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Abstract

Given a set of vertices V with |V | = n, a weight vector w ∈ (R+ ∪ {0})(
V
2 ), and a probability

vector x ∈ [0, 1](
V
2 ) in the matching polytope, we study the quantity

EG[νw(G)]∑
(u,v)∈(V

2 ) wu,vxu,v

where G is a random graph where each edge e with weight we appears with probability xe

independently, and let νw(G) denotes the weight of the maximum matching of G. This quantity
is closely related to correlation gap and contention resolution schemes, which are important tools
in the design of approximation algorithms, algorithmic game theory, and stochastic optimization.

We provide lower bounds for the above quantity for general and bipartite graphs, and for
weighted and unweighted settings. The best known upper bound is 0.54 by Karp and Sipser, and
the best lower bound is 0.4 for bipartite graphs and 0.33 for general graphs. We show that it
is at least 0.47 for unweighted bipartite graphs, at least 0.45 for weighted bipartite graphs, and
at least 0.43 for weighted general graphs. To achieve our results, we construct local distribution
schemes on the dual which may be of independent interest.
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1 Introduction

We study the size (weight) of the maximum matching of a random graph sampled from various
random graph models. Let V be the set of vertices with |V | = n. Given the probability
vector x ∈ [0, 1](

V
2 ) and the weight vector w ∈ (R+∪{0})(

V
2 ), let DG

n,w,x be the distribution of
random graphs with n vertices such that each pair e ∈

(
V
2
)
becomes an edge with probability

xe independently. If it becomes an edge, its weight is we. For bipartite graphs, let V1 and
V2 be the set of left and right vertices with |V1| = |V2| = n. Given the probability vector
x ∈ [0, 1]V1×V2 and the weight vector w ∈ (R+ ∪ {0})V1×V2 , let DB

n,w,x be the distribution
of random bipartite graphs with 2n vertices such that each pair e ∈ V1 × V2 becomes an
edge with probability xe independently. If it becomes an edge, its weight is we. We use DB

n,x

(resp. DG
n,x) for the unweighted case (w = (1, 1, . . . , 1)).
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32:2 Understanding the Correlation Gap For Matching

We focus on the case when the probability vector x is in the matching polytope of the
complete (bipartite) graph. Recall that for bipartite graphs, x ∈ [0, 1]V1×V2 is in the matching
polytope if each v ∈ V1 ∪ V2 satisfies

∑
u xu,v 6 1. For general graphs, x ∈ [0, 1](

V
2 ) is in

the matching polytope if each v ∈ V satisfies
∑

u xu,v 6 1 and each odd set S ⊆ V satisfies∑
{u,v}⊆S xu,v 6 b(|S| − 1)/2c.1
Given a weighted graph G, let νw(G) be the weight of the maximum weight matching of

G. If G is unweighted, ν(G) denotes the cardinality of the maximum matching of G. For
any x ∈ [0, 1](

V
2 ) and w ∈ (R+ ∪ {0})(

V
2 ), we have EG∼DG

n,w,x
[νw(G)] 6

∑
(u,v)∈(V

2 ) wu,vxu,v,
simply because the probability that (u, v) is included in the maximum matching is at most
xu,v. The analogous statement also holds for bipartite graphs.

If x is in the matching polytope2, we can prove that EG[νw(G)] > κ ·
∑
wu,vxu,v for some

constant 0 < κ < 1 . For the general graph model, κ is known to be at least (1−1/e)2 ∼ 0.40
for every w [6]. For the bipartite graph model, κ is known to be at least 0.4 for every w [5].
Karp and Sipser [11] showed an upper bound of 0.54 for both bipartite and general graphs, by
demonstrating it for the unweighted models where every edge appears with equal probability.
Our main results are the following improved lower bounds on κ. Our first theorem concerns
the unweighted bipartite model.

I Theorem 1.1. Let |V1| = |V2| = n and x ∈ [0, 1]V1×V2 be in the matching polytope of the
complete bipartite graph on V1 ∪ V2. Then

EG∼DB
n,x

[ν(G)]∑
(u,v)∈V1×V2

xu,v
> 0.476. (1)

We also obtain a slightly weaker result on the weighted bipartite model.

I Theorem 1.2. Let |V1| = |V2| = n and x ∈ [0, 1]V1×V2 be in the matching polytope of the
complete bipartite graph on V1 ∪ V2. Then for any w ∈ (R+ ∪ {0})V1×V2 ,

EG∼DB
n,w,x

[νw(G)]∑
(u,v)∈V1×V2

wu,vxu,v
>

(
1− 3

2e

)
> 0.4481.

Finally, we prove an improved bound on the weighted general graph model.

I Theorem 1.3. Let |V | = n and x ∈ [0, 1](
V
2 ) be in the matching polytope of the complete

graph on V1 ∪ V2. Then for any w ∈ (R+ ∪ {0})(
V
2 ),

EG∼DG
n,w,x

[νw(G)]∑
(u,v)∈(V

2 ) wu,vxu,v
>
e2 − 1

2e2 > 0.4323.

