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—— Abstract

Proof-labeling schemes are known mechanisms providing nodes of networks with certificates that
can be wverified locally by distributed algorithms. Given a boolean predicate on network states,
such schemes enable to check whether the predicate is satisfied by the actual state of the network,
by having nodes interacting with their neighbors only. Proof-labeling schemes are typically
designed for enforcing fault-tolerance, by making sure that if the current state of the network is
illegal with respect to some given predicate, then at least one node will detect it. Such a node can
raise an alarm, or launch a recovery procedure enabling the system to return to a legal state. In
this paper, we introduce error-sensitive proof-labeling schemes. These are proof-labeling schemes
which guarantee that the number of nodes detecting illegal states is linearly proportional to the
edit-distance between the current state and the set of legal states. By using error-sensitive proof-
labeling schemes, states which are far from satisfying the predicate will be detected by many
nodes, enabling fast return to legality. We provide a structural characterization of the set of
boolean predicates on network states for which there exist error-sensitive proof-labeling schemes.
This characterization allows us to show that classical predicates such as, e.g., acyclicity, and
leader admit error-sensitive proof-labeling schemes, while others like regular subgraphs don’t.
We also focus on compact error-sensitive proof-labeling schemes. In particular, we show that the
known proof-labeling schemes for spanning tree and minimum spanning tree, using certificates
on O(logn) bits, and on O(log? n) bits, respectively, are error-sensitive, as long as the trees are
locally represented by adjacency lists, and not just by parent pointers.
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1 Introduction

In the context of fault-tolerant distributed computing, it is desirable that the computing
entities in the system be able to detect whether the system is in a legal state (w.r.t. some
boolean predicate, potentially expressed in various forms of logics) or not. In the framework
of distributed network computing, several mechanisms have been proposed to ensure such a
detection (see, e.g., [1, 2, 4, 5, 22]). Among them, proof-labeling schemes [22] are mechanisms
enabling failure detection based on additional information provided to the nodes. More
specifically, a proof-labeling scheme is composed of a prover, and a verifier. A prover is
an oracle that assigns a certificate to each node of any given network, and a verifier is a

* Both authors received additional support from ANR project DESCARTES, and Inria project GANG.
t Full version available online at http://arxiv.org/abs/1705.04144.

© Laurent Feuilloley and Pierre Fraigniaud;

oY licensed under Creative Commons License CC-BY
31st International Symposium on Distributed Computing (DISC 2017).
Editor: Andréa W. Richa; Article No. 16; pp. 16:1-16:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://dx.doi.org/10.4230/LIPIcs.DISC.2017.16
http://arxiv.org/abs/1705.04144
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

16:2

Error-Sensitive Proof-Labeling Schemes

distributed algorithm that locally checks whether the collection of certificates is a distributed
proof that the network is in a legal state with respect to a given predicate — by “locally”, we
essentially mean: by having each node interacting with its neighbors only.

The prover is actually an abstraction. In practice, the certificates are provided by a
distributed algorithm solving some task (see, e.g., [3, 6, 22]). For instance, let us consider
spanning tree construction, where every node must compute a pointer to a neighboring node
such that the collection of pointers form a tree spanning all nodes in the network. In that
case, the algorithm in charge of constructing a spanning tree is also in charge of constructing
the certificates providing a distributed proof allowing a verifier to check that proof locally.
That is, the verifier must either accept or reject at every node, under the following constraints.
If the constructed set of pointers form a spanning tree, then the constructed certificates must
lead the verifier to accept at every node. Instead, if the constructed set of pointers does not
form a spanning tree, then, for every possible certificate assignment to the nodes, at least
one node must reject. The rejecting node may then raise an alarm, or launch a recovery
procedure. Abstracting the construction of the certificates thanks to a prover enables to
avoid delving into the implementation details relative to the distributed construction of the
certificates, for focussing attention on whether such certificates exist, and on what should
be their forms. The reader is referred to [7] for more details about the connections between
proof-labeling schemes and fault-tolerant computing.

One weakness of proof-labeling schemes is that they may not allow the system running
the verifier to distinguish between a global state which is slightly erroneous, and a global
state which is completely bogus. In both cases, it is only required that at least one node
detects the illegality of the state. In the latter case though, having only one node raising an
alarm, or launching a recovery procedure for bringing the whole system back to a legal state,
might be quite inefficient. Instead, if many nodes would detect the errors, then bringing
back the system into a legal state will be achieved by a collection of local resets running in
parallel, instead of a single reset traversing the whole network sequentially.

Moreover, in several contexts like, e.g., property-testing [14, 15], monitoring an error-prone
system is implemented via an external mechanism involving a monitor that is probing the
system by querying a (typically small) subset of nodes chosen at random. Non-deterministic
property-testing has been recently investigated in the literature [18, 24], where a certificate
is given to the property-testing algorithm. Such a certificate is however global. Instead, we
are interested in decentralized certificates, which can also be viewed as, say, annotations
provided to the nodes of a network, or to the entries of a database. The correction of the
network, or of the database, is then checked by a property-testing algorithm querying nodes
at random for recovering the individual states of these nodes, including their certificates. To
be efficient, such distributed certificates must guarantee that, if the monitored system is far
from being correct, then many nodes are capable to detect the error. Indeed, if just one node
is capable to detect the error, then the probability that the monitoring system will query
that specific node is very low, resulting in a large amount of time before the error is detected.

