Near-Optimal Distributed DFS in Planar Graphs

Mohsen Ghaffari'! and Merav P. Parter?

1 ETH Ziirich, Switzerland
ghaffariQinf.ethz.ch

2 CSAIL, MIT, Cambridge, USA
parter@mit.edu

—— Abstract

We present a randomized distributed algorithm that computes a Depth-First Search (DFS) tree
in 5(D) rounds, in any planar network G = (V| E) with diameter D, with high probability. This
is the first sublinear-time distributed DFS algorithm, improving on a three decades-old O(n)
algorithm of Awerbuch (1985), which remains the best known for general graphs. Furthermore,
this 5(D) round complexity is nearly-optimal as Q(D) is a trivial lower bound.

A key technical ingredient in our results is the development of a distributed method for

(recursively) computing a separator path, which is a path whose removal from the graph leaves
connected components that are all a constant factor smaller. We believe that the general method
we develop for computing path separators recursively might be of broader interest, and may
provide the first step towards solving many other problems.

1998 ACM Subject Classification G.2.2 Graph Algorithms
Keywords and phrases DFS, planar graphs, CONGEST, separator

Digital Object Identifier 10.4230/LIPIcs.DISC.2017.21

1 Introduction and Related Work

Depth First Search (DFS) is “one of the most versatile sequential algorithm techniques known
for solving graph problems” [38]. Along with its cousin BFS, these two have a long history:
DFS dates back to the 19th century [10], and BFS dates back to the 1950s [40]. Both were
first used for solving different kinds of mazes, but are nowadays among basic building blocks
in graph algorithms, covered in elementary courses, and with a wide range of applications.

In the centralized setting, computing BFS and DFS are straightforward. However, in the
distributed setting, there is a stark contrast, and DFS turns out to be much harder. Let us
first recall the definition of the distributed model.

Throughout, we use a standard message passing model of distributed computing called
CONGEST [36]. The network is abstracted as an n-node graph G = (V, E'), with one processor
on each network node. Initially, these processors do not know the graph. They solve the
given graph problems via communicating with their neighbors. Communications happen in
synchronous rounds. Per round, each processor can send one O(logn)-bit message to each of
its neighboring processors.

Distributedly computing both BFS and DFS need (D) rounds, in graphs of diameter D.
BFS can be computed easily in O(D) rounds, in any graph with diameter D. In contrast, the
best known distributed algorithm for DFS takes O(n) rounds, regardless of how small diameter
D is; see e.g., [36, Section 5.4] and [4]. We note that designing algorithms with complexity
o(n), when D = o(n), and ideally close to O(D), has become the target of essentially all the
distributed graph algorithms for global optimization problems, since the pioneering work of

© Mohsen Ghaffari and Merav Parter;

37 licensed under Creative Commons License CC-BY
31st International Symposium on Distributed Computing (DISC 2017).
Editor: Andréa W. Richa; Article No. 21; pp.21:1-21:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.DISC.2017.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

21:2

Near-Optimal Distributed DFS in Planar Graphs

Garay, Kutten, and Peleg [13, 27] which gave an O(D + n®6') round algorithm for minimum
spanning tree. See, e.g., [5, 7, 8, 12, 14, 15, 18, 19, 24, 25, 28, 29, 32, 33, 34].

Despite this, there has been no progress on the problem over the last three decades,
and no sublinear-time distributed algorithm for DFS is known. This, and especially the
lack of any sub-linear time distributed DF'S, is certainly not for the lack of trying. It is
widely understood that DFS is not easy to parallelize/decentralize; it has even been called
“inherently sequential” [38] and “a nightmare for parallel processing” [31].

1.1 Our Contribution

In this paper, making a first step of progress on the distributed complexity of this classical
problem, we present a randomized distributed algorithm that computes a DFS in O(D -
polylogn) rounds in planar graphs, with high probability. This time complexity is nearly
optimal as it matches the trivial Q(D) lower bound up to poly-logarithmic factors.

» Theorem 1. There is a randomized distributed algorithm that computes a DFS in any
n-node planar network with diameter D in O(D - poly logn) rounds, with high probability.

Turning to general graphs, we note that the parallel algorithms by Aggarwal and Ander-
son [1] and Goldberg, Plotkin and Vaidya [20] can be adapted to give an O(v/Dn+n3/*)-round
DFS algorithm for graphs with diameters D. Therefore, a DFS can be computed in sublinear
number of rounds for graphs with sublinear diameter D = o(n). This simple corollary of [1]
and [20] is shown in the full version. Improving the bound for general graphs remains an
important open problem.

1.2 A High-Level Discussion of Our Method

Our method relies on separator paths. Generally, separators have been a key tool in working
with planar graphs, starting with the seminal work of Lipton and Tarjan [30]. In a rough
sense, separators are subgraphs whose removal from the graph leaves connected components
that are all a constant factor smaller than the initial graph. Typically, one desires the
separator to be small. However, unlike [30], we do not insist on a small separator, but instead
it is crucial for us that the separator is a simple path. This allows us to use the separator
path, with some iterations of massaging and modifications in the style of [1], as a part of a
partial DF'S. See Sec. 3 for the explanations. Now that this separator is put in the partial
DFS, the left over graph is made of a number of connected components, each a constant
factor smaller than the initial graph. Hence, we would have the hope to be able to solve
each of these subproblems recursively, and moreover, to do that simultaneously for all the
subproblems.

But two key issues remain: (1) How do we compute the separator path distributedly?
This itself is the main technical contribution of our paper, and is explained in Sec. 4. But a
crucial part of the challenge of that lies in the next point. (2) How do we recurse and most
importantly, how do we compute the separator path throughout the recursions? Once we
remove the first separator, the left over components are smaller in size, but they may have
considerably larger diameter, even up to ©(n). This large diameter can be a major obstacle
for distributed algorithms. For instance, we cannot even assume that we can compute a BFS
of each component. More generally, if we are to have a fast separator path algorithm, we
cannot confine the algorithm for each subproblem to stay within the connected component of
that subproblem. On the other hand, allowing the algorithm to use the other parts creates

M. Ghaffari and M. Parter

the possibility of congestion as now many subproblems may need to use the same edge,
perhaps many times each.
Our solution uses a number of novel algorithmic ideas. It would be hard to summarize

these ideas out of context, and thus we refer the interested reader to the technical sections.

