
A Simple Greedy Algorithm for Dynamic Graph
Orientation∗

Edvin Berglin1 and Gerth Stølting Brodal2

1 Department of Computer Science, Aarhus University, Aarhus, Denmark
berglin@cs.au.dk

2 Department of Computer Science, Aarhus University, Aarhus, Denmark
gerth@cs.au.dk

Abstract
Graph orientations with low out-degree are one of several ways to efficiently store sparse graphs. If
the graphs allow for insertion and deletion of edges, one may have to flip the orientation of some
edges to prevent blowing up the maximum out-degree. We use arboricity as our sparsity measure.
With an immensely simple greedy algorithm, we get parametrized trade-off bounds between out-
degree and worst case number of flips, which previously only existed for amortized number of
flips. We match the previous best worst-case algorithm (in O(logn) flips) for general arboricity
and beat it for either constant or super-logarithmic arboricity. We also match a previous best
amortized result for at least logarithmic arboricity, and give the first results with worst-case O(1)
and O

(√
logn

)
flips nearly matching degree bounds to their respective amortized solutions.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases Dynamic graph algorithms, graph arboricity, edge orientations

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2017.12

1 Introduction

An important building block in algorithmic theory and practice is the ability to store graphs
with low memory usage and fast query times. Classical storage methods are edge lists and
adjacency matrix, but both have pitfalls for sparse graphs: adjacency matrices use too much
memory, while edge lists can have slow adjacency queries and/or updates on high-degree
vertices. Much research has been devoted to improving these simple methods. The graph
parameter arboricity α is a well-known measure of a graph’s sparsity, which captures the
minimum number of forests the edges of a graph can be partitioned into. Kannan et al. [6]
showed how to efficiently store static graphs with low arboricity and supporting fast (O(α)
time) adjacency queries in the worst case.

Brodal and Fagerberg [3] extended this idea to consider dynamic graphs, where edges
may be arbitrarily inserted or deleted. If the arboricity of the graphs remains bounded
by a constant α, the forest partitions may be forced to change due to the updates. The
authors deal with this by considering the problem of orienting the edges of the dynamic
graph as in [6], but by re-orienting (“flipping”) edges as needed to maintain low out-degree.
They gave a simple greedy algorithm and proved that its amortized number of flips was
O(1)-competitive to the number of flips made by any other algorithm – even if that other
algorithm is afforded unlimited computational resources and knowledge of the entire sequence

∗ Work supported by the Danish National Research Foundation grant DNRF84 through the Center for
Massive Data Algorithmics (MADALGO).

© Edvin Berglin and Gerth Stølting Brodal;
licensed under Creative Commons License CC-BY

28th International Symposium on Algorithms and Computation (ISAAC 2017).
Editors: Yoshio Okamoto and Takeshi Tokuyama; Article No. 12; pp. 12:1–12:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ISAAC.2017.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2 A Simple Greedy Algorithm for Dynamic Graph Orientation

Table 1 Previous and new results for the dynamic edge orientation of dynamic graphs with
bounded arboricity α. Flip bounds are either amortized (am.) or worst-case (w.c.) per update.

Reference Out-degree Flips α known Note
Brodal & Fagerberg [3] O(α) O(logn) am. yes Ω(n) worst-case flips
Kowalik [8] O(α logn) O(1) am. yes uses alg. from [3]
Kopelowitz et al. [7] O(α+ logn) O(α+ logn) w.c. no
Kopelowitz et al. [7] O

(logn
log logn

)
O
(logn

log logn

)
w.c. no if α = O

(√
logn

)
He et al. [5] O

(
α
√

logn
)

O
(√

logn
)
am. yes uses alg. from [3]

He et al. [5] O(α logn) O(α logn) w.c. no
New (Corollary 18) O(α+ logn) O(logn) w.c. no
New (Corollary 19) O(α logn) O

(√
logn

)
w.c. no

New (Corollary 20) O(logn) O
(
α
√

logn
)
w.c. yes if α = O

(√
logn

)
New (Corollary 17) O

(
α log2 n

)
O(1) w.c. no

New (Corollary 16) O
(
α log2 n
f(n)

)
O(f(n)) w.c. no if f(n) = O(logn)

of updates in advance. In this paper, we will use the term ‘offline strategy’ to describe such
an algorithm. In particular, Brodal and Fagerberg showed how to maintain the out-degrees
bounded by O(α) with O(logn) amortized flips, where n is the number of vertices in the
graph. They also gave a lower bound of Ω(n) flips for maintaining the out-degrees bounded
by α. It is not hard to see that this bound holds even for α = 1.

Kowalik [8] gave another offline strategy and applied it to the algorithm by Brodal and
Fagerberg, getting O(α logn) out-degree in constant amortized flips, demonstrating that
a reasonable trade-off was possible. Both the algorithms of Brodal and Fagerberg [3] and
Kowalik [8] need to know, and use as a parameter, a bound on the arboricity of the graph.

