
Dynamic Reconfiguration: Abstraction and
Optimal Asynchronous Solution∗

Alexander Spiegelman†1, Idit Keidar2 and Dahlia Malkhi3

1 Viterbi Dept. of Electrical Engineering, Technion, Haifa, Israel
2 Viterbi Dept. of Electrical Engineering, Technion, Haifa, Israel
3 VMware Research, Palo Alto, USA

Abstract
Providing clean and efficient foundations and tools for reconfiguration is a crucial enabler for dis-
tributed system management today. This work takes a step towards developing such foundations.
It considers classic fault-tolerant atomic objects emulated on top of a static set of fault-prone
servers, and turns them into dynamic ones. The specification of a dynamic object extends the
corresponding static (non-dynamic) one with an API for changing the underlying set of fault-
prone servers. Thus, in a dynamic model, an object can start in some configuration and continue
in a different one. Its liveness is preserved through the reconfigurations it undergoes, tolerating
a versatile set of faults as it shifts from one configuration to another.

In this paper we present a general abstraction for asynchronous reconfiguration, and exemplify
its usefulness for building two dynamic objects: a read/write register and a max-register. We first
define a dynamic model with a clean failure condition that allows an administrator to reconfigure
the system and switch off a server once the reconfiguration operation removing it completes.
We then define the Reconfiguration abstraction and show how it can be used to build dynamic
registers and max-registers. Finally, we give an optimal asynchronous algorithm implementing
the Reconfiguration abstraction, which in turn leads to the first asynchronous (consensus-free)
dynamic register emulation with optimal complexity. More concretely, faced with n requests for
configuration changes, the number of configurations that the dynamic register is implemented
over is n; and the complexity of each client operation is O(n).

1998 ACM Subject Classification F.1.2 Modes of Computation

Keywords and phrases Reconfiguration, Dynamic Objects, Optimal Algorithm

Digital Object Identifier 10.4230/LIPIcs.DISC.2017.40

1 Introduction

The goal of this paper is to take a static fault-tolerant object like an atomic read/write
register and turn it into a dynamic fault-tolerant one. A static object exposes an API (e.g.,
read/write) to its clients, and is emulated on top of a set of fault-prone servers (sometimes
called base objects) via protocols like ABD [5]. We refer to the underlying set of fault-prone
servers as a configuration. To convert a static object into a dynamic one, we first extend the
object’s API to support reconfiguration. Such an API is essential for administrators, who
should be able to remove old or faulty servers and add new ones without shutting down
the service. One of the challenges in formalizing dynamic models is to define a precise fault

∗ A full version of the paper is available at https://alexanderspiegelman.github.io/
alexanderspiegelman.github.io/DynamicTasks.pdf.

† Alexander Spiegelman is grateful to the Azrieli Foundation for the award of an Azrieli Fellowship.

© Alexander Spiegelman, Idit Keidar, and Dahlia Malkhi;
licensed under Creative Commons License CC-BY

31st International Symposium on Distributed Computing (DISC 2017).
Editor: Andréa W. Richa; Article No. 40; pp. 40:1–40:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.DISC.2017.40
https://alexanderspiegelman.github.io/alexanderspiegelman.github.io/DynamicTasks.pdf
https://alexanderspiegelman.github.io/alexanderspiegelman.github.io/DynamicTasks.pdf
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

40:2 Dynamic Reconfiguration: Abstraction and Optimal Asynchronous Solution

condition, so that an administrator who requests to remove a server s via a reconfiguration
operation will know when she can switch s off without risking losing the object’s state (e.g.,
the last written value to a read/write register).

To this end , we first define a clean dynamic failure model, in which an administrator
can immediately switch a server s off once a reconfiguration operation that removes s

completes. Then, we provide an abstraction for consensus-less reconfiguration in this
model. To demonstrate the power of our Reconfiguration abstraction we use it to implement
two dynamic atomic objects. First, we focus on the basic building block of a read/write
register; thus, other (static) objects that can be emulated from read/write registers (e.g.,
atomic snapshots) can be made dynamic by replacing the underlying registers with dynamic
ones. Second, we emulate a max-register [4], which on the one hand can be implemented
asynchronously [5, 12] (on top of fault-prone servers), and on the other hand cannot be
emulated (for an unbounded number of clients) on top of a bounded set of read/write
registers1 [12, 4]. Thus, a standalone implementation of dynamic max-registers is required.

Complexity. We present an optimal-complexity implementation of our Reconfiguration
abstraction in asynchronous environments, which in turn leads to the first optimal imple-
mentation of a dynamic read/write register in this model. More concretely, faced with n

administrator reconfiguration requests, the number of configurations that the dynamic object
is implemented over is n; and the number of rounds (when the algorithm accesses underlying
servers) per client operation is O(n). A comparison with previous solutions appears in
Section 2.

Dynamic fault model. In Section 3 we provide a succinct failure condition capturing a
versatile set of faults under which the dynamic object’s liveness is guaranteed. We define
the dynamic fault model as an interplay between the object’s implementation and its
environment: New configurations are introduced by clients, (which are part of the object’s
environment). The object implementation then activates the requested configuration, at which
point old configurations are expired. Between the time when a configuration is introduced
and until it is expired, the environment can crash at most a minority of its servers. For
example, when reconfiguring a register from configuration {A, B, C} into {D, E, F}, initially
a majority of {A, B, C} must be available to allow read/write operations to complete. Then,
when reconfiguration is triggered, {D, E, F} is introduced, and subsequently, majorities of
both configurations must be available, to allow state-transfer to occur. Finally, when the
reconfiguration operation completes, leading to {D, E, F}’s activation, {A, B, C} is expired,
and every server in it may be immediately shutdown.

