A Markov Chain Theory Approach to Characterizing the Minimax Optimality of Stochastic Gradient Descent (for Least Squares)

Prateek Jain ${ }^{1}$, Sham M. Kakade ${ }^{* 2}$, Rahul Kidambi ${ }^{3}$, Praneeth Netrapalli ${ }^{4}$, Venkata Krishna Pillutla ${ }^{5}$, and Aaron Sidford ${ }^{6}$

1 Microsoft Research, Bangalore, India praneeth@microsoft.com
2 University of Washington, Seattle, WA, USA sham@cs.washington.edu
3 University of Washington, Seattle, WA, USA rkidambi@uw.edu
4 Microsoft Research, Bangalore, India praneeth@microsoft.com
5 University of Washington, Seattle, WA, USA pillutla@cs.washington.edu
6 Stanford University, Palo Alto, CA, USA
sidford@stanford.edu

Abstract

This work provides a simplified proof of the statistical minimax optimality of (iterate averaged) stochastic gradient descent (SGD), for the special case of least squares. This result is obtained by analyzing SGD as a stochastic process and by sharply characterizing the stationary covariance matrix of this process. The finite rate optimality characterization captures the constant factors and addresses model mis-specification.

1998 ACM Subject Classification G.1.6 Optimization

Keywords and phrases Stochastic Gradient Descent, Minimax Optimality, Least Squares Regression

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2017.2

Category Invited Paper

1 Introduction

Stochastic gradient descent is among the most commonly used practical algorithms for large scale stochastic optimization. The seminal result of $[9,8]$ formalized this effectiveness, showing that for certain (locally quadric) problems, asymptotically, stochastic gradient descent is statistically minimax optimal (provided the iterates are averaged). There are a number of more modern proofs $[1,3,2,5]$ of this fact, which provide finite rates of

[^0]convergence. Other recent algorithms also achieve the statistically optimal minimax rate, with finite convergence rates [4].

This work provides a short proof of this minimax optimality for SGD for the special case of least squares through a characterization of SGD as a stochastic process. The proof builds on ideas developed in $[2,5]$.

SGD for least squares. The expected square loss for $w \in \mathbb{R}^{d}$ over input-output pairs (x, y), where $x \in \mathbb{R}^{d}$ and $y \in \mathbb{R}$ are sampled from a distribution \mathcal{D}, is:

$$
L(w)=\frac{1}{2} \mathbb{E}_{(x, y) \sim \mathcal{D}}\left[(y-w \cdot x)^{2}\right]
$$

The optimal weight is denoted by:

$$
w^{*}:=\underset{w}{\operatorname{argmin}} L(w) .
$$

Assume the argmin in unique.
Stochastic gradient descent proceeds as follows: at each iteration t, using an i.i.d. sample $\left(x_{t}, y_{t}\right) \sim \mathcal{D}$, the update of w_{t} is:

$$
w_{t}=w_{t-1}+\gamma\left(y_{t}-w_{t-1} \cdot x_{t}\right) x_{t}
$$

where γ is a fixed stepsize.

Notation. For a symmetric positive definite matrix A and a vector x, define:

$$
\|x\|_{A}^{2}:=x^{\top} A x
$$

For a symmetric matrix M, define the induced matrix norm under A as:

$$
\|M\|_{A}:=\max _{\|v\|=1} \frac{v^{\top} M v}{v^{\top} A v}=\left\|A^{-1 / 2} M A^{-1 / 2}\right\|
$$

The statistically optimal rate. Using n samples (and for large enough n), the minimax optimal rate is achieved by the maximum likelihood estimator (the MLE), or, equivalently, the empirical risk minimizer. Given n i.i.d. samples $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$, define

$$
\widehat{w}_{n}^{\mathrm{MLE}}:=\arg \min _{w} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2}\left(y_{i}-w \cdot x_{i}\right)^{2}
$$

where $\widehat{w}_{n}^{\text {MLE }}$ denotes the MLE estimator over the n samples.
This rate can be characterized as follows: define

$$
\sigma_{\mathrm{MLE}}^{2}:=\frac{1}{2} \mathbb{E}\left[\left(y-w^{*} x\right)^{2}\|x\|_{H^{-1}}^{2}\right]
$$

and the (asymptotic) rate of the MLE is $\sigma_{\mathrm{MLE}}^{2} / n[7,10]$. Precisely,

$$
\lim _{n \rightarrow \infty} \frac{\mathbb{E}\left[L\left(\widehat{w}_{n}^{\mathrm{MLE}}\right)\right]-L\left(w^{*}\right)}{\sigma_{\mathrm{MLE}}^{2} / n}=1
$$

The works of $[9,8]$ proved that a certain averaged stochastic gradient method achieves this minimax rate, in the limit.

