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Abstract
A plane tiling by the copies of a polyomino is called isohedral if every pair of copies in the tiling
has a symmetry of the tiling that maps one copy to the other. We show that, for every n-omino
(i.e., polyomino consisting of n cells), the number of non-equivalent isohedral tilings generated
by 90 degree rotations, so called p4-tilings or quarter-turn tilings, is bounded by a constant
(independent of n). The proof relies on the analysis of the factorization of the boundary word of
a polyomino.
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1 Introduction

The investigation of plane tilings by polyominoes have attracted many researchers for a long
time. In this paper, we focus on the following type of problem: what is the maximum number
of isohedral tilings that a single polyomino can have? A plane tiling by a polyomino is called
isohedral if every pair of copies in the tiling has a symmetry of the tiling that maps one copy
to the other. Two tilings are said to be equivalent if they are congruent, i.e., they can be
mapped onto each other by a combination of rotations, translations and reflections.

A polyomino having an isohedral tiling can be classified into seven types according to its
boundary word. See the recent work by Langerman and Winslow [14, Section 3] for a clear
description of the classification based on earlier works (e.g., [11]). In this paper, we focus
on the isohedral tiling called p4-tiling (or quarter-turn tiling) among these seven types. A
polyomino is said to have a p4-tiling if it covers the plane by only 90 degree rotations around
two designated points called rotation centers. See Figure 1.

Some polyominoes have multiple p4-tilings. Figure 2 shows an example of a pentomino
(i.e., 5-omino) having two non-equivalent p4-tilings. One can see that each pentomino is
adjacent to four (five, respectively) pentominoes in the left (right, respectively) tiling.

It is known that (see e.g., [6, 7]), if an n-omino has a p4-tiling, then the relative distance
(x, y) of two rotation centers satisfies

n = x2 + y2

2 . (1)

This says that an n-omino can have a p4-tiling only if

n = 1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, . . . .
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Figure 1 An example of a p4-tiling by a pentomino. The rotation centers are represented by red
and green circles.

Figure 2 A pentomino having two non-equivalent p4-tilings. The rotation centers shown in (a)
gives the left tiling, and (b) gives the right tiling. The rotation centers shown in (c) gives the tiling
equivalent to the left tiling, and (d) is considered to be same as (b) since these are overlapped by
the 180 degree rotation.

For example, every pentomino (like the one in Figure 2) has rotation centers with relative
distance (1, 3) (ignoring the order of x and y). We call such a tiling as a p4-tiling with center
(1, 3).

Eq. (1) not only restricts the values of n, but also arises another multiplicity of p4-tilings
since Eq. (1) may have many solutions. For examples, (x, y) = (1, 7) and (5, 5) satisfies Eq.
(1) for n = 25. A computer experiment shows that among 2,557,227,044,764 25-ominoes
(Sequence A000105 in OEIS [15]), 3,076,890 and 1,526,416 have a p4-tiling with center (1, 7)
and (5, 5), respectively. The size of their intersection is 10,824. See Figure 3 for one of such
25-ominoes.

The number of solutions to Eq. (1) can be unbounded as n goes to infinity (see e.g.,
[10, 17]). Indeed, if n is factored as n = 2a0p2a1

1 · · · p2ar
r qb1

1 · · · qbr
r , where the pis are primes

of the form 4k + 3 and the qis are primes of the form 4k + 1, then the number of solutions
R(n) to Eq. (1) (allowing zeros and ignoring order and signs) is given by1

R(n) =
{

0, if any ai is a half-integer,
d (b1+1)(b2+1)···(br+1)

2 e, if all ai are integers.
(2)

1 In [17], the formula for the number of solutions of n = x2 + y2 not allowing zeros and ignoring order and
signs is given. Eq. (2) is essentially the same to this by observing n = x2 +y2 iff 2n = (x−y)2 +(x+y)2.
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Figure 3 A 25-omino having p4-tilings with centers (1, 7) and (5, 5). It has four pairs of rotation
centers. The rotation centers (a-1) and (a-2) admit the left tiling, and (b-1) and (b-2) admit the
right tiling. Note that this is the only 25-omino having (at least) four pairs of rotation centers found
through our experiments.

Hence, for example, n = 52k−1 has k = Θ(logn) solutions.
Figure 4 shows a 1300-omino that has three p4-tilings with centers (x, y) = (10, 50), (22, 46)

and (34, 38). Note that 325 = (52 + 252)/2 = (112 + 232)/2 = (172 + 192)/2 is the smallest
integer having three solutions to Eq. (1) (up to the order of x and y), but we have not
succeeded to find a 325-omino that has p4-tilings for these three distances. Note also that
we found the 1300-omino shown in Figure 4 by using a SAT solver [12].

