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Abstract
We study the problem of determining whether a given temporal specification can be implemented
by a symmetric system, i.e., a system composed from identical components. Symmetry is an
important goal in the design of distributed systems, because systems that are composed from
identical components are easier to build and maintain. We show that for the class of rotation-
symmetric architectures, i.e., multi-process architectures where all processes have access to all
system inputs, but see different rotations of the inputs, the symmetric synthesis problem is
EXPTIME-complete in the number of processes. In architectures where the processes do not
have access to all input variables, the symmetric synthesis problem becomes undecidable, even
in cases where the standard distributed synthesis problem is decidable.
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1 Introduction

Many classical protocols and distributed systems are symmetric. This means that every
process, independently of its identity, starts in the same initial state and follows the same set
of transitions. Symmetric systems are easier to understand and maintain; especially in VLSI
designs, which usually contain large numbers of identical components, this is a significant cost
factor. Constructing symmetric systems is also a step towards building arbitrarily scalable
systems [8, 2, 11].

There is a large body of results [1, 18, 5, 12, 26, 13] that deal with the question of which
distributed systems need symmetry breaking and which do not. Leader election among the
processes on a ring, for example, cannot be implemented symmetrically [1]; similarly, in
resource-sharing problems, like the Dining Philosophers, the only way to avoid starvation is
to break the symmetry [18].

Our goal is to automate this type of reasoning. Given a specification of a reactive system
in temporal logic, we wish to automatically determine whether there exists a symmetric
implementation. This is a refinement of the classic distributed synthesis problem, which asks
whether a temporal specification has an implementation where the processes are arranged
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Figure 1 A simple rotation-symmetric architecture.

in a particular architecture. Distributed synthesis is well-studied [25, 21, 14, 15, 16, 9,
24]. However, the approach presented in this paper is the first to synthesize symmetric
implementations. We consider rotation-symmetric system architectures. Rotation-symmetric
architectures are multi-process architectures where all processes have access to all system
inputs, but see different rotations of the inputs. Figure 1 shows a simple rotation-symmetric
architecture. Rotation-symmetric architectures are suitable to reason about distributed
systems that lack a central coordination process. They can, for example, model leader
election scenarios and distributed traffic light controllers [6]. The fact that the processes
obtain their input in different rotations is important: since all processes have the same
implementation, they would otherwise also produce the same output. The synthesis problem
for such systems could trivially be reduced to the standard synthesis problem by adding a
constraint that the outputs are the same all the time.

We present an algorithm for the synthesis of symmetric systems in rotation-symmetric
architectures from specifications in linear-time temporal logic (LTL). Most standard synthesis
algorithms follow the automata-theoretic approach [22], whereby the given temporal formula
is translated into a tree automaton that accepts exactly those computation trees that satisfy
the formula. Hence, the specification is realizable if and only if the language of the automaton
is non-empty. The synthesis algorithm then simply extracts some finite-state implementation
from the language of the automaton. The situation is more difficult when we wish to decide
the existence of a symmetric solution, because the language of the automaton may contain
both computation trees that belong to symmetric implementations and computation trees
that belong to asymmetric implementations. As we show in Section 4, symmetry is not a
regular property: we therefore cannot check symmetry with a separate tree automaton or
encode symmetry as a temporal logic formula and add it to the specification.

The key insight of our algorithm is that the paths in the computation trees produced
by symmetric implementations are guaranteed to be invariant under rotations: if, in each
position of two (finite or infinite) computation paths, the values of the input variables of
the jth process in the first path correspond to the values of the input variables of the
((j + k) modn)th process, for some k, in the second path, then the values of the output
variables of the jth process must also, in each position, correspond to the values of the
output variables of the ((j + k) modn)th process (for all 0 ≤ j < n, where n is the number of
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processes). Our algorithm exploits this observation to simplify the computation trees. Paths
that are just rotations of each other are collapsed into a single representative. Computations
in different processes that must lead to identical outputs are thus kept in the same path of
the reduced tree; the paths only split when the symmetry is broken by some input. While
symmetry is difficult to check on the original computation tree, it becomes a local condition
on individual paths in the reduced tree: as long as the output never spontaneously introduces
asymmetry, i.e., as long as every asymmetry in the output can be explained by a previous
asymmetry in the input, the reduced tree can be expanded into a full computation tree that
we know, by construction, to be symmetric.