For the case of additive noise models (i.e. the "well-specified" case), the assumption is that $y=w^{*} \cdot x+\eta$, with η being independent of x). Here, it is straightforward to see that:

$$
\frac{\sigma_{\mathrm{MLE}}^{2}}{n}=\frac{1}{2} \frac{d \sigma^{2}}{n} .
$$

The rate of $\sigma_{\text {MLE }}^{2} / n$ is still minimax optimal even among mis-specified models, where the additive noise assumption may not hold $[6,7,10]$.

Assumptions. Assume the fourth moment of x is finite. Denote the second moment matrix of x as

$$
H:=\mathbb{E}\left[x x^{\top}\right],
$$

and suppose H is strictly positive definite with minimal eigenvalue:

$$
\mu:=\sigma_{\min }(H)
$$

Define R^{2} as the smallest value which satisfies:

$$
\mathbb{E}\left[\|x\|^{2} x x^{\top}\right] \preceq R^{2} \mathbb{E}\left[x x^{\top}\right] .
$$

This implies $\operatorname{Tr}(H)=\mathbb{E}\|x\|^{2} \leq R^{2}$.

2 Statistical Risk Bounds

Define:

$$
\Sigma:=\mathbb{E}\left[\left(y-w^{*} x\right)^{2} x x^{\top}\right],
$$

and so the optimal constant in the rate can be written as:

$$
\sigma_{\mathrm{MLE}}^{2}=\frac{1}{2} \operatorname{Tr}\left(H^{-1} \Sigma\right)=\frac{1}{2} \mathbb{E}\left[\left(y-w^{*} x\right)^{2}\|x\|_{H^{-1}}^{2}\right]
$$

For the mis-specified case, it is helpful to define:

$$
\rho_{\text {misspec }}:=\frac{d\|\Sigma\|_{H}}{\operatorname{Tr}\left(H^{-1} \Sigma\right)},
$$

which can be viewed as a measure of how mis-specified the model is. Note if the model is well-specified, then $\rho_{\text {misspec }}=1$.

Denote the average iterate, averaged from iteration t to T, by:

$$
\bar{w}_{t: T}:=\frac{1}{T-t} \sum_{t^{\prime}=t}^{T-1} w_{t^{\prime}}
$$

- Theorem 1. Suppose $\gamma<\frac{1}{R^{2}}$. The risk is bounded as:

$$
\begin{aligned}
& \mathbb{E}\left[L\left(\bar{w}_{t: T}\right)\right]-L\left(w^{*}\right) \\
& \leq\left(\sqrt{\frac{1}{2} \exp (-\gamma \mu t) R^{2}\left\|w_{0}-w^{*}\right\|^{2}}+\sqrt{\left.\left(1+\frac{\gamma R^{2}}{1-\gamma R^{2}} \rho_{\mathrm{misspec}}\right) \frac{\sigma_{\mathrm{MLE}}^{2}}{T-t}\right)^{2}} .\right.
\end{aligned}
$$

The bias term (the first term) decays at a geometric rate (one can set $t=T / 2$ or maintain multiple running averages if T is not known in advance). If $\gamma=1 /\left(2 R^{2}\right)$ and the model is well-specified $\left(\rho_{\text {misspec }}=1\right)$, then the variance term is $2 \sigma_{\text {MLE }} / \sqrt{T-t}$, and the rate of the bias contraction is μ / R^{2}. If the model is not well specified, then using a smaller stepsize of $\gamma=1 /\left(2 \rho_{\text {misspec }} R^{2}\right)$, leads to the same minimax optimal rate (up to a constant factor of 2), albeit at a slower bias contraction rate. In the mis-specified case, an example in [5] shows that such a smaller stepsize is required in order to be within a constant factor of the minimax rate. An even smaller stepsize leads to a constant even closer to that of the optimal rate.

3 Analysis

The analysis first characterizes a bias/variance decomposition, where the variance is bounded in terms of properties of the stationary covariance of w_{t}. Then this asymptotic covariance matrix is analyzed.

Throughout assume:

$$
\gamma<\frac{1}{R^{2}}
$$

3.1 The Bias-Variance Decomposition

The gradient at w^{*} in iteration t is:

$$
\xi_{t}:=-\left(y_{t}-w^{*} \cdot x_{t}\right) x_{t},
$$

which is a mean 0 quantity. Also define:

$$
B_{t}:=\mathrm{I}-x_{t} x_{t}^{\top} .
$$

The update rule can be written as:

$$
\begin{aligned}
w_{t}-w^{*} & =w_{t-1}-w^{*}+\gamma\left(y_{t}-w_{t-1} \cdot x_{t}\right) x_{t} \\
& =\left(\mathrm{I}-\gamma x_{t} x_{t}^{\top}\right)\left(w_{t-1}-w^{*}\right)-\gamma \xi_{t} \\
& =B_{t}\left(w_{t-1}-w^{*}\right)-\gamma \xi_{t} .
\end{aligned}
$$

Roughly speaking, the above shows how the process on $w_{t}-w^{*}$ consists of a contraction along with an addition of a zero mean quantity.