One key tool from prior work, which is worth pointing out and makes our life significantly

easier, is low-congestion shortcucts for planar graphs, developed by Ghaffari and Haeupler [17].

In a very rough sense, this tool opens the road for working on many disjoint potentially
large-diameter subgraphs of the base graph G at the same time, and still enjoying the small
diameter of the base graph G. Though, this is possible only in certain conditions and only
for a very limited class of problems. We usually need quite some work to break our problems
into modules that fit these conditions and classifications.

Separators have a wide range of applications, in centralized algorithms for planar graphs.

Though, computing the separators distributedly and especially computing them recursively
in the distributed setting when the remaining components have large diameter is highly
non-trivial. We thus hope that the methods developed in this paper may open the road
for recursive computation of separators in the distributed setting, and thus be a first step
towards solving many other problems.

1.3 Related Work

Distributed Graph Algorithms in Sublinear Time. Over the past two decades, starting
with the seminal work of Garay, Kutten, and Peleg [13, 27], there has a been a big body
of work presenting sublinear-time distributed algorithms for various graph problems (for
graphs with diameter D = o(n), as otherwise that is impossible). See for instance!® [5, 7, 8,
12, 14, 15, 18, 19, 24, 25, 28, 29, 32, 33, 34]. There are also lower bounds [6, 9, 37] which for
instance show that in general graphs, computing minimum spaning trees requires Q(D + /1)
rounds, hence ruling out the possibility of O(D) round MST algorithms. A similar lower
bound holds for many other problems, even when approximating, e.g., min-cut, shortest
paths, min-cost connected dominated set etc. See [6]. By now, most of the classical graph
problems are known to have sublinear-time distributed algorithms, at least when relaxing
the problem to allow some approximation. A prominent exception is DFS!

Distributed Graph Algorithms in Planar Networks. Starting with the work of Ghaffari
and Haeupler [16, 17], some attention has been paid to developing more efficient distributed
algorithms for (global) network optimizations on planar or near-planar networks. This was
in part motivated by trying to circumvent the aforementioned Q(D + y/n) general-graph
lower bound. Another motivation was also to bring in the vast array of the techniques
and methodologies developed for efficient centralized algorithms for planar networks to the
distributed domain.

In [17], the aformentioned lower bound was ruled out for planar networks by showing
an O(D) algorithm for MST in planar networks. A key tool in this MST algorithm was
the concept of low-congestion shortcuts, which was introduced in [17]. An algorithm for
computing this structure was also given in [17], which as one of its subroutines made use of
the planar embedding algorithm of [16]. It was shown later by Haeupler, Izumi and Zuzic [21]
that even without having the embedding, one can compute an approximate version of the
low-congestion shortcuts, which is good enough for many applications. Furthermore, low

! This is merely a sample, and is by no means exhaustive.

21:3

DISC 2017

21:4

Near-Optimal Distributed DFS in Planar Graphs

congestion shortcuts were later extended to other special graph families such as those with
fixed tree-width or genus [22].

Parallel DFS Algorithms. DFS has received vast attention in the parallel literature. It is
known that computing the lexicographically-first DFS —where the smallest ID unvisited
neighbor should be visited first — is P-complete [38], and is thus unlikely to admit an efficient
parallel algorithm. This was the reason that DFS was deemed “inherently sequential” [38].
However, over the years, several sophisticated but efficient parallel algorithms were developed
for DFS, which compute some depth first search tree (not necessarily the lexicographically-
first one). We here review the related work on only undirected graphs. Smith [41] gave an
O(log® n)-time parallel DFS algorithm for planar graphs. Shannon [39] improved this to an
O(log2 n)-time parallel DFS algorithm for planar graphs, while also using only linear number

of processors. Anderson gave a O(y/n)-time [2] and then a 20(Vlogn)_time [3] parallel DFS
algorithm for general graphs. Aggarwal and Anderson [1] gave the first poly-logarithmic
time parallel algorithm for DFS in general undirected graphs. Kao [26] gave the first
deterministic NC algorithm for DFS in planar networks. Then Hagerup [23] gave an O(logn)-
time randomized parallel DFS algorithms for planar networks. Finding a deterministic NC
algorithm for DFS in general graphs remains open, though a quasi-NC algorithm was given
very recently in [11].

We note that our distributed DFS algorithm for planar graphs is quite different than
the parallel DFS algorithms for planar graphs (e.g., [39, 41]), mainly because we do not
compute a separator cycle distributedly. Our algorithm is morally closer to the methodology
of Aggarwal and Anderson (for general graphs) [1] which can work with (collections of)
separator paths.

2 Preliminaries

Basic Notions. Let G = (V, E) be a simple undirected planar graph. Given a tree T C G
and a non-tree edge e = (v,u) ¢ T, the cycle formed by e and the tree path connecting v to
u is called the fundamental cycle defined by e. Let F(G) = {F1,..., F} be the faces of the
planar graph G. Let G’ = (V', E’) be the dual graph of G, defined by including one node
v; € V' for each face F; € F and connecting two nodes vj,v; € V' if their corresponding
faces share an edge?. We may interchange between the dual-nodes v} and the faces F;. A
superface F is a collection of faces whose boundary is a simple cycle.

Dual Tree and its Distributed Representation. Given a spanning tree T of G, we define
its dual-tree in the dual-graph G’ as follows: Let ¢z : F(G) — V' be the bijection between
the faces of G and the dual-nodes of G’. The nodes of dual tree T” are the faces of G,
and two dual-nodes v; and v’; are connected iff the two faces ¢p' (vh) and qﬁgl(v;-) share an
non-tree edge e ¢ T. We define a bijection ¢g : E\ E(T) — E(T’) between the non-tree
edges G \ T and the dual-tree edges of T”, where in the aforementioned example, we have
¢r(e) = {v;,v;}.

