
Non-approximability and Polylogarithmic
Approximations of the Single-Sink Unsplittable
and Confluent Dynamic Flow Problems∗†

Mordecai J. Golin1, Hadi Khodabande2, and Bo Qin3

1 CSE Department, The Hong Kong University of Science and Technology,
Hong Kong
golin@cse.ust.hk

2 CE Department, Sharif University of Technology, Teheran, Iran
khodabande@ce.sharif.edu

1 CSE Department, The Hong Kong University of Science and Technology,
Hong Kong
bqin@cse.ust.hk

Abstract
Dynamic Flows were introduced by Ford and Fulkerson in 1958 to model flows over time. They
define edge capacities to be the total amount of flow that can enter an edge in one time unit. Each
edge also has a length, representing the time needed to traverse it. Dynamic Flows have been
used to model many problems including traffic congestion, hop-routing of packets and evacuation
protocols in buildings. While the basic problem of moving the maximal amount of supplies from
sources to sinks is polynomial time solvable, natural minor modifications can make it NP-hard.
One such modification is that flows be confluent, i.e., all flows leaving a vertex must leave along
the same edge. This corresponds to natural conditions in, e.g., evacuation planning and hop
routing.

We investigate the single-sink Confluent Quickest Flow problem. The input is a graph with
edge capacities and lengths, sources with supplies and a sink. The problem is to find a confluent
flow minimizing the time required to send supplies to the sink. Our main results include:

Logarithmic Non-Approximability. Directed Confluent Quickest Flows cannot be approxim-
ated in polynomial time with an O(logn) approximation factor, unless P = NP .
Polylogarithmic Bicriteria Approximations. Polynomial time (O(log8 n), O(log2 κ)) bicriteria
approximation algorithms for the Confluent Quickest Flow problem where κ is the number
of sinks, in both directed and undirected graphs.

Corresponding results are also developed for the Confluent Maximum Flow over time problem.
The techniques developed also improve recent approximation algorithms for static confluent flows.

1998 ACM Subject Classification G.1.6, Optimization, G.2.1, Combinatorics, G.2.2 Graph The-
ory

Keywords and phrases Optimization, Approximation, Dynamic Flow, Confluent Flow

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2017.41

∗ The work of all three authors was partially supported by RGC Hong Kong CERG grant 16208415.
† A full version of the paper is available at [7], https://arxiv.org/abs/1709.10307.

© Mordecai J. Golin, Hadi Khodabande and Bo Qin;
licensed under Creative Commons License CC-BY

28th International Symposium on Algorithms and Computation (ISAAC 2017).
Editors: Yoshio Okamoto and Takeshi Tokuyama; Article No. 41; pp. 41:1–41:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ISAAC.2017.41
https://arxiv.org/abs/1709.10307
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

41:2 Non-approximability and Polylogarithmic Approximations of Dynamic Flows

1 Introduction

Note: Due to space considerations, this extended abstract is missing many of the proofs of
the theorems and lemmas stated. For complete proofs and accompanying diagrams, please see
the full version of this paper at [7].

Network Flow problems are very well known. Their input is a graph network with
capacities c(e) on its edges. c(e) is the maximum flow that can be pushed through e. The
problem is usually to maximize the amount of flow that can be pushed through the network.
By contrast, Dynamic network flows, introduced by Ford and Fulkerson [5] in 1958, around
the same time as regular network flows, are not as well known. In Dynamic Flows, c(e)
becomes the amount of flow that can enter e in one time unit while edge length `(e) is the
time that it takes for a unit of flow to traverse e. Dynamic Flow problems need to consider
the additional problem of congestion, which may arise while flow waits to enter an edge.

Dynamic flows have been used to model problems as diverse as traffic movement, evac-
uation protocols and hop-routing of packets. The (Dynamic) Maximum Flow Over Time
problem is to find the maximum amount of flow that can be pushed from sources to sinks
in a given amount of time. The (Dynamic) Quickest Flow problem is to find the minimum
time in which a fixed amount of flow can be pushed from sources to sinks. In addition,
there are multicommodity-flow versions which require specific amounts of flow between given
source-sink pairs and transshipment problems versions which do not restrict which source’s
demands are pushed to which sinks. It is known that the Quickest Multicommodity Flow
Over Time problem is NP-Hard [9] while the Quickest Transshipment problem can be solved
in polynomial time [11, 12]. Good surveys on Dynamic Flow problems and an introduction
to its basic literature can be found in [15, 19, 23].

In basic (static) network flow problems, splittable flow is permitted, i.e., flow between a
source and sink can be divided into multiple parts with each being routed over a different
path. Unsplittable flows require that all flow between a particular source and sink be routed
over only one path. Confluent flows require that all flow passing through a vertex must leave
that vertex on the same edge1 [2, 22]. Very recent work [21] has shown that, for the static
single-sink case, unless P = NP , optimal unsplittable flows and optimal confluent flows do
not have polynomial time constant-factor approximation2 algorithms and, in fact, confluent
flows can not be approximated to within a factor of O(m1/2−ε).

Confluent flows were introduced by [3], with applications including Internet routing [1],
evacuation problems [17], and traffic coordination [15]. Several works have studied confluent
flows that minimize the maximum congestion in routing networks e.g., [3, 2, 22]. However,
these works usually do not take into consideration the transit time (or edge length) required
for a packet to traverse a single link, though this parameter is usually considered in general
network analyses (see, e.g., [10]). This immediately raises the Confluent Quickest Flow
problem: Does there exists any routing scheme that minimizes the total time for sending all
packets via a feasible (congestion bounded) confluent flow?