From recursion,

$$
w_{t}-w^{*}=B_{t} \cdots B_{1}\left(w_{0}-w^{*}\right)-\gamma\left(\xi_{t}+B_{t} \xi_{t-1}+\cdots+B_{t} \cdots B_{2} \xi_{1}\right)
$$

This immediately leads to the following lemma.

- Lemma 2. The error is bounded as:

$$
\begin{gathered}
\mathbb{E}\left[L\left(\bar{w}_{t: T}\right)\right]-L\left(w^{*}\right) \leq \frac{1}{2}\left(\sqrt{\mathbb{E}\left[\left\|\bar{w}_{t: T}-w^{*}\right\|_{H}^{2} \mid \xi_{0}=\cdots=\xi_{T}=0\right]}+\right. \\
\left.\sqrt{\mathbb{E}\left[\left\|\bar{w}_{t: T}-w^{*}\right\|_{H}^{2} \mid w_{0}=w^{*}\right]}\right)^{2}
\end{gathered}
$$

where

$$
\begin{aligned}
\mathbb{E}\left[\left\|\bar{w}_{t: T}-w^{*}\right\|_{H}^{2} \mid \xi_{0}=\cdots=\xi_{T}=0\right] & =\mathbb{E}\left\|B_{t} \cdots B_{1}\left(w_{0}-w^{*}\right)\right\|_{H}^{2} \\
\mathbb{E}\left[\left\|\bar{w}_{t: T}-w^{*}\right\|_{H}^{2} \mid w_{0}=w^{*}\right] & =\gamma^{2} \mathbb{E}\left\|\xi_{t}+B_{t} \xi_{t-1}+\cdots+B_{t} \cdots B_{2} \xi_{1}\right\|_{H}^{2} .
\end{aligned}
$$

The first term can be interpreted as the bias. $\mathbb{E}\left[\left\|\bar{w}_{t: T}-w^{*}\right\|_{H}^{2} \mid \xi_{0}=\cdots=\xi_{T}=0\right]$ is the risk in a process without additive noise; the conditioning is a little misleading and is meant to denote the error in a process without additive noise. The second term, when squared, gives rise to the variance; it is the error under a process driven solely by noise where $w_{0}=w^{*}$.

Proof. First, for vector valued random variables u and v, the fact that $\left(\mathbb{E} u^{\top} H v\right)^{2} \leq$ $\mathbb{E}\left[\|u\|_{H}^{2}\right] \mathbb{E}\left[\|v\|_{H}^{2}\right]$ implies

$$
\mathbb{E}\|u+v\|_{H}^{2} \leq\left(\sqrt{\mathbb{E}\|u\|_{H}^{2}}+\sqrt{\mathbb{E}\|v\|_{H}^{2}}\right)^{2}
$$

To complete the proof of the lemma, note $\mathbb{E} L(w)-L\left(w^{*}\right)=\frac{1}{2} \mathbb{E}\left\|w-w^{*}\right\|_{H}^{2}$.
Bias. The bias term is characterized as follows:

- Lemma 3. For all t,

$$
\mathbb{E}\left[\left\|\bar{w}_{t: T}-w^{*}\right\|_{H}^{2} \mid \xi_{0}=\cdots=\xi_{T}=0\right] \leq \exp (-\gamma \mu t)\left\|w_{0}-w^{*}\right\|^{2}
$$

Proof. Assume $\xi_{t}=0$ for all t. Observe:

$$
\begin{aligned}
\mathbb{E}\left\|w_{t}-w^{*}\right\|^{2}= & \mathbb{E}\left\|w_{t-1}-w^{*}\right\|^{2}-2 \gamma\left(w_{t-1}-w^{*}\right)^{\top} \mathbb{E}\left[x x^{\top}\right]\left(w_{t-1}-w^{*}\right) \\
& +\gamma^{2}\left(w_{t-1}-w^{*}\right)^{\top} \mathbb{E}\left[\|x\|^{2} x x^{\top}\right]\left(w_{t-1}-w^{*}\right) \\
\leq & \mathbb{E}\left\|w_{t-1}-w^{*}\right\|^{2}-2 \gamma\left(w_{t-1}-w^{*}\right)^{\top} H\left(w_{t-1}-w^{*}\right) \\
& +\gamma^{2} R^{2}\left(w_{t-1}-w^{*}\right)^{\top} H\left(w_{t-1}-w^{*}\right) \\
\leq & \mathbb{E}\left\|w_{t-1}-w^{*}\right\|^{2}-\gamma \mathbb{E}\left\|w_{t-1}-w^{*}\right\|_{H}^{2} \\
\leq & (1-\gamma \mu) \mathbb{E}\left\|w_{t-1}-w^{*}\right\|^{2}
\end{aligned}
$$

which completes the proof.