Now the following questions become interesting: what is the maximum number of p4-
tilings that a single polyomino can have? Is it bounded, or is there a polyomino having an
unbounded number of p4-tilings?

1.1 Our Contributions
The contribution of this paper is to show that the number of p4-tilings by an n-omino is
bounded by a constant (Theorem 1). This is true even for n having an unbounded number
of solutions to Eq. (1). It is in sharp contrast to the tiling by translations; a 1× n rectangle
has Θ(n) translation tilings.

In order to show the upper bound on the number of p4-tilings, we use an equivalence
between p4-tilings and factorizations of the boundary word of a polyomino into some specific
form. Then, we show that the number of such factorizations is bounded for every polyomino
based on the analysis of words having such factorizations.

1.2 Related Works
There are plenty of works dealing with polyomino tilings since Golomb [9] initiated the work
in 60s. We listed here only those closely related to our work.

Fukuda et al. [6, 7] enumerated n-ominoes that have a p4-tiling for n ≤ 10. Horiyama
and Samejima [13] gave an algorithm for generating many n-ominoes for p4-tilings.

Winslow [18] gave a linear time algorithm for deciding whether a given polyomino has an
isohedral tiling by translations. This improved the earlier works of Beauquier and Nivat [1],
Gambini and Vuillon [8] and Provençal [16] in terms of its running time, and generalized
the works of Brlek et al. [2, 3] that dealt with some restricted cases. In [18], Winslow also
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Figure 4 Top: A 1300-omino having p4-tilings for three pairs of rotation centers with distinct
relative distances. Bottom: A p4-tiling by rotation centers (0, 0) and (10, 50) (left), (0, 0) and (22, 46)
(center), and (−12, 8) and (22, 46) (right).

showed that every n-omino has O(n) translation tilings. Recently, Langerman and Winslow
[14] extended this work to give quasi-linear time algorithms for all of seven types of isohedral
tilings. Their results include a linear time algorithm for deciding whether a polyomino has a
p4-tiling. We note here that our proof borrows many useful analyses on words that appeared
in their work [14].

2 Notations and Definitions

The notations and definitions used in this paper are similar to those of Langerman and
Winslow [14].

A polyomino is a two-dimensional shape formed by connecting one or more unit squares
edge to edge. A polyomino consisting of n unit squares is called n-omino. A polyomino
having a p4-tiling never includes a hole, and so its boundary is naturally represented by
a four-letter word. A letter is a symbol x ∈ Σ = {0,1,2,3}, where 0,1,2 and 3 represent
the directions up, right, down and left, respectively. If no confusion arises, we identify the
letters 0,1,2 and 3 with the integers 0, 1, 2 and 3, respectively. This is convenient when
we consider a rotation. For Θ ∈ {0, 90, 180, 270}, the Θ◦-rotation of a letter x, denoted
tΘ(x), is the letter obtained by rotating x clockwise by Θ◦, i.e., t90k(x) = x+ k (mod 4) for
k ∈ {0, 1, 2, 3}2.

2 Remark that our definition of the function tΘ(·) is different from the one used in [14].
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A word is a sequence of letters and the length of a word W , denoted by |W |, is the number
of letters in W . For an integer 1 ≤ i ≤ |W |, the i-th letter of a word W is denoted by W [i],
and the i-th from the last letter of W is denoted by W [−i].

A factor (or subword) of W is a contiguous sequence X of letters in W , written X �W .
A factor X � W is a prefix if X starts at W [1], written X �pre W . Similarly, X � W is
a suffix if X ends at W [−1], written X �suf W . For 1 ≤ i ≤ j ≤ |W |, a factor of W that
starts at W [i] and ends at W [j] is denoted by W [i : j]. We say that a word W has a period
p if W [i] = W [i+ p] for every 1 ≤ i ≤ |W | − p.

The reverse of a word W , denoted by ←−W , is the word obtained by reading W in reverse
order. The Θ-rotation of a word W , denoted by tΘ(W ), is the word obtained by replacing
each letter of W by its Θ-rotation. A word W is called a palindrome if W =←−W , and is called
a Θ-drome if W = XtΘ(←−X ) for some word X. For example, W = 010121 is a 90-drome
with X = 010. Note that, in this paper, we only deal with a palindrome of even length.