Another scenario in which confluent dynamic flows arise naturally is in modelling evacu-
ation protocols. Let vertices represent locations to be evacuated and edges represent paths
between vertices. A vertex’s original supply is the number of people to be evacuated from it
and a sink corresponds to an emergency exit. `(e) is the time required to traverse path e;
c(e) is the number of people that can enter e in parallel, i.e., its width. The Confluent Flow

1 Thus, confluent flows partition flows into edge disjoint in-trees, with the root of each tree being a sink.
2 The objectives studied in [21] are the total amount of flow that can be confluently routed or the number

of demands that can be confluently satisfied in the static flow.

M. J. Golin, H. Khodabande and B.Qin 41:3

restriction states that all people passing through a vertex must leave by the same edge, i.e.,
following a sign pointing “This way out”. The Quickest Flow problem corresponds to placing
the exit signs so as to minimize the time required to evacuate all people. The Maximum
Flow Over Time problem corresponds to placing the signs so as to maximize the number of
people that can be evacuated in a given amount of time.

The single-source single-sink version of the Confluent Quickest Flow problem is the
polynomial-time solvable [19] Quickest-Path Problem. The Confluent Flow version of the
multiple-source multiple-sink Quickest Transshipment problem was known to be polynomial-
time solvable when G is a tree [17]. It was also known that, for general graphs, the single-
sink Confluent Quickest Transshipment problem is NP-Hard [13]. But no other hardness
complexity results, and in particular, non-approximability results, were known for general G.

Our first results are that Confluent Dynamic Flow problems on directed graphs, both
the Quickest Flow and Max Flow Over Time versions, cannot be approximated to within
O(logn) (n being the number of vertices in G) unless P = NP . Our results hold even when
the graph has a single sink. Since, Multicommodity Flow and Transshipment are equivalent
in the single-sink case we write “Quickest Flow” instead of “Quickest Multicommodity Flow”
or “Quickest Transshipment”.

In the other direction, we present polylogarithmic bicriteria approximation algorithms
for both the single-sink Confluent Quickest Flow and Confluent Maximum Flow Over Time
problems, in both directed and undirected networks. Note that known approximation
algorithms for confluent flows are restricted to static networks in [3, 2, 22], and known
optimal algorithms for dynamic confluent flows are restricted to special graphs, e.g., trees [17].
To the best of our knowledge, our algorithm is the first polylogarithmic approximation for
these problems in general networks. These results are presented in Tables 1-2.

1.1 Single-Sink Dynamic Unsplittable/Confluent Flow Problems
The input to the problems is a dynamic flow network, i.e., a graph G = (V,E) with n nodes
and m edges, where edge e has capacity c(e) and length `(e). Also specified are a collection
of sources {s1, ..., sk} ⊂ V and a sink t ∈ V . The problems studied are:

Quickest Flow Problem: Provides additional inputs {d1, ..., dκ}. di is the supply at
source si. The problem is to find a flow minimizing the time it takes to send all of the di
units of supply to sink t.
Maximum Flow Over Time Problem: Provides additional input of time horizon T.
The problem is to find a flow maximizing the amount of supply sent to the sink t within
time horizon T . Supply at the si is unlimited.

We treat two different types of flow restrictions:
Unsplittable Flow: All flow from si to t must pass along the same path Pi from si to t.
Confluent Flow: Any two supplies that meet at a node must traverse an identical path to
the sink t. In particular, at most one edge out of each node v is allowed to carry flow.
Consequently, the support of the flow is a tree with all paths in the tree terminating at t.

1.2 Our Results
Section 3.1 presents a simple proof that, unless P = NP , ∀ε > 0, it is impossible to construct
a polynomial-time 3/2− ε approximation algorithm for the single-sink Quickest Flow problem
when flows are restricted to be either unsplittable or confluent. This result holds for both
directed and undirected graphs and even when the graph is restricted to have only one sink.

ISAAC 2017

41:4 Non-approximability and Polylogarithmic Approximations of Dynamic Flows

Table 1 Hardness or lower bounds on approx. ratio for the single-sink Quickest Flow problem.

Flow Dynamic Network Hardness or LB on Approx. Ratio

Confluent Trees Polynomial-Time Solvable [17]

Confluent Directed/Undirected NP-Hard [13]

Unsplittable Directed/Undirected 3/2− ε (Thm. 6)

Confluent Directed Ω(logn) (Thm. 7)*

Unsplittable/Confluent Directed/Undirected No (15
14 − ε, 1 + α)-Approx. (Thm. 10)*

* Corresponding results also hold for the single-sink Maximum Flow Over Time problem
(Thms 8, 9, 11).

Table 2 Upper bounds on approximation ratio for variations of the Fixed-Sink Confluent Flow
problem. The first three items are for uncapacitated problems but are included here because they
serve as the internal building blocks for the approximation algorithms for the capacitated problems.

Network Capacity Objective Sources Sinks UB on Approx. Ratio

Static Uncapacitated Min Congestion* n k (k ≤ n) O(log3 n) [3]†

Static Uncapacitated Min Congestion* n k (k ≤ n) 1 + ln k [2]

Static Uncapacitated Min Congestion* κ (κ ≤ n) k (k ≤ n) O(log3 κ) (Thm. 13)†

Static Node Max Demand n 1 O(log6 n) with NBA4 [22]

Static Edge/Node Max Demand κ (κ ≤ n) 1 O(log10 κ) with NBA4 (Thm. 22)†

Dynamic Edge Max Flow Over Time κ (κ ≤ n) 1 (O(log2 κ), O(log8 n)) (Thm. 21)†

Dynamic Edge Quickest Flow κ (κ ≤ n) 1 (O(log8 n), O(log2 κ)) (Thm. 20)†

* Minimize the maximum node congestion in a network that admits a feasible splittable flow
satisfying all supplies.
† These results hold with high probability, or more precisely, with probability 1− n−c, where c is a
constant.

