On Colourability of Polygon Visibility Graphs*

Onur Çağırıcı ${ }^{1}$, Petr Hliněný ${ }^{2}$, and Bodhayan Roy ${ }^{3}$

1 Faculty of Informatics, Masaryk University Brno, Czech Republic onur@mail.muni.cz
2 Faculty of Informatics, Masaryk University Brno, Czech Republic hlineny@fi.muni.cz
3 Faculty of Informatics, Masaryk University Brno, Czech Republic
b.roy@fi.muni.cz

Abstract

We study the problem of colouring the visibility graphs of polygons. In particular, we provide a polynomial algorithm for 4 -colouring of the polygon visibility graphs, and prove that the 6 colourability question is already NP-complete for them.

1998 ACM Subject Classification G.2.2 Graph algorithms, F.2.2 Geometrical problems and computations

Keywords and phrases polygon visibility graph, graph coloring, NP-completeness

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2017.21

1 Introduction

Visibility graphs are widely studied graph classes in computational geometry. Geometric sets such as sets of points or line segments, polygons, polygons with obstacles, etc., all can correspond to specific visibility graphs, and have uses in robotics, signal processing, security paradigms, decomposing shapes into clusters $[1,2,7,11,15]$. Here we study the visibility graphs of simple polygons in the Euclidean plane and henceforth in the paper, all polygons are simple unless stated otherwise.

Given an n-vertex polygon P (not necessarily convex) in the plane, two points p and q of P are said to be mutually visible if, and only if the line segment $\overline{p q}$ does not intersect the exterior of P. The n-vertex visibility graph $G(V, E)$ of P is defined as follows. The vertex set V of G contains a vertex v_{i} if, and only if, the polygon P contains the point p_{i} as its vertex. The edge set E of G contains an edge $\left\{v_{i}, v_{j}\right\}$ if, and only if, the points p_{i} and p_{j} are mutually visible. Given a polygon P in the plane, we can compute its visibility graph G in $\mathcal{O}\left(n^{2}\right)$ time using the polygon triangulation method [8,17]. Hence, in this paper, we slightly abuse notation by not distinguishing between a polygon P and its visibility graph G and referring to a polygon vertex p_{i} as to the corresponding G-vertex v_{i}

Visibility graphs of polygons have been studied with respect to various theoretical and practical computational problems. The complexities of several popular optimization problems have been determined for visibility graphs of polygons. A geometric variation of the dominating set problem, namely polygon guarding, is one of the most studied problems in computational geometry and is known as the Art Gallery Problem [15]. It has been studied extensively for both polygons with and without holes and has been found to be NP-hard in both cases $[12,16]$. Besides, given a polygon, computing a maximum independent set is

[^0]

Figure 1 A visibility graph that is without a K_{5}, non planar but is 4 -colourable.
known to be hard, due to Shermer [20], while computing a maximum clique has been shown to be in polynomial time by Ghosh et al. [19].

A proper vertex colouring of a graph is an assignment of labels or colours to the vertices of the graph so that no two adjacent vertices have the same colours. Henceforth, when we say colouring a graph, we refer to proper vertex colouring. The chromatic number of a graph is defined as the minimum number of colours used in any proper colouring of the graph. Visibility graph colouring has been studied for various types of visibility graphs. Babbitt et al. gave upper bounds for the chromatic numbers of k -visibility graphs of arcs and segments [3]. Kára et al. characterized 3-colourable visibility graphs of point sets and described a super-polynomial lower bound on the chromatic number with respect to the clique number of visibility graphs of point sets [10]. Pfender showed that, as for general graphs, the chromatic number of visibility graphs of point sets is also not upper-bounded by their clique numbers [18]. Diwan and Roy showed that for visibility graphs of point sets, the 5 -colouring problem is NP-hard, but 4-colouring is solvable in polynomial time [5].

The problem of colouring the visibility graphs of given polygons has been studied in the special context where each internal point of the polygon is seen by a vertex, whose colour appears exactly once among the vertices visible to that point [$4,6,9$]. However, little is known on colouring visibility graphs of polygons without such constraints. Although 3-colouring is NP-hard for general graphs [14], in particular it is rather trivial to solve it for visibility graphs of polygons in polynomial time using a greedy approach. Already with 4 colours the same question has been open so far.

In this paper we settle (nearly in full) the complexity question of the general problem of colouring polygonal visibility graphs, which was declared open in 1995 by Lin and Skiena [13]. We provide a polynomial-time algorithm to find a 4-colouring of the visibility graph of a given polygon, if such a colouring exists. On the other hand, we provide a reduction showing that the question of k-colourability of the visibility graph of a given simple polygon is NP-complete for any $k \geq 6$. Only the problem of 5 -colourability is left open.

2 4-Colouring visibility graphs

In this section, we study the algorithmic question of 4-colourability of the visibility graph of a given polygon. The full structure of 4-colourable visibility graphs is not yet known and it seems to be non-trivial. For instance, if a visibility graph is planar, it is obviously 4 -colourable. Though, if such a graph contains K_{5}, then it is neither planar nor 4-colourable, but a visibility graph not containing any K_{5} may be non-planar yet 4-colourable (Figure 1).

The related algorithmic problem of 3-colouring visibility graphs is rather easy to resolve as follows. Every simple polygon can be triangulated and, in such a triangulation, every non-boundary edge is contained in two triangles. One can then proceed greedily edge by edge: Suppose a triangle has already been coloured, and it shares an edge with a triangle that is not fully coloured. Then the two end vertices of the shared edge uniquely determine the colour of the third vertex of the uncoloured triangle.

Our algorithm essentially generalizes the 3 -colouring method for 4 -colouring. We first divide the polygon into reduced polygons. A polygon P is called a reduced polygon, if every chord of P is intersected by another chord of P. After the division, we find and colour a triangle (a K_{3} subgraph) with three distinct colours in each reduced subpolygon. Subsequently, whenever we find an uncoloured vertex v adjacent to some three vertices coloured with three distinct colours (such as, to an already coloured triangle), we can uniquely colour also v, by the fourth colour. We will show that we can exhaust all vertices of a reduced subpolygon in this manner. Furthermore, we check for possible colouring conflicts - since the colouring process is unique, this suffices to solve 4-colourability.

Altogether, this will lead to the following theorem.

- Theorem 1. The 4-colourability problem is decidable in polynomial time for visibility graphs of simple polygons, and if a 4-colouring exists, then it can be computed in polynomial time.

