= φ and Γds
is consistent – in such case it returns YES. If Γds is inconsistent for all possible decision
scenario, STND-CC returns NO.

Initially, φ contains no clauses and ds is a random decision scenario; thus, ds |= φ holds
trivially. If Γds is consistent, then STND-CC outputs YES and halts. Otherwise, ds contains
at least a “bad decision” making Γds inconsistent, i.e., Γds contains a negative cycle. Let ρ
be such a negative cycle and let ψ be the conjunction of the labels associated to the values
making the negative cycle (see Algorithm 3). Then, STND-CC (i) augments φ adding ¬(ψ)
(which is a disjunction of literals) as a new clause (line 9), (ii) determines a new ds that
satisfies φ using an external SAT solver, and (iii) proceeds to the next round if a suitable ds
has been found, outputs NO and halts otherwise.

STND-CC uses a SAT solver as MiniSat [18] to find a decision scenario ds that satisfies (the
augmented) φ. We underline that a decision scenario cannot be found when φ is unsatisfiable,
i.e., when Γ is inconsistent. In this case, the algorithm can stop saying NO.

It is not difficult to see that STND-CC is sound and complete. As regards time complexity,
the following facts hold. Checking the consistency of Γds (line 5 of STN-CC) requires time
O(|T | · |C|) using Bellman-Ford algorithm [16]. The time for determining a negative cycle ρ
of Γds (CYCLE-CUT) amounts to that of applying De Morgan’s law to ¬(ψ), which is a linear
time in |DP|. Finally, the number of invocations to the SAT Solver (line 11 of Algorithm2)
is at most that of all possible considered decision scenarios s, i.e., 2|DP|; each of such
invocations costs O(2|DP|) time. Therefore, the worst-case time complexity of STND-CC is
O(22|DP| · (|T | · |C|+ |DP|)).

TIME 2017



9:10 Incorporating Decision Nodes into CSTNs

Algorithm 2: Consistency Checking Algorithm with Decisions
Procedure STND-CC(Γ)

input :An STND Γ = 〈T ,P, ∅,DP, C,OT ,O〉.
output :A feasible schedule of Γ or NO.

1 φ← an empty set of clauses on DP;
2 ds ← any assignment on DP; . Initialize the assignment ds arbitrarily
3 while true do
4 Γds ← the projection of Γ over ds;
5 ρ← STN-CC(Γds); . Check the consistency of Γds
6 if ρ is a feasible schedule of Γds then
7 return (yes, ρ);
8 if ρ is a negative cycle of Γds then
9 ψ ← CYCLE-CUT(Γ, ρ); . Derive a clause ψ expressing cut of ρ in Γ

10 φ← φ ∪ {ψ}; . Add the clause ψ to the CNF φ
11 ds ← SAT-SOLVE(φ); . Invoke a SAT-Solver on input φ
12 if ds 6|= φ then
13 return no;

Algorithm 3: Cutting a Cycle with Decisions
Procedure CYCLE-CUT(Γ, ρ)

input :An STND Γ = 〈T ,P, ∅,DP, C,OT ,O〉 and one of its cycles ρ.
output :A clause ψ on DP expressing the cut of ρ in Γ.

1 ψ ← >;
2 foreach constraint C of ρ do
3 `C ← the label of C in Γ; . `C is a conjunction of literals
4 ψ ← ψ ∧ `C ; . ψ is also a conjunction of literals
5 ψ ← DeMorgan(¬ψ); . apply De Morgan’s law to ¬ψ
6 return ψ;

I Theorem 12. The problem of checking whether a given STND Γ = 〈T ,P, ∅,DP, C,OT ,O〉
is consistent can be solved in singly exponential (w.r.t. |DP|) deterministic time. Moreover,
when Γ is consistent, a positive certificate (ds, ρ) (where ds is a decision scenario over DP
and ρ is a feasible schedule of Γds) is computable within the same time bound.

To complete the result of Theorem 12, we prove that STND consistency checking problem
is NP-complete. For lack of space, we sketch the proof of a polynomial reduction from 3-SAT
to the checking problem. Let ψ(x1, . . . , xn) =

∧m
j=1 Cj be a 3-CNF formula with n boolean

variables {xi}ni=1 and with m clauses {Cj}mj=1. An STND instance can be represented by a
triplet 〈T , C,DP〉, i.e., dropping out OT ,O and P (= DP); this compact form already allows
a correct consistency checking. Consider STND Γψ = (T = {Z}, C = {Cj}mj=1,DP = {xi}ni=1)
having only one time-point Z and m negative self-loop constraints, i.e., Cj =

(
Z − Z ≤

−1,¬(Cj)
)
where ¬(Cj) can be turned into a label by De Morgan’s law. It is not difficult to

verify that ψ is SAT if and only if Γ is consistent.