Section 3.2 proves, for the confluent directed graph case, the much stronger result that
unless P = NP , it is impossible to construct a polynomial-time O(logn) approximation
algorithm for the single-sink Quickest Flow problem. The major tool used is a modification
of a grid graph construction from [21] which was an extension of one pioneered by [8]. We
note that our reduction is not the same as that in [21]. There, the objective function was
the maximum amount of static flow that could be pushed. Here, the objective function is
the minimum amount of time required to push the supplies. Our proof works by deriving
new properties of the grid-graph. Section 3.3 extends the analysis to the Maximum Flow
Over Time problem with our lower bounds on the approximation ratio being summarized in
Table 1.

We also note that it might seem intuitive that, because confluent flows are “harder”
than static flows, the non-approximability of confluent static flows, e.g., the result from [21],
should immediately imply the non-approximability of confluent dynamic flows. This is not
true, though. The two problems are trying to optimize very different things, making them
incomparable. More specifically, in the static case, the goal is Demand Maximization, i.e., to
find a subset of the demands of maximum total value that can be confluently routed. In the
dynamic case, the goal is to find a confluent routing of ALL demands in minimal time. To
appreciate the distinction it is instructive to examine confluent routing on trees where the
static problem is NP-Hard [4] but the dynamic case is polynomial-time solvable [17].

M. J. Golin, H. Khodabande and B.Qin 41:5

Despite the non-approximability shown above for confluent dynamic flows, one might
hope to create bicriteria (α, β) approximations3. However, in Section 4, we demonstrate
that, for both directed and undirected graphs, there exists a constant α > 0 such that, for
any ε > 0, there is no polynomial-time (15

14 − ε, 1 + α)-approximation for the Unsplittable/
Confluent Quickest Flow problem, unless P = NP . Similar results are obtained for the
Unsplittable/Confluent Max Flow Over Time problem. Our proof utilizes a reduction from
the Bounded Occurrence 3-Dimensional Matching problem.

In contrast to the above we show, in Section 5, how to construct a (O(log8 n), O(log2 κ))-
approximation for the Confluent Quickest Flow problem, where κ is now the number of
sources, in polynomial time. To this end, we use the idea of routing a confluent flow in a
static monotonic network, i.e., one in which each vertex is given an additional vertex capacity
that satisfies that all edges go from a low-capacity node to a high-capacity one, which was
introduced in [22]. Recall that in our original confluent flow problem the support of the flow
is a tree. In that tree, a parent node never supports less flow than its child. So, intuitively, a
feasible confluent flow requires its tree support to be monotonic. We develop new techniques
(Theorem 16) that permit constructing, in polynomial time, a confluent flow that routes all
supplies in a given monotonic network, while bounding both node congestion and flow length.

Via this monotonic technique, we build a novel multi-layer monotonic network and
construct a confluent static flow on it which is finally re-routed to produce a confluent
dynamic flow for our original graph problem. Our method guarantees that a dynamic
flow can be found such that the total transit time is at most polylogarithmic factor times
the optimal. Similarly, this also lets us develop a polynomial-time (O(log2 κ), O(log8 n))-
approximation of the Confluent Maximum Flow Over Time problem.

Our technique mainly differs from that in [22] in constructing length-bounded confluent
flows in static networks (which might be of independent interest). It also permits us to
improve their approximation algorithms when not all vertices are sources. More specifically,
recall that [22] gives an O(log6 n) approximation algorithm for the demand maximization
confluent flow problem, with the no-bottleneck assumption (NBA)4. If restricted to static
networks, our technique can give an O(log10 κ) approximation for the same problem. If κ is
bounded, for example, this gives a constant approximation, which is nearly optimal.

Our improvement to the approximation ratio comes through a combination of (i) a novel
construction of the multi-layer network, and (ii) a new building block inside our monotonic
network technique—a better routing approach for uncapacitated networks (Theorem 13).
This will be discussed in more detail in Section 5.

Our Theorem 13 enables us to route confluent flows in uncapacitated monotonic sub-
networks with congestion bounded by poly(log κ) instead of poly(logn). While this might
look weak compared to the 1 + ln k (k being the number of sinks) bound from [2] this is
only used as a subroutine. In fact, the internal constructions of both [22] and our proofs
for approximating the capacitated static problem build uncapacitated sub-networks which
can have Θ(n) induced sources and sinks. Plugging in the bound of [2] would give a
poly(logn) bound. We develop a new combinatorial argument that, combined with our new
poly(log κ) bounds for uncapacitated monotonic sub-networks, gives a poly(log κ) bound for
the capacitated one as well, yielding our Theorem 17. This leads us to the final improvement.

A chart presenting previously known results and our new ones is given in Table 2.

3 These will be formally introduced in Definition 1.
4 In node-/edge-capacitated networks, the NBA is that maxv∈V d(v) ≤ minv∈V c(v), and maxv∈V d(v) ≤

mine∈E c(e), respectively.