In the coming proof, consider a polygon P and its visibility graph $G(V, E)$, embedded on P. Hereafter we slightly abuse notation by equating P and G. Since we want to 4 -colour P, we assume that G has no K_{5} (or we answer 'no'). We denote the clockwise polygonal chain of P from a vertex u to a vertex v as $\Gamma(u, v)$.

One can easily see that it is enough to focus on reduced P in our proofs. Indeed, assume an edge $u v$ of G which is a chord of P and not crossed by any other chord. We can partition P into subpolygons P_{1} and P_{2}, where $P_{1}=(u \Gamma(u, v) v)$ and $P_{2}=(v \Gamma(v, u) u)$. Since no edge of G has one end in $P_{1} \backslash P_{2}$ and the other in $P_{2} \backslash P_{1}$, the polygons P_{1} and P_{2} can be 4 -coloured separately and merged again (provided that P is 4 -colourable).

Let u and v be two vertices of P. The shortest path between u and v is a (graph) path from u to v in G such that the sum of the Euclidean lengths of its edges is minimized. Such a shortest path between u and v is unique in P and is denoted as $\Pi(u, v)$. Observe that all non-terminal vertices of a shortest path are non-convex [7]. We will assume an implicit ordering of vertices on $\Pi(u, v)$ from u to v. When we say that some vertex w is the first (or last) vertex on $\Pi(u, v)$ with a certain property, we mean that w precedes (respectively, succeeds) all other vertices with that property on $\Pi(u, v)$.

For a proof of Theorem 1, we have got the following sequence of claims. Consider, in all of them, a K_{5}-free reduced polygon P and its three vertices t_{1}, t_{2}, t_{3} forming a triangle $T \subseteq G$. Assume that T is already coloured (which is unique up to a permutation of the colours). Suppose that v_{i} is an uncoloured vertex, such that an edge incident to v_{i} intersects T. Then we have the following lemmas.

- Lemma 2. Assume that two vertices $v_{i} \in \Gamma\left(t_{1}, t_{2}\right)$ and $v_{j} \in \Gamma\left(t_{2}, t_{3}\right)$ see each other, and the edge $v_{i} v_{j}$ intersects $t_{1} t_{2}$ and $t_{2} t_{3}$. Then the colours of all vertices on the four paths $\Pi\left(t_{1}, v_{i}\right)$, $\Pi\left(t_{2}, v_{i}\right), \Pi\left(t_{2}, v_{j}\right)$ and $\Pi\left(t_{3}, v_{j}\right)$, including v_{i}, v_{j} themselves, are uniquely determined by the colours of T.
Proof. We prove the claim by induction on the four paths. As the base case, the first vertices of these paths are the vertices of T, which are already assigned different colours.

For the induction step, assume that $\Pi\left(t_{1}, v_{i}\right), \Pi\left(t_{2}, v_{i}\right), \Pi\left(t_{2}, v_{j}\right)$ and $\Pi\left(t_{3}, v_{j}\right)$ have been coloured till vertices v_{a}, v_{b}, v_{c} and v_{d} respectively. Also, their immediate uncoloured successors on $\Pi\left(t_{1}, v_{i}\right), \Pi\left(t_{2}, v_{i}\right), \Pi\left(t_{2}, v_{j}\right)$ and $\Pi\left(t_{3}, v_{j}\right)$ are v_{p}, v_{q}, v_{r} and v_{s} respectively. We aim to show that the colours of at least one of v_{p}, v_{q}, v_{r} and v_{s} is uniquely determined by the already coloured vertices.

If v_{p} does not see v_{b} and any predecessor of v_{b} on $\Pi\left(t_{2}, v_{i}\right)$, then v_{q} must see v_{a} or some predecessor of v_{a} on $\Pi\left(t_{1}, v_{i}\right)$. We have the following cases.

Figure 2 Illustration of the proof of Lemma 2: The vertices whose colours shall be uniquely determined next, are now drawn in gray. Polygonal boundaries containing multiple vertices not included in the figure are drawn with dashed lines. (a) v_{p} forms a K_{4} with v_{a}, v_{t} and v_{u}. (b) v_{p} forms a K_{4} with v_{a}, v_{u} and v_{w}. (c) v_{s} forms a K_{4} with v_{u}, v_{d} and v_{z}. (d) v_{g}, v_{q} and v_{b} form a K_{3}.

Case 1: v_{p} sees v_{b} or some predecessor of v_{b} on $\Pi\left(t_{2}, v_{i}\right)$.

By definition, v_{p} is the immediate successor of v_{a} on $\Pi\left(t_{1}, v_{i}\right)$, so v_{p} must see v_{a}. The right tangent of v_{a} to $\Pi\left(t_{2}, v_{i}\right)$ lies to the right of the right tangent of v_{p} to $\Pi\left(t_{2}, v_{i}\right)$. So, if the right tangent of v_{p} to $\Pi\left(t_{2}, v_{i}\right)$ touches $\Pi\left(t_{2}, v_{i}\right)$ at a point v_{u}, then v_{a} sees v_{u}. Note that either $v_{u}=v_{b}$ or v_{u} precedes v_{b} on $\Pi\left(t_{2}, v_{i}\right)$. In any case, v_{u} is already coloured. Since v_{p},
v_{a} and $\Pi\left(t_{3}, v_{j}\right)$ lie on the same side of $v_{i} v_{j}$, and v_{p} is nearer to $v_{i} v_{j}$ than v_{a} is, v_{p} and v_{a} see a vertex v_{t} of $\Pi\left(t_{3}, v_{j}\right)$. If v_{u} also sees v_{t}, and v_{t} is already coloured, then the claim is proved (Figure 2(a)). So we consider the other two cases, namely, that either v_{u} does not see v_{t}, or v_{t} is not yet coloured.