5.1 Hyper Temporal Networks with Decisions
In this subsection we consider the Hyper Temporal Network with Decisions (HyTND) model
and we prove that Algorithm2 and 3 can be easily extend to it. Hyper Temporal Networks
(HyTNs) are a strict generalization of STNs, introduced to partially overcome the limitation
of allowing only conjunctions of constraints [12]. Compared to STN distance graphs, HyTNs
allow for a greater flexibility in the definition of the temporal constraints meanwhile offering a
pseudo-polynomial tractability in the consistency checking of the instances. In turn, HyTNDs



M. Cairo et al. 9:11

extend the HyTN model by labeling each hyper-constraint with a conjunction of literals
drawn from the set DP of controllable propositional variables; then, the consistency problem
of HyTNDs asks for the existence of a decision scenario for which the corresponding projection
network is consistent.

In order to formally define the model, let us firstly recall (multi-head) hypergraphs.

I Definition 13. (Hypergraphs) A (multi-head, weighted) hypergraph H is a pair (T ,HC),
where T is a set of nodes and HC is a set of hyper-edges. Each hyper-edge A = (tA, HA, wA) ∈
HC has a distinguished node tA, called the tail of A, and a non-empty set HA ⊆ T \ {tA}
comprising the heads of A; to each head v ∈ HA, it is associated a weight wA(v) ∈ Z.
Let W be the maximum absolute weight in H and |A| = |HA ∪ {tA}|. The size of H is
mH =

∑
A∈HC |A|, and it is a measure for the encoding length of H. If |A| = 2, then

A = (u, v, w) is a standard edge; in this way hypergraphs generalize graphs.

We are now in the position to define HyTNDs and related concepts.

I Definition 14. (HyTND) A Hyper Temporal Network with Decisions (HyTND) is a triplet
Γ = (T ,HC,DP) where H = (T ,HC) is a hypergraph and DP is a set of controllable
propositional variables. Nodes T ∈ T represent temporal variables (time-points), and each
hyper-edge A = (tA, HA, wA, `A) ∈ HC, where wA : HA → Z and `A ∈ DP∗, represents a
temporal distance constraint between the tail and the heads (labeled hyper-constraint (LHC))

In general, given any ds ∈ ΣDP and ψ : T → R, we say that A is satisfied by (ds, ψ) if
and only if the following implication holds: ds |= `A ⇒ ψ(tA) ≥ minv∈HA

{
ψ(v)− wA(v)

}
.

Note that, when DP = ∅, (T ,HC) becomes an Hyper Temporal Network (HyTN), and
each hyper-edge A ∈ HC represents an (unlabeled) temporal distance which is satisfied by
any given ψ : T → R if and only if ψ(tA) ≥ minv∈HA

{ψ(v) − wA(v)}. We recall that the
HyTN-Consistency problem asks, given any HyTN H = (T ,HC), to decide whether there
exists a schedule ψ : T → R that satisfies every hyper-constraint A ∈ HC; if so, H is said
consistent. HyTND-Consistency is also a static notion of consistency, i.e., all decisions can
be taken offline; so, for ease of notation, it is fine to omit decision time-points in Definition 14.

I Definition 15. (HyTND Projection, HyTND-Consistency) The projection of a HyTND
Γ = (T ,HC,DP) over a decision scenario ds ∈ ΣDP is the HyTN Γds = (T ,HCds), where:

HCds =
{

(tA, HA, wA) | ∃`A ∈ DP∗ s.t. (tA, HA, wA, `A) ∈ HC and ds |= `A

}
.

The HyTND-Consistency problem asks, given any HyTND Γ = (T ,HC,DP), to decide
whether there exists a decision scenario ds ∈ ΣDP such that the projection Γds is consistent;
if so, Γ is said consistent as well.

As a negative cycle is a negative certificate for consistency check in STN, the generalized
negative cycle is a negative certificate for HyTN and HyTND [12].

I Definition 16 (Generalized (negative) cycle). Given a HyTN H = (T ,HC), a cycle is a pair
(S, C) with S ⊆ T and C ⊆ HC such that:
1. S =

⋃
A∈C

(
HA ∪ {tA}

)
and S 6= ∅;

2. ∀v ∈ S there exists an unique A ∈ C such that tA = v.
Moreover, we let a(v) denote the unique edge A ∈ C with tA = v , as required in above
item 2. Every infinite path in a cycle (S, C) contains, at least, one finite cyclic sequence
vi, vi+1, . . . , vi+p, where vi+p = vi is the only repeated node in the sequence. A cycle (S, C)
is negative if and only if

∑p−1
t=1 wa(vt)(vt+1) < 0, for any finite cyclic sequence v1, v2, . . . , vp.

