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Abstract
The matroid parity (or matroid matching) problem, introduced as a common generalization of
matching and matroid intersection problems, is so general that it requires an exponential number
of oracle calls. Nevertheless, Lovasz (1978) showed that this problem admits a min-max formula
and a polynomial algorithm for linearly represented matroids. Since then efficient algorithms
have been developed for the linear matroid parity problem.

This talk presents a recently developed polynomial-time algorithm for the weighted linear
matroid parity problem. The algorithm builds on a polynomial matrix formulation using Pfaffian
and adopts a primal-dual approach based on the augmenting path algorithm of Gabow and
Stallmann (1986) for the unweighted problem.
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1 Introduction

The concept of matroids was introduced by Whitney [33] as a combinatorial abstraction of
linear dependence. A matroid is a pair (S, I) of a finite set E and its subset family I that
satisfy the following axioms.
(I0) ∅ ∈ I.
(I1) I ⊆ J ∈ I ⇒ I ∈ I.
(I2) I, J ∈ I, |I| < |J | ⇒ ∃e ∈ J \ I, I ∪ {e} ∈ I.
A primary example is a set S of vectors in a certain linear space, where I is the collection of
vector subsets that are linearly independent. Such a matroid representable in this way is
called a linear matroid.

The importance of matroids in the context of combinatorial otimization was established
by Edmonds [6, 8]. In particular, the framework of matroid intersection generalizes bipartite
matching and captures various combinatorial optimizations problems solvable in polynomial
time.

As a common generalization of matroid intersection and nonbipartite matching, Lawler [19]
introduced matroid parity. Suppose that the ground set S of a matroid (S, I) is partitioned
into pairs, called lines. The matroid parity problem asks for finding a maximum cardinality
independent set that is a disjoint union of lines. It turned out, however, that this framework
is too general to be solvable. In fact, it includes NP-hard problems and requires exponential
number of independence oracle calls [17, 21]. A PTAS for this general framework has been
developed only recently [20].
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For linear matroids, however, Lovász [21, 23, 24] showed a min-max formula and presented
a polynomial algorithm that is applicable if the linear representation is available. Since then,
efficient combinatorial algorithms have been developed for this linear matroid parity problem
[11, 29, 30]. Gabow and Stallmann [11] developed an augmenting path algorithm with the
aid of a linear algebraic trick, which was later extended to the linear delta-matroid parity
problem [13]. Orlin and Vande Vate [30] provided an algorithm that solves this problem by
repeatedly solving matroid intersection problems coming from the min-max theorem. Later,
Orlin [29] improved the running time bound of this algorithm. The current best deterministic
running time bound due to [11, 29] is O(nmω), where n is the cardinality of the ground set,
m is the rank of the linear matroid, and ω is the matrix multiplication exponent, which is at
most 2.38.

Since matching and matroid intersection algorithms [4, 7] have been successfully extended
to their weighted version [5, 9, 15, 18], it is natural to expect polynomial algorithms for
the weighted linear matroid parity problem. In fact, a recent work [16] has presented a
combinatorial, deterministic, polynomial-time algorithm for the weighted linear matroid
parity problem. The algorithm builds on a polynomial matrix formulation, which naturally
extends the one discussed in [12] for the unweighted problem.

2 The Linear Matroid Parity Problem

Let A be a matrix of row-full rank over an arbitrary field K with row set U and column set
V . Assume that n = |V | are even. The column set V is partitioned into pairs, called lines.
Each v ∈ V has its mate v̄ such that {v, v̄} is a line. We denote by L the set of lines.

The linear dependence of the column vectors naturally defines a matroid M(A) on V .
The independent set family I is given by I = {J | rankA[U, J ] = |J |} A subset X ⊆ V is
called a parity set if it consists of lines. The linear matroid parity problem asks for finding
an independent parity set of maximum cardinality. We denote the optimal value by ν(A,L)
This problem generalizes finding a maximum matching in graphs and a maximum common
independent set of a pair of linear matroids on the same ground set.

For a skew-symmetric matrix Φ whose rows and columns are indexed by W , the support
graph of Φ is the graph G = (W,E) with edge set E = {(u, v) | Φuv 6= 0}. We denote by Pf Φ
the Pfaffian of Φ, which is defined as follows:

Pf Φ =
∑
M

σM
∏

(u,v)∈M

Φuv,

where the sum is taken over all perfect matchings M in G and σM takes ±1 in a suitable
manner, see [25]. It is well-known that det Φ = (Pf Φ)2 and Pf (SΦS>) = Pf Φ · detS for any
square matrix S.

Associated with the linear matroid parity problem, we consider a skew-symmetric matrix
ΦA defined by

ΦA =
(

O A

−A> D

)
,

where D is a block-diagonal matrix in which each block is a 2× 2 skew-symmetric matrix

D` =
(

0 −τ`
τ` 0

)
corresponding to a line ` ∈ L. Assume that the coefficients τ` are

independent parameters (or indeterminates).
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I Lemma 1 ([12]). The optimal value ν(A,L) of the linear matroid parity problem is given
by

ν(A,L) = rank ΦA − n.

