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Abstract
Let T be a text of length n containing characters from an alphabet Σ, which is the union of
two disjoint sets: Σs containing static characters (s-characters) and Σp containing parameterized
characters (p-characters). Each character in Σp has an associated complementary character from
Σp. A pattern P (also over Σ) matches an equal-length substring S of T iff the s-characters match
exactly, there exists a one-to-one function that renames the p-characters in S to the p-characters
in P , and if a p-character x is renamed to another p-character y then the complement of x is
renamed to the complement of y. The task is to find the starting positions (occurrences) of all
such substrings S. Previous indexing solution [Shibuya, SWAT 2000], known as Structural Suffix
Tree, requires Θ(n logn) bits of space, and can find all occ occurrences in time O(|P | log σ+occ),
where σ = |Σ|. In this paper, we present the first succinct index for this problem, which occupies
n log σ +O(n) bits and offers O(|P | log σ + occ · logn log σ) query time.
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1 Introduction

Text Indexing is a classical problem defined as: pre-process a text T of length n containing
characters from an alphabet Σ of size σ ≤ n and then build a data structure, such that given
a pattern P (also over Σ) as a query, we can report all the occ starting positions (or simply,
occurrences) of P in T . Suffix Tree is the ubiquitous data structure for this purpose [14].
Unfortunately, it requires Θ(n logn) bits of space, which is too large for most practical
purposes (15-50 times the text). Grossi and Vitter [13], and Ferragina and Manzini [6]
addressed this problem by introducing space-efficient indexes, namely Compressed Suffix
Arrays (CSA) and FM-Index respectively. Subsequently, a lot of progress has been made
either in improving these initial breakthroughs [2, 7, 8, 18, 20], or to achieve space-efficient
indexes for other problems which require suffix trees as a component [16, 23].

The key concept behind the FM-Index and the CSA is the suffix link: the suffix link
of a node u points to a node v iff the string from root to v is the same as the string from
root to u with the first character truncated. Suffix links have the following so called rank-
preserving property: the leaves obtained by following suffix links from the leaves in u’s
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35:2 Structural Pattern Matching – Succinctly

subtree appear in the same relative lexicographic order in the subtree of v. However, in
many important variants [1, 4, 5, 10, 15, 21, 22] of the suffix tree, such as the parameterized
suffix tree, the 2D suffix tree, and the structural suffix tree, this rank-preserving property
of suffix links does not hold. Consequently, there has been very little progress in designing
compressed representations of these suffix tree variants. Only recently, Ganguly et al. [9]
designed the first succinct index for parameterized pattern matching [1]. We consider its
generalization [21], which has applications in RNA structural matching.

Throughout this paper, we use the following terminologies: Σ is an alphabet of size σ ≥ 2,
which is the union of two disjoint sets – Σs having σs static characters (s-characters) and Σp
having σp parameterized characters (p-characters). For each p-character, we associate a p-
character, called the complement character. For a string S, |S| is its length, S[i], 1 ≤ i ≤ |S|,
is its ith character and S[i, j] is its substring from i to j. If i > j, S[i, j] denotes an empty
string. Also Si denotes the circular suffix starting at position i. Specifically, Si is S if i = 1
and is S[i, |S|] ◦ S[1, i− 1] otherwise, where ◦ denotes the concatenation.

I Definition 1. Two equal-length strings S and S′ are a structural-match (s-match) iff
S[i] ∈ Σs ⇐⇒ S′[i] ∈ Σs,
S[i] = S′[i] when S[i] ∈ Σs,
there exists a one-to-one matching-function f that renames the p-characters in S to the
p-characters in S′, i.e., S′[i] = f(S[i]) when S[i] ∈ Σp, and
if a p-character x in S is renamed to y in S′, then the complement (if exists) of x in S
is renamed to the complement of y in S′.

Consider the following examples. Let Σs = {A,B,C} and Σp = {w, x, y, z}, where
the complement pairs are w-x and y-z. Then AxByCx is an s-match with AyBxCy; in
this case, there are no complementary requirements. Also, AxBwCx is an s-match with
AzByCz; here, x is paired with z, and w (complement of x) is paired with y (complement
of z). However, AxBwCx is not an s-match with AzBxCz (even though the one-to-one
criterion is satisfied); this is because as x is paired with z, w should have been paired with
y. Lastly, AxBwCx is not an s-match with AzBxCy because x has to be renamed to both
z and y, which violates the one-to-one criterion.

We consider the following indexing problem introduced by Shibuya [21].