ISAAC 2017

41:6 Non-approximability and Polylogarithmic Approximations of Dynamic Flows

2 Preliminaries: Definitions and NP-Hard Problems

Let I be some input to an optimization problem, OPT (I) be the optimum value to the given
problem on I and |I| be its size. As examples, I could be a dynamic flow problem on a graph
with n vertices and m edges. We could have just as easily defined |I| = m+ n.

We now define bicriteria approximations for the two-objective optimization problem.

I Definition 1 (Bicriteria Approximation). For any α, β > 0, an (α, β)-approximation al-
gorithm A for the two-objective optimization problem is a function that takes as input any
parameter k and any instance I, and outputs a solution x such that
1. αf(x) ≥ f(x∗), g(x) ≤ βk, if the optimization problem is to find a solution x maximizing

the cost function f(x) subject to another cost function g(x) ≤ k,
2. f(x) ≤ αf(x∗), βg(x) ≥ k, if the optimization problem is to find a solution x minimizing

the cost function f(x) subject to another cost function g(x) ≥ k,
where x∗ is the optimal solution for the input I and k.

We can actually define two different types of confluent flows:

I Definition 2. A flow in G is node-confluent if, for every vertex v, all flow leaving v leaves
along the same edge. A flow in G is edge-confluent if, for every edge e = (u, v) if all flow
that passes through e must leave v through the same edge (v, w).

In this paper the term “confluent”, when used alone, will denote node-confluence. When
edge-confluence is needed (in some proofs) it will be explicitly specified.

Finally we will use the following NP-hard problems in our reductions:

I Definition 3 (The Two-Disjoint Paths (Uncapacitated) Problem). Given a graph G and
node pairs {x1, y1} and {x2, y2}, decide if G contains paths P1 from x1 to y1 and P2 from
x2 to y2 such that they are disjoint.

In undirected graphs the Two-Disjoint Paths (Uncapacitated) problem, for both edge-disjoint
and node-disjoint paths, is polynomial-time solvable [20]. However, in directed graphs, the
problem is NP-hard for both edge-disjoint and node-disjoint paths [6].

I Definition 4 (The Two-Disjoint Paths (Capacitated) Problem). Let G be a (static) graph
whose edges are labelled either α or β with β ≥ α. These labels are the capacities of the
edges. Given node pairs {x1, y1} and {x2, y2}, decide whether G contains paths P1 from x1
to y1 and P2 from x2 to y2 such that:
i. P1 and P2 are disjoint (node-disjoint or edge-disjoint);
ii. P2 may only use edges of capacity β (P1 may use both capacity α and capacity β edges).
The version of node-disjoint paths was proven to be NP-hard for undirected graphs by [8].
The version of edge-disjoint paths was proven to be NP-hard by [18].

I Definition 5 (The Bounded Occurrence 3-Dimensional Matching Problem (BO3DM)). Sup-
pose there are three disjoint sets A = {a1, ..., an}, B = {b1, ..., bn} and C = {c1, .., cn}, and
a set T = {Tµ ∈ A×B × C : µ ∈ [m]} such that each element of A,B,C occurs in the same
constant number M of triples in T . The goal is to find the largest subset T ′ ⊂ T such that
all triples in T ′ are disjoint, i.e., no two elements of T ′ contain the same element of A,B,C.

As shown in [14], there exists an ε0 > 0 such that it is NP-hard to decide whether there exist
n disjoint triples in T (satisfiable instance) or there exist at most (1− ε0)n disjoint triples in
T (ε0-unsatisfied instance).

M. J. Golin, H. Khodabande and B.Qin 41:7

Dynamic Flows. We first describe the mechanics of flow over one edge e = (u, v) with
capacity c and length `. Suppose there are d units of supply on node u. Assume the discrete
case in which d, c, ` are all integral and all d need to be moved from u to v. Items move
in groups of size at most c, with one group entering e each time unit. Thus, the items are
transported in dd/ce groups. It takes ` time units for the first group to arrive at v. Since the
groups left u at consecutive time units they arrive at v in consecutive time units. Thus, it
requires dd/ce − 1 + ` time to move all items from u to v over e. Also, in both cases, if other
items arrived at u wanting to enter e they would have to wait until all items already at u
had departed before entering e.

Finally, we introduce some notations. A flow f is feasible if ∀e ∈ E, f(e) ≤ c(e). For any
e ∈ E, we define its edge congestion as EC(e) := f(e)/c(e). Under certain circumstance, we
may introduce the node capacity c(v) of v ∈ V , and define its node congestion NC(v) :=
fout(v)/c(v), where fout(v) is the total flow out of v. For a flow f , we let its edge congestion
EC(f) := maxe∈E EC(e) and node congestion NC(f) := maxv∈V \{t1,...,tk}NC(v), where
t1, ..., tk are sinks.

A static flow f can be specified by a collection of source-sink paths P = (P1, ..., PK) and
corresponding flow values f1, ..., fK . We define the length of flow f as L(f) := maxi∈[k] L(Pi),
where L(Pi) :=

∑
e∈Pi `(e) is the length of Pi. f is called as L-length-bounded for some

L ∈ R+ if L(f) ≤ L, i.e., no path in P has path length longer than L. Also, if all fi’s are
identical, we call f as uniform.

3 Approximation Hardness for Unsplittable/Confluent Dynamic Flows

3.1 Constant Approximation Hardness of the Quickest Flows Problem
This section gives a simple proof that a polynomial-time constant approximation algorithm
for the single-sink Unsplittable/Confluent Quickest Flow problem would imply P = NP .