Kopelowitz et al. [7] later found a different algorithm, which came with slightly worse
bounds but in the worst case rather than amortized. Their algorithm maintains O(α+ logn)
out-degree with O(α+ logn) flips, without knowing α. However, if α is known, they give an
alternate algorithm with somewhat faster running time but otherwise equal bounds. Also,
if α = O

(√
logn

)
, both bounds can be improved slightly to O(logn/ log logn) due to some

freedom in setting the base of the logarithmic terms.
He et al. [5] gave a new offline strategy with a parametrized trade-off between out-degree

and flips, generalizing the two strategies in [3] and [8]. When applied to the algorithm by
Brodal and Fagerberg it achieves O

(
α
√

logn
)
out-degree with O

(√
logn

)
amortized flips.

They also give another algorithm with worst-case bounds, nearly matching those in [7] but
with somewhat simpler pseudocode.

The problem was originally motivated by quick adjacency queries [6]. But rather than
making an explicit dictionary data structure, we focus on the problem of dynamically flipping
edges to guarantee low maximum out-degree. This allows us to ignore lower bounds for
dictionary operations, and we deliberately omit comparisons of update time complexity
as they might be skewed unfairly in our favor. It is straightforward to create such a data
structure on top of our machinery, should one so desire, by extending our solution to report
which edges are flipped. This allows programmers to tailor the balance between update and
query time to suit their own needs.

Dynamic edge orientations have recently become a very popular building block in dynamic
graph algorithms, especially for maintaining maximal matchings; see e.g. [1] [2] [10] [11] [12].
For an overview of other applications, we refer to the appendix in the full version of [7].

E. Berglin and G. S. Brodal 12:3

1.1 Our contribution

We present a new algorithm for maintaining an edge orientation of a dynamic graph, with a
guarantee of low out-degree and worst-case number of flips. Like many previous solutions we
relate the performance to the arboricity α of the dynamic graph, but unlike some previous
works, ours does not require knowledge of the arboricity in the general case. Our algorithm
is furthermore much simpler than previous ones, and uses queues as the only under-the-hood
data structure. It owes its simplicity to the fact that it greedily chooses which edge to flip.

By controlling a run-time parameter, our algorithm allows a user-specified trade-off
between the out-degree and the number of flips; this was previously only possible for
algorithms with amortized number of flips. Depending on the choice of the parameter,
the algorithm can maintain e.g. O(α+ logn) out-degree with O(logn) flips, or O

(
α log2 n

)
out-degree with constant flips. Various other parameter settings are possible. We match
or improve all known bounds with worst-case flips, except when the arboricity is within a
specific, very narrow range.

2 Preliminaries

The arboricity of a graph G is the smallest number t such that the edges of G can be
partitioned into t forests. Several equivalent definitions are used throughout the literature.
We use arboricity(G) to denote the arboricity of G. A graph G with bounded arboricity
arboricity(G) ≤ α is sparse: any induced subgraph of G on n′ ≤ n vertices contains at most
(n′−1)α edges. Note that while bounded arboricity graphs have no dense neighbourhood they
can still have vertices of arbitrarily high degree, e.g. stars have arboricity 1 but maximum
degree n− 1.

We say that G = G0, G1, G2, . . . , Gt is an edit-sequence of graphs if for each i > 0
there exists some edge (u, v) s.t. either Gi = Gi−1 ∪ {(u, v)} (update i is an insertion) or
Gi = Gi−1 \ {(u, v)} (update i is a deletion). We typically assume G0 = ∅. We say that G
has bounded arboricity (by a number α), or that arboricity(G) ≤ α, if arboricity(Gi) ≤ α

for every i.
An orientation of a graph G is a directed graph G with the same vertex and edge sets

as G, but where an undirected edge (u, v) ∈ G exists as the directed edge (u, v) or (v, u) in G.
We use deg(G) to denote the maximum out-degree of G; it is a c-orientation if deg(G) ≤ c.
Any graph G with arboricity(G) ≤ α has an α-orientation; to see this, partition the edges
into α forests, pick an arbitrary root in every tree, and direct every edge towards the root of
its respective tree.

We say that G = G0, G1, . . . , Gt is a sequence of orientations of G if every Gi is an
orientation of Gi. Similarly, G is a c-orientation if every Gi is a c-orientation. A flip is a
triple (i, v, u) such that (v, u) is an edge in Gi−1 and (u, v) is an edge in Gi.

An offline c-orientation strategy κ is some method that takes G and produces a c-
orientation G. By abusing notation we will also use κ to refer to the G produced by κ.

An online c-orientation algorithm A is analogous to the offline strategy, except that it
receives G as a stream and has only a single Gi stored in memory at any time. Hence, upon
receiving update i, it produces Gi as a function of Gi and Gi−1 and then forgets Gi−1. We
also say that A maintains an online c-orientation of G.