Variance. Now suppose $w_{0}=w^{*}$. Define the covariance matrix:

$$
C_{t}:=\mathbb{E}\left[\left(w_{t}-w^{*}\right)\left(w_{t}-w^{*}\right)^{\top} \mid w_{0}=w^{*}\right]
$$

Using the recursion, $w_{t}-w^{*}=B_{t}\left(w_{t-1}-w^{*}\right)+\gamma \xi_{t}$,

$$
\begin{equation*}
C_{t+1}=C_{t}-\gamma H C_{t}-\gamma C_{t} H+\gamma^{2} \mathbb{E}\left[\left(x^{\top} C_{t} x\right) x x^{\top}\right]+\gamma^{2} \Sigma \tag{1}
\end{equation*}
$$

which follows from:

$$
\mathbb{E}\left[\left(w_{t}-w^{*}\right) \xi_{t+1}^{\top}\right]=0, \text { and } \mathbb{E}\left[\left(x_{t+1} x_{t+1}^{\top}\right)\left(w_{t}-w^{*}\right) \xi_{t+1}^{\top}\right]=0
$$

(these hold since $w_{t}-w^{*}$ is mean 0 and both x_{t+1} and ξ_{t+1} are independent of $w_{t}-w^{*}$).

- Lemma 4. Suppose $w_{0}=w^{*}$. There exists a unique C_{∞} such that:

$$
0=C_{0} \preceq C_{1} \preceq \cdots \preceq C_{\infty}
$$

where C_{∞} satisfies:

$$
\begin{equation*}
C_{\infty}=C_{\infty}-\gamma H C_{\infty}-\gamma C_{\infty} H+\gamma^{2} \mathbb{E}\left[\left(x^{\top} C_{\infty} x\right) x x^{\top}\right]+\gamma^{2} \Sigma \tag{2}
\end{equation*}
$$

Proof. By recursion,

$$
\begin{aligned}
w_{t}-w^{*} & =B_{t}\left(w_{t-1}-w^{*}\right)+\gamma \xi_{t} \\
& =\gamma\left(\xi_{t}+B_{t} \xi_{t-1}+\cdots+B_{t} \cdots B_{2} \xi_{1}\right)
\end{aligned}
$$

Using that ξ_{t} is mean zero and independent of $B_{t^{\prime}}$ and $\xi_{t^{\prime}}$ for $t<t^{\prime}$,

$$
C_{t}=\gamma^{2}\left(\mathbb{E}\left[\xi_{t} \xi_{t}^{\top}\right]+\mathbb{E}\left[B_{t} \xi_{t-1} \xi_{t-1}^{\top} B_{t}\right]+\cdots+\mathbb{E}\left[B_{t} \cdots B_{2} \xi_{1} \xi_{1}^{\top} B_{2}^{\top} \cdots B_{t}^{\top}\right]\right)
$$

Now using that $\mathbb{E}\left[\xi_{1} \xi_{1}^{\top}\right]=\Sigma$ and that ξ_{t} and $B_{t^{\prime}}$ are independent (for $t \neq t^{\prime}$),

$$
\begin{aligned}
C_{t} & =\gamma^{2}\left(\Sigma+\mathbb{E}\left[B_{2} \Sigma B_{2}\right]+\cdots+\mathbb{E}\left[B_{t} \cdots B_{2} \Sigma B_{2}^{\top} \cdots B_{t}^{\top}\right]\right) \\
& =C_{t-1}+\gamma^{2} \mathbb{E}\left[B_{t} \cdots B_{2} \Sigma B_{2}^{\top} \cdots B_{t}^{\top}\right]
\end{aligned}
$$

which proves $C_{t-1} \preceq C_{t}$.
To prove the limit exists, it suffices to first argue the trace of C_{t} is uniformly bounded from above, for all t. By taking the trace of update rule, Equation 1, for C_{t},

$$
\operatorname{Tr}\left(C_{t+1}\right)=\operatorname{Tr}\left(C_{t}\right)-2 \gamma \operatorname{Tr}\left(H C_{t}\right)+\gamma^{2} \operatorname{Tr}\left(\mathbb{E}\left[\left(x^{\top} C_{t} x\right) x x^{\top}\right]\right)+\gamma^{2} \operatorname{Tr}(\Sigma)
$$