1.1 Applications and Related Work
Contention Resolution Schemes and Correlation Gap

Our work is inspired by and related to the rounding algorithms studied in approximation
algorithms. Given a downward-closed family I ⊆ 2E defined over a ground-set E and a

1 Our result for general graphs, Theorem 1.3 holds even when x satisfies the first type of constraints.
2 If x is not in the matching polytope, one can construct examples where κ = Ω(n).
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submodular function f : 2E → R+, Chekuri et al. [5] considered the problem of finding
maxS∈I f(S) and introduced contention resolution schemes (CR schemes) to obtain improved
approximation algorithms for numerous problems. Let PI be the convex combination of all
incidence vectors {1S}S∈I . A c-CR scheme π for x ∈ PI is a procedure that, when R is a
random subset of E with e ∈ R independently with probability xe, returns π(R) ⊆ R such
that π(R) ∈ I with probability 1 and Pr[e ∈ π(R)] > c for all e ∈ E.

To construct a CR scheme, they introduced the notion of correlation gap of a polytope,
inspired by [1].3 Formally, the correlation gap of I is defined as

κ(I) := inf
x∈PI , w>0

ER∼Dx
[maxS⊆R,S∈I

∑
e∈S we]∑

e∈E xewe
, (2)

where Dx is the distribution where each element e appears in R with probability xe inde-
pendently. It is easy to see that the existence of c-CR scheme for all x ∈ PI implies κ(I) > c.
Chekuri et al. [5] proved the converse that every x ∈ PI admits a κ(I)-CR scheme.

By setting E to be the set of all possible edges of a complete (bipartite) graph, and I to be
the set of all matchings of a complete graph, our Theorem 1.2 and Theorem 1.3 for weighted
bipartite graphs and weighted general graphs imply that there exist 0.4481-CR scheme
and 0.4323-CR scheme for bipartite matching polytopes and general matching polytopes
respectively. Note that these lower bounds hold when E′ is the set of edges and I ′ is a
matching polytope of an arbitrary graph G′, since

κ(I) = inf
x∈PI , w>0

ER∼Dx [maxS⊆R,S∈I
∑

e∈S we]∑
e∈E xewe

6 inf
x|E′∈PI′ , w|E′=0

ER∼Dx
[maxS⊆R,S∈I

∑
e∈S we]∑

e∈E xewe
= κ(I ′).

Maximum Matching of Random Graphs

The study of maximum matchings in random graphs has a long history. It was pioneered
by the work of Erdős and Rényi [8, 7], where they proved that a random graph Gn,p has a
perfect matching with high probability when p = Ω( ln n

n ). The case for sparse graphs was
investigated by Karp and Sipser [11] who gave an accurate estimate of ν(G) for Gn,p where
p = c

n−1 for some constant c > 0.
After these two pioneering results, subsequent work has addressed two aspects. The

Karp-Sipser algorithm is a simple randomized greedy algorithm, and the first line of works
extend the range of models where this algorithm (or its variants) returns an almost maximum
matching. Aronson et al. [2] and Chebolu et al. [4] augmented the Karp-Sipser algorithm
to achieve tighter results in the standard Gn,p model. Bohman and Frieze [3] considered a
new model where a graph is drawn uniformly at random from the collection of graphs with a
fixed degree sequence and gave a sufficient condition where the Karp-Sipser algorithm finds
an almost perfect matching.

The second line of work is based on the following observation: the standard Gn,p model,
p = Ω( ln n

n ) is required to have a perfect matching, because otherwise there will be an isolated
vertex. This naturally led to the question of finding a natural and sparser random graph
model with a perfect matching. The considered models include a random regular graph,
and a Gn,p with prescribed minimal degree. We refer the reader to the work of Frieze and
Pittel [10] and Frieze [9] and references therein.

3 [1] defined the correlation gap of a set function f : 2E → R+. Our results apply to this definition too
when f denotes the weight of the maximum matching.

FSTTCS 2017



32:4 Understanding the Correlation Gap For Matching

1.2 Organization
Our main technical contribution is lower bounding correlation gaps via local distribution
schemes for dual variables, which are used to prove Theorem 1.1 and Theorem 1.2 for
unweighted and weighted bipartite graphs. We present this framework in Section 2 and
prove our bounds for unweighted bipartite graphs (Section 3) and weighted bipartite graphs
(Section 4). Our result for weighted general graphs is presented in Section 5.

2 Techinques for Bipartite Graphs

Let V = V1∪V2 be the set of vertices with |V1| = |V2| = n, E := V1×V2. Fix w ∈ (R+∪{0})E

and x ∈ [0, 1]E in the bipartite matching polytope of (V,E).
Our proofs for Theorem 1.1 and 1.2 for bipartite graphs follow the following general

framework. Let G = (V,E(G)) be a sampled from the distribution where each potential
edge e ∈ E appears with probability xe independently (recall that E = V1 × V2 is the set of
all potential edges and E(G) is the edges of one sample G). Let y(G) ∈ (R+ ∪ {0})V be an
optimal fractional vertex cover such that for every e = (u, v) ∈ E(G), yu(G) + yv(G) > we.
By König-Egerváry theorem, ‖y(G)‖1 = ν(G).