As we show in Section 4, the running time of our synthesis algorithm is single-exponential
in the number of processes. In Section 5, we show that our algorithm is asymptotically
optimal: the problem is EXPTIME-complete in the number of processes. In Section 6, we
study the extension of the synthesis problem to the case where the processes no longer
have access to all variables. Here, our result is negative: under incomplete information, the
symmetric synthesis problem is undecidable even for system architectures where the standard
synthesis problem is decidable. This paper is based on previously unpublished results from
the first author’s PhD thesis [6], where also additional details of the presented results can be
found. A full version of this paper with additional proofs is also available [7].

2 Preliminaries

A reactive system produces a valuation to the output propositions in some set APO and
reads the values of the input propositions in some set API in every step of its execution.
The behavior of a reactive system can be described as a computation tree 〈T, τ〉, where
T = (2API )∗ is the set of tree nodes and τ : T → 2APO labels every tree node t by the
output propositions τ(t) that the system sets to true after having read t as its (prefix) input
sequence.

A trace in a computation tree 〈T, τ〉 is an infinite sequence (τ(ε)∪ t0)(τ(t0)∪ t1)(τ(t0t1)∪
t2)(τ(t0t1t2) ∪ t3) . . . ∈ (2API∪APO )ω. Given some language L ⊆ (2API∪APO )ω, reactive
synthesis is the process of checking if there exists a computation tree 〈T, τ〉 with T = (2API )∗
as node set such that every trace of 〈T, τ〉 is in L. A classical logic to denote specification
languages is linear temporal logic (LTL, [19]). LTL formulas for reactive system specifications
are built according to the grammar

ϕ :== p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | Gϕ | Fϕ | ϕU ϕ,

using the temporal operators G (globally), F (eventually), X (next), and U (until). All
elements from API and APO can be used as propositions p. A more formal definition of LTL
is given in [19, 4].

For LTL specifications, it is known that if and only if there exists a computation tree
all of whose traces satisfy a specification (i.e., the specification is realizable), there exists a
regular such computation tree. A computation tree is regular if it has only finitely many
different sub-trees. Given a computation tree 〈T, τ〉, a tree 〈T ′, τ ′〉 is a sub-tree of 〈T, τ〉 if
and only if T = T ′ and there exists a t̂ ∈ T such that for every t ∈ T , we have τ ′(t) = τ(t̂t).
Regular computation trees can be translated to finite-state machines and implemented in
hardware or software using a finite amount of memory. A tree language for some sets API

and APO is a subset of all trees 〈T, τ〉 with T = (2API )∗ and τ : T → 2APO . A tree or word
language is called regular if it can be recognized by some finite tree or word automaton (with
a Muller acceptance condition, see [10] for details).
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In distributed synthesis, we search for a distributed implementation of a finite state-
machine. Given is an architecture that defines several processes and the signals that connect
the processes among themselves and with the global input and output of the architecture.
Starting from a specification over all signals, we search for implementations for all of the
processes such that the computation tree induced by the process implementations and the
architecture satisfies the specification. In the induced computation tree, all processes are
executed at the same time and in parallel, using the usual parallel composition semantics.

It is known since the seminal work by Pneuli and Rosner [21] that not all architectures
have a decidable distributed synthesis problem. Figure 2 depicts the A0 architecture that
they defined as an example for an undecidable architecture. Finkbeiner and Schewe [9]
later proved that the distributed synthesis problem is decidable if and only if there exists
no information fork in the architecture. An information fork is a pair of processes that are
incomparably informed, i.e., for which each of the processes has access to some global input
that the other process cannot read. For a more formal definition of distributed synthesis, the
interested reader is referred to [9].