I Problem 2. Let T be a text of length n over Σ. We assume T terminates in a uniquely
appearing s-character $. Index T , such that given a pattern P (also over Σ), we can report
all starting positions (occurrences) of the substrings of T that are an s-match with P .

Shibuya presented a Θ(n logn)-bit and O(|P | log σ + occ)-time index for this problem.
We present the following new result.

I Theorem 3. By using an n log σ + O(n)-bit index of T , we can count the number of s-
matches of a pattern P in O(|P | log σ) time. Subsequently, each match can be reported in
O(log σ logn) time.

1.1 Overview of Techniques
We start with the closely related parameterized matching (p-matching) problem of Baker [1].
Two strings are a p-match if they satisfy the first three criteria in Definition 1. Thus if two
strings are an s-match, they are definitely also a p-match, but may not be true the other way
around. To create an index for the p-matching problem (i.e., replace s-match by p-match in
Problem 2), Baker [1] introduced an encoding scheme such that two strings are a p-match
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iff their encoded strings are the same. Using this encoding scheme, Baker obtained a linear
space index for the p-matching problem. Similarly, the key to obtain a linear-space index for
Problem 2 is an encoding scheme such that two strings are an s-match if their encoded strings
are the same. Luckily, we already have such an encoding scheme. Specifically, using the
encoding scheme of Shibuya [21], we can construct the structural suffix tree (s-suffix tree) as
follows: first encode each suffix of T and then create a compact trie of these encoded suffixes.
To report the occurrences of a pattern, we first find the highest node u in the s-suffix tree
such that the string obtained by concatenating the edge labels from root to u is prefixed
by the encoded pattern. Then, we report the starting positions of the encoded suffixes
corresponding to the leaves in the subtree of u. However, Shibuya’s encoding scheme (as
well as Baker’s scheme) has the following drawback: on prepending the preceding character
of a suffix, the encoding of the original suffix changes. Consequently, FM-Index [6] and
CSA [13] no longer work for these definitions of pattern matching.

Since the p-matching problem of Baker [1] is similar to Problem 2, one may be tempted
to think that we can simply re-use (with minor adjustments) the succinct data structure
of Ganguly et al. [9] for the p-matching problem. Although, this is true, the extension is
not trivial. This is because, in contrast to the encoding scheme [1] used for p-matching,
Shibuya’s encoding scheme has a caveat: when we prepend the previous character of a
suffix, the change in the encoding of the original suffix can occur at two positions. Hence,
the index of Ganguly et al. [9] will no longer directly work. The first step, therefore, is a
new encoding scheme which alleviates this problem, and a version of the s-suffix tree based
on this encoding scheme; Section 2 presents the details.

Since we have now restricted the number of points of change (on prepending) to at
most one, we use techniques similar to that employed by Ganguly et al. [9]. We store the
number of distinct p-characters up to this point of change (from the start of the suffix) in
≈ log σ bits per suffix. However, we make a distinction between the cases when the change
is due to the complement of the prepended p-character versus the change due to the same
p-character. This forms the backbone of our data structure, and we call it the Structural
Burrows-Wheeler Transform (sBWT); the details are in Section 3.

The next step is to compute the starting positions of the lexicographically arranged
encoded (with our new encoding scheme) suffixes. We implement the Structural LF mapping
(sLF mapping), using which we can decode the starting positions without explicitly storing
them. Summarizing our discussions thus far, we can see that the key is to compute sLF
mapping. To this end, we use the sBWT and the topology of the s-suffix tree; the crucial
insight is provided in Lemma 9. Based on this lemma, we implement sLF mapping in
Section 4; space and time complexities are described in Lemma 14.

The last piece of the puzzle is to compute the suffix range of the encoded pattern (i.e.,
find the range of leaves under the node u defined at the beginning of this section). We again
use sLF mapping, the s-suffix tree topology, and sBWT to implement a backward search
procedure (like that in the FM Index [6] and succinct index for the p-matching problem [9]).
The details of the backward search procedure for s-matching are in Section 5.

2 Linear-Space Index

We first consider the encoding scheme by Shibuya [21]. A string S is encoded into an equal-
length string sencode(S) by replacing the first occurrence of every p-character in S by 0 and
any other occurrence of a p-character by the difference in text position from its previous
occurrence. Specifically, for any i ∈ [1, |S|], sencode(S)[i] = S[i] if S[i] is an s-character;
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otherwise, sencode(S)[i] = (i − j), where j < i is the last occurrence of S[i] before i. If j
does not exist, then j = i.