In the distributed representation of this dual-tree, the leader £(e’) of a dual-edge e’ € T”
is the higher-ID endpoint of the edge ¢ (¢’) = {u,v}. The leader ¢(v') of the dual-node

v" is the node in the face ¢r(v') of maximum ID. The dual-tree is known in a distributed

2 In-fact, the dual-graph is a multigraph as there might be many edges between two dual-nodes

M. Ghaffari and M. Parter

manner where for every edge ¢’ € T, its leader £(e’) knows that this edge belongs to T”. The
nodes v' € V(T") and dual edges ¢’ € E(T") will be simulated by their leader nodes ¢(v") and
£(e’) respectively.

Planar Embeddings. The geometric planar embedding of graph G is a drawing of G on a
plane so that no two edges intersect. A combinatorial planar embedding of G determines
the clockwise ordering of the edges of each node v € G around that node v such that all
these orderings are consistent with a plane drawing (i.e., geometric planar embedding) of
G. Ghaffari and Haeupler [16] gave a deterministic distributed algorithm that computes a
combinatorial planar embedding in O(D min{logn, D}) rounds, where each node learns the
clockwise order of its own edges.

Low-Congestion Shortcuts. In a subsequent paper [17], Ghaffari and Haeupler introduced
the notion of low-congestion shortcuts which plays a key role in several algorithms for planar
graphs (e.g., MST, min-cut). We will also make frequent use of this tool. The definition is
as follows.

» Definition 2 (a-congestion S-dilation shortcut). Given a graph G = (V, E) and a partition
of V into disjoint subsets S,...,Sy C V, each inducing a connected subgraph G[S;], we
call a set of subgraphs Hy,..., Hy C G, where H; is a supergraph of G[S;], an a-congestion
[-dilation shortcut if we have the following two properties:

1. For each i, the diameter of the subgraph H; is at most 3, and

2. for each edge e € F, the number of subgraphs H; containing e is at most «.

Ghaffari and Haeupler [17] proved that any partition of a D-diameter planar graph
into disjoint subsets S, ..., Sy C V, each inducing a connected subgraph G[S;], admits an
a-congestion S-dilation shortcut where « = O(Dlog D) and 8 = O(Dlog D). They also gave
a randomized distributed algorithm that computes such a shortcut in O(D) rounds, with
high probability. We will make black-box use of this result, frequently.

3 Outline of the Depth First Search Tree Construction

Towards proving Thm. 1, in this section, we explain the outline of our 5(D)—round algorithm
for computing a Depth-F'irst Search (DFS) tree. Detailed steps are explained in later sections.

We compute a DFS tree of a graph G = (V, E) rooted in a given node s € V. The
algorithm is based on a divide-and-conquer style approach. A key technical ingredient is
a separator path algorithm, which we use for dividing the problem into independent sub-
problems of constant factor smaller size. We describe this separator algorithm in the next
section. In this section, we explain how via recursive (black-box) applications of a separator
path subroutine, we compute a DFS.

We note that our approach is inspired by an idea of Aggarwal and Anderson [1]. However,
the overall method is quite different. On one hand, we have an easier case here because we
need to deal with only a single path instead of a large collection of them, thanks to the nice
structure of planar graphs. On the other hand, computing this single path, and especially
being able to do it recursively, has its own challenges, as we discuss in the next section. We
will have to deal with a number of difficulties that are unique to the distributed setting, as
we will point out.

21:5

DISC 2017

21:6

Near-Optimal Distributed DFS in Planar Graphs

High-Level Outline. The high-level outline of the approach is as follows. The method
is recursive. In each (independent) branch of the recursion, we have a connected induced
subgraph C C G and a root r € C and we need to compute a DFS of C rooted in r. In the
beginning, we simply have C = G and r = s. Furthermore, in each step of recursion, we
will assume that C is biconnected, that is, removing any single node v € C from C leaves
a connected subgraph C \ {v}. Notice that this may not hold at the beginning, that is, G
may have some cut-nodes. We will later discuss how to deal with cut nodes, by dividing
the problem further into a number of independent subproblems, one for each biconnected
component. For now, we assume that C is biconnected.

The Framework of One Recursion Level. We wish to compute a partial DFS 7 of C rooted
at r such that each connected component of C \ T has size at most 2|C|/3. This partial DFS
T of C is such that it can be completed to a full DF'S of C rooted at r. In particular, it has
the following wvalidity property: there are no two branches of 7 which are connected to each
other via a path with all its internal nodes in C \ 7. In other words, for each connected
component C; of C\ T, all neighbors of C; in 7 are in one branch (i.e., rooted path) of
T. Once we compute this partial DF'S T, we can then recurse on each of those remaining
connected components of C \ T, all in parallel. As the component size decreases by a 2/3
factor per level of recursion, the recursion has depth O(logn).

The Procedure for One Recursion Level. Thus, the key is to grow a partial DFS T of C
in O(D) rounds, in a way that each connected component of C \ 7 has size at most 2|C|/3.
We will do this in O(D) rounds. For that purpose, we compute a separator path P C C of C.
That is, each connected component of the graph C \ P has size at most 2|C|/3. We explain
this subroutine in the next section. For now, let us assume that such a path P is computed.

Let Q be a simple path that connects the root r to some node in P (and is other-
wise disjoint from P). Let v be the endpoint of Q in path P and suppose that P =
UL, U - e vy Ug, Uy W1, W, .., Wer. Let P = uqp,us...,up,v and Py = v, w1, wa,...,wpy. We
will use the longer one of P; and P and append it to the path Q connecting the root r to v.
Without loss of generality, suppose that the longer subpath is P>. We add the path Q U Py
as the first branch of the DFS 7. Moreover, we update the separator P to be the remaining
part of the separator path, concretely P; in the assumed case. We note that this is the idea
that we borrow from Aggarwal and Anderson [1]. We have two important properties: (1) the
new path P is still a separator of C \ T, and (2) the length of the new separator path P is at
most half of the length of the previous separator.

