
Brief Announcement: Distributed SplayNets∗

Bruna S. Peres1, Olga Goussevskaia2, Stefan Schmid3, and
Chen Avin4

1 Computer Science Department, Universidade Federal de Minas Gerais, Brazil
bperes@dcc.ufmg.br

2 Computer Science Department, Universidade Federal de Minas Gerais, Brazil
olga@dcc.ufmg.br

3 Department of Computer Science, Aalborg University, Denmark
schmiste@cs.aau.dk

4 Comm. Sys. Eng. Department, Ben Gurion University of the Negev, Israel
avin@cse.bgu.ac.il

Abstract
SplayNets are reconfigurable networks which adjust to the communication pattern over time. We
present DiSplayNets, a distributed (concurrent and decentralized) implementation of SplayNets.

1998 ACM Subject Classification C.2.1 Network Architecture and Design, Distributed networks

Keywords and phrases Decentralization, Concurrency, Reconfigurable Networks

Digital Object Identifier 10.4230/LIPIcs.DISC.2017.58

1 Introduction

SplayNets [3] are locally-routable tree networks whose topology self-adjusts to the workload:
nodes communicating more frequently become topologically closer to each other over time.
SplayNets are hence reminiscent of classic splay tree data structures: however, in contrast
to splay trees where requests always originate from the root, in a SplayNet, requests occur
between arbitrary node pairs. SplayNets are motivated, among other, by the advent of
reconfigurable datacenter interconnects like ProjecToR [2], and are very different from many
traditional network designs which are either entirely oblivious to the communication demand
or are optimized towards the demand but cannot be reconfigured over time [1].

In this work, we present DiSplayNets, the first distributed, i.e., decentralized and con-
current implementation of SplayNets. Moving from centralized-sequential to decentralized-
concurrent algorithms is challenging, as simultaneous local network reconfigurations can
interfere, potentially leading to starvation or even deadlocks, and hence ruining the potential
benefits of concurrent operations. Moreover, it needs to be ensured that traffic forwarding
and (locally/greedy) routing is unaffected by the topological changes.

We present a distributed algorithm that overcome these challenges, and demonstrate that
decentralized SplayNets are feasible.

I Theorem 1. DiSplayNets self-adjust to the communication pattern in a fully-decentralized
manner, eventually serving all communication requests (in a starvation- and deadlock-free
manner).

∗ This work is part of the PhD thesis of B.S. Peres and was supported by CNPq, CAPES, Fapemig, and
partially by the German-Israeli Foundation for Scientific Research (GIF) Grant I-1245-407.6/2014

© Bruna S. Peres, Olga Goussevskaia, Stefan Schmid, and Chen Avin;
licensed under Creative Commons License CC-BY

31st International Symposium on Distributed Computing (DISC 2017).
Editor: Andréa W. Richa; Article No. 58; pp. 58:1–58:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.DISC.2017.58
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


58:2 Distributed SplayNets

2 DiSplayNets

Background and Model. We want to design a tree T (i.e., a SplayNet) which adjusts
according to a sequence σ = (σ0, σ1, . . . , σm−1) of communication requests occurring over
time, where σi = (s, d) denotes that source src(σi) = s communicates to destination
dst(σi) = d. Each request σi is generated in some time-slot tb(σi), and we will denote its
completion time (which depends on the algorithm) by te(σi).

SplayNets are Binary Search Trees (BST) and hence naturally support greedy routing.
SplayNets aggressively move communicating nodes together, using the classic splay operations
zig, zig-zig and zig-zag [4] of splay trees. However, rather than splaying nodes to the root of
the BST, in contrast to splay tree data structures, locality is preserved in that the source
and the destination nodes are only rotated to their least common ancestor (LCA(s, d)).

This motivates us to use the following notion of splay request Si(s, d): A splay request
between the source and destination node of a communication request σi(s, d) ∈ σ is comprised
of two sequences of local network transformations, requested by s and d, with the objective
to bring these two nodes topologically closer, without violating the BST properties. We say
that the splay request Si(s, d) has been completed in time-slot t′ if the distance dt′(s, d) = 1,
i.e., s becomes the parent of d or vice versa, whichever happens first.

We define a distributed SplayNet as follows: DiSplayNet Tt = (V,Et) is comprised of
n nodes, with distinct identifiers, interacting concurrently according to the communication
pattern of σ. In each time-slot t, the set of edges Et connects the nodes in V , s.t. Tt is a BST.
We assume that the execution starts with an arbitrary BST topology T0. Each node u stores
the identifiers of its direct neighbors in the tree, i.e., its parent (u.p), its left child (u.l) and
its right child (u.r), and the smallest (u′) and the largest (u′′) identifiers currently present in
the sub-tree rooted at u. This information is used for local routing and for splaying.