Reconfiguration abstraction. Since a configuration is a finite set of servers, we can use
ABD [5] to emulate in each configuration a set of (static) atomic read/write registers (as
well as max-registers), which are available as long as the configuration is not expired. The
Reconfiguration abstraction, in contrast, is not tied to a specific configuration, but rather
abstracts away the coordination among clients that wish to change the underlying set of
servers (configuration) emulating the dynamic object. Its specification, which is formally
defined in Section 4, exposes two API methods, Propose and Check. Clients use Propose
to request changes to the configuration, and Check to learn of changes proposed by other

1 A max-register for k clients requires at least k read/write registers [12].

A. Spiegelman, I. Keidar, and D. Malkhi 40:3

(a) Dynamic atomic read/write register on top
of the Reconfiguration abstraction.

(b) Dynamic atomic max-register on top of the
Reconfiguration abstraction.

Figure 1 The Reconfiguration abstraction usage. Solid (dashed) blocks depict dynamic (resp.
static) objects.

clients. Both return a configuration and a set of speculations. The returned configuration
reflects all previous proposals and possibly some ongoing ones. The less obvious return value
of Reconfiguration is the speculation set. This set is required since there is no guarantee that
all clients see the same sequence of configurations (indeed, Reconfiguration is weaker than
consensus). Therefore, a dynamic object implementation that uses Reconfiguration needs to
read from every configuration that Check returned to any other client, and transfer the most
up-to-date value read in any of these to the new configuration returned from Check. To this
end, Reconfiguration returns a speculation set that includes all configurations previously
returned to all clients (and possibly additional proposed ones).

In Section 5, we implement (1) a dynamic atomic read/write register on top of the Recon-
figuration abstraction and static atomic ranked registers [11] (one in every configuration), and
(2) a dynamic atomic max-register on top of Reconfiguration and static atomic max-registers.
See Figure 1 for illustrations. In Section 6 we give an optimal consensus-less algorithm for
Reconfiguration, which together with the read/write register emulation of Section 5 yields
an optimal dynamic read/write register algorithm.

In summary, this paper makes three contributions: it defines a failure condition that
allows an administrator to shutdown removed servers; it introduces the Reconfiguration
abstraction, which captures the essence of reconfiguration; and it presents an asynchronous
optimal-complexity solution for dynamic atomic registers. Section 7 concludes the paper,
and formal correctness proofs of all algorithms are given in the full paper [25].

2 Related Work

Model. The problem of object reconfiguration has gained growing attention in recent
years [15, 20, 3, 21, 18, 14, 24, 13, 23, 17, 22, 6, 7]. However, dynamic failure models do
not always make it clear when exactly an administrator can shutdown a removed server.
Early works supporting dynamic objects [20, 15, 10] simply assume that a configuration
is available as long as some client may try to access it. SmartMerge [18] uses a shared
non-reconfigurable auxiliary object (lattice agreement) that is forever available to all clients,
meaning that a majority of the servers emulating this auxiliary object can never be switched
off. DynaStore [3] was the only previous work to define dynamic failure conditions based
on a reconfiguration API, but these conditions are complicated, and restrict reconfiguration
attempts as well as failures. Moreover, DynaStore does not separate clients from servers as

DISC 2017

40:4 Dynamic Reconfiguration: Abstraction and Optimal Asynchronous Solution

we do here. Following [13, 18], we formulate the problem in shared memory, which makes it
easier to reason about and clearer.

Other works [6, 7] assume a broadcast mechanism for announcing joins instead of an API
for adding and removing processes, and bound the rate of changes of the underlying set of
servers; the latter is necessary if one wants to ensure liveness for all operations (as [6] does) –
no asynchronous reconfigurable service can ensure liveness unless the reconfiguration rate is
limited in some way [23]. Like many earlier works [3, 13, 18], we do not explicitly bound
the reconfiguration rate, and hence ensure liveness only if the number of reconfigurations is
finite.

Abstractions. All previous works have considered reconfiguration in some specific context –
state machine replication [19, 8, 9], read/write register emulation [3, 18, 13, 15], or atomic
snapshot [22]. To the best of our knowledge, this work is the first to specify general dynamic
objects as extensions of their static counterparts and to provide a general abstraction for
dynamic reconfiguration. We note that although [13] define a reconfigure primitive intended
to capture the core reconfiguration problem, that primitive is not sufficiently strong for
implementing an atomic register, (in particular, since it does not require real-time order),
and indeed, they do not implement their atomic register on top of it.

Dynamic register complexity. In a recent non-refereed tutorial [24], we give a generic
formulation that allows us to compare the complexity of different algorithms [15, 20, 18, 13, 3],
as follows: Given that n is the number of proposed configuration changes and m is the total
number of operations (read/write/reconfig) invoked on the atomic register, DynaStore [3] goes
through O(min(mn, 2n)) configurations, and requires a constant number of operations in every
configuration, so O(min(mn, 2n)) is also DynaStore’s operation complexity. Parsimonious
SpSn [13] reduces the number of traversed configurations to O(n), but since they invoke a
linear number of operations in every configuration, their total operation complexity is O(n2).

Now notice that it is always possible to stagger reconfiguration proposals in a way that
forces the system to go through Ω(n) configurations. The asymptotically optimal O(n)
operation complexity is straightforward to achieve in consensus-based solutions [15, 20, 10].
This complexity was also achieved by SmartMerge [18], but this was done using an auxiliary
object that was assumed to be live indefinitely, i.e., was not reconfigurable in itself. Our
algorithm is the first consensus-free and fully reconfigurable dynamic register algorithm with
optimal complexity.