Thanks to these two properties, we have the means to continue and exhaust the separator
path in O(logn) repetitions. Each time we grow the partial DFS T further. Let us explain
one step of this repetition. Fig. 1 illustrates an example for this step. We find the deepest
node 7’ in the current partial DFS T rooted at r that is directly or indirectly connected to a
node in the current separator P, in the graph C \ 7. Notice that this deepest node is unique,
due to the validity of the current partial DFS, as all neighbors of the connected component of
C\ T containing P are in one branch of 7. We then find a path @ as above starting from r’
and connecting to some node v in P. This is done with the help of an 5(D) round minimum
spanning tree (MST) algorithm of Ghaffari and Haeupler [17], as we outline next.

In particular, let each node of T send its DFS depth to its neighbors in C \ 7. Then, we
run a connected component identification algorithm of [17] on the subgraph ¢’ =C\ T of G.
In identifying the connected components of the graph C’ = C \ T, the component leader is
chosen according to having a 7-neighbor with deepest DFS depth. This finds the deepest

M. Ghaffari and M. Parter

Figure 1 Growing the partial DFS tree. The green tree shows the current partial DFS 7, and
the rest of the nodes are those of C \ 7. The red path shows the current separator path P. The
black path is Q, which connects the deepest point of 7 to some node in P. The green dotted line
indicated the path that will be added to the DFS, which is composed of Q and the longer half of P
from the point of intersection with Q. After this DFS growing, the leftover separator P will be the
single edge at the left endpoint of P. This is still a separator path of C \ T, for the new 7.

node r’ of T that is in the connected component of P and thus has a path to P. Furthermore,
we can find a path @ C C\ 7 connecting r’ to P in a similar manner.

Let us explain this step for finding path 9, in O(D) rounds. On the graph C’, give an
edge weight of 0 to each P edge and edge weight of 1 to each C’\ P edge. Then, compute
an MST of C’' according to these weights using the algorithm of [17]. The unique path of

weight-1 edges in the MST that connects node 7’ to a node v € P is our desired path Q.

This path Q can be identified in 5(D) rounds. One endpoint of it r’ is clear by now. We

first identify the other endpoint v, as follows: Discard all the zero-weight edges of the MST.

Then, with another iteration of [17] on the subgraph edge-induced by weight-1 edges of the

MST, we can identify the node v € P who is the endpoint of the path Q connecting ' to P.

This is the only P-node in the same component with 7’. Now that we have the two endpoints
r’ and v of our path Q, which is a part of the computed MST, we can fully mark this path
Q in 5(D) rounds, easily. We defer the details of that step to the full version, where we
explain a routine for marking a tree-path connecting two nodes.

Now that we have found a path Q connecting the deepest possible node 7’ of T to a
node v € P, we work as before. We break P at v, as depicted in Fig. 1, and append the
longer half to @, and then add the resulting path to the DFS T, essentially hanging it from
node r’ € 7. This is the dotted green path in Fig. 1. One can see that, as we chose v to be
the deepest T-node with a connection to P, the resulting new tree 7 preserves the validity
property. That is, each remaining connected component of C \ T has neighbors in only one
branch of the this new DFS tree 7. This is because each newly added node is connected to
the deepest possible point in the DFS. After each such repetition, the length of the remaining

separator path P decreases by a 1/2 factor. Hence, after O(logn) iterations, we exhaust P.

At that point, we have a valid partial DFS T rooted at r and furthermore, C \ T is made of
connected components, each of which has size at most 2|C|/3.

Preparation for Next Recursions. At this point, we are almost ready for recursing on the
connected components of C \ 7, each as a subproblem of its own. Though, we should do a
preparation step so that each subproblem is in the format that we assumed above, while
describing the recursive step. In particular, we should identify the connected components

21:7

DISC 2017

21:8

Near-Optimal Distributed DFS in Planar Graphs

Figure 2 An induced connected subgraph C of G, depicted with its DFS root r, as well as its
biconnected components and the corresponding cut-nodes v; to ve.

Cy, Co, ..., Cpof C\ T, by giving a connected component identifier to each of them, and
more importantly, we should declare a DFS root for each of them. Let each node in T sends
its DF'S depth to each of its neighbors in C \ 7. Then, for each component C;, we define the
component leader and also the DFS root r; to be a node v € C; that received the greatest
DFS depth from its 7 neighbors (breaking ties based on the id of v). Notice that for each
component, this greatest depth 7-node is uniquely defined, because of the validity of the
partial DFS. Moreover, this is a valid DFS root, in the sense that adding a DFS of C; rooted
at ; to the current partial DFS 7 would be a correct partial DFS. These component leaders
(i.e., component-wise DFS roots r;) can be identified for all the connected components in
parallel in 5(D) rounds, using the connected component identification algorithm of Ghaffari
and Haeupler [17] for planar graphs. It is crucial to note that here D is the diameter of the
very base graph G and not just C. See [17] for details.

Dealing with Cut Nodes. Finally, we come back to the assumption of the connected
component C being biconnected, and we address the possibility of having cut nodes. Fig.
2 illustrates an example for this case, where a connected component C is drawn which has
several cut nodes. In this case, we break the problem into several independent DFS problems
that can be solved independently. In particular, we will partition the graph into edge-disjoint
parts, each being one of the biconnected components of C, and we solve a rooted DFS problem
in each of these biconnected components. The root of the biconnected component containing
root 7 is node 7 itself. For each other biconnected component C', the DFS root is the cut
node of C that lies on the shortest path to the root r. It is easy to see that if we compute
these rooted DFSs and glue them together in the natural way—hanging the DFS of each
biconnected component C' from its root as a subtree of DFS of the neighboring biconnected
component closer to the node r — we get a DFS of C. Computing a rooted DFS in each of
these biconnected component is performed using the recursive method explained above. So,
what remains to be explained is identifying two things (1) the biconnected components of C,
and (2) the corresponding DFS roots. We describe these components in the full version.

4 Computing A Separator Path
4.1 Method Outline and Challenges

A celebrated result of Lipton and Tarjan [30] demonstrates the existence of a separator path
in planar graphs. Their proof shows that

M. Ghaffari and M. Parter

Any spanning tree T in a planar graph G = (V, E') contains a tree path P C T which is
a separator path. That is, each connected component of G\ P contains at most 2|V|/3

nodes.

