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—— Abstract

Constructing a sparse spanning subgraph is a fundamental primitive in graph theory. In this paper,
we study this problem in the Centralized Local model, where the goal is to decide whether an
edge is part of the spanning subgraph by examining only a small part of the input; yet, answers
must be globally consistent and independent of prior queries.

Unfortunately, maximally sparse spanning subgraphs, i.e., spanning trees, cannot be con-
structed efficiently in this model. Therefore, we settle for a spanning subgraph containing at
most (1 4 €)n edges (where n is the number of vertices and € is a given approximation/sparsity
parameter). We achieve a query complexity of O(poly(A/e)n?/?),' where A is the maximum
degree of the input graph. Our algorithm is the first to do so on arbitrary bounded degree
graphs. Moreover, we achieve the additional property that our algorithm outputs a spanner, i.e.,
distances are approximately preserved. With high probability, for each deleted edge there is a
path of O(logn - (A +logn)/e) hops in the output that connects its endpoints.
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1 Introduction

When operating on very large graphs, it is often impractical or infeasible to (i) hold the
entire graph in the local memory of a processing unit, (ii) run linear-time (or even slower)
algorithms, or even (iii) have only a single processing unit perform computations sequentially.
These constraints inspired the Centralized Local model [9], which essentially views the input
as being stored in a (likely distributed) database that provides query access to external
processing units. To minimize the coordination overhead of such a system, it is furthermore
required that there is no shared memory or communication between the querying processes,
except for shared randomness provided alongside the access to the input. The idea is now to
run sublinear-time algorithms that extract useful global properties of the graph and/or to
examine the input graph locally upon demand by applications.

* A full version of the paper is available at http://arxiv.org/abs/1703.05418.
t See [2] for the full version of this paper.
1 O-notation hides polylogarithmic factors in n.
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A Local Algorithm for the Sparse Spanning Graph Problem

Studying graphs in this model leads to the need for query access to a variety of graph-
theoretical structures like, e.g., independent or dominating sets. In such a case, it is crucial
that locally evaluating whether a node participates in such a set is consistent with the
same evaluation for other nodes. This is a non-trivial task, as local decisions can only be
coordinated implicitly via the structure of the input (which is to be examined as little as
possible) and the shared randomness. Nonetheless, this budding field brought forth a number
of elegant algorithms solving, e.g., maximal independent set, hypergraph coloring, k-CNF,
and approximate maximum matching (see survey [6] and references therein).

In this work, we consider another very basic graph structure: sparse spanning subgraphs.
Here, the task is to select a subset of the edges of the (connected) input graph so that the
output is still connected, but has only few edges. By “few” we mean that, for some input
parameter € > 0, the number of selected edges is at most (1 + €)n, where n denotes the
number of nodes. One may see this as a relaxed version of the problem of outputting a
spanning tree of the graph, which can not be obtained in sub-linear number of queries.

» Definition 1 ([5]). An algorithm A is a Local Sparse Spanning Graph (LSSG) algorithm if,
given n, A > 1, a parameter € > 0, and query access to the incidence list representation of a
connected graph G = (V, E) over n vertices and of degree at most A, it provides oracle access
to a subgraph G’ = (V, E’) of G such that: (1) G’ is connected. (2) |E’'| < (1 +¢€) - n with
high probability (w.h.p.),? where E’ is determined by G and the internal randomness of A.
By “providing oracle access to G'” we mean that on input {u,v} € E, A returns whether
{u,v} € E’, and for any sequence of edges, .4 answers consistently w.r.t. the same G’.

We are interested in LLSG algorithms that, for each given edge, perform as few queries as
possible to G. Observe that Item (2) implies that the answers of an LLSG algorithm to
queries cannot depend on previously asked queries. We note that relaxing from requiring a
tree as output makes it possible to ask for additional guarantees. Instead of merely preserving
connectivity, it becomes possible to maintain distances up to small factors. Such subgraphs
are known as (sparse, multiplicative) spanners [7, 8].

Our Contribution. We give the first non-trivial LSSG algorithm in the Centralized Local
model that runs on arbitrary graphs. We achieve a query complexity of O(poly(A /e)n?/3)
per edge, w.h.p. Moreover, we guarantee that for each edge that is not selected into the
spanner, w.h.p. there is a path of O(logn - (A + logn)/e) hops consisting of edges that are
selected into the spanner; this is referred to as a stretch of O(logn - (A +logn)/e).

For simplicity, assume for the moment that A and e are constants. Our algorithm
combines the following key ideas. We classify edges as expanding if there are sufficiently
many (roughly n'/?) nodes within O(logn) hops of their endpoints. For non-expanding
edges, we can efficiently simulate a standard distributed spanner algorithm at small query
complexity, as solutions of running time O(logn) are known (e.g. [1]).

On the node set induced by expanding edges, we can construct a partition into Voronoi
cells with respect to roughly n?/3 randomly sampled centers. The Voronoi cells are spanned
by trees of depth O(logn), as expanding nodes have their closest center within O(logn) hops
w.h.p. Finding the closest center has query complexity O(nl/?’).

We refine the partition into Voronoi cells further into clusters of O(n'/?) nodes. We
simply let a node be a singleton cluster if its subtree in the spanning tree of its cell contains
more than O(n'/?) nodes. This construction has query complexity O(n?/?) for constructing
a complete cluster, yet ensures that there are O(n?/3) clusters in total due to the low depth
of the trees; moreover, each cluster is completely contained in some Voronoi cell.

2 That is, with probability at least 1 — 1/n° for an arbitrary constant ¢ > 0 that is chosen upfront.
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It remains to select few edges to interconnect the Voronoi cells. This is the main challenge,
for which the above properties of the partition are crucial. To keep the number of selected
edges small in expectation, we mark a subset of expected size (:)(nl/ 3) of the clusters by
marking each Voronoi cell (and thereby its constituent clusters) with probability n~1/3. We
then try to ensure that (i) clusters select an edge to each adjacent marked Voronoi cell
and (ii) for each marked Voronoi cell adjacent to an adjacent cluster, they select one edge
connecting to some cluster adjacent to this cell.

The main issue with the previous step is that we cannot afford to construct each adjacent
cluster, preventing us from guaranteeing (ii). We circumvent this obstacle by identifying for
adjacent clusters in which cell they are and keeping an edge for the purpose of (ii) if it satisfies
a certain minimality requirement with respect to the rank of the cell used for symmetry
breaking purposes. This way, we avoid construction of adjacent clusters, instead needing
to determine the rank of their Voronoi cells only. This way, we maintain query complexity
O(n?/3). However, this now entails an inductive argument for ensuring connectivity, which
also affects stretch. By choosing Voronoi cell ranks uniformly at random, we obtain a total
bound of O(log?n) on the stretch of our scheme.

Related work. The problem of finding a sparse spanning subgraph in the Centralized Local
model was first studied in [5], where the authors show a lower bound of Q(y/n) queries for
constant ¢ and A.They also present an upper bound with nearly tight query complexity for
graphs that have very good expansion properties. However, for general (bounded degree)
graphs their algorithm might query the entire graph for completing a single call to the oracle.
They also provide an efficient algorithm for minor-free graphs that was later improved in [4].
A characterization of the query complexity of the problem in terms of expansion properties
of the input graph was presented in [3].
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