A Turing machine is a tuple M = (Q,Σ,Γ, δ, q0, g) in which Q is a finite set of states, Σ
is an input alphabet, Γ ⊇ Σ is a (finite) tape alphabet, δ : Q× Γ→ (Q× Γ× {−1, 0, 1})2

encodes the Turing machine transition function, q0 ∈ Q is an initial state, and g maps every
state to its type, which can be accepting, rejecting, or transient. The δ function maps every
state/tape content combination to exactly two possible successor state/tape content/tape
motion combinations. For deterministic Turing machines, the two successor combinations
are always the same. Alternating Turing machines [3] extend the non-deterministic Turing
machines by partitioning the transient states into universally branching and existentially
branching states. An (alternating) Turing machine accepts a word w ∈ Σ∗ if there exists
an accepting run tree when starting in state q0 with the tape empty except for a copy of w
where the machine head starts on the first character of w. In all universal states, the Turing
machine execution must be accepting for both possible transitions.

We assume that the modulo function always returns a non-negative number, such that,
e.g., −13 mod 5 = 2.

3 The Symmetric Synthesis Problem

We consider distributed reactive synthesis problems in which all processes share the same
implementation. A process has an interface N = (API ,APO) with the local input proposition
set API and a local output proposition set APO. The connections between the processes are
described in an architecture.

I Definition 1 (Symmetric architecture). Given an interface N = (API ,APO), a symmetric
architecture over N is a tuple E = (S, P,APIG, Ein, Eout) with:

the set of (internal) signals S,
the process set P ,
the global input signal set APIG,
the input edge function Ein : (P × API)→ (S ∪ APIG), and
the output edge function Eout : (P × APO)→ S.

As an example, the architecture given in the right part of Figure 2 hosts processes with the
interface N = ({a}, {b}) and has the components S = {y, z}, P = {0, 1}, APIG = {x}, Ein =
{(0, a) 7→ x, (1, a) 7→ y}, and Eout = {(0, b) 7→ y, (1, b) 7→ z}. We only consider architectures
in which every internal signal is written to by exactly one local output of one process. Given
a FSM for a process with an interface N and an architecture E = (S, P,APIG, Ein, Eout) over
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N , we can construct an FSM with APIG as input proposition set and S as output proposition
set that implements the behavior of the complete architecture when using the FSM as process
implementation. Without loss of generality, we use the standard synchronous composition
semantics to do so. We define the symmetric synthesis problem as follows:

I Definition 2. Given an interface N = (API ,APO), an architecture E = (S, P,APIG, Ein,

Eout), and a specification ϕ over the propositions APIG ∪ S, the symmetric synthesis problem
is to check if an FSM implementation F with the input proposition set API and output
proposition set APO exists such that the FSM obtained by plugging F into E satisfies ϕ. In
case of a positive answer, we also want to obtain F .

4 Rotation-Symmetric Synthesis

Many symmetric architectures found in practice consist of a ring of processes, all of which
read all the input to the overall system. A slight generalization of this architecture shape is
the class of rotation-symmetric architectures.

I Definition 3. A symmetric architecture E = (S, P,APIG, Ein, Eout) over the interface
N = (API ,APO) with n processes is called rotation-symmetric if and only if there exists
a local designated proposition set APIL for every process instance such that the following
conditions hold:

APIG = API = APIL × {0, . . . , n− 1} and P = {p0, . . . , pn−1}.
S = APO × {0, . . . , n− 1}
for every pi ∈ P , every x ∈ APIL, and every j ∈ {0, . . . , n− 1}, we have Ein(pi, (x, j)) =
(x, (j − i) mod n), and
for every x ∈ APO and pi ∈ P , we have Eout(pi, x) = (x, i).

We show in this section that the symmetric synthesis problem for rotation-symmetric
architectures and linear-time temporal logic (LTL) is decidable.

The key observation that we use to prove decidability is that the computation trees that
characterize the input/output behavior of a process implementation plugged into a rotation-
symmetric architecture have a useful property that we call the symmetry property. While
this property is non-regular and thus cannot be encoded into the specification (Lemma 6),
we show how to decompose it into two sub-properties, one of which is regular. The other
one is still non-regular, but has the advantage that we can enforce it in a synthesis process
by post-processing the computation tree obtained from a synthesis procedure to contain
only rotations of the computation tree paths along so-called normalized inputs. Since every
tree with the symmetry property is left unaltered by this step and we also describe how to
ensure that the result of the post-processing step is guaranteed to be a correct solution, this
approach is sound and complete.