Subcase 1.a: $\boldsymbol{v}_{\boldsymbol{u}}$ does not see $\boldsymbol{v}_{\boldsymbol{t}}$. Since v_{t} and v_{u} lie on different sides of $v_{i} v_{j}$, some vertex of $\Pi\left(t_{2}, v_{j}\right)$ must be blocking v_{u} and v_{t}. Let v_{w} be the first vertex of $\Pi\left(t_{2}, v_{j}\right)$ blocking v_{u} and v_{t}. Then v_{u} sees v_{w}. The vertex v_{w} is closer to $v_{i} v_{j}$ than v_{u} is. Also, v_{w} lies to the right of $\overrightarrow{v_{a} v_{u}}$ and $\overrightarrow{v_{p} v_{u}}$, and to the left of $\overrightarrow{v_{a} v_{t}}$ and $\overrightarrow{v_{p} v_{t}}$. Then the only possible blockers between v_{w} and v_{p} or v_{a} can be from $\Pi\left(t_{2}, v_{i}\right)$. But all the vertices on $\Pi\left(t_{2}, v_{i}\right)$ preceding v_{u} are further from $v_{i} v_{j}$ than v_{u} is. So, there can be no such blocker, and v_{w} must be visible from both v_{a} and v_{p}. If v_{w} is already coloured, then the claim is proved (Figure 2(b)). Suppose that v_{w} is not already coloured. Then consider v_{r}, which precedes v_{w} on $\Pi\left(t_{2}, v_{j}\right)$. The vertices v_{r} and v_{c} are consecutive on $\Pi\left(t_{2}, v_{j}\right)$ and hence see each other. Since $\Pi\left(t_{2}, v_{j}\right)$ and $\Pi\left(t_{1}, v_{i}\right)$ are on opposite sides of $v_{i} v_{j}$, the vertices v_{c} and v_{r} either see v_{a} or a vertex preceding v_{a} on $\Pi\left(t_{1}, v_{i}\right)$. Let v_{x} be the last coloured vertex of $\Pi\left(t_{1}, v_{i}\right)$ seen by both v_{c} and v_{r}. If $v_{x} \neq v_{a}$ then let v_{y} be the last vertex of $\Pi\left(t_{2}, v_{i}\right)$ that blocks v_{c} from the successor of v_{y} on $\Pi\left(t_{1}, v_{i}\right)$. Then v_{y} must be visible from v_{x}, v_{r} and v_{c}. Since v_{x} precedes v_{a} on $\Pi\left(t_{1}, v_{i}\right)$, and v_{y} precedes v_{b} on $\Pi\left(t_{2}, v_{i}\right)$, both v_{x} and v_{y} must be already coloured. So, T uniquely determines the colour of v_{r}. If $v_{x}=v_{a}$ then since v_{u} is on the right tangent of v_{a} to $\Pi\left(t_{2}, v_{i}\right)$, both v_{c} and v_{r} see v_{u}. Hence, T uniquely determines the colour of v_{r}. Now we move to the second subcase.

Subcase 1.b: $\boldsymbol{v}_{\boldsymbol{u}}$ sees $\boldsymbol{v}_{\boldsymbol{t}}$, but $\boldsymbol{v}_{\boldsymbol{t}}$ is not yet coloured. Since v_{u} sees $v_{t}, \Pi\left(t_{2}, v_{j}\right)$ is a concave chain and the edge $t_{1} t_{3}$ exists in P, v_{u} must see every predecessor of v_{t} on $\Pi\left(t_{2}, v_{j}\right)$. This means that both v_{d} and v_{s} see v_{u}. The vertex v_{s} must see the vertex (say, v_{y}) of $\Pi\left(t_{1}, v_{i}\right)$ where the right tangent from v_{d} touches $\Pi\left(t_{1}, v_{i}\right)$, because the last vertices v_{i} and v_{j} of concave chains $\Pi\left(t_{1}, v_{i}\right)$ and $\Pi\left(t_{3}, v_{j}\right)$ see each other. Also, the left tangent of v_{u} to $\Pi\left(t_{1}, v_{i}\right)$ must touch $\Pi\left(t_{1}, v_{i}\right)$ at a vertex equal to or preceding v_{y}. Thus, all three of v_{s}, v_{d} and v_{u} see a common vertex v_{z} on $\Pi\left(t_{1}, v_{i}\right)$ which precedes v_{a}, since v_{u} and v_{t} see v_{a}. Thus, v_{z} is already coloured, and v_{u}, v_{d} and v_{z} form a K_{4} with v_{s} and uniquely determine the colour of v_{s} (Figure 2(c)).

Case 2: v_{p} does not see v_{b} or some predecessor of v_{b} on $\Pi\left(t_{2}, v_{i}\right)$.

Here, we have the opposite situation to Case 1. Then v_{q} sees v_{a} or some predecessor of v_{a} on $\Pi\left(t_{1}, v_{i}\right)$. Let the left tangents from v_{q} and v_{b} touch $\Pi\left(t_{2}, v_{i}\right)$ at v_{e} and v_{f} respectively. Either v_{b} sees v_{e} or v_{q} must be a blocker between v_{b} and v_{e}. In this case, v_{b} and v_{q} see the last vertex v_{g} of $\Pi\left(t_{1}, v_{i}\right)$ that is not blocked from v_{b} by v_{q}. Since v_{b} does not see v_{p}, the vertex v_{g} must be already coloured (Figure $2(\mathrm{~d})$). Then, again, v_{b} and v_{q} see a vertex v_{t} on $\Pi\left(t_{2}, v_{j}\right)$. Now, some already coloured vertex v_{u} in $\Pi\left(t_{2}, v_{i}\right)$, adjacent to v_{b} and v_{q} might also see v_{t}, which may or may not be coloured. Or else, v_{t} might be blocked from such a vertex v_{u} by a vertex v_{w} of $\Pi\left(t_{3}, v_{j}\right)$. It can be seen that each of these arguments can be augmented similar to the subcases of Case 1, a K_{4} can be found and the colour of one of the vertices v_{p}, v_{q}, v_{r} and v_{s} can be uniquely determined.

- Corollary 3. If any vertex v_{i} of P sees a vertex of T and their visibility edge crosses one of the edges of T, then the colour of v_{i} is uniquely determined by the colours of T.

Figure 3 The vertex v_{a} has an edge incident to one of the vertices of v_{a}, v_{b}, v_{c}, where v_{a}, v_{b} and v_{c} lie on the already coloured shortest paths from t_{1} and t_{3} to v_{i}.

Proof. Without loss of generality, suppose that v_{i} sees t_{1}, and $v_{i} t_{1}$ crosses $t_{2} t_{3}$. Then $v_{j}=t_{1}$, $\Pi\left(t_{2}, v_{j}\right)=t_{2} t_{1}$ and $\Pi\left(t_{1}, v_{j}\right)=t_{1}$, and Lemma 2 proves the claim.

- Lemma 4. If a reduced polygon is 4-colourable, then it has a unique 4-colouring (up to permutation of colours).