If one takes T to be a BFS (i.e., shortest path tree) of G, then the separator consists of at
most two shortest paths. Hence, in this case, the separator path also has a small length of
O(D). For our purposes in this section, we do not need a small separator. Moreover, for
reasons that shall become clear during the recursive steps, we will not be able to pick our
separators based on BFS trees (of the remaining components). We will work with more
general trees, and thus will not insist on the separator path being small. As a side remark,
we note that if we did not need the separator to be a path, then there would be ways for
having it be also small (even throughout the recursions).

In most applications of separators, we need to compute the separators not once but rather
many times, recursively. That is, after computing a separator path in G, the separator is
removed and the graph breaks into connected components; then in each component, we
compute a separator and recurse. The first recursion level where we compute the separator in
G may be delusively simple. This is because, whereas the diameter of G is D, in later levels,
we need to compute the separator in connected induced subgraphs C, which potentially may
have much larger diameter than D.

Throughout this section, we describe how to compute a separator for a given induced
subgraph C C G, which is biconnected, but may have diameter much larger than D. We
note that in reality, there are potentially many subgraphs Ci, Ca, ..., Cy for which we

are computing separators, at the same time. Our description focuses on just one of these.

Dealing with all these disconnected subgraphs in parallel will follow by standard usage of
low-congestion shortcuts.

To avoid cumbersome notation, let us abuse notation and use n as the size of the
subgraph C. Our algorithm will compute a path P that breaks C \ P into components of size
[n/(3(1+¢€)),2(1 + €)n/3], for a small constant € > 0, say € = 0.01.

Algorithm Outline. Here, we describe a high-level outline of the algorithm for finding a
separator path. We start by computing a spanning tree 7" in C. This is done using the MST
algorithm of [17], in O(D) rounds, where D is the diameter of the base graph G rather then
the diameter of the subgraph C. Our separator path will correspond to a fundamental cycle
of the MST tree T in C. Picking this primal tree T also leads to defining a dual tree T”,
containing the dual edges of the non T-edges, as described in Sec. 2. See Fig. 3. In this
dual-tree T’, each two faces who share a non-tree edge e ¢ T are adjacent. We will use this
dual tree T” to find a collection of faces, i.e., dual nodes, that can be merged into a superface
whose boundary can be used as a separator.

To choose a separator path on the tree T, we introduce the notion of weight for the
dual-tree T”. We define the weight of a superface to be the number of nodes on the superface
boundary plus the number of nodes inside the superface. Let F; denote the superface
corresponding to the dual-node v}, obtained by merging the faces of all dual-nodes in the
subtree T'(v}), i.e., the subtree of the dual tree 7" rooted in v]. The weight of the subtree
T’(v}) is the weight of the superface F;.

Our algorithm would not be able to compute the exact weights and instead it would
compute a (1 4 €)-approximation of these weights. Using these approximated weights, we
explain how the algorithm chooses a separator path. First, the algorithm attempts to find

21:9

DISC 2017

21:10

Near-Optimal Distributed DFS in Planar Graphs

Figure 3 Shown is a planar graph and its path separator as computed by our algorithm. Solid
edges are T-edges and the dashed blue edges are the non T-edges. These non-tree edges define the
edges of the dual-tree T”. The dual-nodes are depicted as squares and the dual-edges of T” are the
curved green edges in the figure. The dual-node v is a balanced dual-node as the total weight of its
superface (shown in the figure) is in [n/(3(1 + €)), 2(1 + €)n/3]. The boundary of the superface of
vp—i.e., the subtree of dual rooted in v,—consists of one non T-edge e = {u,v} and a T-path. The
path-separator, indicated via thick black edges, is the T-path between u and v.

an (approximate) balanced dual-node vj such that the weight of its subtree T"(v};) is in
[n/(3(14¢€)),2(1+€)n/3]. If such a dual-node exists, then the boundary of the corresponding
superface—obtained by merging all the faces in the dual subtree of v;—is a cycle separator.
It is indeed a fundamental cycle of T'. See Fig. 3 for an illustration. Otherwise, if no balanced
dual-node exists, there must be a dual-node v/, such that the weight of its subtree T"(v/)
is larger than 2(1 + €)n/3 but the weight of each of its descendants sub-trees is less than
n/(3(1 4 ¢€)). We call v, a critical dual-node.

In the case that we have a critical dual-node, we will compute a separator path slightly
differently. This will be essentially by mimicking the separator computation of Lipton and
Tarjan in the triangulated version of G. In fact, it will suffice to triangulate only the face
corresponding to the dual-node v/,. We note that generally, it is unclear how to efficiently
simulate triangulation in distributed manner as this requires simulating many virtual edges.
Our construction, however, only uses triangulation implicitly in the analysis. That is, we
compute a separator and then show that it is the same as computed by the algorithm of
Lipton and Tarjan on the triangulated version of C.

Challenges and Our Approach for Overcoming Them. Our goal is to implement the above
algorithm in 5(D) rounds, where D is the diameter of the base graph G. Note that the
diameter of C might be as large as ©(n). We face two key challenges: (CI) we need to
simulate each dual-node in a distributed manner. Note that a dual node is made of a face,
which can be long, and it may interact with other faces through far apart parts of this face.
(CII) More severely, we need to implement communications on the dual tree. The nodes and
edges of this tree are not real nodes and edges of the graph. Even simulating each node of it
is not straightforward, and is the challenge mentioned before. To add insult to injury, the
diameter of the dual tree (even in terms of dual-nodes) can be much larger than D. For
instance, it is possible that the primal graph has diameter D = O(1) and yet, the diameter
of the dual graph is ©(n). We next briefly outline the methods we use for overcoming these
two challenges.