We assume some fixed rotation-symmetric architecture E = (S, P,APIG, Ein, Eout) over
some local process interface (APIL,APO) to be given, define I = 2AP I

G to denote the global
input alphabet to all processes, while O = 2{APO×{0,...,n−1}} denotes the global output. The
local output of one process is given as O = 2APO .

The following rotation function will become useful in the analysis below. Let U =
2AP×{0,...,n−1} for some other set AP. We define a rotation operator rot : U × Z→ U with
rot(u, k) = {(p, (j+k) modn) | (p, j) ∈ u} for every u ∈ U and k ∈ Z. Furthermore, we extend
the rot function to LTL formulas and define rot(ψ, k) for an LTL formula ψ over the set of
propositions AP×{0, . . . , n−1} and k ∈ Z to be ψ with all atomic propositions (p, j) replaced
by (p, (j+k) modn) for p ∈ AP, j ∈ Z. For clarity, when dealing with the rot function for some
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set U = 2AP×{0,...,n−1}, we often partition the elements of AP×{0, . . . , n−1} by their process
indices and for example write (X0, . . . , Xn−1) instead of (X0 × {0})∪ . . .∪ (Xn−1 × {n− 1})
for X0, . . . , Xn−1 ⊆ AP. The rotation function is extended to sequences of elements in U by
rotating the individual sequence items.

I Definition 4 (Symmetry property). Given a tree 〈T, τ〉 over T = I∗ and τ : T → O, we
say that the tree has the symmetry property if for each t ∈ T and 0 ≤ i < n, τ(rot(t, i)) =
rot(τ(t), i).

I Lemma 5 (Symmetry lemma). The set of regular trees having the symmetry property is
precisely the same as the set of trees that are induced by a rotation-symmetric architecture
for some process implementation.

A proof of the lemma can be found in the full version of this paper [7]. The symmetry
property is not a regular tree property, and hence cannot be encoded into a tree or word
automaton.

I Lemma 6. The set of symmetric computation trees for the two-process rotation-symmetric
architecture with process interface N = (APIL × {0, 1},APO) and APIL = {i} and APO = {o}
is not a regular tree language.

Proof. For a proof by contradiction, suppose that the set of symmetric computation trees
is regular. The language includes a tree with the symmetry property in which the node
labels on the path (∅, {i})∗ and, symmetrically, on the path ({i}, ∅)∗ form the sequence
l = (∅, ∅)1({o}, {o})(∅, ∅)2({o}, {o}) . . ., i.e., the length of the (∅, ∅)-sequences grows according
to the distance to the root. According to the pumping lemma for regular tree languages,
however, the sequence l can be partitioned into l = u · v ·w, such that, for every k > 0, there
exists a tree in the language where the label sequence on (∅, {i})∗ is l = u · vk · w, while the
label sequence on ({i}, ∅)∗ is still l. Clearly, these trees are not symmetric. J

Since the symmetry property is non-regular, we need to alter the synthesis process itself
to account for it. In order to synthesize an implementation for one process, we synthesize
implementations for all processes together. These only need to work correctly on normalized
input sequences t ∈ I∗. An input sequence is normalized if mini rot(t, i) = t, where the
min function uses the lexicographic ordering over the strings in I∗. For the ordering of
the elements in I, we consider the lexicographic ordering of their tuple representation. For
example, we have (0, 1, 0) < (0, 1, 1) and (0, 1, 0) < (1, 0, 0) for a three-process architecture.
A tree with the symmetry property is fully determined by the labels along normalized input
sequences, as for every non-normalized input sequence t′ ∈ I∗, we have τ(t′) = rot(τ(t), i)
for every i such that t′ = rot(t, i).