The boundary of a polyomino can naturally be represented by a circular word on Σ, in
which a first letter is not fixed. The boundary word of a polyomino P , denoted by B(P ),
is the circular word on Σ coding the boundary of P in a clockwise manner. For example,
the boundary word of the pentomino P5 shown in Figure 2 is B(P5) = 300110122332. A
Θ-drome (or a palindrome for which Θ := 0) factor X of a circular word W is said to be
admissible if W = XU satisfies U [−1] 6= tΘ(U)[1], which intuitively says that X is maximal
in a natural sense.

3 p4-tilings with Multiple Rotation Centers

This section is devoted to prove the main theorem of this paper.

I Theorem 1. Every polyomino has O(1) p4-tilings.

In Section 3.1, we describe a number of lemmas which will be used in the proof of Theorem
1. Many of them are taken from Langerman and Winslow [14]. Here and hereafter, when we
refer [14] the numbering of the lemmas or theorems is according to its full version (appeared
in arXiv:1507.02762v2). The main body of the proof of Theorem 1 is described in Section
3.2.

The characterization of a polyomino that admits a p4-tiling in terms of its boundary
word is formalized as follows (See e.g., [14, Section 3].)

I Theorem 2. A polyomino P has a p4-tiling if and only if its circular boundary word
B(P ) can be factorized as B(P ) = ABC where A is a palindrome and B,C are 90-dromes.
In addition, all of A, B and C are admissible, and A can be empty but B and C are
non-empty. J

The admissibility is shown in [14, Lemma 5.8], and the non-emptiness of 90-dromes is
verified as follows: Suppose to the contrary that a polyomino P with B(P ) = AB, where
|B| 6= 0, has a p4-tiling. One of the rotation centers should be just before B[1] or just after
B[−1] (the other center is between B[|B|/2] and B[|B|/2 + 1]). Suppose without loss of
generality that B[1] = 0 and B[−1] = 1. Then, A[1](= A[−1]) ∈ {2,3} is prohibited since it
contradicts that B(P ) is the boundary word of a polyomino, and A[1](= A[−1]) ∈ {0,1} is
prohibited since it contradicts that exactly one of four cells surrounding a rotation center
should be occupied by P .

Recall that two tilings are said to be equivalent if they can be mapped onto each other
by combination of rotations, translations and reflections. Obviously, the number of non-
equivalent p4-tilings by a polyomino P is upper bounded by the number of factorizations of
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the boundary word B(P ) into a form given by Theorem 2. For example, the boundary word
of the pentomino P5 shown in Figure 2 has four factorizations;

B(P5) = 300)(110122)(332 (3)
= (300110)(12)(2332) (4)
= (300110)(122332) (5)
= (30)(0110)(122332) (6)

where the factorizations (3), (4), (5) and (6) correspond to (a), (b), (c) and (d) in Figure 2,
respectively.

In the factorizations (3) and (5), a palindrome A is empty. The rotation centers are
designated by the centers of each of two 90-dromes. As shown in Figure 2, the factorizations (3)
and (5) (or (4) and (6)) admit an equivalent p4-tiling, and hence the number of factorizations
and the number of non-equivalent p4-tilings are not necessarily identical.

3.1 Miscellaneous Lemmas
We start with the following lemmas on words.

I Lemma 3. ([14, Lemma 4.1]) Let W = PX with P,W palindromes and 0 < |P | < |W |.
Then W has a period |X|. J

I Lemma 4. (Fine and Wilf’s theorem [5], or see [14, Lemma 4.2]) Let W be a word with
periods p and q. If p+ q ≤ |W |, then W also has a period GCD(p, q). J

I Lemma 5. Let k be an integer such that k ≥ 2. Let X1, . . . , Xk be palindromes such that
Xi+1 �pre Xi for every 1 ≤ i ≤ k − 1 and |X1| > |X2| > · · · > |Xk| ≥ (2/3)|X1|. Then X1
has a period p such that p ≤ (|X1| − |Xk|)/(k − 1).

Proof. For each 2 ≤ i ≤ k, let ak := |Xk−1| − |Xk|. Let p := GCD(a2, . . . , ak). We will show
that X1 has a period p, which implies Lemma 5 by

∑k
i=2 ak = |X1| − |Xk|.