3 Dynamic Model

We consider a fault-prone shared memory model [16]: The system consists of an infinite set
Π of clients (sometimes called processes), any number of which may fail by crashing, and an
infinite set Φ of servers (sometimes called base objects) supporting arbitrary atomic low-level
objects. Clients access servers via-low level operations (e.g., read/write), which may take
arbitrarily long to arrive and complete, hence the system is asynchronous.

We address in the paper two atomic objects: a classical fault tolerant read/write register
and a max-register [4]. Both registers provide clients with two API methods: Read and
Write in case of read/write register, and MRead and MWrite in case of max-register. In a
well-formed execution, a client invokes API methods one at a time, though calls by different
clients may be interleaved in real time. For a well-formed execution, there exists a serialization
of all client operations that preserves the operations’ real time order, such that (1) in case of

A. Spiegelman, I. Keidar, and D. Malkhi 40:5

read/write register a Read returns the value written in the latest Write preceding it, or ⊥ if
there is no preceding Write; and (2) in case of max-register an MRead returns the highest
value written by an MWrite that precedes it, or ⊥ if there is no preceding MWrite. (In case
of max-registers, the values domain is ordered.)

Configurations. The universe of servers is infinite, but at any moment in time, a client
chooses to interact with a subset of it. In our model, a configuration is a set of included and
excluded servers, where configuration membership is the set of included and not excluded
servers in the configuration. Formally:

Changes , {+s | s ∈ Φ} ∪ {−s | s ∈ Φ}
Configuration , subset of Changes
C.membership , {s | +s ∈ C ∧ −s 6∈ C}

For example C = {+s1, +s2,−s2, +s3} is a configuration representing the inclusion of
servers s1, s2, and s3, and the exclusion of s2, and C.membership is {s1, s3}. Tracking
excluded servers in addition to the configuration’s membership is important in order to
reconcile configurations suggested by different clients. The configuration size is the number
of changes it includes– in this example, |C| = 4.

Dynamic fault model. A dynamic fault model is an interplay between the adversary’s
power and the following events, which are invoked as part of client operations:

introduce(C): indicates that C is going into use; and
activate(C): indicates that the state transfer to C is complete.

By convention we say that the initial configuration Cinit is introduced and activated at
time 0.

The above events govern the life-cycle of configurations. A configuration C becomes
activated once an activate(C) event occurs. Note that not all introduced configurations are
necessarily activated at some point. A configuration C becomes expired once activate(D)
occurs s.t. C does not contain D. Intuitively, D reflects events (inclusions or exclusions)
that are not reflected in C, and hence C has become “outdated”. Our algorithm will enforce
a containment order among activated configurations, and will thus ensure that the latest
activated one is not expired.

The following two conditions constrain the power of the adversary:

I Definition 1 (liveness conditions).
Availability: The adversary can crash at most a minority of C.membership between the time

when introduce(C) occurs and until C is expired.
Weak Oracle: When a client interacts with an expired configuration C, it either receives

responses to calls from a majority of C.membership, or returns an exception notification
〈error, D〉 for some activated D, where C 6⊇ D.

Note that such an oracle (sometimes called directory service) is inherently required in
order to allow slow clients to find non-expired configurations in an asynchronous system
where old configurations may become unavailable [2, 22]. Our oracle definition is weak– in
particular, the activated configuration it returns may itself be expired, and different clients
may get different responses; it can be trivially implemented using a broadcast mechanism
as assumed in some previous works [6, 7], and trivially holds if configurations must remain
available as long as some client may access them, as in other previous works [15, 20, 10].

DISC 2017

40:6 Dynamic Reconfiguration: Abstraction and Optimal Asynchronous Solution

Static versus dynamic objects. A static object is one in which clients interact with a fixed
configuration. In order to disambiguate a static object, scoped within a configuration C,
from a dynamic one, we will label the methods of a static object with a “C.”. For every
configuration C, as long as a majority of C.membership is alive, clients can use ABD [5] to
emulate (static) atomic registers on top of the servers in C.membership. We denote:

C.x← value A Write(value) operation to register x in configuration C

C.x A Read of x

C.collect(array) A bulk Read of all the registers in array

Since a complete array can be collected from servers using ABD in the same number of
rounds as reading a single variable, we count a collect as a single operation for complexity
purposes. Note that each register in the array is atomic in itself, but the collect is not atomic.

The methods of a dynamic object are not scoped with any configuration; it can start
in some configuration and continue in a different one. A dynamic object’s API includes a
ChangeConfig operation that allows clients to change the set of servers implementing the
object. The implementation of ChangeConfig is object-specific, because it needs to transfer
the state of the object across configurations, e.g., the last written value in case of an atomic
register.

Clients pass to ChangeConfig a parameter Proposal ⊂ Changes containing a proposed set
of configuration changes. ChangeConfig returns a configuration C s.t. (1) C is activated, (2)
C ⊇ Proposal, and (3) every configuration introduced or activated by ChangeConfig consists
of Cinit plus a subset of changes proposed by clients before the operation returns.

The liveness guarantee of a dynamic object is that, assuming the number of ChangeConfig
proposals is finite, every correct client’s operation eventually completes. Note that if the
number of ChangeConfig proposals is infinite, it is impossible to ensure liveness for all
operations [23].

Usage example. Consider an administrator (a privileged client) who wants to switch
server s off and invokes ChangeConfig({−s}). By liveness, ChangeConfig completes, and
by properties (1) and (2), it returns an activated configuration C ⊇ {−s}. The activation
of C expires all configurations that do not contain C, and in particular, those that do not
include −s. Hence, s is not part of the membership of any unexpired configuration, and
by the availability condition, the administrator can safely switch s off immediately once
ChangeConfig({−s}) returns.

4 Reconfiguration Abstraction

We introduce a generic reconfiguration abstraction, which can be used for implementing
dynamic objects as we illustrate in the next section. A Reconfiguration abstraction has two
operations:
Propose(C, P) for a configuration C and a proposed set of changes P ; and
Check(C) for a configuration C.