TIME 2017



9:12 Incorporating Decision Nodes into CSTNs

v1

v2

v3v0

v4 v5

v6

A0,
wA0

(v1)

A0, wA0
(v2)

A0, wA0 (v3)

A1, wA1 (v4) A1, wA1 (v5)

A2, wA2
(v5)

A2, wA2 (v6)

A
4 ,w

A
4 (v

0 )

A4, wA4 (v5)

A
6
,w

A
6
(v

5
)

A6, wA6 (v3)

A3, wA3 (v6)A3, wA3 (v0)

A5, wA5
(v2)

A
5 ,w

A
5 (v

6 )

Figure 3 A (generalized) cycle (S, C), where S = {v0, . . . , v6} and C = {A0, . . . , A6}.

I Example 17. An example of a cycle (S, C) is shown in Fig. 3; where S = {v0, . . . , v6} and
C = {A0, . . . , A6}, provided tAi = vi for every i ∈ {0, . . . , 6}; and HA0 = {v1, v2, v3}, HA1 =
{v4, v5}, HA2 = {v5, v6}, HA3 = {v0, v6}, HA4 = {v0, v5}, HA5 = {v2, v6}, HA6 = {v3, v5}.
Moreover, a finite cyclic sequence, (v0, v2, v5, v6, v3, v0), is highlighted with thickened edges.

As shown in [12], checking HyTN-Consistency can be done in pseudo-polynomial time.

I Theorem 18 ([12]). Let H = (T ,HC) be a HyTN. The following propositions hold:
1. There exists an O((|T |+ |HC|)mHW ) pseudo-polynomial time algorithm deciding HyTN-

Consistency for H;
2. There exists an O((|T |+ |HC|)mHW ) pseudo-polynomial time algorithm such that, given

as input any consistent HyTN H, it returns a feasible schedule s : TH → Z of H;
3. There exists an O((|T |+ |HC|)mHW ) pseudo-polynomial time algorithm such that, given

as input any inconsistent HyTN H, it returns a negative cycle (S, C) of H.

To solve HyTND-Consistency, one may as well apply Algorithm2 and Algorithm3,
subject to the following simple modifications:
1. at line 5 of Algorithm2, replace STN-CC by the HyTN-Consistency checking algorithm

mentioned in Theorem 18 (see [12]);
2. at line 8 of Algorithm2, replace “cycle” with “generalized cycle” and observe that checking

whether a generalized cycle (S, C) is negative can be done in polynomial time (see e.g.,
Lemma 3 in [12] for an algorithm);

3. at line 2 of Algorithm 3, replace “constraint” with “hyper-constraint” and notice that,
since by Definition 14 each A ∈ HC has a unique label `A ∈ DP∗, it is still possible to
apply De Morgan’s law at line 5 of Algorithm3 for obtaining a clause.

Considering such modification, it is not difficult to verify that the checking algorithm remains
correct. Concerning time complexity, the only noticeable overhead is now due to Theorem 18
results. Considering such complexity results, the new worst-case time complexity for the
checking algorithm is O(22|DP| · ((|T |+ |HC|)mHW + |DP|)).

I Theorem 19. The problem of checking whether or not a given HyTND Γ = (T ,HC,DP)
is consistent can be solved in (pseudo) singly exponential (w.r.t. |DP|) deterministic time.
Moreover, when Γ is consistent, a positive certificate (ds, ρ) (where ds is a decision scenario
over DP and ρ is a feasible schedule of Γds) is computable within the same time bound.

As STNDs are special cases of HyTNDs, checking HyTND-Consistency is NP-complete.



M. Cairo et al. 9:13

6 An Algorithm for CSTNDs having Offline Decisions

In this section we consider a special case of CSTNDs where decisions are made before the
execution of the network starts (offline decisions). This allows us to apply the techniques
developed in the previous Section 5. In this special case, dynamic consistency of CSTNDs is
equivalent to the existence of a decision scenario such that the (partial) projection of the
network over this scenario (now, a traditional CSTN) is in turn dynamically consistent.

I Definition 20. [Offline Decision DC] A CSTND Γ = 〈T ,P, CP,DP, C,OT ,O〉 has the
property of Offline Decision Dynamic Consistency (CSTND-od-DC) when there exists some
decision scenario ds ∈ ΣDP such that the projection CSTN Γds is dynamically consistent.