In this paper, we aim at designing error-sensitive proof-labeling schemes, which guarantee
that system states that are far from being correct can be detected by many nodes, providing
faster recovery if the error detection mechanism is decentralized, or faster discovery if this
error detection mechanism is centralized.

More specifically, the distance between two global states of a distributed system is defined
as the edit-distance between these two states, i.e., the minimum number of individual states
required to be modified in order to move from one global state to the other. A proof-labeling
scheme is error-sensitive if there exists a constant « > 0 such that, for any erroneous system
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state S, the number of nodes detecting the error is at least ad(S), where d(S) is the shortest
edit-distance between S and a correct system state. The choice of a linear dependency
between the number of nodes detecting the error, and the edit-distance to legal states is not
arbitrary, but motivated by the following two observations.
On the one hand, a linear dependency is somewhat the best that we may hope for. Indeed,
let us consider a k-node network G in some illegal state S for which r nodes are detecting
the illegality of S — think about, e.g., the spanning tree predicate. Then, let us make n
copies of G and its state .S, potentially linked by n — 1 additional edges if one insists on
connectivity. In the resulting kn-node network, we get that O(rn) nodes are detecting
illegality, which grows linearly with the number of nodes, as n grows.
On the other hand, while a sub-linear dependency may still be useful in some contexts,
this would be insufficient in others. For instance, in the context of property testing, for
systems that are e-far from being correct (i.e., essentially, an € fraction of the individual
states are incorrect), the linear dependency enables to find a node capable to detect the
error after O(1/e) expected number of queries to random nodes. Instead, a sub-linear
dependency would yield an expected number of queries that grows with the size of the
system before querying a node capable to detect the error.

Our results. We consider boolean predicates on graphs with labeled nodes, as in, e.g., [25].
Given a graph G, a labeling of G is a function £ : V(G) — {0, 1}* assigning binary strings to
nodes. A labeled graph is a pair (G, ¢) where G is a graph, and ¢ is a labeling of G. Given a
boolean predicate P on labeled graphs, the distributed language associated to P is

L = {(G,?) satistying P}.

It is known that every (Turing decidable) distributed language admits a proof-labeling
scheme [17, 22]. We show that the situation is radically different when one is interested in
error-sensitive proof-labeling schemes. In particular, not all distributed languages admit an
error-sensitive proof-labeling scheme. Moreover, the existence of error-sensitive proof-labeling
schemes for the solution of a distributed task is very much impacted by the way the task
is specified. For instance, in the case of spanning tree construction, we show that asking
every node to produce a single pointer to its parent in the tree cannot be certified in an
error-sensitive manner, while asking every node to produce the list of its neighbors in the
tree can be certified in an error-sensitive manner.

Our first main result is a structural characterization of the distributed languages for which
there exist error-sensitive proof-labeling schemes. Namely, a distributed language admits an
error-sensitive proof-labeling scheme if and only if it is locally stable. The notion of local
stability is purely structural. Roughly, a distributed language L is locally stable if a labeling £
resulting from copy-pasting parts of correct labelings to different subsets S1, ..., Sk of nodes
in a graph G results in a labeled graph (G, ¢) that is not too far from being legal, in the
sense that the edit-distance between (G, £) and L is proportional to the size of the boundary
of the subsets Sq,...,S, in GG, and not to the size of these subsets. This characterization
allows us to show that important distributed languages (such as, e.g., acyclicity, leader, etc.)
admit error-sensitive proof-labeling schemes, while some very basic distributed languages
(such as, e.g., regular subgraph, etc.) do not admit error-sensitive proof-labeling schemes.

Our second main contribution is a proof that the known space-optimal proof-labeling
schemes for spanning tree with O(logn)-bit certificates, and for minimum spanning tree
(MST) with O(log? n)-bit certificates, are both error-sensitive, whenever the trees are encoded
at each node by an adjacency list (and not by a single pointer to the parent). Hence, error-
sensitivity comes at no cost for spanning tree and MST. Proving this result requires to
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establish some kind of matching between the erroneously labeled nodes and the rejecting
nodes. Establishing this matching is difficult because, for both spanning tree and MST, the
rejecting nodes might be located far away from the erroneous nodes. Indeed, the presence of
certificates helps local detection of errors, but decorrelates the nodes at which the alarms
take place from the nodes at which the errors take place. (See Section 6 for a discussion
about prozimity-sensitive proof-labeling schemes). Moreover, in the case of MST, the known
space-optimal proof-labeling scheme uses O(logn) “layers” of spanning trees (corresponding
roughly to the O(logn) levels of fragments constructed by Bortivka algorithm). It is not a
priori clear that errors occurring at different levels are necessarily detected by different nodes,
i.e., that k errors are necessarily detected by Q(k) nodes, and not just by O(k/logn) nodes.

Related work. As mentioned before, one important motivation for our work is fault-tolerant
distributed computing, with the help of failure detection mechanisms such as proof-labeling
schemes. Proof-labeling schemes were introduced in [22]. A tight bound of ©(log?n) bits on
the size of the certificates for certifying MST was established in [19, 20]. Several variants
of proof-labeling schemes have been investigated in the literature, including verification at
distance greater than one [17], and the design of proofs with identity-oblivious certificates [12].
Connections between proof-labeling schemes and the design of distributed (silent) self-
stabilizing algorithms were studied in [7]. Extensions of proof-labeling schemes for the design
of (non-silent) self-stabilizing algorithms were investigated in [21]. In all these work, the
number of nodes susceptible to detect an incorrect configuration is not considered, and the
only constraint imposed on the error-detection mechanism is that an erroneous configuration
must be detected by at least one node. Our work requires the number of nodes detecting an
erroneous configuration to grow linearly with the number of errors.