Given G, consider the situation where initially each vertex v has mass yv(G), and
each potential edge has mass ye(G) = 0 (we slightly abuse notation and consider y(G) ∈
(R+ ∪ {0})V ∪E). We construct local distribution schemes FG : (V ∪ E) × (V ∪ E) → R
where FG(a, b) indicates the amount of mass sent from a to b. We require that FG(a, a) = 0,
but we allow FG(a, b) 6= −FG(b, a) for a 6= b (the net flow from a to b in this case is
FG(a, b) − FG(b, a)). Let t(G) ∈ RV ∪E denote the mass of each vertex and edge after the
distribution.

ta(G) := ya(G) +
∑

b∈V ∪E

FG(b, a)−
∑

b∈V ∪E

FG(a, b).

We choose FG so that it ensures tv(G) > 0 for every v ∈ V . This implies∑
e∈E

te(G) 6
∑

a∈V ∪E

ta(G) =
∑

a∈V ∪E

ya(G) =
∑
v∈V

yv(G) = ν(G).

Therefore, if we prove that for each potential edge e ∈ E

EG[te(G)] > α · wexe, (3)

for some α > 0, it implies that

EG[ν(G)] > α ·
∑
e∈E

EG[te(G)] > α ·
∑
e∈E

wexe.

For weighted and unweighted cases, we construct different local distribution schemes {FG}G

that prove (3) with different values of α.

Weighted Bipartite Graphs

Given a sample G = (V,E(G)) and a fractional vertex cover y ∈ (R+ ∪{0})V , our FG(v, e) =
yv(G)/degG(v) if e ∈ E(G) is an edge incident on v ∈ V , and 0 otherwise. Intuitively, each
vertex v distributes its mass yv(G) evenly to its incident edges in G. This clearly satisfies
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tv(G) > 0 for every v ∈ V , and for each e = (u, v) ∈ E, we use the following approximation:

EG[te(G)] = Pr[e ∈ G] · EG

[
te(G)|e ∈ G

]
= xe EG

[
yu(G)

degG(u) + yv(G)
degG(v) |e ∈ G

]
> xe EG

[
(yu(G) + yv(G)) 1

max(degG(u), degG(v)) |e ∈ G
]

> xewe EG

[
1

max(degG(u), degG(v)) |e ∈ G
]
.

Therefore, to prove Theorem 1.2, it suffices to prove that for every potential edge e ∈ E,

EG∼DB
n,w,x

[
1

max(degG(u), degG(v)) |e ∈ G
]
> 0.4481,

when G is sampled from DB
n,w,x with x in the matching polytope. Experimentally trying

several extreme cases indicates that the worst case for e = (u, v) ∈ E happens when xe = ε

for very small ε, u has only one other edge eu with xeu
= 1− ε, and v is incident on n− 1

edges ev1 , . . . , evn−1 with xevi
= 1−ε

n−1 . As ε approaches to 0, EG[ 1
max(degG(u),degG(v)) |e ∈ G]

converges to E[ 1
1+YU

] as n grows, where YU is drawn from a binomial distribution B(n−1, 1
n−1 ).

Section 4 formally proves that this is indeed the worst case.

Unweighted Bipartite Graphs

One simple but important observation is that in the above example where EG[te(G)] ≈
E[ 1

1+YU
]xe, e is an edge with very small xe = ε, and it is adjacent to a large edge eu with

xeu = 1− ε. From the persepctive of xeu , the expected number of adjacent edges is at most
2ε, so EG[teu

(G)] ≈ xeu
≈ 1. Since eu gets much more than what it needs (E[teu

] > 0.476
suffices to prove Theorem 1.1), it is natural to take some value from teu(G) to increase te(G).

Formally, given G = (V,E(G)), our new local distribution scheme FG : (V ∪E)×(V ∪E)→
R is defined as follows. Let c be an universal constant that will be determined later.

FG(a, b) =


ya(G)

degG(a) if a ∈ V, b ∈ E(G), a ∈ b
cx2

axb if a 6= b ∈ E, a ∩ b 6= ∅
0 otherwise.

(4)

Intuitively, on top of the old local distribution scheme for weighted graphs, each edge e
pays cx2

exf to every adjacent edge f with probability 1 (this quantity does not depend on G).
Because this term quadratically depends on the x value of the sender, this payment penalizes
edges with large x values to help edges with small x values. For a fixed edge e = (u, v) ∈ E
with fixed xe = ε, Theorem 3.1 shows that the worst case is when both u and v have n− 1
other edges of whose x values are equal to 1−ε

n . Finally, Lemma 3.2 shows that E[te] > 0.476
for every ε ∈ (0, 1], proving Theorem 1.1.