When only considering the normalized input sequences during synthesis, we can take
the computation tree for all processes in the architecture together and complete it by filling
all other tree labels with rotations of the tree labels along normalized inputs. We call the
resulting tree its symmetric completion. If afterwards, we have τ(rot(t, i)) = rot(τ(t), i)
for all t ∈ I∗ and i ∈ N, then the symmetry lemma guarantees that the resulting tree is
induced by some process instantiated in a rotation-symmetric architecture. So if we can
guarantee that (1) τ(rot(t, i)) = rot(τ(t), i) is actually the case for all normalized t and i ∈ N
and (2) that the symmetric completion of the tree satisfies the specification along all paths,
then we can obtain a correct process implementation by synthesizing a computation tree for
the complete architecture. Our construction for symmetric synthesis consist of these two
components, which we describe in more detail below.



R. Ehlers and B. Finkbeiner 26:7

4.1 Ensuring Symmetric Completability
Not every O-labeled computation tree can easily be made symmetric by replacing the tree
labels for non-normalized input sequences. Take for example a tree 〈T, τ〉 for the architecture
given in Figure 1 with τ(ε) = (∅, ∅, {y}). Since the output of the processes is initially different,
this means that they cannot have the same implementation. We show in this section that
detecting such cases is simple, and the formalization of the observation is a regular property
that can be easily encoded into LTL.

I Definition 7. Let AP be some set, and P = {p0, . . . , pn−1} be a list of process identifiers.
For every x ⊆ (AP× {0, . . . , n− 1}) and w = w0w1w2 . . . wl ∈ (2AP×{0,...,n−1})∗, we define

rep(x) = |{j ∈ {0, . . . , n− 1} | rot(x, j) = x}|
repS(ε) = n

repS(w) = gcd(repS(w0 . . . wn−1), rep(wn)),

where gcd denotes the greatest common divisor function.

For some word t ∈ I∗, repS(t) represents how many different rotations in {0, . . . , n− 1} of t
exist that map the word to itself.

I Lemma 8 (Second symmetry lemma). Let 〈T, τ〉 be a computation tree with T = I∗
and τ : T → O for which for every t ∈ T , we have that repS(t)

∣∣ repS(τ(t)) (where the
∣∣

symbol refers to division without remainder). The unique symmetric completion of 〈T, τ〉 has
the symmetry property. Furthermore, if 〈T, τ〉 is regular, then so is its unique symmetric
completion.

By the second symmetry lemma, it suffices for a computation tree to have repS(t)
∣∣ repS(τ(t))

for all t ∈ T to ensure that the symmetric completion of the tree has the symmetry property.
We can encode this requirement in LTL as

ϕoutcond =
∧

d∈{1,...,n},d
∣∣n¬(sym(I, d, n)U ¬sym(O, d, n))

for the function

sym(AP, d, n) =
∧

a∈AP,j∈{0,...,n−1}

(a, j)↔ (a, j + n

d
)

that encodes, for each i ⊆ AP× {0, . . . , n− 1} whether d | rep(i) (for d ∈ N with d
∣∣ n).

4.2 Ensuring That the Tree Completion Satisfies the Specification
If we have a computation tree 〈T, τ〉 all of whose traces satisfy some linear-time specification
ϕ, this does not imply that its rotation-symmetric completion satisfies ϕ as well. If all traces
of 〈T, τ〉 however satisfy ϕ ∧ rot(ϕ, 1) ∧ . . . ,∧ rot(ϕ, n− 1), then since we know that every
infinite trace in the rotation-symmetric completion is a rotation of a trace in the original
tree by some value i ∈ N, we know that the rotation-symmetric completion also satisfies ϕ
along every trace. So if we synthesize a tree for ϕ′ = ϕ ∧ rot(ϕ, 1) ∧ . . . ∧ rot(ϕ, n − 1) as
specification instead of ϕ, taking the rotation-symmetric completion maintains ϕ.

Note that strengthening ϕ to ϕ′ comes without loss of generality if we are interested in
rotation-symmetric implementations. By the symmetry property, if the tree 〈T, τ〉 induced
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by a rotation-symmetric architecture and a process implementation satisfies ϕ, then it also
satisfies rot(ϕ, i) for all i ∈ N as every rotation of every trace in the tree is also a trace in
the tree. Hence, to satisfy ϕ, it also needs to satisfy rot(ϕ, i) as otherwise we could take a
trace not satisfying rot(ϕ, i), rotate it by −i, and obtain a trace that does not satisfy ϕ.