By Lemma 3, X1 has a period a2. This implies that Xk also has a period a2 since
Xk �pre X1. Similarly, for every 2 ≤ j ≤ k − 1, Xj has a period aj+1. These imply that
Xk has periods a2, . . . , ak. Since |Xk| ≥

∑k
i=2 ak, Lemma 4 implies that Xk has a period p.

Since Xk �pre X1, X1[i] = X1[i+p] for every 1 ≤ i ≤ |Xk|−p. Since X1 is a palindrome and
p ≤ |X1|/3, we have X1[(2/3)|X1| − p+ α] = X1[|X1|/3 + p− α+ 1] = X1[|X1|/3− α+ 1] =
X1[(2/3)|X1|+ α] for every 1 ≤ α ≤ |X1|/3, which completes the proof. J

We will use the following lemma extensively in Section 3.2.

I Lemma 6. ([14, Lemma 5.3]) Let P,Q,W be 90-dromes with P,Q �pre W and |P | <
|Q| < |W |. Then |P | < (2/3)|W |, or equivalently |W | > (3/2)|P |. J

An analogous argument to the proof of Lemma 6 gives a suffix version of the lemma.

I Corollary 7. Let P,Q,W be 90-dromes with P,Q �suf W and |P | < |Q| < |W |. Then
|P | < (2/3)|W |, or equivalently |W | > (3/2)|P |. J

The following lemma, which will also be used in Section 3.2, can easily be derived from
Lemma 6 (and Corollary 7).

I Lemma 8. There is no word that can be factorized into two 90-dromes in more than 8
ways.
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Proof. Suppose to the contrary that, W can be factorized into XiYi where Xi and Yi are
90-dromes for 1 ≤ i ≤ 9. Without loss of generality, we assume that |X1| < |X2| < · · · < |X9|,
and also that |X5| ≥ |W |/2 (by interchanging X’s and Y ’s and will use Corollary 7 instead
of Lemma 6 if necessary). Since Xi �pre Xi+1 for every 1 ≤ i ≤ 8, Lemma 6 implies
|X9| > (3/2)|X7| > (9/4)|X5| > |W |, which is a contradiction. J

I Lemma 9. ([14, Lemma 5.4]) Let W be a boundary word. There exist O(1) admissible
90-drome factors of W with length at least |W |/3. J

The following lemma, whose proof is elementary but a bit long, is also useful in the proof
of Theorem 1.

I Lemma 10. Let W be a word. The number of factorizations of W in such a way that
W = XY with X a non-empty 90-drome and Y a palindrome is at most two. The same
holds for W = Y X with X a non-empty 90-drome and Y a palindrome.

Proof. We only show the first case of the lemma (the proof of the second case is completely
analogous.). Suppose to the contrary that W = X1Y1 = X2Y2 = X3Y3 where X1, X2, X3 are
90-dromes with 0 < |X1| < |X2| < |X3| and Y1, Y2, Y3 are palindromes. Put pi := |Xi|/2 for
1 ≤ i ≤ 3. Note that 0 < p1 < p2 < p3. For 1 ≤ i ≤ 3, let Li and Ri denote the first and
second half of Xi, respectively.

We divide the proof into several cases depending on the values of p1, p2 and p3.
Case 1: p1 + p2 > p3.

Note that, in this case, we have p1 ≥ 2 since p3 − p2 ≥ 1. Let v0 := p1 + p2 − p3 and
suppose without loss of generality that W [v0] = 0. Since 1 ≤ v0 ≤ p1 − 1, W [v0] ∈ L1.
So the reflection of W [v0] w.r.t. the center of X1 is the v1 := (p1 − p2 + p3 + 1)-th letter
in W and W [v1] = W [v0] + 1 = 1 since X1 is a 90-drome. Alternatively, we can write
this as

W [v1] = X1[−v0] = X1[v0] + 1 = W [v0] + 1 = 1.
Since v1 ≤ p3, we have W [v1] ∈ L3. Hence the reflection of W [v1] w.r.t. the center of X3
is the v2 := (−p1 + p2 + p3)-th letter in W and W [v2] = W [v1] + 1 = 2. By continuing
this argument to X2, X1, X3, X2 in this order, we have the chain of implications:

W [v0] = 0 ⇒ W [v1 := p1 − p2 + p3 + 1] = 1 (∵W [v0] ∈ L1)
⇒ W [v2 := −p1 + p2 + p3] = 2 (∵W [v1] ∈ L3)
⇒ W [v3 := p1 + p2 − p3 + 1] = 1 (∵W [v2] ∈ R2)
⇒ W [v4 := p1 − p2 + p3] = 2 (∵W [v3] ∈ L1)
⇒ W [v5 := −p1 + p2 + p3 + 1] = 3 (∵W [v4] ∈ L3)
⇒ W [v0] = 2 (∵W [v5] ∈ R2),

which is a contradiction.
Case 2: p1 + p2 ≤ p3.
Case 2.1: p2 ≥ 2p1.