3 Unweighted Bipartite Graphs

We prove Theorem 1.1 for unweighted bipartite graphs. Given G = (V,E(G)), consider the
local distribution scheme FG : (V ∪ E)× (V ∪ E)→ R given in (4). This implies that the

FSTTCS 2017



32:6 Understanding the Correlation Gap For Matching

mass after this new distribution scheme for an edge e = (u, v) is given by

te(G) = αe(G) +
∑

f∈E\{e}:f3u

c(xex
2
f − x2

exf ) +
∑

g∈E\{e}:g3v

c(x2
gxe − x2

exg),

where αe(G) := yu(G)/ degG(u) + yv(G)/ degG(v) denotes the mass after the old distribution
scheme used for weighted bipartite graphs. We define βe(x) to be the following.

βe(x) := EG∼DB
n,x

[te(G)]

= EG∼DB
n,x

[αe(G)] +
∑

f∈E\{e}:f3u

c(xex
2
f − x2

exf ) +
∑

g∈E\{e}:g3v

c(x2
gxe − x2

exg)

To prove Theorem 1.1, it suffices to prove that βe(x) > 0.476xe for each e. Fix e = (u, v).
Let eu1 , . . . , eun−1 be n− 1 other edges incident on u and ev1 , . . . , evn−1 be n− 1 other edges
incident on v. EG∼DB

n,x
[αe(G)] is lower bounded by xe EG[ 1

max(degG(u),degG(v)) |e ∈ G] as
before. Define F (x0, y1, . . . , yn−1, z1, . . . , zn−1) by

F (x0, y1, . . . , yn−1, z1, . . . , zn−1) := x0 E[ 1
1 + max(Y,Z) ] +

n−1∑
i=1

c(x0y
2
i − x2

0yi)

+
n−1∑
i=1

c(x0z
2
i − x2

0zi),

where Y := Y1 + · · · + Yn−1 and Z := Z1 + · · · + Zn−1 and each Yi (resp. Zi) is an
independent Bernoulli random variable with E[Yi] = yi (resp. E[Zi] = zi). By construction,
βe(x) > F (xe, xeu1

, . . . , xeun−1
, xev1

, . . . , xevn−1
). Given fixed

∑n−1
i=1 xeui

and
∑n−1

i=1 xvui
, the

following theorem shows that F is minimized when xeu1
= · · · = xeun−1

and xev1
= · · · =

xevn−1
.

I Theorem 3.1. For x0, y1, . . . , ym, z1, . . . , zm ∈ [0, 1] where ys :=
∑m

i=1 yi 6 1 − x0 and
zs :=

∑m
i=1 zi 6 1− x0,

F (x0, y1, . . . , ym, z1, . . . , zm) > F (x0,
ys

m
, . . . ,

ys

m
,
zs

m
, . . . ,

zs

m
).

Proof. Without loss of generality, assume y1 > . . . > ym. We will show that if y1 > ym,

∂F

∂ym
− ∂F

∂y1
6 0. (5)

This implies that as long as y1 > ym, decreasing y1 and increasing ym by the same amount
will never increase F while maintaining y1 + · · · + ym = ys, so F is minimized when
y1 = · · · = ym = ys

m . The same argument for z1, . . . , zm will prove the theorem.
Let Y := Y1 + · · ·+Ym and Z := Z1 + · · ·+Zm, where each Yi (resp. Zi) is an independent

Bernoulli random variable with E[Yi] = yi (resp. E[Zi] = zi). To prove (5), we first compute
∂ E[ 1

1+max(Y,Z) ]
∂ym

−
∂ E[ 1

1+max(Y,Z) ]
∂y1

. Let Y ′ := Y2 + · · ·+ Ym−1. We decompose E[ 1
1+max(Y,Z) ] as

follows.
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E[ 1
1 + max(Y, Z) ]

=
m∑

i=0

m∑
j=0

(
Pr[Y = i] · Pr[Z = j] · 1

1 + max(i, j)

)

=
m∑

i=0

(
Pr[Y ′ = i] · Pr[Z 6 i]

( (1− y1)(1− ym)
1 + i

+ y1(1− ym) + (1− y1)ym

2 + i
+ y1ym

3 + i

))

+
m∑

i=0

(
Pr[Y ′ = i] · Pr[Z = i+ 1]

(1− y1ym

2 + i
+ y1ym

3 + i

))

+
m∑

i=0
Pr[Y ′ = i] · Pr[Z > i+ 2] · 1

3 + i

Therefore, the directional derivative can be written as

( ∂

∂ym
− ∂

∂y1
)E[ 1

1 + max(Y, Z) ]

=(y1 − ym)
m∑

i=0

(
Pr[Y ′ = i] · Pr[Z 6 i]

( 1
1 + i

− 2
2 + i

+ 1
3 + i

))

+(y1 − ym)
m∑

i=0

(
Pr[Y ′ = i] · Pr[Z = i+ 1]

(
− 1

2 + i
+ 1

3 + i

))

6(y1 − ym)
m∑

i=0

(
Pr[Y ′ = i] · Pr[Z 6 i]

( 1
1 + i

− 2
2 + i

+ 1
3 + i

))

6(y1 − ym)
m∑

i=0

(
Pr[Y ′ = i] · Pr[Z 6 i]

( 1
1 + i

− 2
2 + i

+ 1
3 + i

))
6
y1 − ym

3 ,

where the last inequality follows from the fact that

( 1
1 + i

− 2
2 + i

+ 1
3 + i

)
= 2

(1 + i)(2 + i)(3 + i) 6
1
3 .