4.3 Putting Everything Together
Using the concepts defined above, we are now ready to tie them together to a complete
synthesis process. We start with a specification ϕ over the architecture input propositions
APIG and the output proposition set APO × {0, . . . , n− 1} for |P | = n.
1. We modify the specification ϕ to ϕ′ = ϕ ∧ rot(ϕ, 1) ∧ . . . ∧ rot(ϕ, n− 1).
2. We modify ϕ′ to ϕ′′ = ϕ′ ∧ ϕoutcond (as described in Section 4.2).
3. We synthesize a regular tree 〈T, τ〉 that satisfies ϕ′′ along all paths using a classical

reactive synthesis procedure. If there is no such tree, the specification is unrealizable.
4. If a regular computation tree 〈T, τ〉 is found, we replace every label along non-normalized

directions by rotations of τ ’s labels along normalized directions to get a tree 〈T ′, τ ′〉 with
the symmetry property.

5. We cut off the labels of τ ′ except for the output of the first process in the architecture.
The resulting (regular) tree is the synthesized process implementation.

I Proposition 9. The above synthesis process from LTL has a complexity that is 2EXPTIME
in the length of the specification and exponential-time in the number of processes.

Proof. We use the automata-theoretic approach to reactive system synthesis from [17, 24] and
the concepts defined in these works. We start by translating the specification to a universal
co-Büchi word (UCW) automaton, which is of size 2O(|ϕ|) in the size of the specification. As
UCWs do not blow up under conjunction, executing step 1 from the construction above leads
to an automaton of size n · 2O(|ϕ|). A deterministic automaton for the added property in
step 2 can be built with at most n states, so executing step 2 leads to at most n additional
states, and we obtain an automaton with n + n · 2O(|ϕ|) = n · 2O(|ϕ|) many states. The
bounded synthesis approach works with specifications given as co-Büchi word automata [24]
and takes time exponential in the number of states of the automaton. The overall time
complexity so far is thus 2EXPTIME in |ϕ| and exponential in n. Step 4 leads to a blow-up
of at most a factor of n2 and can be done in time polynomial in the number of states in the
synthesized finite-state machine (whose size is proportional to the time complexity of the
synthesis procedure executed in the previous step). Step 5 is simple and takes time linear in
the size of the FSM. J

Note that even though the construction above discards all non-normalized parts of the
synthesized computation tree, asking the synthesis algorithm to nevertheless synthesize
these parts according to the specification comes without loss of generality, as trees with the
symmetry property (which we are actually searching for) fulfill ϕ′′ along all paths if all of
their paths satisfy ϕ. So the synthesis process does not report spurious unrealizability.

5 Rotation-Symmetric Synthesis – Complexity

The symmetric synthesis construction from the previous section has a time complexity that is
doubly-exponential in the length of the specification and singly-exponential in the number of
processes. We want to show in this section that this matches the complexity of the problem
by giving a corresponding hardness result. The 2EXPTIME-hardness in the specification
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Figure 2 System architectures with undecidable synthesis problems. On the left: architecture A0,
as defined by Pnueli and Rosner [21]; on the right: the symmetric architecture S0. The distributed
synthesis problem of A0 and the symmetric synthesis problem of S0 are undecidable.

length is inherited from the complexity of LTL synthesis [20]. For the EXPTIME complexity
in the number of processes, we provide the following result:

I Lemma 10. Given an f(k)-space bounded alternating Turing machine M = (Q,Σ,Γ, δ,
q0, g), we can reduce the acceptance of a word w ∈ Σk by M to the symmetric realizability
problem of n = f(k) processes with a specification in LTL of size polynomial in |Q| · |Γ| · |w|.

Proof. We build a specification that requires the processes to output the Turing tape
configuration along an execution of the machine. The specification is realizable if and only
if the Turing machine does not accept the word. Every process outputs the value of one
Turing tape cell and if the tape head is at the cell, also the state of the Turing machine.
There are n input signals to the architecture, and when the processes start, the left-most
local input signals of the processes is used to tell one or more processes that the Turing tape
computation should start at that cell with the tape head being initially there (with w as
the initial tape content). To account for the rotation-symmetry, the processes output not
only the tape content and tape head position, but also the current boundaries of the tape.
The specification is modeled such that if start and end markers collide, the simulation of the
Turing machine can stop.