We say that κ or A makes σ flips (in the worst case) if the number of flips between any
two updates i, i+ 1 is at most σ, and that it makes σ amortized flips if after any update i
the total amount of flips is at most σi.

ISAAC 2017

12:4 A Simple Greedy Algorithm for Dynamic Graph Orientation

Note the difference in wording: a strategy has access to the whole sequence G and produces
the entire c-orientation at once, possibly using brute force. The online algorithm instead sees
G as a stream of unknown length and, after every update i, produces only a single “current”
orientation.

3 The algorithm

The algorithm takes an edit-sequence of graphs G as an online stream, and a positive integer
parameter k. Each vertex v maintains a standard FIFO queue Qv which holds all of its
out-edges. On an insertion (deletion) update, orient the new edge arbitrarily (delete the edge
via object reference) and then k times pick a vertex v with maximum out-degree and flip the
first edge in Qv. The book-keeping of out-degrees is trivial by using e.g. a degree-indexed
array and a pointer to the maximum degree. We do not explicitly support queries. See
pseudocode below for ease of reading.

Algorithm 1 Greedy flipping algorithm

procedure insertion(v, u)
push (v, u) to Qv
k-flips

procedure deletion(v, u)
remove (v, u) from Qv
k-flips

procedure k-flips
for i = 1 to k do

let v be a max out-degree vertex
pop an edge (v, u) from Qv
push (u, v) to Qu

4 Analysis

To show the efficiency of Algorithm 1, we will prove that its out-degree is competitive to an
unknown offline strategy. For given G and k, let δ, σ and ε be values satisfying the following
conditions: (i) there exists an offline δ-orientation strategy κ of G making at most σ flips in
the worst case, (ii) 0 < ε ≤ 1, and (iii) k ≥ 1 + 1/ε+ 2σ.

I Theorem 1. Algorithm 1 maintains an online O(δ + (δε+ 1) log2 n)-orientation of G with
k flips and in O(k) time.

Note that Algorithm 1 is completely oblivious to the values of δ, σ and ε, as well as any graph
properties of G itself. The number of flips, and hence the running time, in Theorem 1 is
trivial from the pseudocode. The rest of this section is dedicated to proving the bound on the
out-degree. While the proof is quite non-trivial, the roadmap thereof is easy. We will associate
potentials on all edges, such that the potential of an edge depends on where it is stored. Then
we show that the total potential cannot increase, unless the maximum out-degree is O(δ) in
which case the potentials do not matter. Finally we re-interpret the moving of potentials
as a game, where even an adversary cannot concentrate more than O((δε+ 1) logn) extra
potential in any single vertex – this also (roughly) bounds the maximum out-degree.

For purposes of analysis, we consider each queue Qv to be two queues, the Front Fv and
Back Bv. Edges are always inserted into Bv, and extracted from Fv. If Fv is empty when
an edge should be extracted from Qv, simply swap the two queues (by renaming) and then
continue. It should be trivially clear that this is equivalent to using a single queue. We say
an edge was flipped from v and to u if it was removed from Qv/Fv and inserted into Qu/Bu.

E. Berglin and G. S. Brodal 12:5

Table 2 Potential by type and placement in queue.

Front Back
Good 1 + 2ε 1− ε
Bad (first 3δ) 1 1 + ε

Bad (rest) 1 1

To bound the maximum out-degree, we introduce potentials on the edges. At update i,
we say that an edge in Gi is good if it has the same orientation as in κ(Gi) and bad otherwise.
Good edges have 1 + 2ε potential if they are in a Front queue and 1− ε in a Back queue.
Bad edges have potential 1, except for the first 3δ bad edges in any Back queue which have
potential 1 + ε. Let p(v) be the sum of potentials of all edges stored in Qv, p̂(G) = maxv p(v)
and P (G) =

∑
v p(v). When we need to differentiate the potential of a vertex in a specific

orientation Gi, we use pi(v) to denote p(v) at the time that the algorithm was storing Gi.
Since Algorithm 1 does not know the values of δ or ε, it cannot determine the exact

potential of a vertex. But as the following lemma shows, the out-degree of a vertex is a
close approximation of its potential. We will prove the theorem by bounding the maximum
potential of any vertex, which then implies a bound on its degree.

I Lemma 2. For any vertex v, deg(v) + 5δε ≥ p(v) ≥ deg(v)− δε.

Proof. For the upper bound, all edges contribute a base 1 potential, accounting for the
deg(v) term. Note that at most δ out-edges of v are good. If they are all placed in Fv, they
contribute an extra 2δε. At most 3δ bad edges in Bv contribute an extra ε each, giving at
most 5δε extra potential in total.