Now, for every p-character S[i], where sencode(S)[i] = 0, we find the rightmost j <
i such S[j] is the complement of S[i]. If j exists, then replace sencode(S)[i] by −(i −
j). For e.g., sencode(AxBwAwCxAx) = A0B(−2)A2C6A2, where the first step yields the
string A0B0A2C6A2. Here, Σs = {A,B,C} and Σp = {w, x}; additionally, w and x are
complement of each other.

I Fact 4 ([21]). Two strings S and S′ are an s-match iff sencode(S) = sencode(S′). Also
S and a prefix of S′ are an s-match iff sencode(S) is a prefix of sencode(S′).

2.1 New Encoding Scheme
Unfortunately, for our purposes, the encoding scheme defined in the previous sub-section
suffers from a drawback. Specifically, let S be a string and x be a p-character. Then
sencode(xS)[2, |S| + 1] can differ from sencode(S) at two distinct positions. For example,
consider the string S = wAwBxAx. Here, Σs = {A,B} and Σp = {w, x}; additionally, w
and x are complement of each other. Then, sencode(S) = 0A2B(−2)A2 and sencode(xS) =
sencode(xwAwBxAx) = 0(−1)A2B5A2. We want to avoid such an encoding scheme as it
will prevent us from using the techniques of Ganguly et al. [9]. To this end, we present the
following new encoding scheme.

We encode a string S as Φ(S) as follows. If S[i] is static, then Φ(S)[i] = S[i]. Consider
a p-character S[i] and let j+ < i and j− < i be the rightmost occurrence of S[i] and
the complement of S[i] in S[1, i − 1]. If there is no occurrence j+ (resp. j−), we let
j+ = −1 (resp. j− = −1). If j+ = j− = −1, then replace S[i] by 0. Otherwise, if
j+ > j−, then Φ(S)[i] = (i − j+). Otherwise, if j− > j+, then Φ(S)[i] = −(i − j−). For
example, Φ(AxByCx) = A0B0C4 and Φ(AxBwAwCxAx) = A0B(−2)A2C(−2)A2. Here,
Σs = {A,B,C} and Σp = {w, x}; additionally, w and x are complement of each other.

Importantly, note that we alleviate the problem of Shibuya’s encoding. Specifically,
sencode(xS)[2, |S| + 1] can differ from sencode(S) at most at one position, which is easily
illustrated by choosing S = wAwBxAx. All we are left to do is show that our encoding
scheme still guarantees that two strings are an s-match iff the corresponding encoded strings
are the same, which is handled by the following lemma.

I Lemma 5. Two strings S and S′ are an s-match iff Φ(S) = Φ(S′). Also S and a prefix
of S′ are a p-match iff Φ(S) is a prefix of Φ(S′).

Proof. If S and S′ are an s-match, then Φ(S) = Φ(S′) as S can be renamed to S′ by applying
the necessary one-to-one function. Therefore, it suffices to show that Φ(S) = Φ(S′) implies
S and S′ are an s-match. We note that the ith zero in Φ(S) (resp. in Φ(S′)) corresponds to
the ith distinct p-character, say ci (resp. c′i), in S (resp. in S′) such that neither ci (resp.
c′i) nor its complement appear before. Thus, we establish the one-to-one mapping ci → c′i.
Let p be the position of an occurrence of ci in S. Let q > p be the minimum position (if
any) where ci (or, its complement) occurs in S[p+ 1, |S|]. Since Φ(S′) = Φ(S), q is also the
minimum position where c′i (or, its complement) occurs in S′[p + 1, |S′|]. Therefore, if any
position p is the occurrence of ci (resp. its complement) in S, then p is the occurrence of c′i
(resp. its complement) in S′. J

I Convention 6. The integer characters (corresponding to p-characters) are lexicographically
smaller than s-characters. An integer character i comes before another integer character j
iff i < j. Also, $ is the largest character.
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2.2 Structural Suffix Tree
Structural Suffix Tree (sST) is the compacted trie of all strings in P = {Φ(T [k, n]) | 1 ≤
k ≤ n}. Each edge is labeled with a string over Σ′ = Σs ∪ {0, 1, . . . n − 1}. We use str(u)
to denote the concatenation of edge labels on the path from root to node u. The path of
each leaf node corresponds to the encoding of a unique suffix of T , and leaves are ordered
in the lexicographic order of the corresponding encoded suffix. Clearly, sST consists of n
leaves (one per each encoded suffix) and at most n − 1 internal nodes. We also store the
structural suffix array sSA[1, n] i.e., sSA[i] = j and sSA−1[j] = i iff Φ(T [j, n]) is the ith
lexicographically smallest string in P. Note that str(`i) = Φ(T [sSA[i], n]), where `i is the
ith leftmost leaf in sST. The total space required is Θ(n logn) bits.