I Theorem 6. The single-sink Unsplittable/Confluent Quickest Flow problem in both directed
and undirected graphs cannot be approximated to within a factor 3/2− ε, for any ε > 0, unless
P = NP .

3.2 Logarithmic Approximation Hardness of Confluent Quickest Flows
For the single-sink directed Confluent Quickest Flow problem we now derive a much stronger
result than in the previous section. That is, it is NP-hard to even get a O(logn) approximation
to the optimal solution.

To prove the logarithmic approximation hardness, we construct the following instance.

Hard instance. Before building the desired hard instance, we describe the dynamic half-grid
network GN . It can be viewed as an extension of the static half-grid graph in [21]. There
are N rows (numbered from bottom to top) and N columns (numbered from right to left).
All the edges in the i-th row and all the edges in the i-th column have capacity 1/i. The i-th
row extends as far as the i-th column and vice versa. The sink t, located at the bottom of
the half-grid, is connected with the bottom node ti of the i-th column by an edge of capacity
1/i. Also, at the leftmost node of the i-th row, there is a source si with supply M2/i, where
M is a sufficiently large constant. We set all edge lengths as 1, and always enforce edge
directions to be downwards and to the right.

Suppose we are now given an instance I of the directed node-disjoint version of the
Two-Disjoint Paths (Uncapacitated) problem. We replace each 4-degree node in the half-grid

ISAAC 2017

41:8 Non-approximability and Polylogarithmic Approximations of Dynamic Flows

by a copy of I. Inside the copy, all edges have length 1. Consider the copy of I at the
intersection of the i-th column and j-th row (with j > i) in GN . That instance is incident to
two edges of capacity 1/i and two edges of capacity 1/j. Inside that I, we let the edges of
capacity 1/j be incident to x1 and y1, and the edges of capacity 1/i be incident to x2 and
y2; we set all edge capacities to 1/i. This completes the hard instance of directed confluent
dynamic flows. Denote the constructed network as G.

Utilizing G, we obtain the logarithmic approximation hardness for the Confluent Quickest
Flow problem. The proof works by showing that if we could get a logarithmic approximation,
we could solve I.

I Theorem 7. The single-sink Confluent Quickest Flow problem in directed graphs cannot
be approximated to a factor within O(logn), unless P = NP .

3.3 Approximation Hardness of the Max Flow Over Time Problem

This section discusses the approximation hardness of the single-sink Unsplittable and Conflu-
ent Maximum Flow Over Time problem.

To derive the approximation hardness of the Unsplittable Maximum Flow Over Time
problem, we will again reduce from the directed/undirected edge-disjoint version of Two-
Disjoint Paths (Capacitated) problem. We construct the same network as in Section 3.1 and
utilizing this constructed network, we show

I Theorem 8. The single-sink Unsplittable Maximum Flow Over Time problem in both
directed and undirected graphs cannot be approximated to a factor within 3/2− ε, for any
ε > 0, unless P = NP .

Although the above hard instance applies to the confluent flow, we present a stronger
lower bound for the Confluent Maximum Flow Over Time in directed graphs.

I Theorem 9. The single-sink Confluent Maximum Flow Over Time problem in directed
graphs cannot be approximated to a factor within O(logn), unless P = NP .

4 Constant Bicriteria Approximation Hardness of Dynamic Flows

This section first proves the NP-hardness of constant bicriteria approximations for the
Unsplittable and Confluent Maximum Flow Over Time problems.

Our proof uses reductions from the BO3DM problem. Inspired by the reduction5 presented
in [8, 16], given an instance of BO3DM, we construct the following corresponding hard instance
for the Unsplittable/Confluent Maximum Flow Over Time problem in undirected graphs.
Note that the directed case is similar, except that we enforce all edge directions to point
right. Suppose we are given an instance I of Bounded Occurrence 3-Dimensional Matching
problem. Denote the µ-th triple Tµ as (apµ , bqµ , crµ), where pµ, qµ, rµ ∈ [n]. We build an

5 Even though we are reducing to the same problem note that our goal differs from [8], which aims at
finding a maximum number of length-bounded edge-disjoint paths. For technical reasons, this requires
us to develop a totally different bounding technique.

M. J. Golin, H. Khodabande and B.Qin 41:9

undirected graph G = (V,E) where

V = {s, t} ∪ {ail : i ∈ [n], l ∈ [M − 1]} ∪ {si, bi, ci : i ∈ [n]} ∪ {s′µ, xµ, yµ : µ ∈ [m]},
E = {(si, s), (s, bi), (ci, t), (ail, t) : i ∈ [n], l ∈ [M − 1]}

∪{(s′µ, s), (s, xµ), (yµ, apµl) : µ ∈ [m], l ∈ [M − 1]}
∪{(bqµ , xµ), (xµ, yµ), (yµ, crµ) : µ ∈ [m]}.

Hereby, G contains a vertex representing each element in the sets B and C, and (M − 1)
copies of each element in A. Also, G contains a sink t, and sources si (i ∈ [n]), s′µ (µ ∈ [m])
as well as one more node s (s is removed when considering confluent flows). Meanwhile, for
each triple Tµ in T , there are two vertices xµ, yµ to represent it. We connect si with s, and s
with bi for each i ∈ [n]; we also connect s′µ with s, and s with xµ for each µ ∈ [m]. Similarly,
we connect t with ail, ci for each i ∈ [n] and l ∈ [M − 1]. For each tuple, Tµ = (apµ , bqµ , crµ),
we connect xµ with bqµ , and yµ with crµ as well as (M − 1) copies of apµ .