Another important motivation for our work is property testing. Graph property testing
was investigated in numerous papers (see [14, 15] for an introduction to the topic), and was
recently extended to a non-deterministic setting [18, 24] in which the centralized algorithm
is provided with a centralized certificate. Distributed property testing has been introduced
in [8], and formalized in [9] (see also [13]). Our work may find applications to centralized
property testing, but where the certificate is decentralized. Our error-sensitive scheme
guarantees that if the current configuration of the network is e-far from being correct, then
probing a constant expected number of nodes is sufficient to detect that this configuration is
€rroneous.

From a higher perspective, our approach aims at closing the gap between local distributed
computing and centralized computing in networks, by studying distributed error-detection
mechanisms that perform locally, but generate individual outputs that are related to the
global correctness of the system at hand. As such, it is worth mentioning other efforts in the
same direction, including especially work in the context of centralized local computing, like,
e.g., [10, 16, 26].

Distributed property testing and proof-labeling schemes are different forms of distributed
decision mechanisms, which have been investigated under various models for distributed
computing. We refer to [11] for a recent survey on distributed decision.

2 Model and definitions

Throughout the paper, all graphs are assumed to be connected and simple (no self-loops, and
no parallel edges. Given a node v of a graph G, we denote by N(v) the open neighborhood
of v, i.e., the set of neighbors of v in G. In some contexts (as, e.g., MST), the considered
graphs may be edge-weighted.
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All results in this paper are stated in the classical LOCAL model [27] for distributed
network computing, where networks are modeled by undirected graphs whose nodes model the
computing entities, and edges model the communication links. Recall that the LOCAL model
assumes that nodes are given distinct identities (a.k.a. IDs), and that computation proceeds
in synchronous rounds. All nodes simultaneously start executing the given algorithm. At each
round, nodes exchange messages with their neighbors, and perform individual computation.
There are no limits placed on the message size, nor on the amount of computation performed
at each round. Specifically, we are interested in proof-labeling schemes [22], which are
well established mechanisms enabling to locally detect inconsistencies in the global states
of networks with respect to some given boolean predicate. Such mechanisms involve a
verification algorithm which performs in just a single round in the LOCAL model. In order
to recall the definition of proof-labeling schemes, we first recall the definition of distributed
languages [12].

A distributed language is a collection of labeled graphs, that is, a set £ of pairs (G, ¥)
where G is a graph, and ¢ : V(G) — {0,1}* is a labeling function assigning a binary string
to each node of G. Such a labelling may encode just a boolean (e.g., whether the node is in
a dominating set or not), or an integer (e.g., in graph coloring), or a collection of neighbor
IDs (e.g., for locally encoding a subgraph). A distributed language is said constructible
if, for every graph G, there exists ¢ such that (G,¢) € L. It is Turing decidable if there
exists a (centralized) algorithm which, given (G, £) returns whether (G, ¢) € £ or not. All
distributed languages considered in this paper are always assumed to be constructible and
Turing decidable.

Given a distributed language L, a proof-labeling scheme for £ is a pair prover-verifier
(p, v), where p is an oracle assigning a certificate function ¢ : V(G) — {0, 1}* to every labeled
graph (G,¢) € £, and v is a 1-round distributed algorithm?® taking as input at each node v
its identity ID(v), its label £(v), and its certificate c(v), such that, for every labeled graph
(G, £) the following two conditions are satisfied:

If (G, ¥) € L then v outputs accept at every node of G whenever all nodes of G are given

the certificates provided by p;

If (G,£) ¢ L then, for every certificate function ¢ : V(G) — {0,1}*, v outputs reject in

at least one node of G.

The first condition guarantees the existence of certificates allowing the given legally labeled
graph (G, £) to be globally accepted. The second condition guarantees that the verifier cannot
be “cheated”, that is, an illegally labeled graph will systematically be rejected by at least one
node, whatever “fake” certificates are given to the nodes. It is known that every distributed
language has a proof-labeling scheme [22].

To define the novel notion of error-sensitive proof-labeling schemes, we introduce the
following notion of distance between labeled graphs. Let £ and ¢’ be two labelings of a same
graph G. The edit distance between (G, ¢) and (G, ¢') is the minimum number of elementary
operations required to transform (G, ¢) into (G,¢’), where an elementary operation consists
of replacing a node label by another label. That is, the edit distance between (G, ¢) and
(G, ') is simply

{v € V(G) : &(v) # €' (v)}].

The edit-distance from a labeled graph (G, ¢) to a language £ is the minimum, taken over
all labelings ¢’ of G satisfying (G,¢') € L, of the edit-distance between (G, ¢) and (G,¢).

1 That is, every node outputs after having communicated with all its neighbors only once.
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Roughly, an error-sensitive proof-labeling scheme satisfies that the number of nodes that
reject a labeled graph (G, ¢) should be (at least) proportional to the distance between (G, ¢)
and the considered language.