To find all occurrences of P , traverse sST from root by following the edges labels and
find the highest node u (called locus) such that str(u) is prefixed by Φ(P ). Then find
the range [sp, ep] (called suffix range of Φ(P )) of leaves in the subtree of u and report
{sSA[i] | sp ≤ i ≤ ep} as the output. The query time is O(|P | log σ + occ), where occ is the
number of occurrences of P in T .

We remark that the structural suffix tree described here varies from that by Shibuya [21].
Their tree is based on sencode and can be constructed in O(n log σ) time using Θ(n logn)
bits of working space. Based on Fact 4 and Lemma 5, we observe that the longest common
prefix (LCP) of any two encoded suffix is the same whether we use sencode or Φ as the
encoding function. Therefore, given Shibuya’s tree, we can easily create sST by relabeling
the edges, and then sorting them based on their first character and Convention 6. The
additional time needed is O(n) using any linear-time sorting algorithm. Summarizing, we
can create sST in O(n log σ) time using Θ(n logn) bits of working space.

3 Structural Burrows-Wheeler Transform

We use a similar transform to that of the Burrows and Wheeler [3], which we call as the
Structural Burrows-Wheeler Transform (sBWT). Sort the circular suffixes Tx, 1 ≤ x ≤ n,
based on their Φ(·) encoding, where character precedence is determined by Convention 6.
Then, obtain the last character L[i] of the ith lexicographically smallest circular suffix.
Denote by f+

i (resp. f−i ) the first occurrence of L[i] (resp. the complement of L[i]) in the
circular suffix Ti. In case, there is no occurrence of L[i]’s complement, we take f−i = n+ 1.

The sBWT is defined as sBWT[i] =
L[i], if L[i] ∈ Σs
number of distinct p-characters in TsSA[i][1, f+

i ], if L[i] ∈ Σp and f+
i < f−i

−number of distinct p-characters in TsSA[i][1, f−i ], if L[i] ∈ Σp and f+
i > f−i

I Observation 7. For any 1 ≤ i ≤ n, let c = sBWT[i]. Then, Φ(TsSA[i]−1) =
c ◦ Φ(TsSA[i])[1, n− 1], if c ∈ Σs
0 ◦ Φ(TsSA[i])[1, f+

i − 1] ◦ f+
i ◦ Φ(TsSA[i])[f+

i + 1, n− 1], if c ∈ [1, σp]
0 ◦ Φ(TsSA[i])[1, f−i − 1] ◦ −f−i ◦ Φ(TsSA[i])[f−i + 1, n− 1], if c ∈ [−σp,−1]

The structural last-to-first column (sLF) mapping of i is the position at which the char-
acter at L[i] lies in the first column of the sorted encoded suffixes. Specifically, sLF(i) =
sSA−1[sSA[i] − 1], where sSA−1[0] = sSA−1[n]. The following lemma is a straightforward
adaptation of Theorem 3 in [9].
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I Lemma 8. Assume sLF(·) can be computed in tsLF time. By using an additional O(n)-bit
data structure, we can compute sSA[·] in O(tsLF · logn) time.

4 Implementing Structural LF Mapping

As highlighted by Lemma 8, the objective is to compute sLF. In this section, we show that
sLF(i) can be computed in O(log σ) time using n log σ +O(n) bits.

I Lemma 9. Consider two suffixes i and j corresponding to the leaves `i and `j in sST.
(a) If L[i] is parameterized and L[j] is static, then sLF(i) < sLF(j).
(b) If both L[i] and L[j] are static, then sLF(i) < sLF(j) iff either sBWT[i] < sBWT[j], or

sBWT[i] = sBWT[j] and i < j.
(c) Assume i < j and both L[i] and L[j] are parameterized. Let u be the lowest common

ancestor of `i and `j in sST, and z be the number of 0’s in the string str(u). Then,
1. If |sBWT[i]|, |sBWT[j]| ≤ z, then sLF(i) < sLF(j) iff

either sBWT[i], sBWT[j] > 0 and sBWT[i] ≥ sBWT[j],
or sBWT[i] < 0 < sBWT[j],
or sBWT[i], sBWT[j] < 0 and |sBWT[i]| ≤ |sBWT[j]|

2. If |sBWT[i]| ≤ z < |sBWT[j]|, then sLF(i) < sLF(j) iff sBWT[i] < 0
3. If |sBWT[i]| > z ≥ |sBWT[j]|, then sLF(i) < sLF(j) iff sBWT[j] > 0
4. If |sBWT[i]|, |sBWT[j]| > z, then sLF(i) > sLF(j) iff

either sBWT[i] = z + 1, the first character on the u to `i path is 0, and the first
character on the u to `j path is not an s-character,
or sBWT[j] = −(z + 1), and the first character on the u to `j path is 0.