Edge capacities and lengths. All edge capacities are set as 1. Let each (s′µ, xµ) have length
5 (red edges), and each (yµ, crµ) have length 4 (green edges), and each (ail, t) have length 3
(blue edges), and all other edges have length 2 (black edges). Finally, we set the time horizon
T = 14 in the constructed graphs for the Unsplittable/Confluent Maximum Flow Over Time
problems. Based on the constructed instance, we have

I Theorem 10. There exists a constant α > 0 such that, for any ε > 0, there is no
polynomial-time (1 +α, 15

14 − ε)-approximation for the Unsplittable/Confluent Maximum Flow
Over Time problem in both directed and undirected graphs, unless P = NP .

To show the hardness of the Unsplittable/Confluent Quickest Flow problem, we construct an
instance similar to Theorem 10, except that we let each source have supply 1, and have

I Theorem 11. There exists a constant α > 0 such that, for any ε > 0, there is no
polynomial-time (15

14 − ε, 1 + α)-approximation for the Unsplittable/Confluent Quickest Flow
problem in both directed and undirected graphs, unless P = NP .

5 Polylogarithmic Approximation for Confluent Dynamic Flows

5.1 Static Confluent Flows in Uncapacitated Networks with κ Sources
We now develop techniques for routing confluent flows in uncapacitated networks with κ ≤ n
sources. Through Section 5.3, unless otherwise specified, the flow discussed is static.

I Definition 12 (β-Satisfiable). For any β ∈ [0, 1], a supply di is β-satisfiable in flow f if at
least a β faction of di can be sent to the sink via f . A flow f is β-satisfiable if all supplies
are β-satisfiable in f .

Again, suppose G = (V,A) is a static directed graph with supply d(v) located at each
v ∈ V . There exists a collection of sinks {t1, ..., tk} ⊂ V . We let κ be the number of non-zero
supplies, and let all edge and node capacities be 1. We present

I Theorem 13. In the directed uncapacitated network with κ uniform non-zero supplies,
given a (splittable) 1-satisfiable flow f , there exists a randomized algorithm for finding a
multi-sink confluent flow f ′ with the node congestion bounded by O((NC(f))2 log3 κ) whp6.

6 Throughout the paper, we use whp to mean with high probability, or more precisely, with probability
1− n−c, where n is the number of nodes in the network and c is a constant.

ISAAC 2017

41:10 Non-approximability and Polylogarithmic Approximations of Dynamic Flows

Note that if κ is bounded and f is feasible, Theorem 13 can provide confluent flows with
constant congestion.

Also, the support of the resulting flow is a collection of trees rooting at those sinks
t1, ..., tk. We guarantee that the height of those trees can be bounded as below.

I Lemma 14. Whp, the height of any tree constructed in the randomized algorithm is at
most O(NC(f) logn).

5.2 Static Length-Bounded Confluent Flows in Monotonic Networks
This section gives an algorithm for constructing a length-bounded confluent flow in monotonic
networks, utilizing techniques developed in Section 5.1. A monotonic network is a special
(static) directed graph with vertex capacities and no edges pointing in the direction of
decreasing capacity. Formally,

I Definition 15 (Monotonic Network). A directed graph G = (V,A) with node capacity c(v)
for each v ∈ V is a monotonic network iff c(u) ≤ c(v) for every arc (u, v).

The network G = (V,A) is the same as Section 5.1 except that here each node has
capacity c(v) and each edge has capacity 1. Our first step is to prove

I Theorem 16. Let G = (V,A) be a monotone network. Given a 1-satisfiable flow f with
node congestion at most 1, one can, in polynomial time, construct a confluent 1-satisfiable
flow with node congestion O(log8 n) and flow length O (L(f) logn log cmax/ log logn) whp,
even without the no-bottleneck assumption.

The idea is to first decompose the monotonic network into several sub-networks, and in
each, construct length-bounded confluent flows with small node congestion. Connecting all
confluent flows in those sub-networks, we can construct a confluent flow in the original network
as desired. Our monotonic network technique incorporates a new parameter, namely the
edge length, and, more importantly, our objective is to construct a bicriteria confluent flow,
namely bounding both node congestion and length (note that in [22], only node congestion
can be bounded). The main difference from [22] lies in that we embed our new algorithms
for uncapacitated networks into the monotonic network routing.

Our technique can be further improved if we remove the length-bounded constraint.
The key observation is that the sources in each sub-network are only induced by the given
(splittable) flow that we would like to re-route into a confluent one. We can guarantee that, if
the given flow is unsplittable, at most κ flow paths pass between two sequential sub-networks,
inducing at most O(κ) sources. This, combined with our new technique for uncapacitated
networks, gives the improvement of the congestion from poly(logn) to poly(log κ).

I Theorem 17. Let G = (V,A) be a monotone network with a single sink. If there is
1-satisfiable flow f with node congestion at most 1, one can, in polynomial time, construct a
confluent 1-satisfiable flow with node congestion O(log8 κ) whp, under the NBA.

5.3 Static Length-Bounded Confluent Flows in General Networks
Via the techniques developed above for monotonic networks, this section develops a poly-
nomial-time algorithm for determining a length-bounded confluent static flow in general
networks.

Suppose we are given a directed/undirected edge-capacitated network G(V,E) (Section
5.2 dealt with node capacitated networks). Each node v ∈ V has a supply d(v) to be sent to

M. J. Golin, H. Khodabande and B.Qin 41:11

the unique sink t. Our goal is to find a subset of supplies of maximum total value that can
be routed via a confluent flow, whose flow length and edge congestion are both bounded.