We will also also say that a CSTND is CSTND-od-DC if it has CSTND-od-DC property.
To check if a CSTND instance is CSTND-od-DC, it is possible to re-use and adapt the

techniques presented in Section 5. There, the problem is reduced to check the consistency of
a STN instance (projected network), here the projected network is an CSTN. Therefore, it
is necessary to consider a CSTN dynamic consistency checking algorithm as the constraint
propagation algorithm for CSTNs proposed in [22] for testing the CSTND-od-DC property.
An alternative way to check the CSTN dynamic consistency is to reduce an CSTN instance
to an appropriate HyTN one and check the dynamic consistency of the last one [13].

An improvement of such approach, is to reduce the problem of CSTND-od-DC checking
to the problem of HyTND-Consistency consistency check. We now present such reduction.

Firstly, we argue that in this prospect any CSTND can be viewed as a succinct represen-
tation which can be expanded into an exponentially sized HyTND. The following definition
introduce the concept of expansion of a CSTND.

I Definition 21 (Expansion 〈T Ex
Γ ,ΛEx

Γ 〉). For any ` ∈ P∗, let us denote by `DP ∈ DP∗

(`CP ∈ CP∗) the label comprising all and only those literals of ` whose propositional variable
lies in DP (CP, respectively): ` = `DP ∧ `CP where `DP ∈ DP∗ and `CP ∈ CP∗.

For any s ∈ ΣCP , let us consider the (partial) projection C+
s of C over s defined as

C+
s =

{(
X,Y, δ, `DP

)
| (Y −X ≤ δ, `) ∈ C and s |= `CP

}
.

Next, let us consider the family of distinct and disjoint STNDs (Ts, Cs,DP), where
Ts = {vs | v ∈ T , s ∈ ΣCP}, Cs =

{(
Xs, Ys, δ, `DP

) ∣∣∣ (X,Y, δ, `DP) ∈ C+
s

}
, and vs = (v, s) for

every v ∈ T , s ∈ ΣCP . For each condition scenario s ∈ ΣCP there is one such STND.
Now, the expansion STND of the CSTND Γ is defined as

(T Ex
Γ ,ΛEx

Γ ,DP), where T Ex
Γ =

⋃
s∈ΣCP

Ts and ΛEx
Γ =

⋃
s∈ΣCP

Cs.

Note that Ts1 ∩ Ts2 = ∅ whenever s1 6= s2 and that (T Ex
Γ ,ΛEx

Γ ,DP) is an STND with
|T Ex

Γ | ≤ |ΣCP | · |T | time-points and size at most |ΛEx
Γ | ≤ |ΣCP | · |C|.

We show next that the expansion of a CSTND can be enriched with some (extra) multi-
head hyper-edges in order to model dynamic consistency, by means of a particular HyTND
HΓ
ε for some small ε ∈ R>0. As it was in [13], the actual value of ε will turn out to be singly

exponentially small in the number of contingent propositional variables (i.e., ε = 1
|ΣCP |·|T | ).

I Definition 22 (HyTND HΓ
ε ). For any two condition scenarios s1, s2 ∈ ΣCP , let us denote

by ∆(s1; s2) =
{

(Op?)s1 ∈ Ts1 | Op? ∈ OT , p ∈ CP, s1(p) 6= s2(p)
}
the set of all nodes

(Op?)s1 ∈ Ts1 such that Op? ∈ OT is an observation time-point of Γ that is executed in s1
and, considered in pair with respect to s2, the value of the variable p differs, i.e., s1(p) 6= s2(p).

Given any ε ∈ R>0, HyTND HΓ
ε is defined as follows:

TIME 2017



9:14 Incorporating Decision Nodes into CSTNs

For every two condition scenarios s1, s2 ∈ ΣCP and for every time-point u ∈ T , define a
hyper-edge αε(s1; s2;u) =

(
tα, Hα, wα,�

)
, ∀ s1, s2 ∈ ΣCP and u ∈ T , where:

tα = us1 is the tail of the (multi-head) hyper-edge αε(s1; s2;u);
Hα = {us2} ∪∆(s1; s2) is the set of the heads of αε(s1; s2;u);
wα(us2) = 0, and wα(v) = −ε for each v ∈ ∆(s1; s2).

Consider the expansion STND (T Ex
Γ ,ΛEx

Γ ,DP) of Γ, the HyTND HΓ
ε is the tuple(

T Ex
Γ ,HCε,DP

)
, where HCε = ΛEx

Γ ∪
⋃
s1,s2∈ΣCP

u∈T
αε(s1; s2;u).