» Definition 1. A proof-labeling scheme (p, v) for a language L is error-sensitive if there
exists a constant « > 0, such that, for every labeled graph (G, ¢),
If (G, ¥) € L then v outputs accept at every node of G whenever all nodes of G are given
the certificates provided by p;
If (G,0) ¢ L then, for every certificate function ¢ : V(G) — {0,1}*, v outputs reject
in at least ad nodes of G, where d is the edit distance between (G,¢) and L, i.e.,
d = dist((G, ¢), £).

Note that the at least ad nodes rejecting a labeled graph (G, ¢) at edit-distance d from
L do not need to be the same for all certificate functions.

3 Basic properties of error-sensitive proof-labeling schemes

Let us first illustrate the notion of error-sensitive proof-labeling scheme by exemplifying
its design for a classic example of distributed languages. Let AcycCLIC be the following
distributed language:

ACYCLIC = {(GJ) Yo € V(G), £(v) € N(v) U {L}

and U {v,0(v)} is acyclic}

veV(G): L(v)#L

That is, the label of a node is interpreted as a pointer to some neighboring node, or to
null. Then (G, ¥) € AcycLIC if the subgraph of G described by the set of non-null pointers
is acyclic. We show that ACYCLIC has an error-sensitive proof-labeling scheme. The proof
of this result is easy, as fixing of the labels can be done locally, at the rejecting nodes.
Nevertheless, the proposition and its proof serve as a basic example illustrating the notion of
error-sensitive proof-labeling scheme.

» Proposition 2. ACYCLIC has an error-sensitive proof-labeling scheme.

Proof. Let (G,¢) € aAcycLIC. Every node v € V(G) belongs to an in-tree rooted at a node r
such that £(r) = L. The prover p provides every node v with its distance d(v) to the root of
its in-tree (i.e., number of hops to reach the root by following the pointers specified by ¢).
The verifier v proceeds at every node v as follows: first, it checks that £(v) € N(v) U{L};
second, it checks that, if £(v) # L then d(¢(v)) = d(v) — 1, and if £(v) = L then d(v) = 0. If
all these tests are passed, then v accepts. Otherwise, it rejects. By construction, if (G, ¢)
is acyclic, then all nodes accept with these certificates. Conversely, if there is a cycle C
in (G,{), then let v be a node with maximum value d(v) in C. Its predecessor in C (i.e.,
the node u € C with £(u) = v) rejects. So (p,Vv) is a proof-labeling scheme for ACYCLIC.
We show that (p,v) is error-sensitive. Suppose that v rejects (G,¢) at k > 1 nodes. Let
us replace the label ¢(v) of each rejecting node v by the label ¢/(v) = L, and keep the
labels of all other nodes unchanged, i.e., ¢'(v) = £(v) for every node where v accepts. We
have (G,¢') € acycric. Indeed, by construction, the label of every node u in (G,¢') has
a well-formatted label ¢'(v) € N(v) U{L}. Moreover, let us assume, for the purpose of
contradiction, that there is a cycle C in (G, ¢'). By definition, every node v of this cycle is
pointing to ¢'(v) € N(v). Thus ¢ (v) = £(v) for every node of C, from which it follows that
no nodes of C was rejecting with £, a contradiction with the fact that, as observed before,
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v rejects every cycle. Therefore (G,{') € AcycLIC. Hence the edit-distance between (G, £)
and ACYCLIC is at most k. It follows that (p,v) is error-sensitive, with sensitivity parameter
a>1. |

The definition of error-sensitiveness is based on the existence of a proof-labeling scheme for
the considered language. However, two different proof-labeling schemes for the same language
may have different sensitivity parameters «. In fact, we show that every non-trivial language
admits a proof-labeling schemes which is not error-sensitive. That is, the following result
shows that demonstrating the existence of a proof-labeling scheme that is not error-sensitive
for a language does not prevent that language to have another proof-labeling scheme which
is error-sensitive. We say that a distributed language is trivially approzimable if there exists
a constant d such that every labeled graph (G, ¢) is at edit-distance at most d from £. The
proof of the following result can be found in the full version.

» Proposition 3. Let L be a distributed language. Unless L is trivially approzimable, there
exists a proof-labeling scheme for L that is not error-sensitive.

Recall that the fact that every distributed language has a proof-labeling scheme can be
established by using a universal proof-labeling scheme (Puniv, Vuniv) (see [17]). Given a
distributed language £, and a labeled graph (G,¢) € £ on an n-node graph G, a universal
certificate ¢ : V(G) — {0,1}* for that labeled graph is defined for every node u € V(G) by
the triple c(u) = (T, M, L) where nodes are ordered from 1 to n in arbitrary order, T is
a vector with n entries indexed from 1 to n where T'[i] is the ID of the ith node v, L[i] is
the label £(v) of the ith node v, and M is the adjacency matrix of G. The prover pyniv
assigns c¢(u) to every node u € V(G). The verifier vy, then checks at every node u that
its certificate is consistent with the certificates given to its neighbors (i.e., they all have the
same T', L, and M, the indexes matches with the IDs, and the actual neighborhood of v is
as it is specified in T, L and M). If this test is not passed, then v,,;, outputs reject at w,
otherwise it outputs accept or reject according to whether the labeled graph described by
(M, L) is in £ or not. It is easy to check that (Puniv, Vuniv) is indeed a proof-labeling scheme
for £. The universal proof-labeling scheme has the following nice property, that we state as
a lemma for further references in the text (see proof in the full version).