For the lower bound, only good edges in Bv can contribute less than 1 potential. Again
there are at most δ of these and they contribute ε less, giving at least deg(v)− δε potential
in the vertex. J

Let β = 6δε be the resolution of the system. The following states that the potential of
the highest-degree vertex is not too far from the maximum potential of any vertex.

I Lemma 3. Let u be some vertex with maximum potential, and let v be some maximum
out-degree vertex. Then p(u)− p(v) ≤ β.

Proof. By Lemma 2, the potential of v is at least p(v) ≥ deg(v) − δε and the potential
of u is at most p(u) ≤ deg(u) + 5δε ≤ deg(v) + 5δε. Rearranging we get p(u) − p(v) ≤
deg(v) + 5δε− (deg(v)− δε) = 6δε = β. J

I Lemma 4. Assume a vertex v has an empty Fv and at least 4δ edges in Bv. Then swapping
Fv and Bv does not increase p(v).

Proof. The Back queue contains at most δ good edges and at least 3δ bad edges, hence
exactly 3δ bad edges carry an extra ε potential which is released when moving from Bv to Fv.
This 3δε potential is enough to raise the potential of all δ good edges from 1− ε to 1 + 2ε.
Any surplus potential is lost. J

I Lemma 5. Let v have out-degree at least 4δ. Then flipping an edge from v releases at
least ε potential.

Proof. By Lemma 4 we can assume Fv is non-empty. Let (u, v) be the edge moved from Fv
to Bu. Note that if the edge was previously good it is now bad, and vice versa. Hence its
potential decreases either from 1 + 2ε to at most 1 + ε, or from 1 to 1− ε. J

ISAAC 2017

12:6 A Simple Greedy Algorithm for Dynamic Graph Orientation

I Lemma 6. Let S be any suffix of the sequence of flips performed by Algorithm 1 after
some update. Let d = deg(G) at the start of S. Then deg(G) ≤ d+ 1 after S.

Proof. Note that flips can increase the maximum degree only if there are at least two vertices
u, v with maximum degree, and the algorithm flips an edge incident on both of them. As
soon as some vertex reaches degree d+ 1, it will be the only vertex of maximum degree and
immediately fall down to degree d in the following flip. Consequently no sequence of flips can
raise a second vertex to degree d+ 1, which is a necessary condition for raising any vertex to
degree d+ 2. J

I Lemma 7. Let v be a vertex that had an edge flipped from it on update i. Then degGi
(v) ≥

deg(Gi)− 2.

Proof. Take the suffix S of flips that begins with the last flip from v. Before S, v had
maximum out-degree d. After S, d− 1 ≤ deg(v) and deg(Gi) ≤ d+ 1 by Lemma 6. J

Consider the algorithm as it receives an update i. We say that the currently stored
graph Gi−1 has sufficient degree if each of the k flips associated with update i is from a
vertex with out-degree at least 4δ. Conversely, we say the graph Gi−1 has insufficient degree
if at least one of the k flips is from a vertex with out-degree less than 4δ.

I Lemma 8. If Gi−1 has insufficient degree, then deg(Gi) = O(δ).

Proof. Since some edge was flipped from a vertex with out-degree d < 4δ, it follows from
Lemma 6 that deg(Gi) ≤ d+ 1 ≤ 4δ. J

I Lemma 9. If Gi−1 has sufficient degree, then P (Gi) ≤ P (Gi−1).

Proof. Assume update i is an insertion. The new edge is inserted into a Back queue, and
adds at most 1 + ε potential. The offline strategy κ makes at most σ flips, which causes σ
stored edges to swap their classification (“renaming”) from good to bad or vice versa. A
Front edge that was bad increases potential from 1 to 1 + 2ε, and a Back edge that was good
increases from 1− ε to 1 or 1 + ε. The renaming can therefore increase the total potential by
at most 2σε. Each flip frees ε potential by Lemma 5 and the assumption of sufficient degree,
so the total potential does not increase as long as kε ≥ 1 + ε+ 2σε. This is guaranteed by
the choice of parameters.

If the update was instead a deletion, the flips still release kε potential while even less
potential is inserted. J

Note that the potential of the system can increase on both insertion and deletion updates
if the graph has insufficient degree, since we cannot rely on Lemma 4 to ensure that the
potential of a vertex is well-behaved when flipping edges from it. Also note that if κ is known
not to perform any flips on deletion updates, no potential gets added to the system and so
our algorithm can also forgo flipping on deletions.

So far we have shown that either the maximum out-degree is O(δ), or we have a non-
increasing quantity of potential and the degree of each vertex is closely approximated by its
own potential. We next bound the maximum out-degree via a counter game, disassociated
from the actual graph orientation, played by an adversary whose goal it is to concentrate as
much potential as possible in a single counter. Counter games have been explored previously,
under various names, in e.g. [4] and [9]: typically they may be thought of as two-player
games where the second player is benevolent. Our game is different because the lone player
is instead restricted by the concept of resolution β.