Observe:

$$
\begin{equation*}
\operatorname{Tr}\left(\mathbb{E}\left[\left(x^{\top} C_{t} x\right) x x^{\top}\right]\right)=\operatorname{Tr}\left(\mathbb{E}\left[\left(x^{\top} C_{t} x\right)\|x\|^{2}\right]\right)=\operatorname{Tr}\left(C_{t} \mathbb{E}\left[\|x\|^{2} x x^{\top}\right]\right) \leq R^{2} \operatorname{Tr}\left(C_{t} H\right) \tag{3}
\end{equation*}
$$

and, using $\gamma \leq 1 / R^{2}$,

$$
\operatorname{Tr}\left(C_{t+1}\right) \leq \operatorname{Tr}\left(C_{t}\right)-\gamma \operatorname{Tr}\left(H C_{t}\right)+\gamma^{2} \operatorname{Tr}(\Sigma) \leq(1-\gamma \mu) \operatorname{Tr}\left(C_{t}\right)+\gamma^{2} \operatorname{Tr}(\Sigma) \leq \frac{\gamma \operatorname{Tr}(\Sigma)}{\mu}
$$

proving the uniform boundedness of the trace of C_{t}. Now, for any fixed v, the limit of $v^{\top} C_{t} v$ exists, by the monotone convergence theorem. From this, it follows that every entry of the matrix C_{t} converges.

- Lemma 5. Define:
$\bar{w}_{T}:=\frac{1}{T} \sum_{t=0}^{T-1} w_{t}$.
and so:
$\frac{1}{2} \mathbb{E}\left[\left\|\bar{w}_{T}-w^{*}\right\|_{H}^{2} \mid w_{0}=w^{*}\right] \leq \frac{\operatorname{Tr}\left(C_{\infty}\right)}{\gamma T}$
Proof. Note

$$
\begin{aligned}
& \mathbb{E}\left[\left(\bar{w}_{T}-w^{*}\right)\left(\bar{w}_{T}-w^{*}\right)^{\top} \mid w_{0}=w^{*}\right] \\
& =\frac{1}{T^{2}} \sum_{t=0}^{T-1} \sum_{t^{\prime}=0}^{T-1} \mathbb{E}\left[\left(w_{t}-w^{*}\right)\left(w_{t^{\prime}}-w^{*}\right)^{\top} \mid w_{0}=w^{*}\right] \\
& \preceq \frac{1}{T^{2}} \sum_{t=0}^{T-1} \sum_{t^{\prime}=t}^{T-1}\left(\mathbb{E}\left[\left(w_{t}-w^{*}\right)\left(w_{t^{\prime}}-w^{*}\right)^{\top} \mid w_{0}=w^{*}\right]+\right. \\
& \left.\mathbb{E}\left[\left(w_{t^{\prime}}-w^{*}\right)\left(w_{t}-w^{*}\right)^{\top} \mid w_{0}=w^{*}\right]\right),
\end{aligned}
$$

double counting the diagonal terms $\mathbb{E}\left[\left(w_{t}-w^{*}\right)\left(w_{t}-w^{*}\right)^{\top} \mid w_{0}=w^{*}\right] \succeq 0$. For $t \leq t^{\prime}$, $\mathbb{E}\left[\left(w_{t^{\prime}}-w^{*}\right) \mid w_{0}=w^{*}\right]=(\mathrm{I}-\gamma H)^{t^{\prime}-t} \mathbb{E}\left[\left(w_{t}-w^{*}\right) \mid w_{0}=w^{*}\right]$. To see why, consider the recursion $w_{t}-w^{*}=\left(\mathrm{I}-\gamma x_{t} x_{t}^{\top}\right)\left(w_{t-1}-w^{*}\right)-\gamma \xi_{t}$ and take expectations to get $\mathbb{E}\left[w_{t}-w^{*} \mid w_{0}=w^{*}\right]=$ $(\mathrm{I}-\gamma H) \mathbb{E}\left[w_{t-1}-w^{*} \mid w_{0}=w^{*}\right]$ since the sample x_{t} is is independent of the w_{t-1}. From this,

$$
\mathbb{E}\left[\left(\bar{w}_{T}-w^{*}\right)\left(\bar{w}_{T}-w^{*}\right)^{\top} \mid w_{0}=w^{*}\right] \preceq \frac{1}{T^{2}} \sum_{t=0}^{T-1} \sum_{\tau=0}^{T-t-1}(I-\gamma H)^{\tau} C_{t}+C_{t}(\mathrm{I}-\gamma H)^{\tau}
$$

and so,

$$
\begin{aligned}
\mathbb{E}\left[\left\|\bar{w}_{T}-w^{*}\right\|_{H}^{2} \mid w_{0}=w^{*}\right] & =\operatorname{Tr}\left(H \mathbb{E}\left[\left(\bar{w}_{T}-w^{*}\right)\left(\bar{w}_{T}-w^{*}\right)^{\top} \mid w_{0}=w^{*}\right]\right) \\
& \leq \frac{1}{T^{2}} \sum_{t=0}^{T-1} \sum_{\tau=0}^{T-t-1} \operatorname{Tr}\left(H(\mathrm{I}-\gamma H)^{\tau} C_{t}\right)+\operatorname{Tr}\left(C_{t}(\mathrm{I}-\gamma H)^{\tau} H\right)
\end{aligned}
$$