Finally,

( ∂

∂ym
− ∂

∂y1
)F

=( ∂

∂ym
− ∂

∂y1
)(xe E[ 1

1 + max(Y,Z) ] + cxey
2
1 − cx2

ey1 + cxey
2
m − cx2

eym)

6
xe(y1 − ym)

3 − 2cxe(y1 − ym) = 0.

By taking c = 1
6 . J

Therefore, for any e ∈ E, βe(x) > F (xe,
ys

n−1 , . . . ,
ys

n−1 ,
zs

n−1 , . . . ,
zs

n−1 ) for some ys 6 1−xe

and zs 6 1− xe. Let

FSTTCS 2017



32:8 Understanding the Correlation Gap For Matching

G(xe, ys, zs) :=F (xe,
ys

n− 1 , . . . ,
ys

n− 1 ,
zs

n− 1 , . . . ,
zs

n− 1)

=xe E[ 1
1 + max(Y,Z) ] + (n− 1)c(xe( ys

n− 1)2 − x2
e( ys

n− 1))

+ (n− 1)c(xe( zs

n− 1)2 − x2
e( zs

n− 1))

=xe E[ 1
1 + max(Y,Z) ] + cxeys(( ys

n− 1)− xe) + cxezs(( zs

n− 1)− xe)

>xe E[ 1
1 + max(Y,Z) ]− 2cx2

e

where Y ∼ Binomial(n− 1, ys

n−1 ), Z ∼ Binomial(n− 1, zs

n−1 ). Note that the final quantity is
minimized when ys = zs = 1− xe. Finally, let

Hn−1(xe) := xe E[ 1
1 + max(Y, Z) ]− 2cx2

e,

where Y,Z ∼ Binomial(n− 1, 1−xe

n−1 ).

I Lemma 3.2. For any m ∈ N and xe ∈ [0, 1], Hm(xe) > 0.476xe.

Proof. Since the binomial distribution is approximated by the Poisson distribution in
the limit, we use this to ease the calculation. Let Y, Z ∼ Poisson(1 − x). Let H(x) :=
xE[ 1

1+max(Y,Z) ]− x2/3 (we substitute c = 1/6 into the earlier equation). In particular, we
write the expectation in full to get

E[ 1
1 + max(Y,Z) ] =

∞∑
k=0

∞∑
j=0

1
1 + max(j, k)e

−2(1−x) (1− x)j+k

j!k!

= 1
e2(1−x)

∞∑
k=0

( k∑
j=0

1
1 + max(j, k − j)

1
j!(k − j)!

)
(1− x)k

Let Pt(x) denote the above sum truncated at k = t. I.e.

Pt(x) := 1
e2(1−x)

t∑
k=0

( k∑
j=0

1
1 + max(j, k − j)

1
j!(k − j)!

)
(1− x)k

This is a degree t-polynomial in (1− x) with a normalizing factor of e−2(1−x) and note that
E[ 1

1+max(Y,Z) ] > Pt(x) for any t ∈ N.
Truncating this polynomial with t = 15, we can see that this has a minimum value of

0.476 for all values of x ∈ [0, 1]. we can see that E[ 1
1+max(Y,Z) ] − x/3 > P15(x) − x/3. In

the interval x ∈ [0, 1], this function achieves its minimum at x = 0 achieving a minimum of
0.476. J

4 Weighted Bipartite Graphs

We prove Theorem 1.2 for weighted bipartite graphs. As explained in Section 2, it suffices to
prove that for each e = (u, v) ∈ E,

EG∼DB
n,w,x

[
1

max(degG(u), degG(v)) |e ∈ G
]
> 0.4481.
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Fix e = (u, v) and assume V = {v, v1, . . . , vn−1}∪{u, u1, . . . , un−1}. Let Y = degG(u)−1
and Z = degG(v) − 1. Given e ∈ G, Y and Z can be represented as Y =

∑n−1
i=1 Yi and

Z =
∑n−1

i=1 Zi, where Yi indicates where (u, vi) ∈ E(G) and Zi indicates where (v, ui) ∈ E(G).
This construction ensures that

EG

[
1

max(degG(u), degG(v)) |e ∈ G
]

= EY,Z

[
1

1 + max(Y,Z)

]
.

Note that Y1, . . . , Yn−1, Z1, . . . , Zn−1 are mutually independent, and E[Y ],E[Z] 6 1. By
monotonicity, assuming E[Y ] = E[Z] = 1 never increases the lower bound. The following
theorem shows that the worst case happens when one of Y,Z is consistently 1 and the other
is drawn from Binomial(n− 1, 1

n−1 ).