To deal with challenge (CI), we use the low-congestion shortcuts of [17], as defined in
Def. 2, one shortcut for each of the faces. This application is not straightforward because an

M. Ghaffari and M. Parter

important requirement for low-congestion shortcuts is not met in our setting. To use the
low-congestion shortcuts of [17], the collection of subsets Sy, ..., Sy must be node-disjoint. In
our case, however, the S; sets are the nodes of faces. Hence, these sets are not node-disjoint;
in fact, a node may belong to several different faces. We bypass this obstacle by transforming
the graph G into an auxiliary graph CAT', in which the sets S;, that correspond to the faces of
C, are mapped to node-disjoint connected sets. We then show that the auxiliary graph G
can be simulated efficiently in the original graph G.

To deal with challenge (CII), our approach is inspired by a method of [17, Section
5] for aggregating information on a tree with large diameter in planar graphs with low
diameter. They used this method for aggregating information on the MST. Though, we
need to adjust this method to suit our case. A straightforward combination would suggest a
round complexity of O(D?). This is because, our method for communication inside faces (i.c.,

dual-nodes) itself takes O(D) rounds, and on top of that, the method of [17, Section 5] for

dealing with large-diameter trees needs O(D) iterations of communicating on the dual-nodes.

Thus, the naive combination would be O(D?). We will however be able to put the ideas
together in a way that leads to a round complexity of O(D).

Roadmap. In Sec. 4.2, we present the basic computational tools for efficient distributed
communication inside a dual-node and on a dual tree, i.e., dealing with challenges (CI) and
(CII) respectively. Then, we present our algorithm for computing a path-separator in an
arbitrary (biconnected) induced subgraph C C G, using the tools explained in Sec. 4.2. The
related analysis and smaller subroutines appear in the full version.

4.2 Key Tools

We begin by explaining how to preform communication inside nodes of each face, and later
how to perform communication on the dual tree.

4.2.1 Tool (I): Communication Inside Dual-Nodes

To simulate communication inside the dual-nodes, we consider two basic tasks.

(T1) Face identification: Assign each face F; in C a unique ID, I D(F;), such that each node
knows the IDs of the faces to which it belongs. In addition, for each edge {u,v} € C,
the endpoints of this edge should know the two face IDs, (I D(F;), ID(F})), to which the
edge {u,v} belongs.

(T2) Low-Congestion Shortcuts for all Faces: Let S; denote the nodes of face F;. Compute
an (a, 3) low-congestion shortcuts H; for the S; sets, for a, f = 5(D)

To tackle both of these tasks, we transform the original planar graph G into a virtual planar

graph G in which the subsets of nodes belonging to the faces of C are mapped to node-disjoint

subsets §l for which low-congestion shortcuts can be computed. We then show that any
r-round algorithm for G can be simulated in G using 2r rounds.

The virtual graph G is defined as follows. See Fig. 4. First, it contains all edges of G \ C.

The edges of C are transformed in the following manner. Consider a node v that belongs
to y faces Fj,,..., F;, in C, ordered in a clockwise manner. Then, v creates y many virtual
copies of itself named v',...,vY. In @, the identifier of the ¢** copy of v is (ID,,{). By
computing the embedding of the original graph G, each node v knows the clockwise ordering

of all its edges in G. This can be used to deduce the clockwise ordering® of its edges in C.

3 Note that since the diameter of C can be larger than D, we cannot afford computing the embedding for
C from scratch, via communicating only inside C.

21:11

DISC 2017

21:12

Near-Optimal Distributed DFS in Planar Graphs

Figure 4 The transformation from G to @, which maps faces to node-disjoint connected subsets.
The left figure depicts the graph before the transformation, and the right one depicts it after the
transformation. The dotted links show the star-edge Es. Notice that in the graph G after the
transformation, if we remove the star-edges, we get a collection of connected components, each
corresponding to a face of C.

The clockwise ordering of the edges of v in C imposes a local numbering of its faces in C,
each two consecutive edges in the clock-wise order define one new face. On each edge {u, v},
the nodes u and v exchange their local face numberings for that edge. Since a given edge
appears in at most two faces, this can be done in 2 rounds. In the graph @, we connect v
to y copies v!,...,vY, one per face in C. In addition, for each edge {v,u} € C belonging to
the it" face of v and the j* face of u, we connect v* to u/. We use Eg to denote the set of
star-edges {v, v;} in G.

The graph G is planar. Furthermore, it has the additional benefit that the nodes
corresponding to the faces of the C are now node-disjoint subsets, while still each face induces
a connected subgraph. Hence, one can construct low-congestion shortcuts for these node
sets in the graph G. Notice that G has diameter at most 3D. This is because every edge
{u,v} € C becomes a path (u—u’ — v — v) in G, and every edge not in C is unchanged.
Since each edge belongs to two faces, we have:

» Lemma 3 (Simulation of G in G). Any r-round algorithm A in G can be implemented in
G within at most 2r rounds.

Proof. The edges of C are transformed into two types of edges in G star-edges between v
and its copies, whose simulation requires no real communication in G, and face-edges {v’,u'}.
Since each edge {u,v} in G simulates the communication of two edges, namely, {utr,vi1}
and {u'2,v72} in G every round r of A in G can be implemented in G using two rounds. <«

From now on, it suffices to consider algorithms in G. Since the node faces are the connected
components of G \ Eg, we have:

» Lemma 4. The Faces Identification task can be solved in 6(D) rounds.

Proof. Let C be the induced subgraph of G, which is biconnected, and for which we are
computing a separator path. Let C be the subgraph of G. We employ the O()-round
connectivity algorithm of [17] in the graph G\ Es but only for the nodes of C. Recall that
FEg denotes the star edges in G. By using Lemma 3, this algorithm can be simulated in G in
O(D) rounds. Let the ID of each connected component of C\ Eg be the node with maximum
ID in the component. Since each connected component of C \ Es corresponds to a face of C,
each node now knows the IDs of its faces, in particular, it knows the face IDs of each of its

M. Ghaffari and M. Parter

copies in C. In addition, each node v € C also learns the IDs of the two faces I D(F;) and
ID(Fj) of each of its edges {u,v} in C. The lemma follows. <

Turning to the second task of computing low congestion shortcuts for each face F;, we
have:

» Lemma 5. Let §1, ..., SN be the nodes on faces Fy, ..., Fn of the graph C. W.h.p., one
can construct in O(D) rounds, an («,) low-congestion shortcut graphs Hy,...,Hy for
a, = 0(DlogD).