To this end, we need to pre-process the network as follows. First, we ignore those demands
of size at most dmax/2κ, as they contribute at most half of the value of the optimal flow.
Meanwhile, we round each supply up to the nearest power of 2, and group those with the
same value together, producing O(log κ) groups of distinct supply sizes. To compute an
approximation, we will separately route each supply group in G, and output the flow of
the maximum value among all groups. Note that, this will lose a O(log κ) factor in the
approximation ratio. Hence, we reduce the original problem to the uniform-supply case.
Without loss of generality, by scaling, we can assume every supply is 1.

Second, we round each capacity up to the nearest power of 2, and assume all edges
have capacity at most κdmax, i.e., cmax ≤ κdmax as the extra capacity above this value
is superfluous. Furthermore, when considering the uniform-supply case, those edges with
capacity less than the supply size would never be used, as the supply should be routed
confluently. Accordingly, we can assume each edge capacity is in [1, κ] as dmax = 1 in
unit-supply case, and then there exist O(log κ) distinct capacity sizes.

Given a directed/undirected edge-capacitated network G(V,A) with a single sink t, letting
k := blog cmaxc+ 1, we construct the directed k-layer (monotonic) network H.
k layers. Create k layers and k node sets V (H0), V (H1), ..., V (Hk−1), where V (Hi) :=
V (G) \ {t} and the i-th layer contains V (Hi).
Induced node capacities. For the i-th node set V (Hi) (i = 0, ..., k − 1), denote by ui
the i-th copy of node u, and let ui have capacity 2i.
Vertical arcs. For each edge (u, v) ∈ A(G), connect two vertical arcs (ui, vi) (and
(vi, ui) if G is undirected) with capacity of 2i in H, iff the capacity of (u, v) is at least 2i
(i = 0, ..., k − 1).
Horizontal arcs. For 0 ≤ i ≤ k − 2, ∀u ∈ V , connect a horizontal arc (ui, ui+1) with
capacity 2i.
Arc lengths. Let vertical arcs have the same length as arcs in G, and horizontal arcs
have length 0.
H := (V (H), A(H)). Set V (H) as the union of V (H0), V (H1), ..., V (Hk−1), {t} plus
those dummy sinks, and set A(H) as the collection of those vertical and horizontal arcs.
Supplies. Place the supply of v at its copy v0 in Layer 0.
Dummy sinks. If there exists an edge (u, t) with capacity of 2i, then create a copy tju
of t in Layer j and let the capacity of tju be 2j , for each j = i, ..., k − 1. Connect the
vertical arc (u, tiu) with capacity of 2i, and the horizontal arc (tju, tj+1

u) with capacity of
2j , for each j = i, ..., k − 2. Finally, connect the arc (tk−1

u , t) with capacity of 2k−1.

Our multi-layer network can be viewed as a new construction enabling our length-bounded
routing technique to work in edge-capacitated networks. Applying Theorem 16 yields:

I Theorem 18. In the layered network H, given a (splittable) flow f for routing all
unit supplies with node congestion at most 1, there exists a polynomial-time algorithm
for constructing a 1-satisfiable confluent flow with node congestion O(log8 n) and flow length
O
(
L log2 n/ log logn

)
whp.

Thus, via Theorem 18, we can obtain a confluent flow h in the k-layer network H with
both node congestion and length being bounded. Nevertheless, since H is constructed
from logarithmic copies of nodes in G, the constructed confluent flow h in H may induce a
non-confluent flow in G, because some vertices v might contain logarithmic out-flow edges.
We then show that there is a polynomial-time scheme for re-routing h into a confluent flow

ISAAC 2017

41:12 Non-approximability and Polylogarithmic Approximations of Dynamic Flows

in the original network G. Also, although we bound node congestion in H, the original
network G is in fact edge-capacitated and we are actually interested in the edge congestion.
Fortunately, our construction of multi-layer networks can be patched. With the help of the
monotonic structure and dummy sinks, we can bound the edge congestion.

Combining everything, we conclude that

I Theorem 19. Suppose G is a directed/undirected edge-capacitated network with one sink.
If there is an L-length-bounded confluent flow for routing all supplies with edge congestion
at most 1 in G, then, there exists a polynomial-time algorithm for finding a confluent flow
for routing a subset of supplies with value at least

∑
i∈[κ] di/O(log2 κ), with edge congestion

O(log8 n) and flow length O(L · log3 n/ log logn) whp.

5.4 Polylogarithmic Approximation for the Confluent Dynamic Flows
With the techniques developed the polylogarithmic approximation for the confluent dynamic
problem can be shown to immediately follow. We do not use any storage at intermediate
nodes.

I Theorem 20. In directed/undirected, edge-capacitated dynamic networks, there is a
polynomial-time algorithm that constructs an (O(log8 n), O(log2 κ))-approximation for the
single-sink Confluent Quickest Flow problem whp.

I Theorem 21. In directed/undirected, edge-capacitated dynamic networks, there is a
polynomial-time algorithm that constructs an (O(log2 κ), O(log8 n))-approximation for the
single-sink Confluent Maximum Flow Over Time problem whp.

Our technique can be restricted to static flows, yielding

I Theorem 22. In directed/undirected, edge-/node-capacitated static networks that satisfy the
no-bottleneck assumption, there is a polynomial-time algorithm that constructs an O(log10 κ)-
approximation for the single-sink Demand Maximization Confluent Flow problem whp.