Notice that each αε(s1; s2;u) has size |αε(s1; s2;u)| = 1 + |∆(s1; s2)| ≤ 1 + |CP|.
Now, based on the results given in [13], the following result can be shown.

I Theorem 23. Let Γ = 〈T ,P, CP,DP, C,OT ,O〉 be a CSTND and let ε̂ = 1
|ΣCP |·|T | . It

holds that Γ is CSTND-od-DC if and only if the HyTND HΓ
ε̂ is consistent.

We give the proof of Theorem 23 in the appendix. Given a CSTND Γ, CSTND-od-DC
can be checked by firstly constructing the HyTND HΓ

ε̂ and then by relying on Theorem 19
for checking its consistency. Notice that, even though the size of HΓ

ε̂ is singly exponential
in |CP| and also a possible negative generalized cycle can be of an exponential size, the
corresponding clause ψ that is eventually returned by Algorithm 3 has size at most |DP|.
The obtained results of this section are summarized in the following theorem.

I Theorem 24. Deciding CSTND-od-DC on a given CSTND can be done in (pseudo) singly
exponential (w.r.t. |P|) deterministic time. When the input CSTND is CSTND-od-DC, a
viable and dynamic execution strategy is computable within the same time bound.

7 Related Work

There are many proposals in the literature for ways of extending the expressiveness of the
STN model. Below, we summarize the main results about CSTNs and related models.

Tsamardinos et al. [25] defined the Conditional Simple Temporal Problem (CTP) as that
of determining whether a given CSTN admits a viable and dynamic execution strategy. (The
CSTN acronym was introduced later.) In their work, propositional labels are associated
only with time-points, not constraints. They also informally specified some reasonableness
properties that any CSTN ought to satisfy. Although they showed how to solve the CTP
by encoding it as a meta-level Disjunctive Temporal Problem (DTP) and feeding it to an
off-the-shelf solver, that approach is not practical because the CTP-to-DTP encoding has
exponential size and, on top of that, the DTP solver runs in exponential time. To our
knowledge, this approach has never been implemented or empirically evaluated.

Later, Hunsberger et al. [21, 22] defined CSTNs (separate from the CTP) and formalized
the well-definedness properties for CSTNs. In their work, both time-points (nodes) and
constraints (edges) of a CSTN can have propositional labels that specify the scenarios in which
they are applicable. (Allowing constraints to be labeled was inspired by the work of Conrad
et al. [14], discussed below.) They showed that the labels must satisfy the well-definedness
properties in order to guarantee the existence of a dynamic execution strategy. They also
presented a sound-and-complete DC-checking algorithm for solving the CTP, and empirically
demonstrated its practical performance.

Conrad et al. [14] considered a variant of CSTNs, proposing Drake, a dynamic executive
for temporal plans with choice. In their work, the constraints of a temporal plan are labeled
as in CSTNs, but the values of propositions (choices) are decided by the executive during
run-time, not by the environment.



M. Cairo et al. 9:15

Cimatti et al. [6, 7] presented a different approach to solving a variety of temporal
problems (CSTNs included) in which a temporal network is first translated into an equivalent
Timed Game Automaton (TGA) and, then, solved by an off-the-shelf TGA solver. Although
this approach is interesting because it shows the relationships between TGAs and a variety
of temporal networks – including CSTNs – it has not yet been shown to be practical for
solving the CTP.

Comin and Rizzi [13] solved the CTP by converting it into a Mean Payoff Game (MPG).
They also introduced a variant of dynamic consistency, called ε-DC, where ε > 0 represents
the minimum reaction time of the executive in response to observations. They presented
(1) a sharp lower-bounding analysis on the critical value of the reaction time where the CSTN
changes from being DC to non-DC, (2) a proof that the CTP is coNP-hard, and (3) the first
singly-exponential-time algorithm for solving the CTP.

Hunsberger and Posenato [19] showed how their DC-checking algorithm from earlier
work [22] can be extended to check the ε-DC property without incurring any performance
degradation. They also introduced four benchmarks for testing DC-checking algorithms.

Hunsberger and Posenato [20] presented another optimization of the approach presented
by Cimatti et al. in which the CTP is viewed as a two-player game. Its solution is determined
by exploring an abstract game tree to find a “winning” strategy, using Monte Carlo Tree
Search and Limited Discrepancy Search to guide its search. An empirical evaluation shows
that the new algorithm is competitive with the propagation-based algorithm.