Proof. Consider the algorithm A of [17] for constructing the low-congestion shortcuts in G.

By Lemma 3, Algorithm A can be simulated in @ in O(D) rounds. Let H; be the (o, 3/2)
low-congestion shortcuts computed for the sets §Z in G. Let H; be obtained from fAIZ by
omitting star-edges {v, v’} and replacing {u’, v’} edges with {u,v} edges. The subgraphs
H; are («, B) low-congestion shortcuts for the sets S; in C. |

» Corollary 6. One can compute any aggregate function, which has O(logn)-bit size values,
in all faces of C in parallel in O(D) rounds.

4.2.2 Tool (I1): Communication on the Dual Tree

In tool (I), we described how to perform efficient communication within each face, that is,
inside each node of the dual tree. We now explain how to perform efficient communication
on the dual tree T of a spanning tree T of the subgraph C. We mainly need to solve the
following two computational tasks in the dual tree T": (D1) Edge Orientation: orienting the
dual-edges towards a given dual root, and (D2) Subset-OR: given a rooted dual tree T”, and
initial binary input values z(v’) for each dual-node v’, the leader node £(v") of the dual node
v’ should learn the OR of its subtree, that is, the value y(v') = Ve (oyz(u’).

An important tool for both of these tasks is a recursive fragment merging process, which
we describe next. In Subsec. 4.2.2, we then describe how to use this recursive merging to
solve the two tasks (D1) and (D2).

Recursive Face-Merging Process. To avoid computation in time O(Diam(T")), we employ
an idea of [17, Section 5]. It is worth noting that this idea itself is inspired by merges in the
style of Boruvka’s classical minimum spanning tree algorithm [35].

We have O(logn) levels of merging faces, where each merge happens along some edge of
the dual-tree node T”. The faces involved in each merge correspond to a connected subgraph
of the dual tree, which we will call a fragment or a face-fragment, stressing that it is a
merge of some faces. The dual-tree gets partitioned into fragments in a hierarchical fashion,
where the fragments of level i are formed by merging fragments of level ¢ — 1. See Fig. 5
for an illustration. Considering that the dual-tree nodes are faces of the primal graph, the
fragments of the i*"-level are obtained by merging the (sets of) faces corresponding to the
fragments of level ¢ — 1. The O(logn) levels of face-fragment merging of the dual tree 7" are
implemented by using low-congestion shortcuts in G, as described next. For every fragment
j in level 7, let S; ; be the set of nodes appearing on the faces of fragment j. By using the
tools provided in Subsec. 4.2.1 and mainly Lemma 5, we construct low-congestion shortcut
subgraphs for each set S; ; (i.e., despite the fact that these sets are not disjoint). Here, we

slightly change the definition of the auxiliary graph G that was defined in Subsec. 4.2.1.

For simplicity, consider the first level of the face merging process where two faces of C, say
F; and F}, are merged. Let e = {u,v} be a common edge of F; and Fj. The endpoint u

21:13

DISC 2017

21:14

Near-Optimal Distributed DFS in Planar Graphs

Figure 5 The fragmentation of the dual-tree from Fig. 3. Shown are the first three levels of
merging. As each dual-node corresponds to a face in GG, the merged fragment of the dual-tree is
formed by a merging of faces.

indicates the merging of these faces in the auxiliary graph CA?, by adding an edge between
its copies u/ and u”* corresponding to the merged faces F; and Fj. As a result, the nodes
on the faces F; and Fj now belong to the same connected component in the graph G \ Eg
(where Eg are the star-edges {u,u’}). Since the face identification is done by identifying the
connected components of G \ Eg, this step ensures that F; and Fj would be identified as
one merged face.

Equipped with the low-congestion shortcut subgraphs for each face-fragment (i.e., the
node sets S; ;), all nodes inside each fragment can communicate in their fragment in parallel,
for all fragments in level 4, in 6(D) rounds. Hence, the O(logn) face merging process can
be done in 6(D) rounds. A detailed description of the face merging process is described in
the full version. We conclude by presenting a concise description of the entire algorithm, its
detailed description and analysis is deferred to the full version.

Algorithm ComputePathSep

Input: A m-node biconnected induced subgraph C of a planar graph G with diameter D,
approximation parameter € € (0,1/2).

Output: A separator path P in C, so that each component of C'\ P has size at most
2(1+ €)n/3.

Step (S1): Computing the Dual Tree T’
Compute an MST T in C. Non T-edges of C correspond to the edges of dual-tree T".

Step (S2): Orienting the Dual Tree 7’ Towards a Root

This step is done via a recursive face-fragment merging process.

Step (S3): Computing the Weights of the Dual Nodes in 7’
For each i € {1,...,log, . n}, we have Ne = O.(logn) experiments, as follows:

Sample each of the nodes of C with probability 1/(1 + €)°.

Use Subset-OR to inform each dual-node if there is a marked node in its subtree.
Using these experiments, dual-nodes deduce a (1 + €) approximation of their weight.
Detect a balanced dual-node, i.e., a dual-node with weight in [n/(3(1 +€)),2(1 + €)n/3].
If there is no balanced dual-node, detect a critical dual-node, that is, a dual-node with
weight at least 2(1 + €)n/3 but each of its children has weight less than n/(3(1 + €)).

Step (S4): Marking the Separator Path

For balanced dual node: mark the tree path connecting the boundary of its superface.
For critical dual-node: mark a tree path by simulating Lipton-Tarjan on its superface.

M. Ghaffari and M. Parter

—— References

1

10
11

12

13

14

15

16

17

18

19

20

21

22

23

A. Aggarwal and R. Anderson. A random nc algorithm for depth first search. In STOC,
pages 325-334, 1987.

Richard Anderson. A parallel algorithm for the maximal path problem. Combinatorica,
7(4):315-326, 1987.

RJ Anderson. A parallel algorithm for depth-first search. 1986. In Extended abstract, 1986.
Baruch Awerbuch. A new distributed depth-first-search algorithm. Information Processing
Letters, 20(3):147-150, 1985.