Propose is used to reconfigure the system, whereas Check is used in order to learn about
other clients’ reconfiguration attempts. Propose and Check invoke the introduce and activate
events. Both Check and Propose return a pair of values 〈D, S〉, where D is a configuration
and S is a speculation set containing configurations; when 〈D, S〉 is returned we say that D

is nominated by the operation that returns it. Intuitively, a nominated configuration is one
that has been introduced and is a candidate for activation. By convention, we say that Cinit

A. Spiegelman, I. Keidar, and D. Malkhi 40:7

is nominated at time 0. We assume that the first argument passed to both operations is a
nominated configuration.

The first propert of Reconfiguration is validity, which (i) requires Propose(C, P) to include
P in the returned nominated configuration; and (ii) does not allow configurations to include
spurious changes not proposed by any client. Formally:
D1 (Validity) (i) If Propose(C, P) returns 〈D, S〉 for some S, then D ⊇ P , and (ii) for

every configuration D that is introduced or nominated by an operation op, for every
e ∈ D \Cinit, there is a Propose(C ′, P ′) for some C ′ that is invoked before op returns s.t.
e ∈ P ′.

The second property ensures that nominated configuration sizes monotonically increase
over time, which is essential for real-time order of operations invoked on objects that use
this abstraction:
D2 (Real-time Order) A configuration D nominated by operation op is larger than or equal

to every configuration nominated by an operation that strictly precedes op.

Since Reconfiguration is weaker than consensus, clients do not agree on a sequence of
nominated configurations. Hence, in case some client c1 proceeds to a configuration C ′, we
want to ensure that if another client c2 “skips” C ′, c2 has C ′ in its speculation set, and
can thus transfer any state that c1 may have written there to the newer configuration c2
nominates. This is captured by property S1(ii) below. Property S1(i) stipulates that these
configurations are also introduced, ensuring a live majority in these configurations in order
to allow state transfer.

S1 (Speculation) If Check(C) or Propose(C, P) returns 〈D, S〉, then every C ′ ∈ S is (i)
introduced and (ii) S includes all nominated configurations C ′ s.t. |C| ≤ |C ′| ≤ |D|. As a
practical matter, if any C ′ between C and D has been activated, any C ′′ s.t. |C ′′| < |C ′|
may be omitted.

In addition, we have to define when configurations are activated. Note that an activation
of a new configuration leads to expiration of old ones, and thus to possible loss of information
stored in them. Therefore, a configuration D is not immediately activated when a Propose
returns 〈D, S〉 for some S. Instead, a configuration C is activated if Check(C) does not
report any newer configuration:
A1 (Activation) If Check(C) returns 〈C, S〉 for some S, then C is activated.

The liveness property of Reconfiguration is the same as in other dynamic objects [3, 18,
13, 22], namely, if the number of Propose operations is finite, then every operation by a
correct client completes.

5 Building Dynamic Objects Using Reconfiguration

We first present a dynamic atomic read/write register emulation using Reconfiguration, and
then explain the modifications needed for supporting a dynamic atomic max-register [4]. A
formal proof is provided in the full paper [25].

5.1 Dynamic atomic read/write register
Besides the Reconfiguration abstraction, our dynamic register implementation uses a (static)
ranked register [11] emulation in every configuration, as illustrated in Figure 1a. A ranked
register stores a tuple, called version, that consists of a value v and a monotonically increasing

DISC 2017

40:8 Dynamic Reconfiguration: Abstraction and Optimal Asynchronous Solution

Algorithm 1 Dynamic atomic read/write register using Reconfiguration.

Client local variables:
1: configuration Ccurr, initially Cinit

2: T S = N×Π with selectors num and id

3: version ∈ V× T S with selectors v and ts, initially 〈v0, 〈0,client’s id〉〉
4: pickTS ∈ {true, false}, initially true.

Code for client ci ∈ Π:

5: Read()
6: transferState(Check(Ccurr),⊥)
7: checkConfig()
8: return version.v

9: Write(v)
10: transferState(Check(Ccurr), v)
11: checkConfig()
12: pickTS← true

13: return ok

14: ChangeConfig(P)
15: transferState(P ropose(Ccurr, P),⊥)
16: checkConfig()
17: return Ccurr

18: On 〈error, D〉 do
19: Ccurr ← D

20: restart operation

21: procedure checkConfig()
22: 〈D, S〉 ← Check(Ccurr)
23: while D! = Ccurr do
24: transferState(〈D, S〉,⊥)
25: 〈D, S〉 ← Check(Ccurr)

26: procedure transferState(〈D, S〉, value)
27: for each C ∈ S do
28: tmp← C.RRRead()
29: if tmp.ts > version.ts then
30: version← tmp

31: if value 6= ⊥ ∨ pickTS = true then
32: version ← 〈value, 〈version.ts.num +

1, i〉〉
33: pickTS← false
34: D.RRWrite(version)
35: Ccurr ← D

timestamp ts, and supports RRRead() and RRWrite(version) operations. The sequential
specification of a ranked register is following: An RRRead() returns the version with the
highest ts written by an RRWrite that precedes it, or ⊥ if there is no preceding RRWrite.
Like all static objects in our model, if the configuration where the ranked register is emulated
expires, the oracle returns an error.

The basic framework for implementing the Read, Write, and ChangeConfig operations
is a loop: (i) Check, (ii) read (using RRread) the highest version from all speculated
configurations returned by Check, (iii) write (with RRWrite) the highest version to the
configuration nominated by Check, (iv) repeat. The loop terminates when Check does not
nominate a new configuration. The specific action of each of the three operations is as
follows. A Read simply returns the value of the highest version at the end of the loop. A
Write increments the timestamp and writes it with a new value at the beginning of the loop.
ChangeConfig proposes a configuration change via Propose instead of Check in the first
iteration.