Proof. Consider a triangle T in a reduced polygon P. If P is not just T, then at least one edge of T is not a boundary edge of P. Without loss of generality, let $t_{1} t_{2}$ be such an edge. Since P is reduced, there must be a vertex on $\Gamma\left(t_{1}, t_{2}\right)$ such that an edge incident to v_{i} crosses $t_{1} t_{2}$. By Lemma 2 and Corollary 3, if P is 4 -colourable, then all vertices on the paths $\Pi\left(t_{1}, v_{i}\right)$ and $\Pi\left(t_{2}, v_{i}\right)$, including v_{i} have a 4 -colouring uniquely determined by T. In case $t_{2} t_{3}$ or $t_{3} t_{1}$ are not boundary edges of P, we can similarly find v_{j} on $\Gamma\left(t_{2}, t_{3}\right)$ and v_{k} on $\Gamma\left(t_{3}, t_{1}\right)$ and uniquely 4 -colour $\Pi\left(t_{2}, v_{j}\right), \Pi\left(t_{3}, v_{j}\right), \Pi\left(t_{3}, v_{k}\right)$ and $\Pi\left(t_{1}, v_{k}\right)$. Now, all the remaining uncoloured vertices of P are on polygonal chains of the form $\Gamma\left(v_{a}, v_{b}\right)$, where v_{a} and v_{b} are two consecutive vertices in one of the six paths mentioned above. Furthermore, no vertex in the polygonal chain $\Gamma\left(v_{a}, v_{b}\right)$, other than v_{a} and v_{b}, is coloured. Without loss of generality, let v_{a} and v_{b} be two consecutive vertices on $\Pi\left(t_{1}, t_{2}\right)$. If $v_{a} v_{b}$ is not a boundary edge of P, then since P is reduced, there must be an uncoloured vertex v_{u} in $\Gamma\left(v_{a}, v_{b}\right)$ such that an edge incident to v_{u} crosses $v_{a} v_{b}$. This edge is either incident to a vertex of $\Pi\left(t_{2}, v_{i}\right)$, or crosses an edge of $\Pi\left(t_{2}, v_{i}\right)$. Consider the case where such an edge to a vertex of $\Pi\left(t_{2}, v_{i}\right)$ exists. Then consider a vertex v_{w} that is closest to $v_{a} v_{b}$ among all the vertices of $\Pi\left(t_{2}, v_{i}\right)$ that see a vertex (say, v_{z}) of $\Gamma\left(v_{a}, v_{b}\right)$. Since the edge $v_{w} v_{z}$ exists, v_{w} cannot be blocked by any vertex of $\Pi\left(t_{1}, v_{i}\right)$. Due to the choice of v_{w}, no vertex of $\Pi\left(t_{2}, v_{i}\right)$ can block v_{w} from v_{a} or v_{b}. So, v_{w} sees both v_{a} and v_{b}. Now consider the case where no vertex of $\Gamma\left(v_{a}, v_{b}\right)$ sees any vertex of $\Pi\left(t_{2}, v_{i}\right)$, but some vertex of $\Gamma\left(v_{a}, v_{b}\right)$ sees some vertex of $\Gamma\left(v_{c}, v_{d}\right)$, where v_{c} and v_{d} are consecutive points on $\Pi\left(t_{2}, v_{i}\right)$. Without loss of generality, assume that v_{c} precedes v_{d} in $\Pi\left(t_{2}, v_{i}\right)$. Then v_{c} must see both v_{a} and v_{b} (Figure 3), for otherwise a vertex of $\Gamma\left(v_{a}, v_{b}\right)$ must have an edge with some vertex of $\Pi\left(t_{2}, v_{i}\right)$ acting as a blocker for v_{c}, contrary to our assumption. Then, in the above two cases, based on the triangle $v_{a} v_{b} v_{w}$ and $v_{a} v_{b} v_{c}$, respectively, again Lemma 2 and Corollary 3 can be used to uniquely determine a 4 -colouring for $\Pi\left(v_{a}, v_{u}\right)$ and $\Pi\left(v_{b}, v_{u}\right)$.

Now we generalize the above procedure. Let $T_{0}=\{T\}$, and $S_{0}=\left\{\Pi\left(t_{1}, v_{i}\right), \Pi\left(t_{2}, v_{i}\right)\right.$, $\left.\Pi\left(t_{2}, v_{j}\right), \Pi\left(t_{3}, v_{j}\right), \Pi\left(t_{3}, v_{k}\right), \Pi\left(t_{1}, v_{k}\right)\right\}$. Note that we have assumed that none of the edges of T are boundary edges. If some edges of T are boundary edges then S_{0} will have less elements. By the above procedure, we can uniquely 4 -colour all the vertices of all elements of S_{0}. Now, all the uncoloured vertices lie on $\Gamma\left(v_{a}, v_{b}\right)$, where v_{a} and v_{b} are consecutive vertices of some element of S_{0}. For each such $v_{a} v_{b}$, we find a new triangle $v_{a} v_{b} v_{c}$ or $v_{a} v_{b} v_{d}$, and two new shortest paths of the form $\Pi\left(v_{a}, v_{u}\right)$ and $\Pi\left(v_{b}, v_{u}\right)$. Let T_{1} denote the set of all such new triangles, and S_{1} denote the set of all new shortest paths obtained from T_{0} and S_{0}. Now,
the remaining uncoloured vertices must line on polygonal chains of the form $\Gamma\left(v_{e}, v_{f}\right)$ where v_{e} and v_{f} are two consecutive vertices of some element of S_{1}. In general, following the same method we can always construct T_{i+1} and S_{i+1} from T_{i} and S_{i}, until all vertices of P are coloured. Since in each step, the colours of vertices are uniquely determined, it follows that if P has a 4 -colouring, then it must be unique.

Our algorithm to decide 4-colourablity of visibility graphs of polygons is given next.

```
Algorithm 1: Algorithm to decide 4-colourablity of visibility graphs of polygons
    Input: A simple polygon \(P\) with the visibility edges
    Output: If \(P\) is 4-colourable or not. If so, then proper 4-colouring of \(P\).
    Decompose \(P\) into reduced subpolygons \(P_{1}, \ldots, P_{k}\);
    foreach reduced subpolygon \(P_{i}\) do
        Locate a triangle;
        repeat
            Compute a 4-colouring for vertices on the polygonal chain of each
            non-boundary edge of the triangle;
            /* Using the method of Lemma 2 and Corollary 3 */
            Continue the process using the method of Lemma 4;
        until Each vertex in \(P_{i}\) is coloured;
    end
    if two adjacent vertices receive the same colour then
        Output 'non-4-colourable';
        Terminate;
    end
    Rejoin the reduced subpolygons such that each pair \(P_{i}, P_{j}\) of subpolygons having a
        common edge have exactly two vertices in common;
    Permute the colours of the vertices so that there is no conflict.
```

Now, in light of the above Algorithm 1, we prove Theorem 1.
Proof of Theorem 1: Lemma 2 and Corollary 3 colour the shortest path from a triangle to a vertex uniquely with 4 colours. Lemma 4 repeats the process exhausting all vertices. Since the colour of each vertex is uniquely determined by some three previously coloured vertices, the resulting 4 -colouring is unique, if P is 4 -colourable. Consequently, if a conflict is found, it follows that P is not 4 -colourable. So, the algorithm is correct.