» Lemma 4. If a distributed language L has an error-sensitive proof-labeling scheme, then
the universal proof-labeling scheme applied to L is error-sensitive.

While every distributed language has a proof-labeling scheme, we show, using Lemma 4,
that there exist languages for which there are no error-sensitive proof-labeling schemes (see
the full version for the proof).

» Proposition 5. There exist languages that do not admit any error-sensitive proof-labeling
scheme.

» Remark. The language REGULAR used in the proof of Proposition 5 to establish the
existence of languages that do not admit any error-sensitive proof-labeling schemes actually
belongs to the class LCL of locally checkable labelings [25]. Therefore, the fact that a
language is easy to check locally does not help for the design of error-sensitive proof-labeling
schemes.

We complete this warmup section by some observations regarding the encoding of dis-
tributed data structures. Let us consider the following two distributed languages, both
corresponding to spanning tree. The first language, ST, encodes the spanning trees using
pointers to parents, while the second language, ST;, encodes the spanning trees by listing all
the incident edges of each node in these tree.
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sT, = {(G,Z) . Yo e V(G), Lv) € N(v)U{L}

and ( U {v, 6(1})}) forms a spanning tree}
veV(G):(v)#L

sT; = {(G,z) . Yo e V(G), L(v) € N(v) and u € £(v) iff v € {(u),

and ( U U {u,v}) forms a spanning tree}.

veV(G) uel(v)

Obviously, ST, is just a compressed version of ST; as the latter can be constructed from the
former in just one round. However, note that ST, cannot be recover from ST; in a constant
number of rounds, because ST, provides a consistent orientation of the edges in the tree. It
follows that ST, is an encoding of spanning trees which is actually strictly richer than sT;.
This difference between ST, and ST; is not anecdotal, as we shall prove later that ST; admits
an error-sensitive proof-labeling scheme, while we show hereafter that ST, is not appropriate
for the design of error-sensitive proof-labeling schemes.

» Proposition 6. ST, does not admit any error-sensitive proof-labeling scheme.

Proof. Let P, be the n-node path uy,us,...,u, with n even. Let £y, 1, and ¢5 be labelings
defined by 1 (u;) = u;41 for all 1 <4 < n, and £1(u,) = L; €o(u;) = u;—q for all 1 <i < n,
and £o(u1) = L; and £3(u;) = u;—1 forall 1 <@ < §, f3(u;) = uiqq forall T +1 <4 < n, and
l3(u1) = L3(uy) = L. We have (P,,¢1) € sT, and (P, l2) € ST,, while the distance from
(Pn,¢3) to ST, is at least §. Let (p,v) be a proof-labeling scheme for sT,,. Consider the

case of (P, {3) where every u;, i =1,... is given the certificate assigned by p to u; in

n
IR
(Pn,f2), and every u;, i = § +1,...,n, is given the certificate assigned by p to u; in (Py, f1).

With such certificates, (P, 3) is rejected by v at uz and uz 11 only. <

4 Characterization

We now define the notion of local stability, which allows us to characterize the distributed
languages admitting an error-sensitive proof-labeling scheme. This notion naturally pops
up in the context of proof-labeling schemes [22] and locally checkable proofs in general [17].
Indeed, in these latter frameworks, languages that are “hard” to prove, in the sense that they
require certificates of large size (typically of £2(n?) bits), are not locally stable, in the sense
that glueing together two legal labeled graphs, say by connecting them by an edge, results
in a labeled graph which can be very far from being legal. Local stability also naturally
pops up in the context of the classical construction tasks which admit local algorithms, such
as (A + 1)-coloring and MIS [23]. Indeed, those tasks share the property that any partial
solution can be extended to a larger solution without modifying the already assigned labels.
Extending the partial solution actually only depends on the “border” of the current partial
solution.

More specifically, let G be a graph, and let H be a subgraph of G, that is, a graph H such
that V(H) C V(G), and E(H) C E(G). We denote by 0 H the set of nodes at the boundary
of H in G, that is, which belongs to V/(H), and are incident to an edge in E(G) \ E(H).
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Given a labeling ¢ of a graph G, and a subgraph H of G, the labeling £ denotes the labeling
of H induced by ¢ restricted to the nodes of H:

Ca(v) = v) ifveV(H)
AT =00 otherwise (where () denotes the empty string).

Roughly, a distributed language L is locally stable if, by copy-pasting parts of legal labelings
with small cuts between these parts, the resulting labeled graph is not too far from being legal.
More precisely, let G be a graph, and let Hy, ..., H; be a family of connected subgraphs of
G such that (V(H;))i=1,..r is a partition of V(G). For every i € {1,...,k}, let us consider
a labeled graph (G;,¢;) € £ such that H; is a subgraph of G;. Let £ be the labeling of G
defined as ¢ = Zle ?;, i.e. for every v € V(G), £(v) = £;(v) where 4 is such that v € V(H;).
We say that such a labeled graph (G, ¢) is induced by the labeled graphs (G;,¢;), i =1,...,k,
via the subgraphs Hq, ..., H.

» Definition 7. A language L is locally stable if there exists a constant 8 > 0, such that, for
every labeled graph (G, ¢) induced by labeled graphs (G;,¢;) € L, i =1,...,k, via subgraphs
Hy, ..., Hy, the edit-distance between (G, /) and £ is at most 3 | U¥_, 0gH; U Og, H;|.