The specification also includes conjuncts that require all processes together to simulate
the Turing machine computation correctly and to never reach an accepting state. Whenever
the alternating Turing machine branches universally, the left-most local process input signal
is used to select which successor state is picked. In case of existential branching, the processes
can decide which successor state to pick. Enforcing the specification to be realizable if and
only if the word w is not accepted by the Turing machine helps with taking care of the
diverging computations of the Turing machine and those computations that exceed the space
bound. Both count as non-accepting in the definition of space-bounded Turing machines.
Since these runs never visit accepting states and/or permit the simulation to stop, they are
allowed to be simulated by a synthesized implementation.

The specification can be written with size polynomial in |Q| · |Γ| · |w| as we only need
to define the specification for one process. By the symmetry of the architecture, the other
processes have to fulfill it as well. J

A more detailed proof can be found in the full version of this paper [7].

I Corollary 11. The rotation-symmetric realizability problem (for LTL) has a time complexity
that is exponential in the number of processes.

Proof. Given the question whether a word w = w0 . . . wk−1 is in the language defined by
some (c+ 1)-EXPTIME = (c)-AEXPSPACE problem for some c ∈ N, we can reduce it to the
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Figure 3 Symmetric architecture S2. The symmetric synthesis problem for S2 is undecidable.
The dashed arrows in the process boxes show how the specification given in the proof of Lemma 13
requires the processes to forward the local input streams.

symmetric realizability problem for an LTL specification of length polynomial in k and with
a number of processes that is (c)-exponential in k. Since by the space hierarchy theorem
[23], the (c)-EXPTIME hierarchy is strict for increasing c, we can conclude that in general,
we cannot solve the symmetric realizability problem faster than in time exponential in the
number of components. J

6 The General Case – Undecidability

The synthesis problem for standard, not necessarily symmetric, distributed systems is
decidable as long as the processes can be ordered with respect to their relative knowledge
about the system inputs [9]. The problem becomes undecidable as soon as it contains an
information fork, i.e., a pair of processes with incomparable knowledge. The simplest such
architecture is Pnueli and Rosner’s A0 architecture [21], shown on the left in Fig. 2. In this
section, we show that for symmetric synthesis, even architectures without information forks,
such as the S0 architecture shown on the right in Fig. 2, are undecidable. Our proof is based
on Pnueli and Rosner’s undecidability argument for A0:

I Lemma 12 ([21]). For a given Turing machine M , there exists an LTL formula ψ that
is realizable in the distributed architecture A0 if and only if M halts and such that the two
processes of the unique implementation of M sequentially output binary encodings of the
configurations of the Turing machine on y (or z, respectively) upon the first true value on
the input u (or v, respectively).

Because of the undecidability of the halting problem, Lemma 12 means that the dis-
tributed synthesis problem of architecture A0 is undecidable. We prove the undecidability
of the symmetric synthesis problem of architecture S0 in two steps. First, we establish
the undecidability of the larger architecture S2, depicted in Figure 3, by showing that the
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CSS 0 1 0 1 CSS 1 1 0 0

Figure 4 An example for compressing a word with |AP| = 4.

realizability of ψ in A0 can be reduced to the symmetric realizability of an LTL formula over
S2; in the second step, we encode the synthesis problem of S0 into the synthesis problem of S2
and thus establish that the synthesis problem for the simpler architecture S0 is undecidable
as well.

I Lemma 13. The symmetric synthesis problem for architecture S2 is undecidable.

Proof. We show that there exists an implementation for the specification ψ in the A0
architecture if and only if there exists a joint implementation for the two processes in the S2
architecture that satisfies ψ′ = ψd ∧G(v ↔ Xo)∧G(w ↔ Xp), where ψd results from prefixing
all occurrences of the signals y and z in ψ with a next-time operator.