Let the number of vertices and edges in G be n and m respectively. The chords that do not cross any other chord, can be found in $O\left(m^{2}\right)$ time. Thus, the decomposition of P into reduced subpolygons takes $O\left(m^{2}\right)$ time. Shortest paths from a triangle to a vertex can be found in $O(n)$ time. While computing the colouring on the shortest paths, a pointer can be kept on each of the shortest paths, and the colouring takes $O(n)$ time. The colouring step can be iterated at most once for each vertex, so the complexity for all vertices is $O\left(n^{2}\right)$. Checking for conflict takes $O(m)$ time. Finally, rejoining the reduced subpolygons takes $O(n)$ time. Thus, the complexity of the algorithm is $O\left(m^{2}\right)$.

3 Hardness of 6-colourability

In this section we prove that the problem of deciding whether the visibility graph G of a given simple polygon P can be properly coloured with 6 colours, is NP-complete.

Figure 4 A scheme of the polygon P constructed from a 3-SAT formula in Section 3. Note that the top and bottom part are placed on slightly concave arcs, which block undesired visibilities between gadgets. The colour-fix gadget is placed so that it can see none of the clause gadgets. The red dashed lines show "visibility communication" between related variable and copy gadgets (the literals), and between related copy and clause gadgets.

Membership of our problem in NP is trivial (since G can be efficiently computed from P and then a colouring checked on G). We are going to present a polynomial reduction from the NP-hard problem of Not-all-equal 3-SAT: Given is a formula Φ in the conjunctive normal form, such that every clause of Φ contains exactly 3 literals, and the task is to find a (satisfying) assignment to the variables of Φ such that every clause contains at least one true and at least one false literal. For that we will construct a polygon P such that its proper 6 -colourings correspond to satisfying assignments of Φ. We start with a rough informal outline of the construction.

- Our polygon P will consist of one colour-fixing gadget, a series of variable gadgets (one per each variable of Φ), a series of copy gadgets (one per each literal occurring in Φ), and a series of clause gadgets (one per each clause of Φ). Visibility edges will allow "communication" between variable gadgets and their corresponding copies representing the literals, and between the literals and their clause gadgets. Apart from that, there will be no other visibility relation between "internal" vertices of our gadgets. See Figure 4.
- Assume that the visibility graph G of P can be properly 6 -coloured. The role of the colour-fixing gadget is to fix these six colours so that precisely two of them, named here as red and blue, can be used to colour the vertices representing the variables of Φ. The remaining four colours play an auxiliary role; they are used to colour those vertices which "separate" the gadgets from each other, or to "moderate" clause gadgets. More specifically, yellow and orange colour separating vertices at the variable and clause side ("top"), and light and dark green colour separating vertices of the copy gadgets ("bottom").
- For each variable x_{i} of Φ, there will be a variable gadget $R\left(x_{i}\right)$ which, in particular, contains two mutually visible internal vertices named x_{i} and $\neg x_{i}$. They must hence be coloured red and blue, or blue and red, encoding the logical value of x_{i} in Φ. There is no direct influence between colouring decisions of distinct variable gadgets.
- For each literal ℓ occurring in Φ (such as $\ell=x_{j}$ or $\ell=\neg x_{j}$ for some variable x_{j}), there will be a copy gadget $P(\ell)$ which, in particular, contains an internal vertex named $\widetilde{\ell}$. Visibility between the gadgets $R\left(x_{j}\right)$ and $P(\ell)$ are adjusted so that $\tilde{\ell}$ must receive, in any 6 -colouring of G, the same colour as that of ℓ in $P(\ell)$. Furthermore, the point $\widetilde{\ell}$ is positioned so that it is visible only from selected vertices of the corresponding clause gadget of ℓ, as specified later (note that different literals of x_{j} have separate copy gadgets).
- For each clause $c=\ell_{1} \vee \ell_{2} \vee \ell_{3}$ of Φ, there will be a clause gadget $S(c)$ whose vertices can selectively see, among all internal vertices of all the copy gadgets, exactly the points $\widetilde{\ell_{1}}$, $\widetilde{\ell}_{2}, \widetilde{\ell}_{3}$. This selected visibility is such that, locally, the clause gadget $S(c)$ can be properly coloured iff not all three points $\widetilde{\ell}_{1}, \widetilde{\ell_{2}}, \widetilde{\ell_{3}}$ have the same colour. Furthermore, for any satisfying assignment of Φ, proper colourings of all the clause gadgets can be properly combined together.
Note also that, within the presented reduction scheme, 6 colours is a necessary minimum. We need two colours for the separating vertices of the top part, another two such at the bottom part, and then two more colours are required to encode logical values of the variables.

Altogether, this will lead to the following:

- Theorem 5. The problem - given a simple polygon P in the plane, to decide whether the visibility graph of P is properly k-colourable - is NP-complete for every $k \geq 6$.

Proof. As mentioned, the problem is in NP since one can construct the visibility graph G of P in polynomial time $[8,17]$ and then verify a colouring. In the opposite direction, we reduce from the NP-complete Not-all-equal 3-SAT problem. Given a 3-SAT formula Φ, we efficiently construct a polygon P such that the visibility graph G of P is k-colourable if, and only if, Φ is not-all-equal satisfiable. In the proof, we refer to the previous construction outline.

We construct only the least case $k=6$ since for higher k the construction can be easily adjusted (simply saying, we can add more shades of green to the copy gadgets), as detailed at the end. As for our terminology, a gadget is a consecutive part of the polygonal chain of P. The vertices of each gadget are divided to internal and external ones (except clause gadgets which have no external vertices). The internal vertices define the function of each gadget, while the external ones serve as separators from the neighbouring gadgets. Two consecutive gadgets may share their external vertices.