The pseudocode appears in Algorithm 1. The transferState method reads the register’s
version from the entire speculation set S and writes the latest version to the new configuration
D. The checkConfig method repeatedly calls transferState until the configuration returned by
Check stops changing. During the loop execution, an operation on an expired configuration
may incur an exception, with a notification of the form 〈error, D〉 (see line 18). In this
case, the loop is aborted and the operation starts over at configuration D. In case write is
restarted after it has chosen a new timestamp, it skips the timestamp selection step.

A. Spiegelman, I. Keidar, and D. Malkhi 40:9

Algorithm 2 Dynamic atomic max-register using Reconfiguration.

Client local variables:
1: configuration Ccurr, initially Cinit

2: value ∈ V, initially v0

Code for client ci ∈ Π:

3: MRead()
4: transferState(Check(Ccurr),⊥)
5: checkConfig()
6: return value

7: MWrite(v)
8: transferState(Check(Ccurr), v)
9: checkConfig()
10: return ok

11: ChangeConfig(P)
12: transferState(P ropose(Ccurr, P),⊥)
13: checkConfig()
14: return Ccurr

15: On 〈error, D〉 do
16: Ccurr ← D

17: restart operation

18: procedure checkConfig()
19: 〈D, S〉 ← Check(Ccurr)
20: while D! = Ccurr do
21: transferState(〈D, S〉,⊥)
22: 〈D, S〉 ← Check(Ccurr)

23: procedure transferState(〈D, S〉, v)
24: if v 6= ⊥ then
25: value← v

26: for each C ∈ S do
27: tmp← C.MRead()
28: if tmp > value then
29: value← tmp

30: D.MWrite(value)
31: Ccurr ← D

We say that a configuration C becomes stable when some version is written to C in step
(iii). We refer to the first version written to C as the opening version of C. Consider a
completed operation (Read, Write, or ChangeConfig) op and let C be the last configuration
in which op writes some version v, we say that op commits v in C when it completes. The
correctness of the register emulation, proven in the full paper [25], is based on the following
key invariant:

I Invariant 2. For every stable configuration C, the opening version of C is higher than or
equal to the highest version committed in any configuration C ′ s.t. |C ′| < |C|.

In other words, a larger stable configuration always holds a newer (or equal) version of the
register’s value than that committed in a smaller activated one.

Complexity. We measure complexity in terms of the number of accesses to low level objects,
namely static atomic registers. Note that Read/Write/collect operations on static registers
are emulated in a constant number of rounds using ABD. The complexity of the dynamic
register’s operations is determined by (1) the complexity of the operations inside the Checks
invoked during the loop (plus possibly one Propose); and (2) the sum of the sizes of all
speculation sets returned by Propose/Check operations in this loop (where the register’s
implementation performs Reads).

In a run with n ChangeConfig proposals, clearly, the best complexity we can hope for is
O(n). In the next section we present our algorithm for Reconfiguration, which achieves the
asymptotically optimal O(n) complexity.

DISC 2017

40:10 Dynamic Reconfiguration: Abstraction and Optimal Asynchronous Solution

5.2 Dynamic atomic max-register
The emulation of a max-register on top of Reconfiguration is similar to the read/write register
emulation. It differs in how we keep and transfer the state, i.e., the register’s value. First,
instead of a (static) ranked register in each configuration, we use a (static) max-register.
Second, instead of timestamps, we use the actual written values, that is, a writer writes
its value in step (iii) only if it is higher than all the values read in step (ii) (Otherwise, it
transfers the highest value it read). The pseudocode appears in Algorithm 2.

6 The Reconfiguration Abstraction Implementation

In this section we present an optimal and modular Reconfiguration implementation. In
Section 6.1 we introduce the Common Set (CoS) building block, which is used by the
Reconfiguration abstraction in every configuration. In Section 6.2 we show how CoS is used
for non-optimal Reconfiguration and give the main correctness argument. In Section 6.3 we
optimize the algorithm and give the main complexity and correctness claims. Formal proofs
can be found in the full paper [25].

6.1 CoS building block
The Common Set (CoS) building clock is a static shared object, emulated in every config-
uration C over a set of (static) registers. Its API consists of a single operation, denoted
C.CoS(P), where P is a set of arbitrary values. C.CoS returns an output set of sets satisfying
the following:

I Definition 3 (Common Set in configuration C).
(CoS1) Each set in the output is the union of some of the inputs and strictly contains C;
(CoS2) if a client’s input strictly contains C, then its output is not empty;
(CoS3) there is a common non-empty set in all non-empty outputs; and
(CoS4) every C.CoS invocation that strictly follows a C.CoS call that returns a non-empty
output returns a non-empty output.

For example, consider three concurrent clients that input to C.CoS the sets P1, P2, and
P3, all of which contain C. A possible outcome is for their outputs to be {P 1}, {P 1, P 1∪P 2},
and {P 1, P 2, P 3}, respectively. The intuitive explanation behind using CoS is that it builds
a common sequence of configurations inductively: The first configuration in the sequence is
Cinit, the next is the common configuration returned by Cinit.CoS (property CoS3), and so
on. Although this sequence is not known to the clients themselves, every client observes this
sequence starting with some activated configuration. Every configuration in this sequence
contains the previous one.