Suppose W [1] = 0. By considering the reflection of W [1] w.r.t. the center of X1, we
have W [2p1] = X1[−1] = X1[1] + 1 = 1. Then, by considering the reflection of these two
letters w.r.t. the center of X2, we have W [2p2] = X2[−1] = X2[1] + 1 = W [1] + 1 = 1,
and W [2p2 − 2p1 + 1] = X2[−2p1] = X2[2p1] + 1 = W [2p1] + 1 = 2.
We further divide this case into two subcases.

Case 2.1.1: p3 ≥ 2p2 − 2p1 + 1.
By considering the reflection of W [1] and W [2p2 − 2p1 + 1] w.r.t. the center of X3,
we have W [2p3] = X3[−1] = X3[1] + 1 = W [1] + 1 = 1, and W [2p3 − 2p2 + 2p1] =
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X3[−(2p2 − 2p1 + 1)] = X3[2p2 − 2p1 + 1] + 1 = W [2p2 − 2p1 + 1] + 1 = 3 (*). Here we
use the condition p3 ≥ 2p2 − 2p1 + 1 to derive the second equality. However, we have

1 = W [2p3] = Y2[2p3 − 2p2] = Y2[−(2p3 − 2p2)] (∵ Y2 is a palindrome.)
= W [−(2p3 − 2p2)] = Y1[−(2p3 − 2p2)] = Y1[(2p3 − 2p2)] (∵ Y1 is a palindrome.)
= W [2p3 − 2p2 + 2p1],

which contradicts (*).
We can show the remaining three cases (Cases 2.1.2, 2.2.1 and 2.2.2) similarly.

Case 2.1.2: p3 ≤ 2p2 − 2p1.
By considering the reflection of W [2p1](= 1) and W [2p2](= 1) w.r.t. the center of
X3, we have W [2p3 − 2p1 + 1] = X3[−2p1] = X3[2p1] + 1 = W [2p1] + 1 = 2, and
W [2p3 − 2p2 + 1] = X3[−2p2] = X3[2p2] − 1 = W [2p2] − 1 = 0 (**), where the second
equality follows from 2p2 > p3 in this case. On the other hand, we have

2 = W [2p3 − 2p1 + 1]
= Y2[2p3 − 2p2 − 2p1 + 1] (∵ 2p3 − 2p1 + 1 ≥ p2)
= Y2[−(2p3 − 2p2 − 2p1 + 1)] (∵ Y2 is a palindrome.)
= W [−(2p3 − 2p2 − 2p1 + 1)]
= Y1[−(2p3 − 2p2 − 2p1 + 1)]
= Y1[2p3 − 2p2 − 2p1 + 1] (∵ Y1 is a palindrome.)
= W [2p3 − 2p2 + 1],

which contradicts (**).

Case 2.2: p2 < 2p1.

Case 2.2.1: p3 < 2p2.
Suppose that W [1] = 0. By considering the reflection of W [1] w.r.t. the center of X1 and
X2, we get W [2p1] = 1 and W [2p2] = 1, respectively. Then, by considering the reflection
of W [2p2] w.r.t. the center of X3, we have W [2p3− 2p2 + 1] = X3[−2p2] = X3[2p2]− 1 =
W [2p2]− 1 = 0, and W [2p3 − 2p1 + 1] = X3[−2p1] = X3[2p1] + 1 = W [2p1] + 1 = 2 (*3).
Here we use 2p2 > p3 and 2p1 ≤ p3. However, we have

0 = W [2p3 − 2p2 + 1]
= Y1[2p3 − 2p2 − 2p1 + 1] (∵ 2p3 − 2p2 + 1 > 2p1 = |X1|)
= Y1[−(2p3 − 2p2 − 2p1 + 1)] (∵ Y1 is a palindrome.)
= W [−(2p3 − 2p2 − 2p1 + 1)]
= Y2[−(2p3 − 2p2 − 2p1 + 1)] (∵ (2p3 − 2p2 − 2p1 + 1) + |X2| ≤ 2p3 ≤ |W |)
= Y2[2p3 − 2p2 − 2p1 + 1] (∵ Y2 is a palindrome.)
= W [2p3 − 2p1 + 1],

which contradicts (*3).