The unique colour-fix gadget A is a (convex) chain of 6 vertices a_{1}, \ldots, a_{6} in this clockwise order (cf. Figure 4) which see each other. Without loss of generality, in every 6 -colouring of G the colours of external vertices a_{1}, a_{2} are yellow and orange, the colours of internal a_{3}, a_{4} are red and blue and the colours of external a_{5}, a_{6} are light and dark green.

For each variable x_{i} of Φ, there is one variable gadget $R\left(x_{i}\right)$ formed as a convex chain of 4 vertices $r_{1}^{i}, r_{2}^{i}, r_{3}^{i}, r_{4}^{i}$, hence seeing each other (Figure 5 top). Furthermore, the external vertices r_{1}^{i}, r_{4}^{i} of $R\left(x_{i}\right)$ are visible from all four $a_{3}, a_{4}, a_{5}, a_{6}$ of the colour-fix gadget A, while the internal vertices r_{2}^{i}, r_{3}^{i} of $R\left(x_{i}\right)$ are visible from a_{5}, a_{6} of A. Consequently, r_{1}^{i}, r_{4}^{i} can only be coloured yellow and orange, and r_{2}^{i}, r_{3}^{i} can only receive colours red and blue. The internal vertices r_{2}^{i} and r_{3}^{i} are nicknamed x_{i} and $\neg x_{i}$, respectively, and their colours will represent their value 'true' (red) and 'false' (blue). Together, the variable gadgets $R\left(x_{i}\right)$, $i=1,2, \ldots, n$, are chained together (the order does not really matter) such that r_{4}^{i} of $R\left(x_{i}\right)$ is identified with r_{1}^{i+1} of $R\left(x_{i+1}\right)$, and the rightmost r_{4}^{n} is identified with a_{1} of the colour-fix gadget A. Globally, the variable gadgets are arranged in a nearly-straight concave position (cf. Figure 4), so that they do not see each other (except consecutive ones at the shared external vertices). The points a_{1}, a_{2} of A are also part of this concave arrangement.

Figure 5 Detailed arrangement of the copy gadget $P\left(\ell_{j}\right)$ of a literal $\ell=x_{i}$, where the cyan dashed lines show important visibility relations between $P\left(\ell_{j}\right)$ and the variable gadget $R\left(x_{i}\right)$. Specifically, all 6 available colours have to be used on $P\left(\ell_{j}\right)$ and, thanks to p_{4}^{j} not seeing r_{3}^{i}, the only viable choice is to colour p_{4}^{j} same as r_{3}^{i} (blue) and then p_{5}^{j} to get the same colour as r_{2}^{i} (red). Brown dashed lines show the visibility angle of p_{5}^{j} which will be used by the corresponding clause gadget.

For each literal ℓ_{j} occurring in Φ (such as $\ell_{j}=x_{i}$ or $\ell_{j}=\neg x_{i}$ for some variable x_{i}), there is one separate copy gadget $P\left(\ell_{j}\right)$ formed as a convex chain of 6 vertices $p_{1}^{j}, \ldots, p_{6}^{j}$ (shaped as a "cavity"). Among them, p_{1}^{j} and p_{6}^{j} are the external ones, visible in particular from all four $a_{1}, a_{2}, a_{3}, a_{4}$ of the colour-fix gadget A. The remaining internal vertices $p_{2}^{j}, p_{3}^{j}, p_{4}^{j}, p_{5}^{j}$ are visible only from selected vertices of the variable gadget $R\left(x_{i}\right)$ and of the clause gadget corresponding to the literal ℓ_{j}. Specifically, the arrangement is as depicted in Figure 5 (for the case $\left.\ell_{j}=x_{i}\right): r_{2}^{i}$ sees all points of $P\left(\ell_{j}\right)$ except p_{5}^{j} and r_{3}^{i} sees all except p_{4}^{j}, p_{5}^{j}, while r_{1}^{i} cannot see p_{2}^{j} and r_{4}^{i} cannot see p_{3}^{j}. Besides this, r_{1}^{i} may possibly see ${\underset{\sim}{p}}_{4}^{j}$ and r_{4}^{i} may see p_{2}^{j}, but this does not matter. The special point p_{5}^{j} (previously named $\widetilde{\ell}_{j}$) will see, except $P\left(\ell_{j}\right)$, only a later specified part of a clause gadget to which ℓ_{j} belongs to. The purpose of this arrangement is to force p_{5}^{j} to the same colour as r_{2}^{i} has (Claim 6), while keeping full flexibility of selecting the visibility angle of p_{5}^{j}.

If, on the other hand, the considered literal is $\ell_{j}=\neg x_{i}$, we only slightly shift the points in Figure 5, such that r_{2}^{i} could not see p_{2}^{j} and r_{3}^{i} would see p_{4}^{j}. (Alternatively, we could avoid this case by considering Φ without negations, in which case not-all-equal satisfiability remains hard.) Globally, all the copy gadgets $P\left(\ell_{j}\right)$ are chained together (the order does not matter) again in a nearly-straight concave shape as in Figure 4, but this time without identification of their external vertices. In particular, p_{6}^{j} is a neighbour of p_{1}^{j+1} on the polygonal chain of P but, importantly, p_{6}^{j} cannot see p_{6}^{j+1}. The points a_{5}, a_{6} of the colour-fix gadget A are also part of this concave arrangement.

Then, for each clause $c_{m}=\left(\ell_{m_{1}} \vee \ell_{m_{2}} \vee \ell_{m_{3}}\right)$ of Φ, there is one clause gadget $S\left(c_{m}\right)$ formed as a nearly-straight convex chain of 4 vertices $s_{1}^{m}, s_{2}^{m}, s_{3}^{m}, s_{4}^{m}$. All points of $S\left(c_{m}\right)$ are visible from a_{5}, a_{6} of the colour-fix gadget A, and so all four remaining colours (including red and blue) have to be used on $S\left(c_{m}\right)$. Furthermore, the point $p_{5}^{m_{1}}$ of the copy gadget $P\left(\ell_{m_{1}}\right)$