I Theorem 4.1. Let Y = Y1 + · · ·+Ym and Z = Z1 + · · ·+Zm, where Y1, . . . , Ym, Z1, . . . , Zm

are mutually independent Bernoulli random variables with E[Y ] = E[Z] = 1. Then,

E
[

1
1 + max(Y, Z)

]
> E

[
1

1 + YU

]
,

where YU is drawn from Binomial(m, 1
m ).

Proof. We decompose E[ 1
1+max(Y,Z) ] as follows.

E
[

1
1 + max(Y,Z)

]
=

m∑
i=0

m∑
j=0

(
Pr[Y = i] · Pr[Z = j] · 1

1 + max(i, j)

)

=
m∑

i=0
Pr[Y = i]

[( i∑
j=0

Pr[Z = j]
)
· 1

1 + i
+
( m∑

j=i+1
Pr[Z = j] · 1

1 + j

)]

=
m∑

i=0
Pr[Y = i] · 1

1 + i
−

m∑
i=0

Pr[Y = i]
[ m∑

j=i+1
Pr[Z = j]

( 1
1 + i

− 1
1 + j

)]

=
m∑

i=0
Pr[Y = i] · 1

1 + i
−

m∑
j=1

Pr[Z = j]
[ j−1∑

i=0
Pr[Y = i]

( 1
1 + i

− 1
1 + j

)]
.

Let tj :=
∑j−1

i=0 Pr[Y = i] ·
( 1

1+i −
1

1+j

)
. We prove the following facts about tj ’s.

I Lemma 4.2. For all j > 3, t2
2 > tj

j .
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Proof. Fix j > 3. By the definition of t2 and tj ,

t2
2 −

tj
j

= 1
2

(
Pr[Y = 0](1− 1

3) + Pr[Y = 1](1
2 −

1
3)
))
− 1
j

( j−1∑
i=0

Pr[Y = i]
( 1

1 + i
− 1

1 + j

))

= 1
3 Pr[Y = 0] + 1

12 Pr[Y = 1]− 1
j

( j−1∑
i=0

Pr[Y = i]
( 1

1 + i
− 1

1 + j

))
= (1

3 −
1

1 + j
) Pr[Y = 0] + ( 1

12 −
j − 1

2j(j + 2)) Pr[Y = 1]

− 1
j

( j−1∑
i=2

Pr[Y = i]
( 1

1 + i
− 1

1 + j

))

>

(
1
3 −

1
1 + j

− 1
j

j−1∑
i=2

( 1
1 + i

− 1
1 + j

))
Pr[Y = 0] + ( 1

12 −
j − 1

2j(j + 2)) Pr[Y = 1],

where the inequality follows from Pr[Y = 0] > Pr[Y = i] for i > 2. To prove t2
2 −

tj

j > 0, it
suffices to prove that 1

3 −
1

1+j −
1
j

∑j−1
i=2

( 1
1+i −

1
1+j

)
> 0, and 1

12 −
j−1

2j(j+2) > 0. It is easy to
verify the latter for j > 3. The former can be proved as

1
3 −

1
1 + j

− 1
j

j−1∑
i=2

( 1
1 + i

− 1
1 + j

)
=1

3 + j − 2
j(1 + j) −

( 1
1 + j

+ 1
j

j−1∑
i=2

1
1 + i

)
>

1
3 + j − 2

j(1 + j) −
( 1

1 + j
+ j − 2

3j
)

=
(1

3 −
j − 2

3j
)

+
( j − 2
j(1 + j) −

1
1 + j

)
= 2

3j −
2

j(1 + j) > 0,

where the first inequality follows from 1
1+i 6 1

3 for i > 2 and the last inequality follows from
j > 3. J

We prove the theorem by considering the following two cases.

Case 1: 2 Pr[Y = 0] > Pr[Y = 1] or 2 Pr[Z = 0] > Pr[Z = 1]

Without loss of generality, assume that 2 Pr[Y = 0] > Pr[Y = 1]. It is equivalent to

Pr[Y = 0] > 2
3 Pr[Y = 0] + 1

6 Pr[Y = 1]

⇔ t1 >
t2
2 .
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By Lemma 4.2, it implies that t1 > tj

j for all j > 2. Then, since E[Z] =
∑m

j=1 j ·Pr[Z = j] = 1,

E
[

1
1 + max(Y, Z)

]
=

m∑
i=0

Pr[Y = i] · 1
1 + i

−
m∑

j=1
Pr[Z = j]tj

>
m∑

i=0
Pr[Y = i] · 1

1 + i
− t1

m∑
j=1

j · Pr[Z = j]

=
m∑

i=0
Pr[Y = i] · 1

1 + i
− t1

= E[ 1
1 + max(Y, 1) ].

The following lemma proves the theorem in the case t1 > t2
2 .

I Lemma 4.3. E[ 1
1+max(Y,1) ] > E[ 1

1+max(YU ,1) ].