E. Berglin and G. S. Brodal 12:7

Formally, the game is played by a single player on n counters x1, . . . , xn. Each counter xi
will hold a non-negative real-valued weight |xi|, and the sum of weights is a constant∑

i |xi| = X. Any such distribution of X on the n counters is called a game configuration C.
Let x̂ = maxi |xi| be the maximum weight at any time. The player can perform arbitrarily
many iterations of the following three-step operation: (i) pick a counter xi and a c > 0 such
that |xi| − c ≥ max(0, x̂− β − 2), (ii) remove c weight from xi and (iii) add positive weights
whose sum is c to any set of counters.

The player is therefore allowed to redistribute weight to arbitrary counters, but must take
it in not-too-large chunks from counters that are within the resolution (here β + 2) of the
maximum counter. Before upper-bounding x̂, we show that the player is powerful enough
to simulate the movement of potentials by Algorithm 1. We say a game configuration C
dominates a graph orientation G if |xj | ≥ p(vj) for every j.

I Lemma 10. Let i be an update such that Gi−1 has sufficient degree. Let C be a game
configuration that dominates Gi−1. Then the player can reach a game configuration C ′ that
dominates Gi.

Proof. We need to show that if some vertex gains potential (so its corresponding counter
no longer dominates it), then we can safely take enough weight from other counters to fill
that ‘gap’. Keep in mind that the total potential does not increase (Lemma 9). Since the
player is allowed to redistribute weight to any counter, we let the gaps be filled in arbitrary
order and only show that enough weight can be taken from other counters to make up the
difference. If x̂ > p̂(Gi−1) then greedily take weight from all counters greater than p̂(Gi−1)
to get x̂ = p̂(Gi−1).

Let vj be a vertex that had an edge flipped from it. Then its resulting out-degree
is degGi

(vj) ≥ deg(Gi) − 2 (Lemma 7) and its potential is pi(vj) ≥ degGi
(vj) − δε ≥

deg(Gi) − 2 − δε (Lemma 2). Also by Lemma 2 the maximum potential in the system is
p̂(Gi) ≤ deg(Gi) + 5δε. Hence the final potential of vj is within 6δε + 2 = β + 2 of the
maximum potential. As the rules of the counter game allow us to take weight up to β + 2
from the maximum counter, then however much potential vj lost we can take at least the
same amount of weight from its corresponding counter xj .

Conversely, if a vertex loses potential but its resulting potential is not at least p̂(Gi)−β−2,
it must have lost that potential due to deletion or renaming rather than flipping. Its counter
can safely be left untouched and still dominate the potential of the vertex.

Since the sum of potential decreases (by flipping) is at least as large as the sum of increases
(for any reason) (Lemma 9), and for any vertex that lost potential by flipping we can remove
at least as much weight from its counter, then we can redistribute enough weight to raise the
too-low counters to again dominate their respective vertex potentials. The updated counters
form a game configuration that dominates Gi. J

I Lemma 11. Let Ga, . . . , Gb be any sequence of orientations such that Gi has sufficient
degree for every a ≤ i ≤ b. Consider a game with starting configuration Ca that dominates
Ga, with x̂ = p̂(Ga). Then the player can reach game configurations Ca, . . . , Cb where Ci
dominates Gi for every a ≤ i ≤ b.

Proof. For every a < i ≤ b iterate Lemma 10 on Ci−1 to create Ci. J

We now let an adversary play the game, with the goal to increase x̂ as much as possible.
For simplicity we assume that every counter is raised to x̂ as the starting configuration.
For j = −1, 0, 1, 2, . . . let `j = X/n + j(β + 2) be weight level j. A counter xi is above

ISAAC 2017

12:8 A Simple Greedy Algorithm for Dynamic Graph Orientation

level j, or above `j , if |xi| ≥ `j . Let Xj =
∑n
i=1 max(0, |xi| − `j) be the weight above `j , and

Xj = X −Xj the weight below `j . We say a counter xi contributes max(0, |xi| − `j) to Xj

and min(|xi|, `j) to Xj .

I Lemma 12. Let j be a weight level such that `j ≤ x̂. Let the player make any sequence of
moves that maintain the condition `j ≤ x̂. Then Xj−1 does not increase.

Proof. Note that any counter xi contributes min(|xi|, `j−1) to Xj−1. By assumption there
will always be a counter xk with `j ≤ |xk|. Hence the resolution rule prevents the player
from making any counter contribute less to Xj−1 than it already does. Since X is a constant
and Xj−1 is non-decreasing, Xj−1 = X −Xj−1 is non-increasing. J

Since `0 = X/n is the average weight of all counters, it must always be the case that x̂ ≥ `0
and X−1 ≤ n(β + 2).