Figure 6 Detailed arrangement of the gadget $S\left(c_{m}\right)$ of a clause $c_{m}=\left(\ell_{m_{1}} \vee \ell_{m_{2}} \vee \ell_{m_{3}}\right)$, where dashed brown lines delimit the visible angles of the points $p_{5}^{m_{1}}, p_{5}^{m_{2}}, p_{5}^{m_{3}}$. Since all clause gadgets see also colours light and dark green (e.g., of A), $S\left(c_{m}\right)$ can be properly coloured by itself iff not all of $p_{5}^{m_{1}}, p_{5}^{m_{2}}, p_{5}^{m_{3}}$ come with the same colour (which mimics not-all-equal satisfiability). The copy gadgets of one clause do not have to be consecutive, even though the picture shows them such.
sees exactly the point s_{1}^{m}, and likewise $p_{5}^{m_{2}}$ of $P\left(\ell_{m_{2}}\right)$ sees exactly s_{2}^{m}. The point $p_{5}^{m_{3}}$ of $P\left(\ell_{m_{3}}\right)$ sees both s_{3}^{m}, s_{4}^{m}. See Figure 6. The aim of this arrangement is that there would not be enough colours for whole $S\left(c_{m}\right)$ if all three $p_{5}^{m_{1}}, p_{5}^{m_{2}}, p_{5}^{m_{3}}$ came with the same colour. All the clause gadgets $S\left(c_{m}\right)$ are globally chained together, without vertex identification, in the same nearly-straight concave arrangement with the variable gadgets (cf. Figure 4). Although, no point of clause gadgets is visible from $a_{1}, a_{2}, a_{3}, a_{4}$ of the colour-fix gadget A.

Finally, one extra vertex (the bottom-left corner in Figure 4) is used to close the polygon P between the clause and copy sections. Validity of Theorem 5 is established from the following sequence of simple claims.

First assume that the visibility graph G of P is properly 6 -coloured.

- Claim 6. For every variable x_{i} of Φ, the vertices r_{2}^{i} and r_{3}^{i} of $R\left(x_{i}\right)$ receive colours blue and red, in either order. For every literal ℓ_{j} of Φ such that $\ell_{j}=x_{i} \quad\left(\ell_{j}=\neg x_{i}\right.$, respectively), the vertex p_{5}^{j} of $P\left(\ell_{j}\right)$ receives the same colour as r_{2}^{i} (as $\left.r_{3}^{i}\right)$.

Since (mutually visible) points r_{1}^{i} and r_{4}^{i} of $R\left(x_{i}\right)$ are visible from all four $a_{3}, a_{4}, a_{5}, a_{6}$ of the colour-fix gadget A, they must receive the colours of a_{1}, a_{2} (yellow and orange). Then, since r_{2}^{i} and r_{3}^{i} are visible from a_{5}, a_{6} and also from r_{1}^{i}, r_{4}^{i}, they must be coloured the same as a_{3}, a_{4}, which is red and blue.

For $\ell_{j}=x_{i}$, the points of $P\left(\ell_{j}\right)$ must be coloured as follows: p_{1}^{j}, p_{6}^{j} see $a_{1}, a_{2}, a_{3}, a_{4}$ of A, and so they have the same colours as a_{5}, a_{6} (light and dark green). Furthermore, p_{2}^{j}, p_{3}^{j} are visible from r_{2}^{i}, r_{3}^{i}, and so they can be neither red nor blue. Consequently, p_{4}^{j} and p_{5}^{j} are red and blue (as r_{2}^{i}, r_{3}^{i}), and since r_{2}^{i} sees p_{4}^{j}, the only proper choice is to have p_{5}^{j} coloured the same as r_{2}^{i}. For $\ell_{j}=\neg x_{i}$, identical arguments lead to p_{5}^{j} being coloured the same as r_{3}^{i}. Claim 6 is finished.

- Claim 7. Interpreting the colours of vertices p_{5}^{j} of literal ℓ_{j} as logical 'true' (red) and 'false' (blue), every clause of Φ receives at least one true and one false literal. Consequently, Φ is not-all-equal satisfiable.

FSTTCS 2017

This claim is trivial; consider a clause $c_{m}=\left(\ell_{m_{1}} \vee \ell_{m_{2}} \vee \ell_{m_{3}}\right)$. All points of $S\left(c_{m}\right)$ see a_{5}, a_{6} of A, and so only the remaining four colours (yellow, orange, red, blue) are available for the four mutually visible vertices of the clause gadget $S\left(c_{m}\right)$. If all three points $p_{5}^{m_{1}}, p_{5}^{m_{2}}, p_{5}^{m_{3}}$ had the same colour (either red or blue), then the remaining three colours would not be enough for $S\left(c_{m}\right)$, and so both colours occur among $p_{5}^{m_{1}}, p_{5}^{m_{2}}, p_{5}^{m_{3}}$, as desired.

In the remaining direction of Theorem 5, we need to argue as follows.

- Claim 8. The construction of P can be realized in a grid of polynomial size in $|\Phi|$. Consequently, the construction is a polynomial reduction.

We refer to the sketch of P in Figure 4. Both the top and bottom concave chains can be realized as "fat" parabolas, requiring only rough resolution of $\mathcal{O}\left(|\Phi|^{2}\right)$. We place all the gadgets (roughly) equally spaced along, with their external vertices on these parabolas. Positioning of all the vertices of the variable and clause gadgets, and of the colour-fix gadget, is natural and easy, requiring no finer resolution. The only delicate part is to precisely place the points of the copy gadgets. The external vertices p_{1}^{j}, p_{6}^{j} get placed very close to each other on the bottom parabola, and the internal ones are then fine-positioned so that they have the required visible angles (with respect to the upper parabola). This, for each copy gadget, is done independently of all other copy gadgets, and only an additional polynomial (cubic) sub-resolution is needed for the whole copy section. This finishes Claim 8.

- Claim 9. If Φ is not-all-equal satisfiable, then G can be properly 6-coloured.

We describe a desired proper 6 -colouring of G of P. First, we colour the gadget A and the external vertices of the variable and copy gadgets. We give vertices $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}$ of A colours yellow, orange, red, blue, dark green, light green in this order. In every copy gadget $P\left(\ell_{j}\right)$, we colour p_{6}^{j} dark green and p_{1}^{j} light green (as in Figure 5). The extra vertex of P added to the left of the copy section, gets colour dark green. Thanks to concave arrangement of the copy section, this is so far a proper partial colouring of G.

For variable gadgets $R\left(x_{i}\right)$, we alternate colouring of the external vertices - while r_{1}^{i} may be orange and r_{4}^{i} yellow, for the next one it is $r_{1}^{i+1}=r_{4}^{i}$ yellow and r_{4}^{i+1} orange, and so on, until the last $r_{4}^{n}=a_{1}$ is yellow. Again, thanks to concave arrangement of the variable section, this is so far a proper partial colouring of G.