That is, the labeled graph resulting from cut-and-pasting parts of legally labeled graphs
(Giyl;),i=1,...,k, is at edit-distance from £ upper bounded by the number of nodes at
the boundary of the subgraphs H; in G and G;, and is independent of the number of nodes
in each of these subgraphs H;, i =1,... k.

We have now all ingredients to state our characterization result:

» Theorem 8. Let L be a distributed language. L admits an error-sensitive proof-labeling
scheme if and only if L is locally stable.

Proof. We first show that if a distributed language £ admits an error-sensitive proof-labeling
scheme then £ is locally stable. So, let £ be a distributed language, and let (p, v) be an error-
sensitive proof-labeling scheme for £ with sensitivity parameter a. Let (G, ¢) be a labeled
graph induced by labeled graphs (G;,¢;) € £, i=1,..., h, via the subgraphs Hy,..., Hy for
some h > 1. Since, for every i € {1,...,h}, (G;,¢;) € L, there exists a certificate function ¢;
such that v accepts at every node of (G, ¢;) provided with the certificate function ¢;. Now,
let us consider the labeled graph (G, ¢), with certificate ¢;(u) on every node v € V(H;) for all
it =1,...,h. With such certificates, the nodes in V(H;) that are not in dgH; U g, H; have
the same close neighborhood in (G, ¥¢) and in (G, ¢;). Therefore, they accept in (G, ¥) the
same way they accept in (G, £;). Tt follows that the number of rejecting nodes is bounded by
| Ul OcH; U g, H;|, and therefore (G, () is at edit-distance at most 2| U, 0 H; U d¢, H;|
from L. Hence, L is locally stable, with parameter 5 = i

It remains to show that if a distributed language is locally stable then it admits an
error-sensitive proof-labeling scheme. Let £ be a locally stable distributed language with
parameter 3. We prove that the universal proof-labeling scheme (Puniv, Vuniv) for £ (cf.
Section 3) is error-sensitive for some parameter « depending only on 3. Let (G,¥) ¢ £, and
let us fix some certificate function c. The verifier v,,;, rejects in at least one node. We
show that if v, rejects at k nodes, then the edit-distance between (G, ¢) and L is at most
k/a for some constant « > 0 depending only on 8. For this purpose, let us consider the
outputs of vy, applied to (G, ¢) with certificate ¢, and let us define the graph G’ as the
graph obtained from G by removing all edges for which v,,;, rejects at both extremities.
Note that the graph G’ may not be connected.

Let C be a connected component of G’, with at least one node u at which v,,,;, accepts.
Let ¢(u) = (T, M, L) be the certificate of node u, as it should be in the universal proof-labeling
scheme as described in section 3. Since vy, accepts at u, node u shares the same triple
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(T, M, L) with all its neighbors in G’, as vy, would reject at u otherwise. Similarly, for
every neighbor v of u, it must be the case that v agrees on (T, M, L) with each of its neighbors
w in G, as otherwise vy, would have rejected at both v and w, and the edge {v, w} would
have been removed from G. It follows that all nodes in C share the same triple (T, M, L) as
the one given to the accepting node u. Also (M, L) coincides with the local structure of C
and its labeling ¢ at all accepting nodes in C'. Moreover, since v,,;, accepts at u, we have
(M, L) € L. We denote by (G¢,{¢) this labeled graph in L.

Let C be a connected component of G’ where all nodes reject. In fact, by construction,
such a component is composed of just one isolated node. For every such isolated rejecting
node u, let us denote by (G¢, ) a labeled graph composed of a unique node, with ID equal
to the ID of u, and with labeling ¢ (u) such that (G, o) € L.

Let C be the set of all connected components of G'. Let (G,¢) be the graph induced
by labeled graphs (G¢, ) via the subgraphs C' € C. Note that (G, ¢) and (G, ¢') coincide,
but for the isolated rejecting nodes. By local stability, (G,¢') is at edit-distance at most
B Ucec 0¢C U0, C| from L. Now, the nodes in UcecdaC U0, C are exactly the rejecting
nodes. Thus the number k of rejecting nodes satisfies k = | Ucec 0¢C U g C|, and the
edit-distance from (G, ¢') to L is at most S k. On the other hand, by construction, the
edit-distance between (G, ¢') and (G, ¥) is at most the number of isolated rejecting nodes,
that is, at most k. Therefore, the edit-distance between (G, ¢) and £ is at most (8 + 1) k.

Thus, the universal proof-labeling scheme is error-sensitive, with parameter o = |

_1
B+1"

Proposition 5 can be viewed as a corollary of Theorem 8 as it is easy to show that
REGULAR is not locally stable. Nevertheless, local stability may not always be as easy to
establish, because it is based on merging an arbitrary large number of labeled graphs. We
thus consider another property, called strong local stability, which is easier to check, and
which provides a sufficient condition for the existence of an error-sensitive proof-labeling
scheme. Given two labeled graphs (G,¢) and (G',¢'), and a subgraph H of both G and
G’, the labeling ¢ — ¢y + ¢, for G is the labeling such that, for every node v € V(G),
=Ly + V) (w) =l w) itve V(H), and (¢ — Ly + ly)(v) = £(v) otherwise.

» Definition 9. A language L is strongly locally stable if there exists a constant 5 > 0,
such that, for every graph H, and every two labeled graphs (G,¢) € £ and (G',¢') € L
admitting H as a subgraph, the labeled graph (G,¢ — ¢y + ¢;) is at edit-distance at most
B |0¢H + 0gH| from L.