I Lemma 13. Let j be a weight level such that `j ≤ x̂ ≤ `j+1. Let the player make any
sequence of moves that maintain the condition `j ≤ x̂ ≤ `j+1. Then 2Xj ≤ Xj−1.

Proof. By Lemma 12, Xj−1 is a non-increasing amount. Let xi be any counter that will
contribute some positive weight w to Xj . Since the player maintains that x̂ ≤ `j+1, no
counter will be able to contribute more than `j+1 − `j = β + 2 to Xj , i.e. 0 < w ≤ β + 2.
Then xi must contribute w + β + 2 to Xj−1. Hence any counter that contributes to Xj

contributes at least twice as much to Xj−1, and 2Xj ≤ Xj−1. J

The player is therefore stuck in the following dilemma: once x̂ reaches some level `j , only a
bounded amount Xj−1 of weight remains available to redistribute. But once x̂ reaches `j+1,
only the weight above `j will be possible to redistribute. Therefore, in order to concentrate as
much weight as possible above `j+2, the player must first maximize Xj without any counter
actually reaching above `j+1.

I Lemma 14. The player cannot increase x̂ to `1+log2 n.

Proof. Assume x̂ ≥ `log2 n. By alternatingly iterating Lemma 12 and Lemma 13, the weight
above `log2 n is Xlog2 n ≤

(1
2
)1+log2 nX−1 = 1

2nX−1 ≤ 1
2nn(β + 2) < β + 2. Since the weight

is strictly less than β + 2, even concentrating all of it in a single counter is not enough to
make that counter reach `1+log2 n. Hence x̂ < `1+log2 n. J

We are now ready to prove the out-degree part of Theorem 1.

Proof of Theorem 1. Either the graph orientation has insufficient degree and maximum out-
degree O(δ) (Lemma 8) or it has non-increasing potential (Lemma 9) which is dominated by a
counter game where the starting weight of any counter is O(δ) (Lemma 11). By Lemma 14, the
maximum counter is x̂ < `1+log2 n = O(δ)+(1+log2 n)(β+2). By Lemma 2, deg(v) ≤ p(v)+δε,
and therefore any vertex has out-degree bounded by O(δ) + (1 + log2 n)(β + 2) + δε =
O(δ + (δε+ 1) log2 n). J

5 De-amortizing offline strategies

In the previous work by Brodal and Fagerberg [3], their amortized algorithm is shown
competitive with an offline strategy with bounded amortized number of flips, and hence
subsequently published strategies have focused on achieving good amortized bounds. However,
for our algorithm analysis, we require an offline strategy with worst-case flips per update.

E. Berglin and G. S. Brodal 12:9

In this section we show one way to de-amortize offline strategies. Our technique does not
generalize to every offline strategy, but relies on the special structure inherent to the strategies
of both [7] and [5]. These strategies partition the edit-sequence into blocks of consecutive
updates, with some length λ. No flips occur within a block, only in the seams between two
blocks. The amortized flip complexity of these strategies is therefore simply the maximum
number of flips between two blocks, divided by the length λ of the preceding block.

Since no flips are allowed within a block, the strategy is required to find an orientation of
the union of all graphs Gi, . . . , Gi+λ−1 within a block. The maximum out-degree of the entire
strategy is therefore upper bounded by the maximum out-degree of any oriented union-graph.
Higher λ gives a less sparse union-graph, necessitating higher out-degree, but also allows for a
better amortized flip complexity. The following theorem shows a simple way of de-amortizing
strategies with this structure, by taking all the flips between two blocks and spreading them
evenly over the updates in the later block.

I Theorem 15. Let κ be a δ-orientation strategy of G where, for arbitrary λ, any update with
σλ flips is followed by at least λ− 1 updates with no flips. Then there exists a 2δ-orientation
strategy of G making σ flips in the worst case.

Note that if the last block of flips is not followed by λ− 1 updates due to G ending, then one
can pad G to appropriate length by repeatedly inserting and removing a dummy edge after
the end of G. Also note that λ can vary within the same sequence – blocks do not need to be
of uniform length.

Proof. Let i be an update where κ performs a set of λσ flips. Let F be the set of flipped
edges. Let κ′ be an offline strategy with the same edge orientations as κ except on updates
i, . . . , i+ λ− 1. On any insertion update i, . . . , i+ λ− 1, let κ′ orient the new edge in the
same direction as κ. Furthermore, on each update i, . . . , i+ λ− 1, κ′ takes σ arbitrary edges
in F , removes them from F , and flips them.