Proof. Note that Y = Y1 + · · · + Ym, and each Yi is a Bernoulli random variable. Let
yi := E[Yi]. Without loss of generality, assume y1 > . . . > ym. We will show that if y1 > ym,

∂ E[ 1
1+max(Y,1) ]
∂ym

−
∂ E[ 1

1+max(Y,1) ]
∂y1

6 0. (6)

This implies that as long as y1 > ym, decreasing y1 and increasing ym by the same amount
will never increase E[ 1

1+max(Y,1) ] while maintaining y1 + · · · + ym = 1, so the expectation
is minimized when y1 = · · · = ym, or Y = YU . Consider the following decomposition of
E[ 1

1+max(X,Y ) ].

EY

[
1

1 + max(1, Y )

]
= Pr[Y = 0] · 1

2 +
m∑

i=1
Pr[Y = i] · 1

1 + i

= 1
2(1−

m∑
i=1

Pr[Y = i]) +
m∑

i=1
Pr[Y = i] · 1

1 + i

= 1
2 −

m∑
i=2

Pr[Y = i] · (1
2 −

1
1 + i

)

= 1
2 −

m∑
i=2

Pr[Y > i] · (1
i
− 1

1 + i
).

To prove (6), it suffices to prove that for all i > 2,

∂ Pr[Y > i]
∂ym

− ∂ Pr[Y > i]
∂y1

> 0.

Let Y ′ = Y2 + · · ·+ Ym−1, and fix i > 3.

Pr[Y > i] = Pr[Y ′ = i− 2]y1ym + Pr[Y ′ = i− 1]
(
y1(1− ym) + (1− y1)ym + y1ym)

+ Pr[Y ′ > i]
∂ Pr[Y > i]

∂y1
= Pr[Y ′ = i− 2]ym + Pr[Y ′ = i− 1]

(
1− ym

)
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Therefore,

∂ Pr[Y > i]
∂ym

− ∂ Pr[Y > i]
∂y1

= Pr[Y ′ = i− 2](y1 − ym) + Pr[Y ′ = i− 1]
(
ym − y1

)
= (y1 − ym)

(
Pr[Y ′ = i− 2] + Pr[Y ′ = i− 1]

)
.

Finally, it remains to show that Pr[Y ′ = j] > Pr[Y ′ = j + 1] for all j > 0. The case j = 0 is
true since Pr[Y ′ = 0] =

∏m−1
k=2 (1− yk) and

Pr[Y ′ = 1] =
m−1∑
k=2

Pr[Y ′ = 0] · yk

1− yk
6

m−1∑
k=2

Pr[Y ′ = 0] yk

1− y2

= Pr[Y ′ = 0]
1− y2

m−1∑
i=2

yk 6 Pr[Y ′ = 0],

where the last line follows from
∑m−1

k=2 yi 6 1−y1 6 1−y2 since y1 is the biggest element. The
case j > 1 follows from the fact the sequence (Pr[Y ′ = j])j has one mode or two consecutive
modes, and at least one of them occurs at j = 0 (E[Y ′] < 1 implies Pr[Y ′ = 0] > Pr[Y ′ = j]
for all j > 2). J

Case 2: 2 Pr[Y = 0] 6 Pr[Y = 1] and 2 Pr[Z = 0] 6 Pr[Z = 1]

Since
∑m

i=0 Pr[Z = i] = 1 and E[Z] =
∑m

i=1 i · Pr[Z = i] = 1, we have Pr[Z = 0] =∑m
i=2(i− 1) Pr[Z = i]. Together with the fact 2 Pr[Z = 0] 6 Pr[Z = 1], it implies

1− Pr[Z = 1] = Pr[Z = 0] +
m∑

i=2
Pr[Z = i] 6 2 Pr[Z = 0] < Pr[Z = 1],

so Pr[Z = 1] > 1
2 . Finally,

E
[

1
1 + max(Y, Z)

]
=

m∑
i=0

Pr[Y = i] · 1
1 + i

−
m∑

j=1
Pr[Z = j] · tj

=
m∑

i=0
Pr[Y = i] · 1

1 + i
− Pr[Z = 1] · t1 −

m∑
j=2

Pr[Z = j] · tj

>
m∑

i=0
Pr[Y = i] · 1

1 + i
− Pr[Z = 1] · t1 −

m∑
j=2

j · Pr[Z = j] · t22

=
m∑

i=0
Pr[Y = i] · 1

1 + i
− Pr[Z = 1] · t1 −

t2
2 (1− Pr[Z = 1])

>
m∑

i=0
Pr[Y = i] · 1

1 + i
− t1

2 −
t2
4 = E

[
1

1 + max(Y, YH)

]
,

where YH is drawn from Binomial(2, 1
2 ). The first inequality follows from Lemma 4.2, and

the second inequality follows from Pr[Z = 1] > 0.5 and t1 6 t2
2 .

Since YH satisfies 2 Pr[YH = 0] = Pr[YH = 1], the analysis for Case 1 shows that
E[ 1

1+max(Y,YH ) ] > E[ 1
1+max(1,YU ) ]. J

The following lemma finishes the proof of Theorem 1.2.
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I Lemma 4.4. For any m ∈ N, if Y ∼ Binomial(m, 1
m ),

E
[

1
1 + max(1, Y )

]
> 0.4481

Proof. Since the binomial distribution is approximated by the Poisson distribution in the
limit, we use this to ease the calculation. Let Y ∼ Poisson(1).