CoS can be implemented directly using consensus or atomic snapshot, as illustrated
in [24]. In Algorithm 3, (without the PreCompute function, which is an optimization and
will be discussed later), we give an implementation based on DynaStore’s weak snapshot [3].
In the pseudocode, we denote by

⋃
S the union of all sets in a set of sets S. If the proposal

P strictly contains C, pi has something new to propose and it writes P into its cell in the
“weak” snapshot array Warr (lines 9-10). (Note that Warr is a static array emulated in the
configuration where CoS is implemented). Either way, it collects Warr (line 11). In case the
collect is not empty, pi collects Warr again and returns the set of collected proposals (lines
12-15). The second collect ensures that the intersection of non-empty outputs includes the
first written input, implying CoS3; the remaining properties are satisfied by a single collect.

A. Spiegelman, I. Keidar, and D. Malkhi 40:11

Algorithm 3 Efficient CoS; algorithm of client pi in configuration C; optimization code
shaded.
1: Local variables: . flags accessible outside CoS
2: firstTime set by reconfig and read by CoS
3: drop set by CoS and read by reconfig

4: Shared variables (emulated in configuration C):
5: Boolean startingPoint, initially false . Is C a starting point for some client
6: Mapping from client to registers Warr and Sarr , initially {}.

7: procedure CoS(P)
8: P ← PreCompute(P) . optimization
9: if P ⊃ C then

. Something new to propose
10: C.Warr[i]← P

11: ret← C.collect(Warr)
12: if ret = {} then
13: return ret
14: else
15: return C.collect(Warr)

16: procedure PreCompute(P)
17: if firstTime then
18: C.startingP oint← true
19: C.Sarr[i]← P
20: drop← false
21: if ¬C.startingPoint then
22: return P

. repeat collect until P stops changing.
23: drop← true
24: tmp←

⋃
C.collect(Sarr)

25: while tmp 6= P do
26: P ← tmp
27: tmp←

⋃
C.collect(Sarr)

28: return P

6.2 Simple Reconfiguration

Given CoS, we can solve Reconfiguration in a generic way as shown in Algorithm 4 (ignore
the shaded areas for now). Both Check and Propose use the auxiliary procedure reconfig.
Propose(C, P) first sets a local variable proposal to the union of C and P , whereas Check(C)
initiates proposal to be C. Both then execute the loop in line 40. Each iteration selects
the smallest configuration in ToTrack; we say that the iteration tracks this configuration.
The loop tracks all configurations returned by CoS, smallest to largest, starting with C. In
each tracked configuration C ′, the client introduces C ′, invokes C ′.CoS(proposal) and adds
to proposal the union of the configurations returned from C ′.CoS. This repeats for every
configuration C ′ returned from CoS until there are no more configurations to track. Recall
that by the liveness condition, if some configuration C ′ is expired and no longer supports
C ′.CoS, then the client gets in return to C ′.CoS an exception with some newer activated
configuration Ca. In this case, reconfig starts over from Ca. At the end, Propose and Check
return proposal and the set of all tracked configurations.

The common sequence starts with Cinit, and is inductively defined as follows: If Ck.CoS

has a non-empty output, then Ck+1 is the smallest common configuration returned by all
non-empty Ck.CoSs. By CoS3, all non-empty return values have at least one configuration
in common, and if there is more than one such configuration, then we pick the smallest,
breaking ties using lexicographic order. By CoS1, each configuration in the common sequence
strictly contains the previous one.

Correctness. The validity property (D1) immediately follows from CoS property CoS1 and
the observation that proposal is set to include P at beginning of reconfig and never decreases.

To provide intuition for the remaining properties, we discuss the case in which all
operations start in Cinit and no exceptions occur; the proof for the general case appears in
the full paper [25]. Observe that since proposal always contains

⋃
ToTrack and configurations

DISC 2017

40:12 Dynamic Reconfiguration: Abstraction and Optimal Asynchronous Solution

Algorithm 4 Generic Reconfiguration algorithm; optimization code shaded.

29: Propose(C, P)
30: return reconfig(C, P)

31: Check(C)
32: ret← reconfig(C, {})
33: if ret = 〈C, ∗〉 then activate(C)
34: return ret

35: procedure reconfig(C, P)
36: proposal← P ∪ C
37: ToTrack← {C}
38: speculation← {}
39: firstTime← true
40: while ToTrack 6= {} do
41: C′ ← argmin

C′′∈T oT rack

|C′′| . smallest configuration

42: introduce(C′)
43: speculation← speculation ∪ {C′}
44: ret← C′.CoS(proposal)
45: if ret = 〈“error”, Ca〉 then . C′ is expired - restart from Ca

46: return reconfig(Ca, proposal)
47: ToTrack← (ToTrack ∪ ret) \ {C′}
48: firstTime← false
49: if drop = true then . drop old configurations in ToTrack
50: ToTrack← ret
51: proposal← proposal ∪

⋃
ToTrack

52: Ccurr ← proposal
53: return 〈proposal, speculation〉

are traversed from smallest to largest, we get from property CoS2 that C.CoS returns an
empty set only if C includes ToTrack, i.e., C is the last traversed configuration. The key
correctness argument is that all nominated configurations belong to the common sequence,
and are thus related by containment:

I Lemma 4. For every reconfig that returns 〈D, S〉, D belongs to the common sequence.

Proof - sketch for the special case (starting in Cinit, no exceptions). Assume by way of
contradiction that Dj is returned by reconfig operation recj but does not belong to the
common sequence. Note that Cinit is in the common sequence and is tracked by recj . Let
C̃j be the last configuration tracked by recj that belongs to the common sequence. By
assumption, C̃j 6= Dj , and thus, recj gets a non-empty output from C̃j .CoS (it gets an output
since we assume that there are no exceptions). But, this output includes some configuration
in the common sequence, so recj tracks a configuration in the common sequence after C̃j . A
contradiction.

Liveness follows since (i) every call to CoS returns, either successfully or with an exception;
and (ii) tracked configurations are monotonically increasing, and, provided that the number
of reconfigurations is finite, they are bounded.