Cairo et al. [2] improved the analysis of the ε-DC property. They showed that if ε = 0
(i.e., if the system can react instantaneously), it is necessary to impose a further condition to
avoid a form of instantaneous circularity.

Cui and Haslum [15] extend STNU by conditioning temporal constraints on the assignment
of controllable discrete variables (decisions) that can be done at any time. In CSTNDs we
connect decisions to time-points and thus provide greater expressiveness because we allow a
designer to constraint when decisions have to been taken.

Zavatteri [26] defined CSTNUDs (i.e., CSTNUs [9] augmented with decision nodes),
using an approach based on Timed Game Automata (TGAs) for both checking the dynamic
controllability of CSTNUDs and the synthesizing memoryless execution strategies. Although
CSTNUDs are more general than CSTNDs, this paper focused on analyzing the complexity
of the CSTND-DC problem and presenting DC-checking algorithms for two special cases of
CSTNDs.

8 Conclusions and Future Work

This paper introduced a new kind of temporal network, called a Conditional Simple Temporal
Network with Decisions, that accommodates both conditions that are not under the control
of the executing agent, and decisions that are under the agent’s control. The agent aims
to make decisions and schedule time-points so that all relevant constraints are satisfied no
matter how the environment assigns values to the conditions in real time. After defining a
notion of dynamic consistency for CSTNDs, the paper proved that the CSTND-DC problem
is PSPACE-complete. Finally, it introduced some algorithms to deal with two special cases:
(1) CSTNDs that contain decisions, but not conditions; and (2) CSTNDs for which all
decisions are made prior to executing the network.

As for future work, among the many possible research directions, we mention here the
application of our approach to the design of business process models, where not all of the
decisions (represented as gateway variables in business process models) are under the control

TIME 2017



9:16 Incorporating Decision Nodes into CSTNs

of the process engine. Another potential topic concerns the identification of other special
cases of CSTNDs that might yield corresponding DC-checking algorithms.

References
1 Claudio Bettini, Xiaoyang Sean Wang, and Sushil Jajodia. Temporal reasoning in work-

flow systems. Distributed and Parallel Databases, 11(3):269–306, 2002. doi:10.1023/A:
1014048800604.

2 Massimo Cairo, Carlo Comin, and Romeo Rizzi. Instantaneous reaction-time in dynamic-
consistency checking of conditional simple temporal networks. In 23rd International Sym-
posium on Temporal Representation and Reasoning (TIME 2016), pages 80–89, 2016.
doi:10.1109/TIME.2016.16.

3 Massimo Cairo, Luke Hunsberger, Roberto Posenato, and Romeo Rizzi. A streamlined
model of conditional simple temporal networks. In 24th International Symposium on Tem-
poral Representation and Reasoning (TIME 2017), volume 90 of LIPIcs, pages 10:1–10:19,
2017. doi:10.4230/LIPIcs.TIME.2017.10.

4 Massimo Cairo and Romeo Rizzi. Dynamic controllability of conditional simple temporal
networks is PSPACE-complete. In 23rd International Symposium on Temporal Represen-
tation and Reasoning (TIME 2016), pages 90–99, 2016. doi:10.1109/TIME.2016.17.

5 Susan J. Chinn and Gregory R. Madey. Temporal representation and reasoning for workflow
in engineering design change review. IEEE Transactions on Engineering Management,
47(4):485–492, 2000. doi:10.1109/17.895343.

6 Alessandro Cimatti, Luke Hunsberger, Andrea Micheli, Roberto Posenato, and Marco
Roveri. Sound and complete algorithms for checking the dynamic controllability of tempo-
ral networks with uncertainty, disjunction and observation. In 21st International Sym-
posium on Temporal Representation and Reasoning (TIME 2014), pages 27–36, 2014.
doi:10.1109/TIME.2014.21.

7 Alessandro Cimatti, Luke Hunsberger, Andrea Micheli, Roberto Posenato, and Marco
Roveri. Dynamic controllability via timed game automata. Acta Informatica, 53(6-8):681–
722, 2016. doi:10.1007/s00236-016-0257-2.

8 Carlo Combi, Mauro Gambini, Sara Migliorini, and Roberto Posenato. Representing busi-
ness processes through a temporal data-centric workflow modeling language: An applica-
tion to the management of clinical pathways. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 44(9):1182–1203, 2014. doi:10.1109/TSMC.2014.2300055.

9 Carlo Combi, Luke Hunsberger, and Roberto Posenato. An algorithm for checking the
dynamic controllability of a conditional simple temporal network with uncertainty. In Pro-
ceedings of the 5th International Conference on Agents and Artificial Intelligence (ICAART
2013), volume 2, pages 144–156, 2013. doi:10.5220/0004256101440156.