Then F will be empty after update i+ λ− 1, so κ(Gi+λ−1) = κ′(Gi+λ−1). At all times
F forms a δ-orientation, since F is a subset of κ(Gi−1). Similarly, κ′(Gj) \F is δ-orientation
for every i ≤ j ≤ i+ λ− 1, since they are a subset of κ(Gj). Hence κ′ is a 2δ-orientation.
Finally, κ′ performs at most σ flips per update between updates i and i+ λ− 1; exhaustively
perform the same transformation on all of κ for σ flips on any update. J

6 Discussion

With our two theorems proven, we can relate the algorithm to known offline strategies and
achieve the following corollaries. In all of the following, G is an arbitrary edit-sequence with
arboricity(G) ≤ α.

Kowalik [8] presents an offline O(α logn)-orientation strategy making 1 amortized flip.
Using Theorem 15 we can de-amortize it to an offline O(α logn)-orientation strategy making
1 flip in the worst case, giving the following two corollaries.

I Corollary 16. For a positive function f(n) = O(logn), Algorithm 1 maintains an
O
(
α log2 n
f(n)

)
-orientation with k = 3 + df(n)e flips.

Proof. Let δ = O(α logn), σ = 1 and ε = 1/f(n). Then the algorithm maintains out-degree
O
(
α logn+

(
α logn
f(n) + 1

)
logn

)
= O

(
α log2 n
f(n)

)
. J

I Corollary 17. Algorithm 1 maintains an O
(
α log2 n

)
-orientation of G with k = 4 flips.

ISAAC 2017

12:10 A Simple Greedy Algorithm for Dynamic Graph Orientation

Proof. Let f(n) ≡ 1 in Corollary 16. J

Corollary 17 is the first result with O(1) worst-case flips. Compared to [8] (with O(1)
amortized flips), it incurs an extra O(logn) factor on the out-degree, but avoids the Ω(n)
worst-case flips which that algorithm can experience.

Brodal and Fagerberg [3] give an offline O(α)-orientation strategy with O(logn) flips in
the worst case. It only makes flips on insertion updates.

I Corollary 18. Algorithm 1 maintains an O(α+ logn)-orientation of G with k = O(logn)
flips.

Proof. Let δ = O(α), σ = O(logn) and ε = 1/ logn. Then the algorithm maintains
out-degree O

(
α+

(
α

logn + 1
)

logn
)

= O(α+ logn). J

He et al. [5] give an offline O
(
α
√

logn
)
-orientation strategy making O

(√
logn

)
amortized

flips, which we de-amortize using Theorem 15.

I Corollary 19. Algorithm 1 maintains an O(α logn)-orientation of G with k = Θ(
√

logn)
flips.

Proof. Let δ = O
(
α
√

logn
)
, σ = O

(√
logn

)
and ε = 1/

√
logn. Then the algorithm

maintains out-degree O
(
α
√

logn+
(
α
√

logn√
logn

+ 1
)

logn
)

= O(α logn). J

I Corollary 20. Algorithm 1 maintains an O(logn)-orientation of G with k = O
(
α
√

logn
)

flips, if α = O
(√

logn
)
.

Proof. Let δ = O
(
α
√

logn
)
, σ = O

(√
logn

)
and ε = 1/α

√
logn. Then the algorithm

maintains out-degree O
(
α
√

logn+
(
α
√

logn
α
√

logn
+ 1
)

logn
)

= O(logn). J

Corollary 19 is an improvement over [7] in the flip complexity for edit-sequences with
arboricity bounded by a constant. For α = O

(√
logn/ log logn

)
, Corollary 20 matches or

improves the flip complexity from [7], albeit with a slightly worse degree bound, and only if
α is known. If α is both O

(√
logn

)
and ω(

√
log(n)/ log logn) we are narrowly outperformed

by [7], by no more than an O(log logn) factor.
Corollary 19 also nearly matches the degree bound in [5] but with worst-case flips instead

of amortized. Corollary 18 matches the bounds in [7] for general arboricity and improves on
their flip complexity if α = ω(logn). Furthermore, if α = Ω(logn), Corollary 18 matches the
amortized bounds from [3].

6.1 Reverse trade-off
Compared to an offline strategy, our analysis lends itself to a trade-off in one direction,
getting (at most) an O(logn) factor on the out-degree for a constant factor on the number of
flips. It allows us to perform much fewer flips than in [7] at the price of weaker degree bounds.
A trade-off in the opposite direction would also be highly desirable, achieving out-degree
(closer to) O(δ) by making Ω(σ) flips. We have only found a very weak such trade-off:

I Lemma 21. Algorithm 1 can maintain an O(α)-orientation of G with k = O(αn) flips.