6.3 Optimal Reconfiguration
The key to the efficiency of our new algorithm is in its thrifty CoS implementation, and the
signals it conveys to the reconfiguration algorithm, which minimize the number of tracked
configurations. To this end, the efficient solution for CoS shares (local) state variables
firstTime and drop with the Reconfiguration implementation.

A. Spiegelman, I. Keidar, and D. Malkhi 40:13

To explain the intuition behind our algorithm, let us first consider a scenario in which
all clients invoke register operations (Read, Write, or ChangeConfig) in the same starting
configuration C0 (e.g., C0 may be Cinit), and no exceptions occur. If n of the clients
invoke Propose, then there are n sets P1, . . . , Pn proposed by reconfig(C, Pi) operations.
The unoptimized (weak snapshot-based) CoS may return up to 2n different subsets in CoS
responses (assuming many clients invoke Read/Write operations), inducing high complexity.

Our algorithm reduces this complexity by running a pre-computation phase in PreCompute,
which imposes a containment order on all configurations passed to, and hence returned from,
CoS. This is done by running a variant of (strong) atomic snapshot [1] on all client proposals
in configuration C0. Specifically, each process writes its own proposal P (line 19) to the
“strong” array Sarr, and then (lines 24-27) repeatedly collects the union of all Sarr cells
into P , until P stops changing. Like an atomic snapshot, this ensures that all results of
PreCompute are related by containment. Note, however, that unlike an atomic snapshot,
the complexity of this pre-computation is linear in the number of different proposals written,
rather than in the number of participating processes; if collect encounters a newly written
value that does not change the union of written values, PreCompute returns. In case all
operations start in C0, there are no new proposals in other configurations, and so the
containment order is preserved throughout the computation. This ensures that the number
of different configurations tracked by all clients is at most n.

Next, we account for the case that clients invoke (or restart due to exceptions) their
operations in different starting configurations. We have to identify configurations where
some client starts, and run PreCompute in them too. To this end, we have clients signal (by
raising the startingPoint flag) if a configuration is their starting point. Every client that later
runs C.CoS sees this flag true, and executes the pre-computation. If a client pi sees the flag
false in C.CoS, pi does not run the pre-computation. Nevertheless, since pi checks the flag
after writing its value to Sarr, pi’s proposal is already in the array before new clients that
start in this configuration perform their collects, and so pi’s proposal is contained in theirs.
Thus, at this new starting point, all clients obtain proposals that are related by containment
among themselves.

The tricky part is that old proposals that were included in ToTrack before the new
starting point are not necessarily ordered relative to ensuing proposals, as in the following
scenario:

Clients p1 and p2 start in C0 and propose C0 ∪ {+a} and C0 ∪ {+b}, respectively; p1
gets {C1}, where C1 = C0 ∪ {+a}, from C0.CoS and p2 gets {C1, C2}, where C2 =
C0 ∪ {+a, +b}.
Client p1 tracks C1, gets an empty set from C1.CoS, and activates it. Client p3 starts in
C1, (which is now activated), proposes C3 = C1 ∪ {+c} in C1.CoS, and gets {C3}.
Later, p2 tracks C1, and gets C3 in C1.CoS’s output. At this point p2’s ToTrack contains
C2 and C3, neither of which contains the other.

To achieve linear complexity, we have clients drop all configurations previously returned from
CoS at all the starting points they encounter. One subtle point is ensuring safety in the
presence of such drops, and our proof of the general case of Lemma 4 in the full paper [25]
addresses this issue.

Intuitively, since the purpose of tracking all configurations is to ensure that clients traverse
the common sequence, once we know C is in the common sequence, there is no need to
continue to track any configuration older than C. So, the drop is safe.

A second subtle point is preserving linear complexity despite executing PreCompute in
multiple starting points. But since (i) the worst-case complexity of a single pre-computation

DISC 2017

40:14 Dynamic Reconfiguration: Abstraction and Optimal Asynchronous Solution

is linear in the number of different proposals written to it, (ii) each CoS begins with a
proposal that reflects all those seen in previous CoSs, and (iii) there are n new proposals
overall, the combined complexity of all pre-computations is O(n).

Finally, we provide intuition for the complexity of the high-level dynamic atomic register
given in Section 5. The full proof, which wraps this intuition into a technical induction,
appears in the full paper [25]. Recall that the register emulation performs a loop in which
it repeatedly calls Check(C), where C is the configuration returned from the previous
Check/Propose, until some Check(C ′) returns 〈C ′, S〉 for some C ′ and S. The loop performs
a constant number of operations in every configuration returned in a speculated set S

from Check. Therefore, we want the Checks in this loop to return the optimal number of
configurations, and have optimal complexity themselves.

Since all the configurations introduced (and returned in speculation sets) by our algorithm
are related by containment, we immediately conclude that the number of configurations
returned in speculated sets S of all Checks together is bounded by n. Now we show that the
complexity of all Checks combined is O(n). First observe that all Checks combined invoke at
most n CoSs. Second, each CoS writes at most three times to shared registers (lines 10, 18,
and 19), reads once (in line 21), and performs each of the collects in lines 11, 15, and 24 at
most once. Now observe that CoS performs the collect in line 27 only if the previous collect
(in line 24 or 27) contained a proposal P1 6⊆ P , which means that none of the CoSs collected
P1 before. Since there are at most n proposals, all CoSs together perform the collect in line
27 at most n times. All in all, we get that the complexity of all Checks is O(n).

7 Conclusions

We defined a dynamic model with a clean failure condition that allows an administrator to
reconfigure an object and switch a removed server off once the reconfiguration operation
completes. In this model, we have captured a succinct abstraction for consensus-less recon-
figuration, which dynamic objects like atomic read/write register and max-register may use.
We demonstrated the power of our abstraction by providing an optimal implementation of a
dynamic register, which has better complexity than previous solutions in the same model.