The results of the two synthesis problems can be translated into each other. A distributed
implementation of ψ over A0 is necessarily symmetric: both processes output the same
bitstream when reading a true value as their local input for the first time. To obtain an
implementation for S2, we simulate the process with input a and use g as the local output.
Additionally, we copy all values from b to e, and c to f .

Conversely, an implementation found by the symmetric synthesis of S2 provides an
implementation of ψ in A0. The key property of the architecture S2 is that the process
does not know if the local input b is the (delayed) a input to the other process, or if its c
input is the (Turing machine tape) output of the other process. Thus, it cannot find out if
it is the top process or the bottom process in the architecture and must prevent violating
the specification in either case. A more detailed proof is given in the full version of this
paper [7]. J

In order to reduce the symmetric synthesis problem of S2 to the symmetric synthesis
problem of S0, we introduce compression functions that time-share multiple signals of S2
into a single signal in S0.

Let AP be a set of signals. We call a function f : (2AP)ω → (2{χ})ω for some Boolean
variable χ a compression function if f is injective. We call a function f ′ that maps a
specification over the signal set AP to a different specification over the signal set {χ} the
adjunct compression function to f if for all w ∈ (2AP)ω and specifications ψ over AP, we have
that w |= ψ if and only if f(w) |= f ′(ψ).

In the full version of this paper [7], we give such a pair of compression functions for LTL.
The compression mechanism is illustrated in Figure 4. One clock cycle in the four-bit-per-
character version of a word is spread to 10 computation cycles in the one-bit-per-character
version of the word. Every 10 cycles, the 2-cycle character start sequence (CSS) {χ}{χ} is
instantiated, followed by four two-cycle slots for every signal in AP. Note that the construction
ensures that whenever we have {χ}{χ}∅ as a part in a compressed word, then we know that
a character start sequence begins on the first occurrence of {χ} in this part.
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I Theorem 14. The symmetric synthesis problem for architecture S0 is undecidable.

Proof. In order to reduce the symmetric synthesis problem of architecture S0 to the sym-
metric synthesis problem of architecture S2, we compress u, v, w into signal x; o, p, q into
signal y; and x, y, z into signal z. A more detailed proof is given in the full version of this
paper [7]. J

7 Conclusions

In this paper, we have studied the problem of synthesizing symmetric systems. Our new
synthesis algorithm is a useful tool in the development of distributed algorithms, because it
checks automatically if certain properties in a design problem require symmetry breaking.

Our algorithm synthesizes implementations of rotation-symmetric architectures, i.e.,
architectures where the processes observe all inputs. The undecidability result for the
architecture S0 indicates that it is impossible to extend the synthesis algorithm to architectures
where the processes no longer have access to all inputs. A promising direction of research,
however, is to use our results to extend existing semi-algorithms for synthesis under incomplete
information to such symmetric architectures. An example for such an approach is bounded
synthesis [24], which determines if there exists an implementation with at most n states,
where n is a given bound. The specification is translated into a universal co-Büchi automaton,
which is then, together with the bound n, encoded into a satisfiability modulo theory problem.
To ensure correctness under incomplete information, constraints are added that ensure
that if a process cannot distinguish two inputs, it transitions to the same successor state.
Similarly, for symmetric synthesis, constraints can be added that ensure that the outputs of
the individual processes are identical in states that are indistinguishable for them.

Algorithms for symmetric synthesis procedures also offer a new perspective on the problem
of synthesizing arbitrarily scalable (i. e. parametric) systems. Due to the undecidability
of the problem, only very limited solutions to this problem have been found so far. For
example, Jacobs and Bloem [11] tackle the case of asynchronous processes with local input in
a ring architecture and use the bounded synthesis approach mentioned above. Emerson and
Srinivasan [8] present a solution for a multi-process version of a small subset of the temporal
logic CTL while Attie and Emerson [2] give a different solution allowing a bigger subset of
CTL but only guaranteeing correctness of the solution if certain other conditions are fulfilled,
like the dead-lock freeness of the solution produced. In such a setting, symmetric synthesis
can be used to detect specifications that are unrealizable even for small system sizes – if
there is no solution for a fixed number of processes n, then there is certainly none for scalable
systems as well.
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