Proof. (a) and (b): Follows immediately from Convention 6 and Observation 7. (c) Let
d = |str(u)|. Define fi to be smaller of the two values f+

i or f−i . Similarly, fj is defined.
Clearly, the conditions (1)-(4) can be written as: (1) Both fi, fj ≤ d, (2) fi ≤ d and fj > d,
(3) fi > d and fj ≤ d, and (4) Both fi, fj > d. Then the claims (1)-(3) follow from
Observation 7 and Convention 6. To prove (4), observe that if the suffixes i and j swap
order on being prepended by their previous characters then at least either fi or fj equals
d+ 1. The claim follows from Observation 7 and Convention 6. J

4.1 Wavelet Tree (WT) over sBWT

Let A[1,m] be an array over an alphabet of size σ. There exists a data structure of size
m log σ+o(m) bits, using which the following queries can be answered in O(log σ/ log logm)
time [6, 11, 12, 17]:

A[i],
rankA(i, x) = the number of occurrences of x in A[1, i],
selectA(i, x) = the ith occurrence of x in A[1,m], and
countA(i, j, x, y) = number of elements in A[i, j] that are at least x and at most y.

We drop the subscript A when the context is clear. Recall that the sBWT is a string of
length n over the alphabet set Σs∪{1, 2, . . . , σp}∪{−1,−2, . . . ,−σp} of size σ′ = σs+2σp ≤
2σ. By using a WT over sBWT in n log σ′ + o(n) = n log σ +O(n) bits, we can support the
above operations over sBWT in time O(1 + log σ/ log logn).
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4.2 Succinct representation of sST
A tree having m nodes can be represented in 2m + o(m) bits, such that if each node is
labeled by its pre-order rank, the following operations can be supported in O(1) time (note
that m < 2n in our case) [19]:

pre-order(u)/post-order(u) = the pre/post-order rank of node u,
parent(u) = the parent of node u,
nodeDepth(u) = the number of edges on the path from root to u,
child(u, q) = the qth leftmost child of node u,
lca(u, v) = the lowest common ancestor (LCA) of two nodes u and v,
L(u)/R(u) = the leftmost/rightmost leaf of the subtree rooted at u, and
levelAncestor(u,D) = the ancestor of u such that nodeDepth(u) = D.

Additionally, we can find the pre-order rank of the ith leftmost leaf in O(1) time. Moving
forward, we use `i to denote the ith leftmost leaf in sST.

4.3 ZeroDepth and ZeroNode
For a node u, zeroDepth(u) is the number of 0’s in str(u). For a leaf `i, sBWT[i] ∈ [1, σp]
(resp. sBWT[i] < 0), we define zeroNode(`i) to be the locus (if exists) of str(`i)[1, f+

i ] (resp.
the locus of str(`i)[1, f−i ]). Equivalently, zeroNode(`i) is the highest node (if exists) z on the
root to `i path such that zeroDepth(w) ≥ |sBWT[i]|. Moving forward, whenever we refer to
zeroNode(`i), we assume sBWT[i] ∈ [−σp, σp]. We present the following lemma.

I Lemma 10. By using the Wavelet Tree over sBWT and an additional O(n)-bit data
structure, we can find zeroNode(`i) in O(log σ) time.

Proof. We begin with the following definitions. For any node x on the root to `i path π,
define α(x) = the number of leaves `j , j ∈ [L(x),R(x)] such that L[j] ∈ Σp and fj ≤ |str(x)|,
and β(x) = count(L(x),R(x),−c, c), where c = |sBWT[i]|. Consider a node uk on π. Now,
zeroNode(`i) is below uk iff β(uk) > α(uk). Therefore, zeroNode(`i) is the shallowest node
uk′ on this path that satisfies β(uk′) ≤ α(uk′). Equipped with this knowledge, now we can
binary search on π (using nodeDepth and levelAncestor operations) to find the exact location.
The first question is to compute α(x), which is handled by Lemma 11. A normal binary
search will have to consider n nodes on the path in the worst case. Lemma 12 shows how to
reduce this to dlog σe. Thus, the binary search has at most dlog log σe steps, and the total
time is log log σ × d logσ

log logne = O(log σ), as required. J

The following are our helper lemmas for proving Lemma 10. The proofs are similar to
those of Lemmas 4 and 5 in [9] respectively. We omit the proofs due to space limitations.

I Lemma 11. We can compute α(x) in O(1) time using an O(n)-bit data structure.