E. Berglin and G. S. Brodal 12:11

Proof. Let δ = O(α) and ε = 1 (the value of σ is inconsequential). Then each edge holds
between 0 and 3 potential. And since any Gi has at most αn edges (by definition of arboricity),
the total potential is between 0 and 3αn. Furthermore each flip releases 1 potential from the
system, contingent on the graph having sufficient degree (Lemma 5). Hence after performing
at most 3αn flips on any starting orientation Gi, we must reach a state where the next
flip does not release potential, contradicting Lemma 5, and so by Lemma 8 the graph has
out-degree at most 4δ = O(α) after all flips. J

Lemma 21 only matches the worst-case bound of the algorithm in [3], which has drastically
better amortized performance. Hence it should not be used in practice. Still, we believe a
stronger reverse trade-off is possible and conjecture the following:

I Conjecture 22. For some function f , Algorithm 1 maintains an online O
(
δ + σ+1

f(k)δ logn
)
-

orientation of G with k flips and in O(k) time.

6.2 Dynamic arboricity
Throughout the paper we have done all our performance analysis against a static arboricity
bound, i.e. a bound on the greatest arboricity seen anywhere in the edit-sequence. An
interesting issue arises if the sequence contains contiguous sub-sequences, of non-trivial
length, with higher or lower arboricity than elsewhere in the sequence. Some previous
algorithms, e.g. one of the algorithms in [7] and the non-amortized algorithm in [5], adapt to
increasing and decreasing arboricity automatically.

Our analysis immediately adapts to sequences with increasing arboricity, since the analysis
can be performed on any prefix (or contiguous sub-sequence) of G. In the case of periods
with lower arboricity than earlier in the sequence, our algorithm obeys the new arboricity if
the maximum out-degree is already within that new bound. In other words, if the maximum
out-degree is already bounded relative to the new arboricity, then it will remain so. However,
if the arboricity falls enough that the current maximum out-degree breaks the new bounds,
our analysis does not require the maximum out-degree to decrease accordingly. Intuitively,
using a k strictly larger than 1 + 1/ε+ 2σ (thus experiencing a net loss of total potential with
every update) should force the maximum out-degree to tend towards the updated degree
bounds, similar to the proof of Lemma 21. However, we do not have a formal argument for
this.

6.3 Open problems
For all known strategies that maintain out-degree δ with σ (amortized) flips, it holds
that δσ = Ω(α logn) and most achieve δσ = Θ(α logn). Can one design a strategy with
δσ = o(α logn)?

References
1 Aaron Bernstein and Cliff Stein. Fully dynamic matching in bipartite graphs. arXiv preprint

arXiv:1506.07076, 2015.
2 Aaron Bernstein and Cliff Stein. Faster fully dynamic matchings with small approximation

ratios. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 692–711. Society for Industrial and Applied Mathematics, 2016.

3 Gerth Stølting Brodal and Rolf Fagerberg. Dynamic representation of sparse graphs. In Pro-
ceedings 6th International Workshop on Algorithms and Data Structures (WADS), volume
1663 of Lecture Notes in Computer Science, pages 342–351. Springer, 1999.

ISAAC 2017

12:12 A Simple Greedy Algorithm for Dynamic Graph Orientation

4 Paul Dietz and Daniel Sleator. Two algorithms for maintaining order in a list. In Proceedings
19th Annual ACM Symposium on Theory of Computing (STOC), pages 365–372. ACM,
1987.

5 Meng He, Ganggui Tang, and Norbert Zeh. Orienting dynamic graphs, with applications to
maximal matchings and adjacency queries. In Proceedings 25th International Symposium on
Algorithms and Computation (ISAAC), volume 8889 of Lecture Notes in Computer Science,
pages 128–140. Springer, 2014.

6 Sampath Kannan, Moni Naor, and Steven Rudich. Implicit representation of graphs. SIAM
Journal on Discrete Mathematics, 5(4):596–603, 1992.

7 Tsvi Kopelowitz, Robert Krauthgamer, Ely Porat, and Shay Solomon. Orienting fully
dynamic graphs with worst-case time bounds. In Proceedings 41st International Colloquium
Automata, Languages, and Programming (ICALP), Part II, volume 8573 of Lecture Notes
in Computer Science, pages 532–543. Springer, 2014.

8 Łukasz Kowalik. Adjacency queries in dynamic sparse graphs. Information Processing
Letters, 102(5):191–195, 2007.

9 Christos Levcopoulos and Mark H. Overmars. A balanced search tree with O(1) worst-case
update time. Acta Informatica, 26(3):269–277, 1988.

10 Ofer Neiman and Shay Solomon. Simple deterministic algorithms for fully dynamic maximal
matching. ACM Transactions on Algorithms (TALG), 12(1):7, 2016.

11 David Peleg and Shay Solomon. Dynamic (1+ ε)-approximate matchings: a density-
sensitive approach. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 712–729. Society for Industrial and Applied Mathematics,
2016.

12 Shay Solomon. Fully dynamic maximal matching in constant update time. In Foundations
of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages 325–334.
IEEE, 2016.

	Introduction
	Our contribution

	Preliminaries
	The algorithm
	Analysis
	De-amortizing offline strategies
	Discussion
	Reverse trade-off
	Dynamic arboricity
	Open problems