Notice that $H(\mathrm{I}-\gamma H)^{\tau}=(\mathrm{I}-\gamma H)^{\tau} H$ for any non-negative integer τ. Since $H \succ 0$ and $I-\gamma H \succeq 0, H(\mathrm{I}-\gamma H)^{\tau} \succeq 0$ because the product of two commuting PSD matrices is PSD. Also note that for PSD matrices A, B, $\operatorname{Tr} A B \geq 0$. Hence,

$$
\begin{align*}
\mathbb{E}\left[\left\|\bar{w}_{T}-w^{*}\right\|_{H}^{2} \mid w_{0}=w^{*}\right] & \leq \frac{2}{T^{2}} \sum_{t=0}^{T-1} \sum_{\tau=0}^{\infty} \operatorname{Tr}\left(H(\mathrm{I}-\gamma H)^{\tau} C_{t}\right) \\
& =\frac{2}{T^{2}} \sum_{t=0}^{T-1} \operatorname{Tr}\left(H\left(\sum_{\tau=0}^{\infty}(\mathrm{I}-\gamma H)^{\tau}\right) C_{t}\right) \\
& =\frac{2}{T^{2}} \sum_{t=0}^{T-1} \operatorname{Tr}\left(H(\gamma H)^{-1} C_{t}\right) \tag{*}\\
& =\frac{2}{\gamma T^{2}} \sum_{t=0}^{T-1} \operatorname{Tr}\left(C_{t}\right) \\
& \leq \frac{2}{\gamma T} \cdot \operatorname{Tr}\left(C_{\infty}\right)
\end{align*}
$$

from lemma 4 where $(*)$ followed from

$$
(\gamma H)^{-1}=(\mathrm{I}-(\mathrm{I}-\gamma H))^{-1}=\sum_{\tau=0}^{\infty}(\mathrm{I}-\gamma H)^{\tau}
$$

and the series converges because $\mathrm{I}-\gamma H \prec \mathrm{I}$.

3.2 Stationary Distribution Analysis

Define two linear operators on symmetric matrices, \mathcal{S} and \mathcal{T} - where \mathcal{S} and \mathcal{T} can be viewed as matrices acting on $\binom{d+1}{2}$ dimensions - as follows:

$$
\mathcal{S} \circ M:=\mathbb{E}\left[\left(x^{\top} M x\right) x x^{\top}\right], \quad \mathcal{T} \circ M:=H M+M H
$$

With this, C_{∞} is the solution to:

$$
\begin{equation*}
\mathcal{T} \circ C_{\infty}=\gamma \mathcal{S} \circ C_{\infty}+\gamma \Sigma \tag{4}
\end{equation*}
$$

(due to Equation 2).

- Lemma 6. (Crude C_{∞} bound) C_{∞} is bounded as:

$$
C_{\infty} \preceq \frac{\gamma\|\Sigma\|_{H}}{1-\gamma R^{2}} \mathrm{I}
$$

Proof. Define one more linear operator as follows:

$$
\widetilde{\mathcal{T}} \circ M:=\mathcal{T} \circ M-\gamma H M H=H M+M H-\gamma H M H .
$$

The inverse of this operator can be written as:

$$
\widetilde{\mathcal{T}}^{-1} \circ M=\gamma \sum_{t=0}^{\infty}(\mathrm{I}-\gamma \widetilde{\mathcal{T}})^{t} \circ M=\gamma \sum_{t=0}^{\infty}(\mathrm{I}-\gamma H)^{t} M(\mathrm{I}-\gamma H)^{t}
$$

which exists since the sum converges due to that $0 \preceq \mathrm{I}-\gamma H \preceq \mathrm{I}$.
A few inequalities are helpful: If $0 \preceq M \preceq M^{\prime}$, then

$$
\begin{equation*}
0 \preceq \tilde{\mathcal{T}}^{-1} \circ M \preceq \tilde{\mathcal{T}}^{-1} \circ M^{\prime} \tag{5}
\end{equation*}
$$

since

$$
\widetilde{\mathcal{T}}^{-1} \circ M=\gamma \sum_{t=0}^{\infty}(\mathrm{I}-\gamma H)^{t} M(\mathrm{I}-\gamma H)^{t} \preceq \gamma \sum_{t=0}^{\infty}(\mathrm{I}-\gamma H)^{t} M^{\prime}(\mathrm{I}-\gamma H)^{t}=\widetilde{\mathcal{T}}^{-1} \circ M^{\prime},
$$