I Lemma 12. By using the Wavelet Tree over sBWT and an additional O(n)-bit data
structure, in O(log σ) time, we can find an ancestor wi of `i such that zeroDepth(wi) <
|sBWT[i]| and wi is at most dlog σe nodes above zeroNode(`i).

4.4 Additional Components
Define fj to be the smaller of f+

j and f−j , where L[j] ∈ Σp. Let leafLeadChar(j) be a boolean
variable, which is 0 iff fj = (|str(v)|+ 1), where v = parent(zeroNode(j)).

For a node u, pCount(v) is the rightmost child w of v such that the first character on
the edge (v, w) is a p-character. Since

∑
v pCount(v) = O(n), we can compute pCount(v)

ISAAC 2017
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in O(1) by using an O(n)-bit data structure. Let fCount+(x) (resp. fCount−(x)) be the
number of leaves `j in x’s subtree, such that sBWT[j] ∈ [1, σp] (resp. sBWT[j] ∈ [−σp,−1])
and |str(y)| + 2 ≤ fj ≤ |str(x)| + 1, where y = parent(x). Additionally, for any leaf `j ,
assign fCount+(`j) = 1 (resp. fCount−(`j) = 1) if fj > |str(`j)| and sBWT[j] ∈ [1, σp] (resp.
sBWT[j] < 0). Let fSum+(x) be the sum of fCount+(y) of all nodes y which come before x
in pre-order and are not ancestors of x. Let

←−−−
fSum−(x) be the sum of fCount−(y) of all nodes

y which come after R(x) in pre-order. Let fAncestor+(x) be the number of leaves `j such
that pre-order(`j) < pre-order(x), f+

j = |str(lca(`j , x))| + 1, sBWT[j] ∈ [1, σp], and the first
character on the path from lca(`j , x) to x is an s-character.

We present the following important lemma (proof is similar to that of Lemma 3 in [9]
and is omitted due space restriction).

I Lemma 13. By using an O(n)-bit data structure, for any node x, we can compute the
following in O(1) time: fSum+(x),

←−−−
fSum−(x), and fAncestor+(x).

4.5 Computing sLF(i) when sBWT[i] ∈ [σp + 1, σ]
Using Lemma 9, sLF(i) > sLF(j) iff either j ∈ [1, n] and sBWT[j] < sBWT[i], or j ∈ [1, i−1]
and sBWT[i] = sBWT[j]. Then,

sLF(i) = 1 + count(1, n, 1, sBWT[i]− 1) + count(1, i− 1, sBWT[i], sBWT[i])

4.6 Computing sLF(i) when sBWT[i] ∈ [1, σp]
We first assume that zeroNode(`i) is defined, i.e., fi ≤ |str(`i)|. This can be easily checked
in O(1) time by maintaining a bit-vector. First find z = zeroNode(`i) and locate the node
v = parent(z). Depending on whether leafLeadChar(i) = 0, or not, we find the ranges S1,
S2, S3, and if required S4 and S5, as illustrated in Figure 1.

Sub-case 1 (fi = |str(v)| + 1). Let w be the parent of v. We partition the leaves into 4
sets: (a) S1: leaves to the left of v’s subtree, (b) S2: leaves in z’s subtree, (c) S3: leaves to
the right of v’s subtree, and (d) S4 (resp. S5): leaves in v’s subtree, and to the left (resp.
right) of that of z’s subtree. In case, v is the root node r, we take w = r; consequently,
S1 = S3 = ∅.

Sub-case 2 (fi > |str(v)| + 1). We partition the leaves into 3 sets: (a) S1 (resp. S3):
leaves to the left (resp. right) of z’s subtree. (b) S2: leaves in z’s subtree.

Let c = sBWT[i]. DefineNk to be the number of leaves `j in Sk such that sLF(j) ≤ sLF(i).
Then, sLF(i) = N1 +N2 +N3 +N4 +N5 is computed as follows.

Computing N1. For any `j ∈ S1, sLF(j) < sLF(i) iff one of the following holds: (1)
sBWT[j] ∈ [1, σp] and f+

j > 1 + |str(lca(`i, `j))|, or (2) sBWT[j] ∈ [1, σp], f+
j =

1 + |str(lca(`i, `j))|, and the leading character on the path from lca(`i, `j) to `i is an
s-character, or (3) sBWT[j] < 0. Then,

N1 =
{

fSum+(v) + fAncestor+(v) + count(1, L(v)− 1,−σp,−1), if leafLeadChar(i) = 0
fSum+(z) + fAncestor+(z) + count(1, L(z)− 1,−σp,−1), otherwise