DiSplayNet Design and Distributed Algorithm. In DiSplayNet, a changing communication
pattern leads to local adjustments (possibly concurrently to prior requests) of the commu-
nication links in Tt over time. Consider a DiSplayNet instance Tt, and a communication
request σi(s, d) ∈ σ, tb(σi) ≤ t. Differently from sequential SplayNets, s and d rotate in
parallel towards the LCAt(s, d). Due to concurrency, the LCA might change over time.
Therefore, instead of approaching a specific LCA node, s and d keep splaying towards the
root of Tt, until becoming each other’s ancestor. Upon generating a request σi(s, d), node s
must advertise node d so that both start splaying.

DiSplayNet can be described in terms of a state machine, executed by each node in parallel:
(1) Passive: a node is in passive state in time-slot t if it is not the source or destination of
any request in σi ∈ σ, tb(σi) ≤ t; (2) Climbing: a node s (or d) is climbing in time-slot t if
it has an active request: ∃σi(s, d) ∈ σ, tb(σi) ≤ t and dt(s, d) > 1, and additionally s (or d)
6= LCAt(s, d); (3) Waiting: a node s (or d) is waiting in time-slot t if has an active request
and s = LCAt(s, d). (4) Communicating: a node s or d is communicating in time-slot t if
∃σi(s, d) ∈ σ, tb(σi) ≤ t and dt(s, d) = 1. Figure 1 shows the states transitions.

In order to ensure deadlock and starvation freedom, concurrent rotations are performed
according to a priority. An older request in the network has a higher priority than a more
recent request (Figure 2). Note that, a node s in the waiting state might be removed from the
LCA position by a rotation with higher priority. If that happens, s returns to the climbing
state and resumes requesting rotations. Finally, when s and d meet, they communicate.

To synchronize the process between the nodes, we execute the algorithm in rounds. Each
round is composed of five phases (1. Rotation Requests; 2. Top-down Acks; 3. Bottom-up



B. S. Peres et al. 58:3

Passive

T1

T2
Waiting

T4

T5

Communicating

T6

Climbing

T3

T5
T1: Started rotating

T2: Started as LCA

T3: Reached LCA

T4: Kicked by a node with higher priority

T5: Source and destination meet

T6: Done

Figure 1 State Transition Diagram.

T0

r

s2

T1

s1

d1

d2

T2 T2

s1

s2

T1

d1

r

d2
T2 T5

s2

T1

d2

s1

r

d1

T2

Figure 2 DiSplayNets: σ1(s1, d1) and σ2(s2, d2) ∈ σ, te(σ1) < te(σ2).

Algorithm 1 The distributed DiSplayNets algorithm (one round).
1: Rotation Requests (3 time-slots)

if Climbing for some σi(s, d) then
send own rotation request β(u) upward;
insert β(u) into buffer;

upon receiving rotation request β(v):
insert β(v) into buffer;
forward β(v) upward;

2: Top-down Acks (3 time-slots)
get highest priority request β(x) in buffer
if Master(β(x)) then . farthest node from x

send Ack(β(x)) downward

3: Bottom-up Acks (3 time-slots)
upon receiving top-down ack(β(v))
if β(v) = β(x) then . highest priority ack

send ack(β(v)) up toward master
4: Link Updates (1 time-slot)

if received bottom-up ack(β(x)) then
update links according to β(x);

5: State Updates (1 time-slot)
update state; . Figure 1
clear buffer;

Acks; 4. Link Updates; 5. State Updates), summarized in Algorithm 1. Each node u
maintains a local buffer, containing a queue of rotation requests, generated by itself, its right
or left child, one of its four grandchildren or eight great-grandchildren. In each round, each
rotation request β(u) is sent upwards until reaching its master (2 hops ancestor in case of
a zig and 3 hops ancestor in case of a a zig-zig or zig-zag). Once all requests have been
received, the highest priority request is acknowledged top down, from master to requesting
node. Upon receiving a top-down ack, the requesting node sends an acknowledgment upwards
to the master. We say that neighboring nodes agree to perform rotation β(u) if all of them
received one top-down and one bottom-up acknowledgment for β(u).

Future Work. It remains to rigorously analyze the efficiency, i.e., amortized work and time.
Our simulations show first promising results.

References
1 Avin et al. Demand-aware network designs of bounded degree. In DISC, 2017.
2 M. Ghobadi et al. Projector. In ACM SIGCOMM, 2016.
3 S. Schmid, C. Avin, C. Scheideler, M. Borokhovich, B. Haeupler, and Z. Lotker. Splaynet:

Towards locally self-adjusting networks. IEEE/ACM Tran. on Networking, (99):1–13, 2015.
4 D. Sleator and R. Tarjan. Self-adjusting binary search trees. J. ACM, 32(3):652–686, 1985.

DISC 2017


	Introduction
	DiSplayNets