Keren Censor-Hillel, Mohsen Ghaffari, and Fabian Kuhn. Distributed connectivity decom-
position. In PODC, 2014.

Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal
Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness
of distributed approximation. In STOC, pages 363-372, 2011.

Atish Das Sarma, Danupon Nanongkai, and Gopal Pandurangan. Fast distributed random
walks. In PODC, pages 161-170, 2009.

Atish Das Sarma, Danupon Nanongkai, Gopal Pandurangan, and Prasad Tetali. Efficient
distributed random walks with applications. In PODC; pages 201-210, 2010.

Michael Elkin. Unconditional lower bounds on the time-approximation tradeoffs for the
distributed minimum spanning tree problem. In STOC, pages 331-340, 2004.

Shimon Even. Graph algorithms. Cambridge University Press, 2011.

Stephen Fenner, Rohit Gurjar, and Thomas Thierauf. Bipartite perfect matching is in
quasi-nc. In STOC, pages 754-763. ACM, 2016.

Silvio Frischknecht, Stephan Holzer, and Roger Wattenhofer. Networks cannot compute
their diameter in sublinear time. In SODA, pages 1150-1162, 2012.

J.A. Garay, S. Kutten, and D. Peleg. A sub-linear time distributed algorithm for minimum-
weight spanning trees. In FOCS, 1993.

M. Ghaffari and F. Kuhn. Distributed minimum cut approximation. In DISC, pages 1-15,
2013.

Mohsen Ghaffari. Near-optimal distributed approximation of minimum-weight connected
dominating set. In International Colloquium on Automata, Languages, and Programming,
pages 483-494. Springer, 2014.

Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks i:
Planar embedding. In PODC, pages 29-38, 2016.

Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks ii:
Low-congestion shortcuts, mst, and min-cut. In SODA, pages 202-219, 2016.

Mohsen Ghaffari, Andreas Karrenbauer, Fabian Kuhn, Christoph Lenzen, and Boaz Patt-
Shamir. Near-optimal distributed maximum flow. In PODC, pages 81-90. ACM, 2015.
Mohsen Ghaffari and Christoph Lenzen. Near-optimal distributed tree embedding. In
International Symposium on Distributed Computing, pages 197-211. Springer, 2014.
Andrew V Goldberg, Serge A Plotkin, and Pravin M Vaidya. Sublinear-time parallel
algorithms for matching and related problems. In Foundations of Computer Science, 1988.,
29th Annual Symposium on, pages 174-185. IEEE, 1988.

Bernhard Haeupler, Taisuke Izumi, and Goran Zuzic. Low-congestion shortcuts without
embedding. In PODC, pages 451-460. ACM, 2016.

Bernhard Haeupler, Taisuke Izumi, and Goran Zuzic. Near-optimal low-congestion short-
cuts on bounded parameter graphs. In International Symposium on Distributed Computing,
pages 158-172. Springer, 2016.

Torben Hagerup. Planar depth-first search in o(\logn) parallel time. SIAM Journal on
Computing, 19(4):678-704, 1990.

21:15

DISC 2017

21:16

Near-Optimal Distributed DFS in Planar Graphs

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38
39

40

41

Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. A deterministic almost-
tight distributed algorithm for approximating single-source shortest paths. In STOC, pages
489498, 2016.

Stephan Holzer and Roger Wattenhofer. Optimal distributed all pairs shortest paths and
applications. In PODC, pages 355-364, 2012.

Ming-Yang Kao. All graphs have cycle separators and planar directed depth-first search is
in dnc. In Aegean Workshop on Computing, pages 53-63. Springer, 1988.

Shay Kutten and David Peleg. Fast distributed construction of k-dominating sets and
applications. In PODC; pages 238-251, 1995.

Christoph Lenzen and Boaz Patt-Shamir. Fast routing table construction using small
messages: Extended abstract. In STOC, pages 381-390, 2013.

Christoph Lenzen and Boaz Patt-Shamir. Improved distributed steiner forest construction.
In PODC; 2014.

Richard J Lipton and Robert Endre Tarjan. A separator theorem for planar graphs. STAM
Journal on Applied Mathematics, 36(2):177-189, 1979.

Kurt Mehlhorn and Peter Sanders. Graph traversal. Algorithms and Data Structures: The
Basic Toolboz, pages 175-189, 2008.

Danupon Nanongkai. Distributed approximation algorithms for weighted shortest paths.
In STOC, 2014.

Danupon Nanongkai, Atish Das Sarma, and Gopal Pandurangan. A tight unconditional
lower bound on distributed randomwalk computation. In PODC, pages 257-266, 2011.
Danupon Nanongkai and Hsin-Hao Su. Almost-tight distributed minimum cut algorithms.
In International Symposium on Distributed Computing, pages 439-453. Springer, 2014.
Jaroslav Negettil, Eva Milkovéa, and Helena Nesettilovd. Otakar boruvka on minimum
spanning tree problem translation of both the 1926 papers, comments, history. Discrete
Mathematics, 233(1):3-36, 2001.

David Peleg. Distributed Computing: A Locality-sensitive Approach. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2000.

David Peleg and Vitaly Rubinovich. A near-tight lower bound on the time complexity of
distributed MST construction. In FOCS, pages 253—, 1999.

John H Reif. Depth-first search is inherently sequential. IPL, 20(5):229-234, 1985.
Gregory E Shannon. A linear-processor algorithm for depth-first search in planar graphs.
IPL, 29(3):119-123, 1988.

Steven S Skiena. The algorithm design manual: Text, volume 1. Springer Science & Business
Media, 1998.

Justin R Smith. Parallel algorithms for depth-first searches i. planar graphs. SIAM Journal
on Computing, 15(3):814-830, 1986.

	Introduction and Related Work
	Our Contribution
	A High-Level Discussion of Our Method
	Related Work

	Preliminaries
	Outline of the Depth First Search Tree Construction
	Computing A Separator Path
	Method Outline and Challenges
	Key Tools
	Tool (I): Communication Inside Dual-Nodes
	Tool (II): Communication on the Dual Tree