(which follows since $0 \preceq \mathrm{I}-\gamma H$). Also, if $0 \preceq M \preceq M^{\prime}$, then

$$
\begin{equation*}
0 \preceq \mathcal{S} \circ M \preceq \mathcal{S} \circ M^{\prime} \tag{6}
\end{equation*}
$$

which implies:

$$
\begin{equation*}
0 \preceq \widetilde{\mathcal{T}}^{-1} \circ \mathcal{S} \circ M \preceq \widetilde{\mathcal{T}}^{-1} \circ \mathcal{S} \circ M^{\prime} \tag{7}
\end{equation*}
$$

The following inequality is also of use:

$$
\Sigma \preceq\left\|H^{-1 / 2} \Sigma H^{-1 / 2}\right\| H=\|\Sigma\|_{H} H .
$$

By definition of $\widetilde{\mathcal{T}}$,

$$
\widetilde{\mathcal{T}} \circ C_{\infty}=\gamma \mathcal{S} \circ C_{\infty}+\gamma \Sigma-\gamma H C_{\infty} H
$$

Using this and Equation 5,

$$
\begin{aligned}
C_{\infty} & =\gamma \widetilde{\mathcal{T}}^{-1} \circ \mathcal{S} \circ C_{\infty}+\gamma \widetilde{\mathcal{T}}^{-1} \circ \Sigma-\gamma \widetilde{\mathcal{T}}^{-1} \circ\left(H C_{\infty} H\right) \\
& \preceq \gamma \widetilde{\mathcal{T}}^{-1} \circ \mathcal{S} \circ C_{\infty}+\gamma \widetilde{\mathcal{T}}^{-1} \circ \Sigma \\
& \preceq \gamma \widetilde{\mathcal{T}}^{-1} \circ \mathcal{S} \circ C_{\infty}+\gamma\|\Sigma\|_{H} \widetilde{\mathcal{T}}^{-1} \circ H .
\end{aligned}
$$

Proceeding recursively by using Equation 7,

$$
\begin{aligned}
C_{\infty} & \preceq\left(\gamma \tilde{\mathcal{T}}^{-1} \circ \mathcal{S}\right)^{2} \circ C_{\infty}+\gamma\|\Sigma\|_{H}\left(\gamma \tilde{\mathcal{T}}^{-1} \circ \mathcal{S}\right) \circ \tilde{\mathcal{T}}^{-1} \circ H+\gamma\|\Sigma\|_{H} \tilde{\mathcal{T}}^{-1} \circ H \\
& \preceq \gamma\|\Sigma\|_{H} \sum_{t=0}^{\infty}\left(\gamma \widetilde{\mathcal{T}}^{-1} \circ \mathcal{S}\right)^{t} \circ \widetilde{\mathcal{T}}^{-1} \circ H
\end{aligned}
$$

Using

$$
\mathcal{S} \circ \mathrm{I} \preceq R^{2} H
$$

and

$$
\begin{aligned}
& \widetilde{\mathcal{T}}^{-1} \circ H \\
& =\gamma \sum_{t=0}^{\infty}(\mathrm{I}-\gamma H)^{2 t} H=\gamma \sum_{t=0}^{\infty}\left(\mathrm{I}-\gamma 2 H+\gamma^{2} H\right)^{t} H \preceq \gamma \sum_{t=0}^{\infty}(\mathrm{I}-\gamma H)^{t} H=\gamma(\gamma H)^{-1} H=\mathrm{I}
\end{aligned}
$$

leads to

$$
C_{\infty} \preceq \gamma\|\Sigma\|_{H} \sum_{t=0}^{\infty}\left(\gamma R^{2}\right)^{t} \mathrm{I}=\frac{\gamma\|\Sigma\|_{H}}{1-\gamma R^{2}} \mathrm{I}
$$

which completes the proof.

- Lemma 7. (Refined C_{∞} bound) The $\operatorname{Tr}\left(C_{\infty}\right)$ is bounded as:

$$
\operatorname{Tr}\left(C_{\infty}\right) \leq \frac{\gamma}{2} \operatorname{Tr}\left(H^{-1} \Sigma\right)+\frac{1}{2} \frac{\gamma^{2} R^{2}}{1-\gamma R^{2}} d\|\Sigma\|_{H}
$$

Proof. From Lemma 6 and Equation 6,

$$
\mathcal{S} \circ C_{\infty} \preceq \frac{\gamma\|\Sigma\|_{H}}{1-\gamma R^{2}} \mathcal{S} \circ \mathrm{I} \preceq \frac{\gamma R^{2}\|\Sigma\|_{H}}{1-\gamma R^{2}} H .
$$