The following lemma states that strong local stability is indeed a notion that is at least
as strong as local stability (see proof in the full version).

» Lemma 10. If a language L is strongly locally stable, then it is locally stable.

In fact, strong local stability is a notion strictly stronger than local stability, although they
coincide on bounded-degree graphs (cf. the full version). Thanks to the characterization in
Theorem 8, and to the sufficient condition of Lemma 10, we immediately get error-sensitiveness
for the language

LEADER = {(G, () Vv € V(G), £(v) € {0,1}
and there exists a unique v € V(G) for which £(v) = 1}.
» Corollary 11. LEADER admits an error-sensitive proof-labeling scheme.

Also, one can show that the language ST; of spanning trees, whenever encoded by
adjacency lists, admits an error-sensitive proof-labeling scheme.
This is in contrast to Proposition 6 (see proof in the full version).
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» Corollary 12. ST; admits an error-sensitive proof-labeling scheme.

Also, Theorem 8 allows us to prove (see proof in the full version) that minimum-weight
spanning tree (MST) is error-sensitive (whenever the tree is encoded locally by adjacency
lists). More specifically, let

MST; = {(G,z) Yo € V(G), £(v) C N(v) and ( U U {u,v}) forms a MST}. (1)
veEV(GQ) uel(v)

» Corollary 13. MST; admits an error-sensitive proof-labeling scheme.

5 Compact error-sensitive proof-labeling schemes

The characterization of Theorem 8 together with Lemma 4 implies an upper bound of
O(n?) bits on the certificate size for the design of error-sensitive proof-labeling schemes for
locally stable distributed languages. In this section, we show that the certificate size can be
drastically reduced in certain cases. It is known that spanning tree and minimum spanning
tree have proof-labeling schemes using certificates of polylogarithmic size ©(logn) bits [4, 22],
and ©(log? n) bits [20], respectively. We show the proof-labeling schemes for spanning tree
and MST in [4, 20, 22] are actually error-sensitive.

Recall that Proposition 6 proved that spanning tree does not admit any error-sensitive
proof-labeling schemes whenever the tree is encoded at each node by a pointer to its parent:
ST, does not have any error-sensitive proof-labeling scheme. However, we show that ST,
i.e., the language of spanning trees encoded by adjacency lists, does have a very compact
error-sensitive proof-labeling scheme.

» Theorem 14. ST, has an error-sensitive proof-labeling scheme with certificates of size
O(logn) bits.

For figures that illustrate the construction of the following proof see the full version.

Proof. We show that the classical proof-labeling scheme (p,v) for ST} is error-sensitive. On
instances of the language, i.e., on labeled graphs (G, £) where ¢ encodes a spanning tree T’
of G, the prover p chooses an arbitrary root r of T', and then assigns to every node u a
certificate (I(w), P(u),d(u)) where I(u) = ID(r), P(u) is the ID of the parent of w in the tree
(or ID(u) if w is the root), and d(u) the hop-distance in the tree from w to r. The verifier v
at every node u first checks that:

the adjacency lists are consistent, that is, if u is in the list of v, then v is in the list of u;

there exists a neighbor of u with ID P(u), we denote it p(u);

the node u has the same root-ID I(u) as all its neighbors in Gj

d(u) > 0.
Then, the verifier checks that:

if ID(w) # I(w) then d(p(u)) = d(u)—1, and for every other neighbor w in ¢, d(w) = d(u)+1

and p(w) = u;

if ID(u) = I(w) then P(u) = ID(u), d(u) = 0, and every neighbor w of u in ¢ satisfies

d(w) = d(u) + 1 and p(w) = u.
By construction, if (G, £) € STy, then v accepts at every node. Also, it is easy to check that
if (G,¢) ¢ STy, then, for every certificate function ¢, at least one node rejects.

To establish error-sensitivity for the above proof-labeling scheme, let us assume that v
rejects at k > 1 nodes with some certificate function ¢. Then, let (G’,¢) be the labeled
graph coinciding with (G, ¢) except that all edges for which v rejects at both endpoints are
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removed both from G, and from the adjacency lists in £ of the endpoints of these edges. Note
that modifying ¢ into ¢ only requires to edit labels of nodes that are rejecting. The graph
G’ may be disconnected. Let (C, £ ) be a connected component of (G', ).

We claim that the edges of ¢, form a forest in C. First note that if there is a cycle in
the edges of ¢}, then this cycle already existed in £ because we have added no edges when
transforming ¢ into ¢'. Consider such a cycle in ¢, and the certificates given by p. Either
an edge is not oriented, that is no node uses this edge to point to its parent, or the cycle
is consistently oriented and then distances are not consistent. In both cases two adjacent
nodes of the cycle would reject when running v. Then this cycle cannot be present in £, as
at least one edge has been removed. As a consequence ¢, form a forest of C. In C, if a node
is connected to no other node by an edge of ¢, we will consider it as a tree of one node.
With this convention, ¢’ is a spanning forest of G'.

We will now bound the number of trees in ¢ by a function of k. The number of trees in
¢ is equal to the sum of the number of trees in each component (C, ).