Case 2.2.2: p3 ≥ 2p2.
In this case, we first suppose that W [p1] = X1[p1] = 0. We have W [p1 +1] = X1[p1 +1] =
X1[p1] + 1 = 1 since X1 is a 90-drome, and this implies W [2p2 − p1] = X2[−(p1 +
1)] = X2[p1 + 1] + 1 = W [p1 + 1] + 1 = 2 since X2 is a 90-drome. Since X3 is a
90-drome, we have W [2p3 − p1 + 1] = X3[−p1] = X3[p1] + 1 = W [p1] + 1 = 1, and
W [2p3 − 2p2 + p1 + 1] = X3[−(2p2 − p1)] = X3[2p2 − p1] + 1 = W [2p2 − p1] + 1 = 3 (*4).
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Here we use 2p2 − p1 ≤ p3 to derive the second equality. However, we have
1 = W [2p3 − p1 + 1]

= Y2[2p3 − 2p2 − p1 + 1] (∵ 2p3 − p1 + 1 > 2p2 = |Y2|)
= Y2[−(2p3 − 2p2 − p1 + 1)] (∵ Y2 is a palindrome.)
= W [−(2p3 − 2p2 − p1 + 1)]
= Y1[−(2p3 − 2p2 − p1 + 1)]
= Y1[2p3 − 2p2 − p1 + 1] (∵ Y1 is a palindrome.)
= W [2p3 − 2p2 + p1 + 1],

which contradicts (*4). This completes the proof of Lemma 10. J

The following two lemmas are also from [14].

I Lemma 11. ([14, Lemma 5.1]) Let W be a word with a period p, and X a 90-drome
subword of W . Then |X| ≤ p. J

I Lemma 12. ([14, Lemma 5.7]) Let W be a word. There exists an O(1)-sized set F of
factors W such that every admissible palindrome factor with length at least |W |/3 is an affix
(i.e., a prefix or suffix) factor of an element of F . J

The final statement in this subsection is a famous theorem on integer sequences due to
Erdős and Szekeres.

I Theorem 13. ([4]) Any sequence of n2 + 1 distinct integers has either an increasing or a
decreasing subsequence of length n+ 1. J

3.2 Proof of Theorem 1
Proof of Theorem 1. Given an arbitrary polyomino P , we will show that the number of
ways such that B(P ) is factorized into ABC with A a palindrome and B,C 90-dromes as
described in Theorem 2 is O(1), which is sufficient to prove Theorem 1. Let n := |B(P )|.

Below we show this for each of two cases (i) |B| or |C| is at least n/3, and (ii) |A| is at
least n/3. The first case follows easily from the lemmas shown in Section 3.1.
Case 1: |B| ≥ n/3 or |C| ≥ n/3.

Suppose that |B| ≥ n/3. (The case |C| ≥ n/3 is analogous.) Lemma 9 says that there
are O(1) possibilities of B.
Fix a 90-drome B. Lemma 10 implies that the number of factorizations of B(P ) including
B as an admissible 90-drome factor is at most two. This completes the proof of Case 1.

Case 2: |A| ≥ n/3.
This case covers the complement of Case 1. Lemma 12 implies that there are O(1)
possibilities of the position of the first or the last letter of A in B(P ).
Fix a position of the first letter of A in B(P ). The case for fixing the last letter of A
is analogous. Let W be a non-circular word obtained from B(P ) by applying a circular
shift if necessary such that A starts at W [1]. Let c be a sufficiently large constant whose
value will be determined at the end of the proof. Suppose to the contrary that W has at
least c factorizations ABC with A a palindrome and B and C 90-dromes as described in
Theorem 2. By Lemma 8, for every fixed A, there are at most eight such factorizations.
Hence, we can assume that there are at least c0 := c/8 factorizations W = AiBiCi