Also, from Equation 2, C_{∞} satisfies:

$$
H C_{\infty}+C_{\infty} H=\gamma \mathcal{S} \circ C_{\infty}+\gamma \Sigma
$$

Multiplying this by H^{-1} and taking the trace leads to:

$$
\begin{aligned}
\operatorname{Tr}\left(C_{\infty}\right) & =\frac{\gamma}{2} \operatorname{Tr}\left(H^{-1} \cdot\left(\mathcal{S} \circ C_{\infty}\right)\right)+\frac{\gamma}{2} \operatorname{Tr}\left(H^{-1} \Sigma\right) \\
& \leq \frac{1}{2} \frac{\gamma^{2} R^{2}}{1-\gamma R^{2}}\|\Sigma\|_{H} \operatorname{Tr}\left(H^{-1} H\right)+\frac{\gamma}{2} \operatorname{Tr}\left(H^{-1} \Sigma\right) \\
& =\frac{1}{2} \frac{\gamma^{2} R^{2}}{1-\gamma R^{2}} d\|\Sigma\|_{H}+\frac{\gamma}{2} \operatorname{Tr}\left(H^{-1} \Sigma\right)
\end{aligned}
$$

which completes the proof.

3.3 Completing the proof of Theorem 1

Proof. The proof of the theorem is completed by applying the developed lemmas. For the bias term, using convexity leads to:

$$
\begin{aligned}
\frac{1}{2} \mathbb{E}\left[\left\|\bar{w}_{t: T}-w^{*}\right\|_{H}^{2} \mid \xi_{0}=\cdots \xi_{T}=0\right] & \leq \frac{1}{2} R^{2} \mathbb{E}\left[\left\|\bar{w}_{t: T}-w^{*}\right\|^{2} \mid \xi_{0}=\cdots \xi_{T}=0\right] \\
& \leq \frac{1}{2} \frac{R^{2}}{T-t} \sum_{t^{\prime}=t}^{T-1} \mathbb{E}\left[\left\|w_{t^{\prime}}-w^{*}\right\|^{2} \mid \xi_{0}=\cdots \xi_{T}=0\right] \\
& \leq \frac{1}{2} \exp (-\gamma \mu t) R^{2}\left\|w_{0}-w^{*}\right\|^{2}
\end{aligned}
$$

For the variance term, observe that
$\frac{1}{2} \mathbb{E}\left[\left\|\bar{w}_{t: T}-w^{*}\right\|_{H}^{2} \mid w_{0}=w^{*}\right] \leq \frac{\operatorname{Tr}\left(C_{\infty}\right)}{\gamma(T-t)} \leq \frac{1}{T-t}\left(\frac{1}{2} \operatorname{Tr}\left(H^{-1} \Sigma\right)+\frac{1}{2} \frac{\gamma R^{2}}{1-\gamma R^{2}} d\|\Sigma\|_{H}\right)$,
which completes the proof.

References

1 Francis R. Bach. Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic regression. Journal of Machine Learning Research (JMLR), volume 15, 2014.

2 Alexandre Défossez and Francis R. Bach. Averaged least-mean-squares: Bias-variance tradeoffs and optimal sampling distributions. In AISTATS, volume 38, 2015.
3 Aymeric Dieuleveut and Francis R. Bach. Non-parametric stochastic approximation with large step sizes. The Annals of Statistics, 2015.
4 Roy Frostig, Rong Ge, Sham M. Kakade, and Aaron Sidford. Competing with the empirical risk minimizer in a single pass. In COLT, 2015.
5 Prateek Jain, Sham M. Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. Parallelizing stochastic approximation through mini-batching and tail-averaging. CoRR, abs/1610.03774, 2016.
6 Harold J. Kushner and Dean S. Clark. Stochastic Approximation Methods for Constrained and Unconstrained Systems. Springer-Verlag, 1978.
7 Erich L. Lehmann and George Casella. Theory of Point Estimation. Springer Texts in Statistics. Springer, 1998.
8 Boris T. Polyak and Anatoli B. Juditsky. Acceleration of stochastic approximation by averaging. SIAM Journal on Control and Optimization, volume 30, 1992.
9 David Ruppert. Efficient estimations from a slowly convergent robbins-monro process. Tech. Report, ORIE, Cornell University, 1988.
10 Aad W. van der Vaart. Asymptotic Statistics. Cambridge University Publishers, 2000.

[^0]: * Sham Kakade acknowledges funding from the Washington Research Foundation Fund for Innovation in Data-Intensive Discovery.

 © Prateek Jain, Sham M. Kakade, Rahul Kidambi, Praneeth Netrapalli, Venkata Krishna Pillutla, and Aaron Sidford;
 licensed under Creative Commons License CC-BY