E
[

1
1 + max(1, Y )

]
=
∞∑

k=2

1
k + 1 Pr[Y ′ = k] + 1

2 Pr[Y < 2]

=
∞∑

k=2

1
k + 1

1
k! · e + 1

2(1
e

+ 1
e

)

= 1
e

( ∞∑
k=0

1
k! − 1− 1− 1

2
)

+ 1
2(1
e

+ 1
e

)

= (e− 5
2)1
e

+ 1
e

> 0.4481 J

5 General Graphs

In this section, we prove Theorem 1.3 for weighted general graphs. Our proof methods here
closely follow that of Lemma 4.9 of Chekuri et al. [5] that lower bounds the correlation gap
for monotone submodular functions by 1− 1/e. The only difference is that Lemma 5.1 holds
for matching with a weaker guarantee (if ν was a monotone submodular function, Lemma 5.1
would hold with 2ν(G) replaced by ν(G)).

Proof. Fix weights w ∈ (R+ ∪ {0})E . Define F : [0, 1] → (R+ ∪ {0}) as F (x) :=
EG∼DG

n,w,x
[ν(G)]. Now, fix x ∈ [0, 1]E in the matching polytope. We will show F (x) >

0.43
∑

e∈E wexe.
Consider the function φ(t) := F (tx) for t ∈ [0, 1].

dφ

dt
= x · ∇F (tx) =

∑
e∈E

xe
∂F

∂xe

∣∣∣∣
tx

(7)

For each e ∈ E,

∂F

∂xe

∣∣∣∣
tx

=
∂ EG∼DG

n,w,tx
[ν(G)]

∂xe

∣∣∣∣
tx

= EG∼DG
n,w,tx

[ν(G)|e ∈ G]− EG∼DG
n,w,tx

[ν(G)|e /∈ G]

= EG∼DG
n,w,tx

[ν(G ∪ {e})− ν(G \ {e})],

where G ∪ {e} (resp. G \ {e}) denotes the graph (V,E(G) ∪ {e}) (resp. (V,E(G) \ {e}).

I Lemma 5.1. For any fixed graph G with weights {we} and any point x in the matching
polytope,∑

e∈E

xe

(
ν(G ∪ {e})− ν(G \ {e})

)
+ 2ν(G) >

∑
e∈E

xewe.
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Proof. Let M ⊆ E(G) be a maximum weight matching of G. Note that∑
e∈E

xe

(
ν(G ∪ {e})− ν(G \ {e})

)
+ 2ν(G)

>
∑
e∈E

xe

(
ν(G ∪ {e})− ν(G)

)
+ 2

∑
f∈M

wf

>
∑
e∈E

xe

(
ν(G ∪ {e})− ν(G)

)
+
∑

f∈M

∑
e∈E:e∼f

xewf (8)

where f ∼ e indicates that two edges f and e share an endpoint. To prove the lemma, it
suffices to show that for each e ∈ E, the coefficient of of xe in (8) is at least we. We consider
the following cases.

If M ∪{e} is a matching, ν(G∪{e}) > ν(G) +we and ν(G\{e}) 6 ν(G), so ν(G∪{e})−
ν(G \ {e}) > we.
If e intersects exactly one edge f ∈M , the coefficient of xe is ν(G∪ {e})− ν(G) +wf . If
wf > we, it is at least we. If wf < we,M∪{e}\{f} is a matching of weight ν(G)+we−wf .
It implies that e /∈ E(G) and ν(G∪{e})−ν(G) > we−wf , so ν(G∪{e})−ν(G)+wf > we.
If e intersects two edges f, g ∈M , the coefficient of xe is ν(G∪ {e})− ν(G) +wf +wg. If
wf +wg > we, it is at least we. If wf +wg < we, M ∪{e} \ {f, g} is a matching of weight
ν(G) + we − wf − wg. It implies that e /∈ E(G) and ν(G ∪ {e})− ν(G) > we − wf − wg,
so ν(G ∪ {e})− ν(G) + wf + wg > we. J

Combining (7) and Lemma 5.1,

dφ

dt
=
∑
e∈E

xe
∂F

∂xe

∣∣∣∣
tx

=
∑
e∈E

EG∼DG
n,w,tx

[ν(G ∪ e)− ν(G \ e)]

>
∑
e∈E

xewe − 2EG∼DG
n,w,tx

[ν(G)]

=
∑
e∈E

xewe − 2φ(t).

which implies that,

d

dt
(e2tφ(t)) = 2e2tφ(t) + e2t dφ

dt
> e2t

∑
e∈E

xewe.

Since φ(0) = 0,

e2φ(1) >
∑
e∈E

xewe

∫ 1

0
e2tdt = e2 − 1

2
∑
e∈E

xewe,

which proves the theorem. J
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