(1 ≤ i ≤ c0) such that Ai starts at W [1] for every 1 ≤ i ≤ c0, and that all the |Ai|s are
distinct. Moreover, all the Bis and the Cis are non-empty.
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We label these factorizations so that |A1| > |A2| > · · · > |Ac0 |. Let S0, S1 and S2
be the partition of the indices {1, . . . , c0} such that S0 := {i : (2/3)n ≤ |Ai| ≤ n},
S1 := {i : (4/9)n ≤ |Ai| < (2/3)n} and S2 := {i : n/3 ≤ |Ai| < (4/9)n}. Choose the
largest set among S0, S1 and S2, and relabel the indices in the chosen set as 1, . . . , c1,
where c1 ≥ c0/3. Note that this ensures that |Ac1 | ≥ (2/3)|A1|, which will be needed
when we apply Lemma 5.
Let di := |Ai|+ |Bi|/2 which represents the position of the center of Bi in W . We now
focus on the dis. We can assume that the dis are all different. This is because di = dj

with i < j implies that Bi is a subword of Bj having the same center, and hence Bi is
not admissible. Now the theorem of Erdős-Szekeres (Theorem 13) guarantees that we
can pick a sequence of indices 1 ≤ i1 < i2 < · · · < ic2 ≤ c1 with c2 := d√c1e such that
di1 , di2 , . . . , dic2

are sorted in increasing or decreasing order.
Now we divide Case 2 into two subcases depending on the order of di1 , di2 , . . . , dic2

. In
what follows, we write Aik

Bik
Cik

as AkBkCk for simplicity (to avoid a double subscript).
For 1 ≤ k ≤ c2, let bk := |Ak|+ |Bk| − |A1|, which represents the position of Bk[−1] in
W where we count the position of B1[1] in W as 1.

Case 2.1: d1 < d2 < · · · < dc2 .
Notice that |B1| = b1 > b2 > · · · > bc2 . For each 1 ≤ k ≤ c2, let Xk be a 90-drome
subword of Bk obtained from Bk by truncating a same number of letters from both sides of
Bk so that Xk starts at W [|A1|+1]. Equivalently, Xk := W [|A1|+1 : 2|Ak|+ |Bk|− |A1|].
Note that X1 = B1 and Xk �pre Xk+1 for every 1 ≤ k ≤ c2 − 1.
Suppose that c2 ≥ 17. Put m := |B1C1|(= n − |A1|). By Lemma 6, we have |Xk+2| >
(3/2)|Xk| for every k ≥ 1. Thus, we can assume that |B1| = |X1| < m/10. This
is because otherwise |X17| > (3/2)8(1/10)m > m which is impossible. Hence, the
center of C1 is located at the position between |A1| + m/2 and |A1| + (m/2 + m/20)
in W (*5). By noticing that Ck+1 �suf Ck for every k, we can apply Corollary 7 to
get |C9| < (2/3)4|C1| ≤ (2/3)4m < m/5 which implies b9 > (4/5)m. We also have
|X9| < m/5 because otherwise |X17| > (1/5)(3/2)4m > m by Lemma 6.
Notice that Ai+1 �pre Ai for every 1 ≤ i ≤ 8 and |A9| ≥ (2/3)|A1|. By Lemma 5, A1 has
a period at most (|A1|− |A9|)/8. We have |A1|− |A9| ≤ m since otherwise d9 > d1 > |A1|
implies b9 > m which is impossible. Hence, A1 has a period at most m/8, and this implies
W [|A1|+ |X9|+ 1 : |A9|+ |B9|] (i.e., a suffix of B9 succeeding X9) also has a period at
most m/8. However, we can pick a 90-drome factor of length greater than m/8 inside this
interval as a subword of C1 (and hence a subword of W ) by truncating a same number of
letters from both side of C1 since (*5) holds. This contradicts Lemma 11 which completes
the proof of Case 2.1.

Case 2.2: d1 > d2 > · · · > dc2 .
Notice that, in this case, di > dj does not imply bi > bj . So we first apply Lemma
10 and Theorem 13 to the sequence b1, . . . , bc2 to obtain a subsequence of length c3 :=
d
√
c2/2e such that the selected bis are sorted in increasing or decreasing order. (Here

we first pick c2/2 indices such that the selected bis are all distinct (the existence of
such a set is guaranteed by Lemma 10), and then apply Theorem 13 to get a desired
subsequence.) For simplicity, we write the indices of the selected bis as 1, 2, . . . , c3. That
is, W = AkBkCk with Ak a palindrome and Bk and Ck non-empty admissible 90-dromes
for 1 ≤ k ≤ c3. Moreover, b1, b2, . . . , bc3 are increasing or decreasing. As to Case 2.1, we
put m := |B1C1|(= n− |A1|), and put bk := |Ak|+ |Bk| − |A1| for 1 ≤ k ≤ c3.