This characterization leads to an efficient randomized algorithm for solving the linear
matroid parity problem in high probability by substituting randomly generated numbers to
the indeterminates. In fact, Lovász [22] introduced such an approach using another skew-
symmetric matrix, and Cheung, Lau, and Leung [3] improved it to run in O(nmω−1) time,
extending the techniques of Harvey [14] developed for matching and matroid intersection.

3 The Minimum-Weight Parity Base Problem

In the same setting as the linear matroid parity problem, suppose that each line ` ∈ L has a
weight w` ∈ R. Let B be the base family of M(A), i.e., B = {B | rankA[U,B] = |B| = |U |}.
A base B ∈ B is called a parity base if it consists of lines. As a weighted version of the linear
matroid parity problem, we will consider the problem of finding a parity base of minimum
weight, where the weight of a parity base is the sum of the weights of lines in it. We denote
the optimal value by ζ(A,L,w). This problem generalizes finding a minimum-weight perfect
matching in graphs and a minimum-weight common base of a pair of linear matroids on the
same ground set.

As another weighted version of the matroid parity problem, one can think of finding
an independent parity set of maximum weight. This problem can be easily reduced to the
minimum-weight parity base problem.

Associated with the minimum-weight parity base problem, we consider a skew-symmetric
polynomial matrix ΦA(θ) in variable θ defined by

ΦA(θ) =
(

O A

−A> D(θ)

)
,

where D(θ) is a block-diagonal matrix in which each block is a 2 × 2 skew-symmetric

polynomial matrix D`(θ) =
(

0 −τ`θw`

τ`θ
w` 0

)
corresponding to a line ` ∈ L. Assume that

the coefficients τ` are independent parameters (or indeterminates).
We have the following lemma that associates the optimal value of the minimum-weight

parity base problem with Pf ΦA(θ).

I Lemma 2 ([16]). The optimal value of the minimum-weight parity base problem is given by

ζ(A,L,w) =
∑
`∈L

w` − degθ Pf ΦA(θ).

In particular, if Pf ΦA(θ) = 0, then there is no parity base.

Note that Lemma 2 does not immediately lead to a polynomial-time algorithm for the
minimum weight parity base problem. This is because computing the degree of the Pfaffian
of a skew-symmetric polynomial matrix is not so easy. Indeed, randomized algorithms in
[2, 3] for the weighted linear matroid parity problem compute the degree of the Pfaffian of
another skew-symmetric polynomial matrix, which results in pseudopolynomial complexity.

Starting with the characterization in Lemma 2, we have developed a combinatorial,
deterministic polynomial-time algorithm for the minimum-weight parity base problem [16].
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1:4 Weighted Linear Matroid Parity

The algorithm employs a modification of the augmenting path search procedure for the
unweighted problem by Gabow and Stallmann [11]. The correctness proof for the optimality
is based on the idea of combinatorial relaxation for polynomial matrices due to Murota [28].

I Theorem 3 ([16]). The minimum-weight parity base problem can be solved with O(mn3)
arithmetic operations over K, where m = |U | and n = |V |.

This leads to a strongly polynomial algorithm for linear matroids represented over a finite
field. For linear matroids represented over the rational field, one can exploit that algorithm
to solve the problem in polynomial time.

4 Applications

The linear matroid parity problem finds various applications: structural solvability analysis
of passive electric networks [27], pinning down planar skeleton structures [25], and maximum
genus cellular embedding of graphs [10]. We describe two interesting applications of the
weighted matroid parity problem in combinatorial optimization.

A T -path in a graph is a path between two distinct vertices in the terminal set T .
Mader [26] showed a min-max characterization of the maximum number of openly disjoint
T -paths. The problem can be equivalently formulated in terms of S-paths, where S is a
partition of T and an S-path is a T -path between two different components of S. Lovász [24]
formulated the problem as a matroid matching problem and showed that one can find a
maximum number of disjoint S-paths in polynomial time. Schrijver [32] has described a
more direct reduction to the linear matroid parity problem.

As a weighted version of the disjoint S-paths problem, it is quite natural to think of finding
disjoint S-paths of minimum total length. It is not immediately clear that this problem
reduces to the weighted linear matroid parity problem. A recent paper of Yamaguchi [34]
clarifies that this is indeed the case.

The weighted linear matroid parity has also been used in the design of approximation
algorithms. Prömel and Steger [31] provided a 5/3-approximation algorithm for the Steiner
tree problem with the aid of the weighted parity problem for graphic matroids. Even though
the performance ratio is larger than the current best one for the Steiner tree problem [1],
this suggests that there may be other combinatorial optimization problems that admit new
approximation algorithms using weighted linear matroid parity.
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