10 Carlo Combi and Roberto Posenato. Controllability in temporal conceptual workflow
schemata. In Business Process Management (BPM 2009), volume 5701 of LNCS, pages
64–79, 2009. doi:10.1007/978-3-642-03848-8_6.

11 Carlo Combi and Roberto Posenato. Towards temporal controllabilities for workflow
schemata. In 17th International Symposium on Temporal Representation and Reasoning
(TIME 2010), pages 129–136, 2010. doi:10.1109/TIME.2010.17.

12 Carlo Comin, Roberto Posenato, and Romeo Rizzi. Hyper temporal networks – A tractable
generalization of simple temporal networks and its relation to mean payoff games. Con-
straints, 22(2):152–190, 2017. doi:10.1007/s10601-016-9243-0.

13 Carlo Comin and Romeo Rizzi. Dynamic consistency of conditional simple temporal net-
works via mean payoff games: A singly-exponential time dc-checking. In 22nd International
Symposium on Temporal Representation and Reasoning (TIME 2015), pages 19–28, 2015.
doi:10.1109/TIME.2015.18.

http://dx.doi.org/10.1023/A:1014048800604
http://dx.doi.org/10.1023/A:1014048800604
http://dx.doi.org/10.1109/TIME.2016.16
http://dx.doi.org/10.4230/LIPIcs.TIME.2017.10
http://dx.doi.org/10.1109/TIME.2016.17
http://dx.doi.org/10.1109/17.895343
http://dx.doi.org/10.1109/TIME.2014.21
http://dx.doi.org/10.1007/s00236-016-0257-2
http://dx.doi.org/10.1109/TSMC.2014.2300055
http://dx.doi.org/10.5220/0004256101440156
http://dx.doi.org/10.1007/978-3-642-03848-8_6
http://dx.doi.org/10.1109/TIME.2010.17
http://dx.doi.org/10.1007/s10601-016-9243-0
http://dx.doi.org/10.1109/TIME.2015.18


M. Cairo et al. 9:17

14 Patrick R. Conrad and Brian C. Williams. Drake: An efficient executive for temporal
plans with choice. Journal of Artificial Intelligence Research, 42(1):607–659, 2011. doi:
10.1613/jair.3478.

15 Jing Cui and Patrik Haslum. Dynamic controllability of controllable conditional tempo-
ral problems with uncertainty. In 27th International Conference on Automated Planning
and Scheduling (ICAPS 2017), 2017. URL: https://aaai.org/ocs/index.php/ICAPS/
ICAPS17/paper/view/15738.

16 Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks. Artificial Intel-
ligence, 49(1-3):61–95, 1991. doi:10.1016/0004-3702(91)90006-6.

17 Johann Eder, Wolfgang Gruber, and Euthimios Panagos. Temporal modeling of workflows
with conditional execution paths. In Database and Expert Systems Applications (DEXA
2000), volume 1873 of LNCS, pages 243–253, 2000. doi:10.1007/3-540-44469-6_23.

18 Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Theory and Applications
of Satisfiability Testing: 6th International Conference (SAT 2003), pages 502–518, 2004.
doi:10.1007/978-3-540-24605-3_37.

19 Luke Hunsberger and Roberto Posenato. Checking the dynamic consistency of conditional
simple temporal networks with bounded reaction times. In 26th International Conference
on Automated Planning and Scheduling (ICAPS 2016), pages 175–183, 2016. URL: http:
//www.aaai.org/ocs/index.php/ICAPS/ICAPS16/paper/view/13108.

20 Luke Hunsberger and Roberto Posenato. A new approach to checking the dynamic con-
sistency of conditional simple temporal networks. In Principles and Practice of Con-
straint Programming (CP 2016), volume 9892 of LNCS, pages 268–286, 2016. doi:
10.1007/978-3-319-44953-1_18.

21 Luke Hunsberger, Roberto Posenato, and Carlo Combi. The dynamic controllability of
conditional stns with uncertainty. In Workshop on Planning and Plan Execution for Real-
World Systems (PlanEx) at ICAPS 2012, pages 1–8, 2012. URL: http://arxiv.org/abs/
1212.2005.

22 Luke Hunsberger, Roberto Posenato, and Carlo Combi. A sound-and-complete propagation-
based algorithm for checking the dynamic consistency of conditional simple temporal net-
works. In 22st International Symposium on Temporal Representation and Reasoning (TIME
2015), pages 4–18, 2015. doi:10.1109/TIME.2015.26.