Next, we assume a not-all-equal satisfying assignment of Φ. For a variable x_{i}, we colour r_{2}^{i} red and r_{3}^{i} blue if x_{i} is 'true', and we colour r_{2}^{i} blue and r_{3}^{i} red if x_{i} is 'false'. Then we correspondingly colour each copy gadget featuring x_{i}, as in Figure 5 - this is always possible since p_{2}^{j} may inherit the colour of r_{1}^{i} and p_{3}^{j} that of r_{4}^{i} and p_{4}^{j} that of r_{3}^{i}. So, p_{5}^{j} has he same colour as r_{2}^{i} (as r_{3}^{i}, respectively, if the literal of x_{i} is negated).

Finally, it only remains to colour the clause section. Consider, independently of others, a clause $c_{m}=\left(\ell_{m_{1}} \vee \ell_{m_{2}} \vee \ell_{m_{3}}\right)$. By the assumption of a not-all-equal satisfying assignment of Φ, the points $p_{5}^{m_{1}}, p_{5}^{m_{2}}, p_{5}^{m_{3}}$ are not all red and not all blue. Up to symmetry, $p_{5}^{m_{3}}$ is red, and so we colour s_{3}^{m} blue and s_{4}^{m} yellow. Then one of $p_{5}^{m_{1}}, p_{5}^{m_{2}}$ is not red, and so we may use remaining red and orange to colour s_{1}^{m}, s_{2}^{m} in a suitable order. Using the same rules for all clause gadgets, we do not get any "global" conflict since s_{4}^{m} would always be yellow and hence different from s_{4}^{m+1}, etc. Lastly, if the rightmost end (yellow) of the clause section conflicts with the leftmost end r_{1}^{1} of the variable section, then we exchange yellow with orange in the whole clause section. This is a proper colouring of G, proving Claim 9.

The last step is to adjust the proof for $k>6$. This is straightforward, and so we only sketch the small change: We expand the colour-fix gadget with additional $k-6$ vertices
a_{7}, \ldots, a_{k}, to be coloured by more shades of the green colour. We analogously add $k-6$ new vertices to each copy gadget between p_{1}^{j} and p_{2}^{j}. All the arguments then remain the same.

4 Conclusions

In this paper we have showed that the problem of deciding 6-colourability for visibility graphs of simple polygons, is NP-hard. We have also showed that the 4 -colouring problem can be solved for visibility graphs of simple polygons, in polynomial time. However, the 5 -colouring problem still remains open. Also, we would like to point out to the reader that the 4 -colouring and 5 -colouring problems on polygons with holes require further study.

_ References

1 Oswin Aichholzer, Greg Aloupis, Erik D. Demaine, Martin L. Demaine, Vida Dujmovic, Ferran Hurtado, and Günter Rote, André Schulz, Diane L. Souvaine, and Andrew Winslow Anna Lubiw. Convexifying polygons without losing visibilities. In CCCG, 2011.
2 Martin Aigner and M. Fromme. A game of cops and robbers. Discrete Applied Mathematics, 8(1):1-12, 1984. doi:10.1016/0166-218X (84) 90073-8.
3 Matthew Babbitt, Jesse Geneson, and Tanya Khovanova. On k-visibility graphs. Journal of Graph Algorithms and Applications, 19(1):345-360, 2015.
4 Andreas Bärtschi, Subir Kumar Ghosh, Matúš Mihalák, Thomas Tschager, and Peter Widmayer. Improved bounds for the conflict-free chromatic art gallery problem. In Proceedings of the Thirtieth Annual Symposium on Computational Geometry, SOCG'14, pages 144:144144:153, New York, NY, USA, 2014.
5 A. A. Diwan and B. Roy. On Colouring Point Visibility Graphs. Proceedings of the 3rd Conference on Algorithms and Discrete Applied Mathematics, pages 156-165, 2017 (Manuscript updated later - arXiv:1610.00952.
6 Sándor P. Fekete, Stephan Friedrichs, Michael Hemmer, Joseph B. M. Mitchell, and Christiane Schmidt. On the chromatic art gallery problem. In Proceedings of the 26th Canadian Conference on Computational Geometry, CCCG 2014, Halifax, Nova Scotia, Canada, 2014, 2014.

7 Subir Ghosh. Visibility Algorithms in the Plane. Cambridge University Press, New York, NY, USA, 2007.
8 J. Hershberger. Finding the visibility graph of a polygon in time proportional to its size. Algorithmica, 4:141-155, 1989.
9 Frank Hoffmann, Klaus Kriegel, Subhash Suri, Kevin Verbeek, and Max Willert. Tight Bounds for Conflict-Free Chromatic Guarding of Orthogonal Art Galleries. In Lars Arge and János Pach, editors, 31st International Symposium on Computational Geometry (SoCG 2015), volume 34 of Leibniz International Proceedings in Informatics (LIPIcs), pages 421435, 2015.
10 J. Kára, A. Pór, and D. R. Wood. On the Chromatic Number of the Visibility Graph of a Set of Points in the Plane. Discrete and Computational Geometry, 34(3):497-506, 2005.
11 Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic Publishers, Norwell, MA, USA, 1991.
12 D. T. Lee and A. K. Lin. Computational Complexity of Art Gallery Problems. IEEE Transactions on Information Theory, 32(2):276-282, 1986.
13 Yaw-Ling Lin and Steven Skiena. Complexity aspects of visibility graphs. International Journal of Computational Geometry and Applications, 5:289-312, 1995.

14 M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, 1979.
15 J. O'Rourke. Art Gallery Theorems and Algorithms. Oxford University Press, New York, 1987.

16 J. O'Rourke and K. Supowit. Some NP-hard polygon decomposition problems. IEEE Transactions on Information Theory, 29:181-190, 1983.
17 Joseph O'Rourke and Ileana Streinu. The vertex-edge visibility graph of a polygon. Computational Geometry, 10(2):105-120, 1998.
18 F. Pfender. Visibility Graphs of Point Sets in the Plane. Discrete and Computational Geometry, 39(1):455-459, 2008.
19 S. K. Ghosh and T. Shermer and B. K. Bhattacharya and P. P. Goswami. Computing the maximum clique in the visibility graph of a simple polygon. Journal of Discrete Algorithms, 5:524-532, 2007.
20 T. Shermer. Hiding people in polygons. Computing, 42:109-131, 1989.

[^0]: * P. Hliněný and O. Çağırıcı are supported by the Czech Science Foundation, project no. 17-00837S.

 © Onur Çağırıcı, Petr Hliněný, and Bodhayan Roy;
 licensed under Creative Commons License CC-BY