Acknowledgement. We would like to thank the authors of [22] for providing us with a
pre-print of the full version of their paper.

References
1 A. Bley. Routing and capacity optimization for IP networks. In Operations Research

Proceedings 2007, pages 9–16. Springer, 2008.
2 J. Chen, R. D. Kleinberg, L. Lovász, R. Rajaraman, R. Sundaram, and A. Vetta. (Almost)

tight bounds and existence theorems for single-commodity confluent flows. Journal of the
ACM, 54(4):16, 2007.

3 J. Chen, R. Rajaraman, and R. Sundaram. Meet and merge: Approximation algorithms
for confluent flows. In Proceedings of STOC’03, pages 373–382. ACM, 2003.

4 D. Dressler and M. Strehler. Polynomial-time algorithms for special cases of the maximum
confluent flow problem. Discrete Applied Mathematics, 163, Part 2:142–154, 2014.

5 L. R. Ford and D. R. Fulkerson. Constructing Maximal Dynamic Flows from Static Flows.
Operations Research, 6(3):419–433, jun 1958.

6 S. Fortune, J. Hopcroft, and J. Wyllie. The directed subgraph homeomorphism problem.
Theoretical Computer Science, 10(2):111–121, 1980.

M. J. Golin, H. Khodabande and B.Qin 41:13

7 M. Golin, H. Khodabande, and B. Qin. Non-approximability and polylogarithmic approx-
imations of the single-sink unsplittable and confluent dynamic flow problems (full version).
arXiv, 2017. arXiv:1709.10307.

8 V. Guruswami, S. Khanna, R. Rajaraman, B. Shepherd, and M. Yannakakis. Near-optimal
hardness results and approximation algorithms for edge-disjoint paths and related problems.
Journal of Computer and System Sciences, 67(3):473–496, 2003.

9 A. Hall, S. Hippler, and M. Skutella. Multicommodity flows over time: Efficient algorithms
and complexity. Theoretical Computer Science, 379(3):387–404, 2007.

10 D. G. Harris and A. Srinivasan. Constraint satisfaction, packet routing, and the Lovasz
Local Lemma. In Proceedings of STOC’13, pages 685–694, New York, NY, USA, 2013.
ACM.

11 B. Hoppe and É. Tardos. Polynomial time algorithms for some evacuation problems. In
Proceedings of SODA’94, pages 433–441, 1994.

12 B. Hoppe and É. Tardos. The quickest transshipment problem. Mathematics of Operations
Research, 25(1):36–62, 2000.

13 N. Kamiyama. Studies on Quickest Flow Problems in Dynamic Networks and Arborescence
Problems in Directed Graphs. PhD thesis, Kyoto University, 2009.

14 V. Kann. Maximum bounded 3-dimensional matching is MAX SNP-complete. Information
Processing Letters, 37(1):27–35, 1991.

15 E. Köhler, R.H. Möhring, and M. Skutella. Traffic networks and flows over time. In
Algorithmics of Large and Complex Networks, pages 166–196. Springer, 2009.

16 S. G. Kolliopoulos and C. Stein. Improved approximation algorithms for unsplittable flow
problems. In Proceedings of FOCS’97, pages 426–436. IEEE, 1997.

17 S. Mamada, T. Uno, K. Makino, and S. Fujishige. A tree partitioning problem arising
from an evacuation problem in tree dynamic networks. Journal of the Operations Research
Society of Japan, 48(3):196–206, 2005.

18 G. Naves, N. Sonnerat, and A. Vetta. Maximum flows on disjoint paths. In Approximation,
Randomization, and Combinatorial Optimization, pages 326–337. Springer, 2010.

19 M. M. B. Pascoal, M. E. V. Captivo, and J. C. N. Clímaco. A comprehensive survey on
the quickest path problem. Annals of Operations Research, 147(1):5–21, aug 2006.

20 N. Robertson and P.D. Seymour. Graph minors .XIII. the disjoint paths problem. Journal
of Combinatorial Theory, Series B, 63(1):65–110, 1995.

21 F. B. Shepherd and A. Vetta. The inapproximability of maximum single-sink unsplittable,
priority and confluent flow problems. ArXiv, abs/1504.00627, 2015.

22 F. B. Shepherd, A. Vetta, and G. T. Wilfong. Polylogarithmic approximations for the
capacitated single-sink confluent flow problem. In Proceedings of FOCS’15, pages 748–758,
2015.

23 Martin Skutella. An introduction to network flows over time. In Research Trends in
Combinatorial Optimization, pages 451–482. Springer, 2009.

ISAAC 2017

http://arxiv.org/abs/1709.10307

	Introduction
	Single-Sink Dynamic Unsplittable/Confluent Flow Problems
	Our Results

	Preliminaries: Definitions and NP-Hard Problems
	Approximation Hardness for Unsplittable/Confluent Dynamic Flows
	Constant Approximation Hardness of the Quickest Flows Problem
	Logarithmic Approximation Hardness of Confluent Quickest Flows
	Approximation Hardness of the Max Flow Over Time Problem

	Constant Bicriteria Approximation Hardness of Dynamic Flows
	Polylogarithmic Approximation for Confluent Dynamic Flows
	Static Confluent Flows in Uncapacitated Networks with k Sources
	Static Length-Bounded Confluent Flows in Monotonic Networks
	Static Length-Bounded Confluent Flows in General Networks
	Polylogarithmic Approximation for the Confluent Dynamic Flows