23 Eleanna Kafeza and Kamalakar Karlapalem. Gaining control over time in workflow
management applications. In Database and Expert Systems Applications: 11th Inter-
national Conference (DEXA 2000), volume 1873 of LNCS, pages 232–241, 2000. doi:
10.1007/3-540-44469-6_22.

24 Paul H. Morris, Nicola Muscettola, and Thierry Vidal. Dynamic control of plans with tem-
poral uncertainty. In Proceedings of the 17th International Joint Conference on Artificial
Intelligence (IJCAI 2001), pages 494–502, 2001.

25 Ioannis Tsamardinos, Thierry Vidal, and Martha E. Pollack. CTP: a new constraint-based
formalism for conditional, temporal planning. Constraints, 8(4):365–388, 2003. doi:10.
1023/A:1025894003623.

26 Matteo Zavatteri. Conditional simple temporal networks with uncertainty and decisions. In
24th International Symposium on Temporal Representation and Reasoning (TIME 2017),
volume 90 of LIPIcs, pages 23:1–23:17, 2017. doi:10.4230/LIPIcs.TIME.2017.23.

A Appendix: Proofs of Lemma 10 and Theorem 23.

Lemma 10. Let σ = (σt, σd) be any dynamic and viable execution strategy. We know
from [4] that the statement of the lemma is valid for CSTNs. Therefore, if we do not consider
all the controllable propositional variables, and transform the corresponding observation

TIME 2017

http://dx.doi.org/10.1613/jair.3478
http://dx.doi.org/10.1613/jair.3478
https://aaai.org/ocs/index.php/ICAPS/ICAPS17/paper/view/15738
https://aaai.org/ocs/index.php/ICAPS/ICAPS17/paper/view/15738
http://dx.doi.org/10.1016/0004-3702(91)90006-6
http://dx.doi.org/10.1007/3-540-44469-6_23
http://dx.doi.org/10.1007/978-3-540-24605-3_37
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS16/paper/view/13108
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS16/paper/view/13108
http://dx.doi.org/10.1007/978-3-319-44953-1_18
http://dx.doi.org/10.1007/978-3-319-44953-1_18
http://arxiv.org/abs/1212.2005
http://arxiv.org/abs/1212.2005
http://dx.doi.org/10.1109/TIME.2015.26
http://dx.doi.org/10.1007/3-540-44469-6_22
http://dx.doi.org/10.1007/3-540-44469-6_22
http://dx.doi.org/10.1023/A:1025894003623
http://dx.doi.org/10.1023/A:1025894003623
http://dx.doi.org/10.4230/LIPIcs.TIME.2017.23


9:18 Incorporating Decision Nodes into CSTNs

time-points into standard time-points, we can apply the result given in [4] for transforming
σt to a strategy that satisfies the statement of the lemma. In the transformation showed
in the proof [4], only the numerical values determined by the strategy for time-points are
modified while the relative execution order of them is preserved. Hence, the conditions for
σd to be dynamic are not changed by such transformation. Therefore, the resulting strategy
is indeed dynamic and viable. J

Theorem 23. By Definition 20, the CSTND Γ is CSTND-od-DC if and only if there exists
some ds ∈ ΣDP such that the CSTN Γds is dynamically consistent. By Theorem 4 and 6 in [13],
for any ds ∈ ΣDP , the CSTN Γds is dynamically consistent if and only if the HyTN HΓds

ε̂ is
consistent provided that ε̂ = 1

|ΣCP |·|T | . Then, considering the definition of (i) CSTND projec-
tion (Definition 4), (ii) HyTN projection (Definition 15), and (iii) that of HΓ

ε (Definition 22),
it holds that HΓds

ε̂ is HyTN (HΓ
ε̂ )ds.

Finally, by Definition 15, there exists some ds ∈ ΣDP such that the projection HyTN
(HΓ

ε̂ )ds is consistent if and only if the HyTND HΓ
ε̂ is consistent. At this point, by composing

all of these logical equivalences, the thesis follows. J


	Introduction
	Motivating Example
	Conditional Simple Temporal Network with Decisions
	Computational Complexity of the CSTND-DC Problem
	PSPACE-hardness
	A Polynomial-Space Algorithm for the CSTND-DC Problem

	An Algorithm for CSTNDs having no Condition
	Hyper Temporal Networks with Decisions

	An Algorithm for CSTNDs having Offline Decisions
	Related Work
	Conclusions and Future Work
	Appendix: Proofs of Lemma 10 and Theorem 23.