Acknowledgements. We thank Christian Cachin for helpful comments on our OPODIS
2015 tutorial, which served as the basis for parts of this paper. We thank Eli Gafni for
interesting discussions.

References

1 Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit.
Atomic snapshots of shared memory. Journal of the ACM (JACM), 40(4):873–890, 1993.

2 Marcos K. Aguilera, Idit Keidar, Dahlia Malkhi, Jean-Philippe Martin, and Alexander
Shraer. Reconfiguring replicated atomic storage: A tutorial. Bulletin of the EATCS, 2010.

3 Marcos K. Aguilera, Idit Keidar, Dahlia Malkhi, and Alexander Shraer. Dynamic atomic
storage without consensus. J. ACM, 58(2):7:1–7:32, April 2011.

4 James Aspnes, Hagit Attiya, and Keren Censor. Max registers, counters, and monotone
circuits. In PODC 2009, pages 36–45. ACM, 2009.

5 Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-
passing systems. Journal of the ACM (JACM), 42(1):124–142, 1995.

A. Spiegelman, I. Keidar, and D. Malkhi 40:15

6 Hagit Attiya, Hyun Chul Chung, Faith Ellen, Saptaparni Kumar, and Jennifer L Welch.
Simulating a shared register in an asynchronous system that never stops changing. In
International Symposium on Distributed Computing, pages 75–91. Springer, 2015.

7 Roberto Baldoni, Silvia Bonomi, and Michel Raynal. Implementing a regular register in
an eventually synchronous distributed system prone to continuous churn. Parallel and
Distributed Systems, IEEE Transactions on, 2012.

8 Ken Birman, Dahlia Malkhi, and Robbert Van Renesse. Virtually synchronous methodology
for dynamic service replication. Appears as Appendix A in [4], 2010.

9 Vita Bortnikov, Gregory Chockler, Dmitri Perelman, Alexey Roytman, Shlomit Shachor,
and Ilya Shnayderman. Frappé: Fast replication platform for elastic services. LADIS, 2011.

10 Gregory Chockler, Seth Gilbert, Vincent Gramoli, Peter M Musial, and Alex A Shvarts-
man. Reconfigurable distributed storage for dynamic networks. Journal of Parallel and
Distributed Computing, 69(1):100–116, 2009.

11 Gregory Chockler and Dahlia Malkhi. Active disk paxos with infinitely many processes.
Distributed Computing, 18(1):73–84, 2005.

12 Gregory Chockler and Alexander Spiegelman. Space complexity of fault-tolerant register
emulations. In Proceedings of PODC’17. ACM, 2017.

13 Eli Gafni and Dahlia Malkhi. Elastic configuration maintenance via a parsimonious specu-
lating snapshot solution. In DISC 2015, pages 140–153. Springer, 2015.

14 Seth Gilbert, Nancy Lynch, and Alex Shvartsman. RAMBO II: Rapidly reconfigurable
atomic memory for dynamic networks. In DSN 2013. IEEE Computer Society, 2003.

15 Seth Gilbert, Nancy A Lynch, and Alexander A Shvartsman. RAMBO: A robust, reconfig-
urable atomic memory service for dynamic networks. Distributed Computing, 23(4), 2010.

16 Prasad Jayanti, Tushar Deepak Chandra, and Sam Toueg. Fault-tolerant wait-free shared
objects. J. ACM, 45(3):451–500, May 1998.

17 Leander Jehl and Hein Meling. The case for reconfiguration without consensus. In Pro-
ceedings of the 2016 ACM symposium on Principles of distributed computing. ACM, 2016.

18 Leander Jehl, Roman Vitenberg, and Hein Meling. SmartMerge: A new approach to
reconfiguration for atomic storage. In Proceedings of DISC 2015. Springer, 2015.

19 Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Reconfiguring a state machine. SIGACT
News, 41(1):63–73, March 2010.

20 Nancy Lynch and Alex A Shvartsman. RAMBO: A reconfigurable atomic memory service
for dynamic networks. In Distributed Computing, pages 173–190. Springer, 2002.

21 Alexander Shraer, Jean-Philippe Martin, Dahlia Malkhi, and Idit Keidar. Data-centric
reconfiguration with network-attached disks. In LADIS. ACM, 2010.

22 Alexander Spiegelman and Idit Keidar. Dynamic atomic snapshots. In Proceedings of the
2016 ACM symposium on Principles of distributed computing. ACM, 2016.

23 Alexander Spiegelman and Idit Keidar. On liveness of dynamic storage. In Proceedings of
SIROCCO 2017, 2017.

24 Alexander Spiegelman, Idit Keidar, and Dahlia Malkhi. Dynamic reconfiguration: A tu-
torial. In International Conference on Principles of Distributed Systems, 2016.

25 Alexander Spiegelman, Idit Keidar, and Dahlia Malkhi. Dynamic reconfiguration: Ab-
straction and optimal asynchronous solution, 2017. URL: https://alexanderspiegelman.
github.io/alexanderspiegelman.github.io/DynamicTasks.pdf.

DISC 2017

https://alexanderspiegelman.github.io/alexanderspiegelman.github.io/DynamicTasks.pdf
https://alexanderspiegelman.github.io/alexanderspiegelman.github.io/DynamicTasks.pdf

	Introduction
	Related Work
	Dynamic Model
	Reconfiguration Abstraction
	Building Dynamic Objects Using Reconfiguration
	Dynamic atomic read/write register
	Dynamic atomic max-register

	The Reconfiguration Abstraction Implementation
	CoS building block
	Simple Reconfiguration
	Optimal Reconfiguration

	Conclusions