Case 2.2.1: d1 > d2 > · · · > dc3 and b1 < b2 < · · · < bc3

Suppose that c3 ≥ 13. Note that (3/2)6 > 10. By Corollary 7 and |C1| ≤ m, we
have |C13| < (2/3)6m < m/10, and equivalently b13 > (9/10)m. As to Case 2.1, for
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1 ≤ k ≤ c3, let Xk := W [|A1|+ 1 : 2|Ak|+ |Bk| − |A1|]. In other words, Xk is a 90-drome
subword of Bk sharing the center with Bk that starts at W [|A1| + 1]. If dk ≤ |A1|,
Xk := ∅. We have |X13| < m/10 because otherwise Lemma 6 implies |B1| = |X1|
> (3/2)6(1/10)m > m, which is impossible.
Now we focus on the Ais. Recall that Ak+1 �pre Ak for every 1 ≤ k < c3 − 1. Then by
Lemma 5, A1 has a period at most p := (|A1| − |A13|)/12. We have d13 ≥ |A1| − p/2
since d13 < |A1| − p/2 implies that we can pick a 90-drome factor of length greater than
p which shares the center with B13 within W [1 : |A1|] and this contradicts Lemma 11.
Then, we have
|B13|

2 = d13 − |A13| ≥ −
p

2 + (|A1| − |A13|) = −p2 + 12p ≥ 23
2 p,

and hence m ≥ b13 = d13 + |B13|/2− |A1| ≥ 11p, which implies p ≤ m/11. Since Bk is a
90-drome, W [|A1|+ |X13|+ 1 : |A13|+ |B13|] has a period at most m/11.
By recalling that b13 ≥ (9/10)m, we have |X13| < m/10. Assume that |B1| ≤ m/2. Then
the center of C1 is located left to the |A1|+ (3/4)m-th letter in W . This guarantees that
we can pick a 90-drome factor of length greater than m/10 whose center is common to
C1 within W [|A1|+ |X13|+ 1 : |A13|+ |B13|], which contradicts Lemma 11.
Now we can assume that |B1| > m/2. Then the position of the center of B1 is located right
to the |A1|+ (1/4)m-th letter in W . However, in this case, we can pick a 90-drome factor
of W sharing the center with B1 whose length is greater than m/10. This contradicts
Lemma 11, and thus completes the proof of Case 2.2.1.

Case 2.2.2: d1 > d2 > · · · > dc3 and b1 > b2 > · · · > bc3 .
Suppose that c3 ≥ 19. By the same argument to the second paragraph of Case 2.2.1, we
can show that |A1| and also W [|A1|+ |X13|+ 1 : |A13|+ |B13]| has a period at most m/11
and b13 ≥ 0. We also have b19 ≥ 0 by a similar argument to this. We have |B1| > (9/10)m,
or equivalently |C1| < m/10, because |C1| ≥ m/10 implies |C13| ≥ (1/10)(3/2)6m > m

by Corollary 7, which contradicts b13 ≥ 0. Hence the center of B1 is located at a position
between |A1|+ (9/20)m and |A1|+m/2 in W .
Define Xk as to Case 2.2.1. We have |X13| < m/10, since otherwise |B1| = |X1| >
(1/10)(3/2)6m > m by Lemma 6. If |A13| + |B13| ≥ |A1| + (7/10)m, then there is a
90-drome factor of length greater than m/10 within W [|A1|+ |X13|+ 1 : |A13|+ |B13|]
which shares the center with B1. This contradicts Lemma 11. Hence we can assume
|A13|+ |B13| < |A1|+ (7/10)m which means that |C13| > (3/10)m. However, this implies
|C19| > (3/10)(3/2)3m > m (by Corollary 7), which contradicts b19 ≥ 0. This completes
the proof of Case 2.2.2.

By putting c� 3 · 8 · (2 · 202)2, we can satisfy all the conditions on c0, c1, c2 and c3 in the
proof, which completes the proof of Theorem 1. J

4 Concluding Remarks

In this work, we did not make any effort to optimize the constant in Theorem 1. Currently,
the upper bound is dominated by Case 2, which is roughly (the value of c in the proof) ×
(the size of F in Lemma 12) × (2 · (representing the choice of A[1] or A[−1] at the beginning
of Case 2)). An inspection of the proof of Lemma 12 (in [14, Lemma 5.7]) shows that O(1)
in Lemma 12 can be replaced by 34, and hence our upper bound is ∼ 109. Currently, we do
not know a polyomino having more than three non-equivalent p4-tilings (see Figure 4 for the
one having three p4-tilings). Closing the gap to determine the true value is an interesting
future work.
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