Let us run v on graph (C, ), and let k¢ be the number of rejecting nodes. Observe
that for every two nodes v and v in a component C, it holds that I(u) = I(v). Indeed,
otherwise, there would exist two adjacent nodes v and v in C with I(u) # I(v), resulting in
v rejecting at both nodes, which would yield the removal of {u,v} from G. Consequently, at
most one tree of £, has a root whose ID corresponds to the ID given in the certificate. Then
the number of trees in ¢, is bounded by k¢ + 1, and the total number of trees is bounded
Ycke+1=0cke)+ICI

Note that because of the design of the proof-labeling scheme, the nodes that accept when
running v on (G, {) also accept in (G',¢’). Then >, ko < k.

Let V& be the set of nodes of C. It is easy to see that for all C', there exists a node of
Ve that rejects when we run v on (G, ¢). Indeed if there is no rejecting node, then no edge
between C' and the rest of the graph is removed, and then there is only one component in
the graph. But then all node accept, which contradict the fact that k& > 1. Then |C| < k.

So overall all ¢/ encodes a spanning forest with at most 2k trees. Such a labeling can thus
be modified to get a spanning tree by modifying the labels of at most 4k nodes. That is,
(p, v) is error-sensitive with parameter « > %. <

Finally, we show that the compact proof-labelling scheme in [20, 22] for minimum-weight
spanning tree, as specified in Eq. (1) of Section 4 is error-sensitive when the edge weights are
distinct.

» Theorem 15. MST; admits an error-sensitive proof-labeling scheme with certificates of size
O(log®n) bits.

Hereafter, we provide a sketch of proof for Theorem 15 (the complete proof is deferred to
the full version).

Sketch of proof. A classic proof-labeling scheme for MST (see, e.g., [19, 20, 22]) consists in
encoding a run of Bortvka algorithm. Recall that Bortvka algorithm maintains a spanning
forest whose trees are called fragments, starting with the forest in which every node forms a
fragment. The algorithm proceeds in a sequence of steps. At each step, it selects the lightest
outgoing edge from every fragment of the current forest, and adds all these edges to the
MST, while merging the fragments linked by the selected edges. This algorithm eventually
produces a single fragment, which is a MSTof the whole graph, after at most a logarithmic
number of steps.
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At each node u, the certificate of the scheme consists of a table with a logarithmic number
of fields, one for each round of Boruvka algorithm. For each step of Bortuvka algorithm, the
corresponding entry of the table provides a proof of correctness for the fragment including w,
plus the certificate of a tree pointing to the lightest outgoing edge of the fragment. The
verifier verifies the structures of the fragments, and the fact that no outgoing edges from each
fragment have smaller weights than the one given in the certificate. It also checks that the
different fields of the certificate are consistent (for instance, it checks that, if two adjacent
nodes are in the same fragment at step ¢, then they are also in the same fragment at step
i+1).

To prove that this classic scheme is error-sensitive, we perform the same decomposition as
in the proof of Theorem 14, removing the edges that have both endpoints rejecting. We then
consider each connected component C' of the remaining graph, together with the subgraph S
of that component described by the edges of the given labeling. In general, S is not a MST
of the component C' (S can even be disconnected). Nevertheless, we can still make use of
the key property that the subgraph S is not arbitrarily far from a MST of the component C'.
Indeed, the edges of S form a forest, and these edges belong to a MST of the component. As
a consequence, it is sufficient to add a few edges to S for obtaining a MST. To show that S
is indeed not far from being a MST of C, we define a relaxed version of Bortuvka algorithm,
and show that the labeling of the nodes corresponds to a proper run of this modified version
of Boruvka algorithm. We then show how to slightly modify both the run of the modified
Bortvka algorithm, and the labeling of the nodes, to get a MST of the component. Finally,
we prove that the collection of MSTs of the components can be transformed into a MST of
the whole graph, by editing a few node labels only. |

6 Conclusion

In this paper, we consider on a stronger notion of proof-labeling scheme, named error-sensitive
proof-labeling scheme, and provides a structural characterization of the distributed languages
that can be verified using such a scheme in distributed networks. This characterization
highlights the fact that some basic network properties do not have error-sensitive proof-
labeling schemes, which is in contrast to the fact that every property has a proof-labeling
scheme. However, important network properties, like acyclicity, leader, spanning tree, MST,
etc., do admit error-sensitive proof-labeling schemes. Moreover, these schemes can be designed
with the same certificate size as the one for the classic proof-labeling schemes for these
properties.

Our study of error-sensitive proof-labeling schemes raises intriguing questions. In par-
ticular, we observed that every distributed languages seems to fit in one of the following
two scenarios: either it does not admit error-sensitive proof-labeling schemes, or it admits
error-sensitive proof-labeling schemes with the same certificate size as the most compact
proof-labeling schemes known for this language. We do not know whether there exists
a distributed language admitting error-sensitive proof-labeling schemes, but such that all
error-sensitive proof-labeling schemes for that language use certificates larger than the ones
used for the most compact proof-labeling schemes for that language.

Proximity-sensitivity. Another desirable property for a proof-labeling scheme is prozimity-
sensitivity, requiring that every error is detected by a node close to that error. Proximity-
sensitivity appears to be a very demanding notion, even stronger than error-sensitivity, for
the former implies the later whenever the errors are spread out in the network. It would be

16:13

DISC 2017



16:14

Error-Sensitive Proof-Labeling Schemes

informative to provide a structural characterization of the distributed languages that can be

verified using proximity-sensitive proof-labeling schemes, and at which cost in term of label

size.
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