Computing N2. If c > 0, then for any leaf `j ∈ S2, sLF(j) ≤ sLF(i) iff one of the following
holds: (1) either sBWT[j] > c or sBWT[j] = c and j ≤ i, (2) sBWT[j] < 0. If c < 0, then
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z

S2 S4

`i

q

q = pCount(v)

u
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i
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i = |str(v)| + 1

r

v

z

S1 S3S2

`i

f+
i or f−

i

(b) f+
i or f−

i > |str(v)| + 1

Figure 1 Illustration of various ranges when TsSA[i] is preceded by a p-character

for any leaf `j ∈ S2, sLF(j) ≤ sLF(i) iff one of the following holds: (1) −1 ≥ sBWT[j] > c,
(2) sBWT[j] = c and j ≤ i. Therefore,

N2 =


count(L(z),R(z), c+ 1, σp) + count(L(z), i, c, c)

+count(L(z),R(z),−σp,−1), if c ∈ [1, σp]
count(L(z),R(z), c+ 1,−1) + count(L(z), i, c, c), if c < 0

Computing N3. For any leaf `j ∈ S3, sLF(j) < sLF(i) iff sBWT[j] < 0 and f−j ≤ 1 +
|str(lca(z, `j))|. Therefore,

N3 =
{

count(R(v) + 1, n,−σp,−1)−
←−−−
fSum−(v), if leafLeadChar(i) = 0

count(R(z) + 1, n,−σp,−1)−
←−−−
fSum−(z), otherwise

Computing N4. Let u be the pCount(v)th child of v. For any leaf `j ∈ S4 such that
sBWT[j] ∈ [1, σp], f+

j 6= |str(v)| + 1; otherwise, the suffix j should not have deviated
from i at the node v. Likewise, if sBWT[j] < 0, then f−j 6= |str(v)|+ 1.
If c > 0, then N4 is the number of leaves `j in S4 such that j ≤ R(u) and either (1)
σp ≥ sBWT[j] ≥ c, or (2) sBWT[j] < 0. If c < 0, then N4 is the number of leaves `j in
S4 such that j ≤ R(u) and −1 ≥ sBWT[j] > c. Therefore,

N4 =
{

count(R(z) + 1,R(u), c, σp) + count(R(z) + 1,R(u),−σp,−1), if c ∈ [1, σp]
count(R(z) + 1,R(u), c+ 1,−1), if c < 0

Computing N5. Note that for any leaf `j ∈ S5 such that sBWT[j] ∈ [1, σp], f+
j 6= |str(v)|+1;

otherwise, the suffix j should not have deviated from i at the node v. Likewise, if
sBWT[j] < 0, then f−j 6= |str(v)| + 1. Also, the leading character of the path from v to
`j is negative.
If c > 0, then N5 is the number of leaves `j in S5 that satisfies one of the following: (1)
σp ≥ sBWT[j] ≥ c, or (2) sBWT[j] < 0. If c < 0, then N5 is the number of leaves `j in
S5 such that −1 ≥ sBWT[j] > c. Therefore,

N5 =
{

count(L(v), L(z)− 1, c, σp) + count(L(v), L(z)− 1,−σp,−1), if c ∈ [1, σp]
count(L(v), L(z)− 1, c+ 1,−1), if c < 0
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Algorithm 1 computes sLF(i)
1: c← sBWT[i]
2: if (c > σp) then
3: sLF(i)← 1 + count(1, n,−σp, c− 1) + count(1, i− 1, c, c)
4: else
5: z ← zeroNode(`i), Lz ← L(z), Rz ← R(z)
6: if (leafLeadChar(i) is 0) then
7: v ← parent(z), Lv ← L(v), Rv ← R(v)
8: u← child(v, pCount(v)), Ru ← R(u)
9: N1 ← fSum+(v) + count(1, Lv − 1,−σp,−1)

10: N3 ← count(Rv + 1, n,−σp,−1)−
←−−−
fSum−(v)

11: if (c > 0) then
12: N4 ← count(Rz + 1, Ru, c, σp) + count(Rz + 1, Ru,−σp,−1)
13: N5 ← count(Lv, Lz − 1, c, σp) + count(Lv, Lz − 1,−σp,−1)
14: else
15: N4 ← count(Rz + 1, Ru, c+ 1,−1)
16: N5 ← count(Lv, Lz − 1, c+ 1,−1)
17: else
18: N1 ← fSum+(z) + count(1, Lz − 1,−σp,−1)
19: N3 ← count(Rz + 1, n,−σp,−1)−

←−−−
fSum−(z)

20: if (c > 0) then
21: N2 ← count(Lz, Rz, c+ 1, σp) + count(Lz, i, c, c) + count(Lz, Rz,−σp,−1)
22: else
23: N2 ← count(Lz, Rz, c+ 1,−1) + count(Lz, i, c, c)
24: sLF(i)← N1 +N2 +N3 +N4 +N5

Now, we arrive at the scenario when zeroNode(`i) is not defined, i.e., fi > |str(`i)|.
Following the arguments in this section, it is easy to arrive at the following:

sLF(i) = 1 + fSum+(`i) + fAncestor+(`i) + count(1, i− 1,−σp,−1)
+ count(i+ 1, n,−σp,−1)− fSum−(`i), when fi > |str(`i)|

Summarizing the discussions in this section, we have proved the following.

I Lemma 14. We can compute sLF(i) in O(log σ) time using the Wavelet Tree over sBWT
and an additional O(n)-bit data structure.

5 Finding Suffix Range via Backward Search

We use an adaptation of the backward search algorithm in the FM-index [6]. In particular,
given a proper suffix Q of P , assume that we know the suffix range [sp1, ep1] of Φ(Q). Our
task is to find the suffix range [sp2, ep2] of Φ(c ◦Q), where c is the character previous to Q
in P . If c is a static character, then

sp2 = 1 + count(1, n,−σp, c− 1) + count(1, sp1 − 1, c, c)
ep2 = count(1, n,−σp, c− 1) + count(1, ep1, c, c)

Now, we consider the scenario when c is a p-character.
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5.1 Case 1 (Neither c nor its complement appears in Q)
Let d be the number of distinct p-characters in Q, which can be computed in O(1) time
after pre-processing P in O(|P | log σ) time. Note that sLF(i) ∈ [sp2, ep2] iff i ∈ [sp1, ep1],
sBWT[i] ∈ [−σp, σp] and fi > |Q|. Then,

(ep2 − sp2 + 1) = count(sp1, ep1, d+ 1, σp) + count(sp1, ep1,−σp,−d− 1)

Let u = lca(`sp1 , `ep1). For any i, sLF(i) < sp2 iff (1) i < sp1, sBWT[i] ∈ [1, σp] and
f+
i > 1 + |str(lca(u, `i))|, or (2) i < sp1, sBWT[i] ∈ [1, σp], f+

i = 1 + |str(lca(u, `i))|, and
the leading character on the path from lca(u, `i) to u is an s-character, or (3) i ∈ [sp1, ep1],
sBWT[i] < 0 and f−i ≤ |Q|, or (4) i < sp1 and sBWT[i] < 0, or (5) i > ep1, sBWT[i] < 0
and f−i ≤ 1 + |str(lca(u, `i))|. Therefore,

sp2 = 1 + fSum+(u) + fAncestor+(u) + count(sp1, ep1,−d,−1)

+ count(1, sp1 − 1,−σp,−1) + count(ep1 + 1, n,−σp,−1)−
←−−−
fSum−(u)

5.2 Case 2 (c or its complement appears in Q)
Assume that the number of characters until the first occurrence of c (resp. c’s complement)
in Q is f+ (resp. f−). If f+ or f− does not exist, we take it to be |Q| + 1. Let d+ and
d− be respectively the number of distinct p-characters in Q[1, f+] and Q[1, f−] respectively.
After an initial O(|P | log σ) time pre-processing, d+ and d− can retrieved in O(1) time.

Case when f+ < f−: Note that sLF(i) ∈ [sp2, ep2] iff i ∈ [sp1, ep1], sBWT[i] ∈ [1, σp] and
f+
i = f+. Consider any i, j ∈ [sp1, ep1] such that i < j, both sLF(i), sLF(j) ∈ [sp2, ep2],
and both sBWT[i], sBWT[j] ∈ [1, σp]. Now, f+

i = f+
j = f+, and sLF(i) < sLF(j).

Therefore,

(ep2 − sp2 + 1) = count(sp1, ep1, d
+, d+), and

sp2 = sLF(min{j | j ∈ [sp1, ep1] and sBWT[j] = d+})
= sLF(select(1 + rank(sp1 − 1, d+), d+))

Case when f+ > f−: Based on the above arguments, we can derive the following.

(ep2 − sp2 + 1) = count(sp1, ep1,−d−,−d−), and
sp2 = sLF(min{j | j ∈ [sp1, ep1] and sBWT[j] = −d−})

= sLF(select(1 + rank(sp1 − 1, d−), d−))

Thus, the suffix range of Φ(P ) is computed in O(|P | log σ) time. Applying Lemmas 8
and 14, we arrive at Theorem 3.
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