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Abstract
Estimating a matrix based on partial, noisy observations is prevalent in variety of modern ap-
plications with recommendation system being a prototypical example. The non-parametric lat-
ent variable model provides canonical representation for such matrix data when the underlying
distribution satisfies “exchangeability” with graphons and stochastic block model being recent
examples of interest. Collaborative filtering has been a successfully utilized heuristic in practice
since the dawn of e- commerce. In this extended abstract, we will argue that collaborative fil-
tering (and its variants) solve matrix estimation for a generic latent variable model with near
optimal sample complexity.
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1 Introduction

We consider the question of sparse matrix estimation (or completion) with noisy observations.
As a prototype for such a problem, consider a noisy observation of a social network where
observed interactions are signals of true underlying connections. We might want to predict
the probability that two users would choose to connect if recommended by the platform,
e.g. LinkedIn. As a second example, consider a recommendation system where we observe
movie ratings provided by users, and we may want to predict the probability distribution
over ratings for specific movie-user pairs. A popular collaborative filtering approach suggests
using “similarities” between pairs of users to estimate the probability of a connection being
formed or a movie being liked. Traditionally, the similarities between pair of users in a
social network is computed by comparing the set of their friends or in the context of movie
recommendation, by comparing commonly rated movies. In the sparse setting, however most
pairs of users have no common friends, or most pairs of users have no commonly rated movies;
thus there is insufficient data to compute the traditional similarity metrics.

In this work, the primary interest is to understand how well does such a simple, intuitive
approach to compute similarities between pair of users for matrix estimation work. In the
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4:2 Matrix Estimation and Collaborative Filtering

process, we provide a way to extend the notion of the similarities utilized in practice by
incorporating information within a larger radius neighborhood rather than restricting only
to immediate neighbors. We establish that it achieves best-known sample complexity which
matches well known, conjectured lower bound for a special instance of the generic problem,
the mixed membership stochastic block model.

1.1 Model, Problem Statement
The question discussed above can be mathematically formulated as a matrix estimation
problem. Let F be an n × n matrix which we would like to estimate, and let Z be a
noisy signal of matrix F such that E[Z] = F . The available data is denoted by (E ,M),
where E ⊂ [n]× [n] denotes the subset of indices for which data is observed, and M is the
n× n symmetric data matrix1 where M(u, v) = Z(u, v) for (u, v) ∈ E , and M(u, v) = 0 for
(u, v) /∈ E . We can equivalently represent the data with an undirected weighted graph G with
vertex set [n], edge set E , and edge weights given by M . We shall use graph and matrix
notations in an interchangeable manner. Given the data (E ,M), we would like to estimate
the original matrix F . We assume a uniform sampling model, where each entry is observed
with probability p independently of all other entries.

We shall assume that each u ∈ [n] is associated to a latent variable αu ∈ X1, which is
drawn independently across indices [n] as per distribution P1 over a bounded compact space
X1. We shall assume that the expected data matrix can be described by the latent function f ,
i.e. F (u, v) = f(αu, αv), where f : X1 ×X1 → R is a symmetric function. We note that such
a structural assumption or the so-called Latent Variable Model is a canonical representation
for exchangeable arrays as shown by Aldous and Hoover [5, 22, 6]. For each observation, we
assume that E[Z(u, v)] = F (u, v), Z(u, v) is bounded and {Z(u, v)}1≤u<v≤n are independent
conditioned on the node latent variables.

The goal is to find smallest p, as a function of n and structural properties of f , so
that there exists an algorithm that can produce F̂ , an estimate of matrix F , so that the
Mean-Squared-Error (MSE) between F̂ and F , 1

n2

∑
u,v∈[n](F̂ (u, v)−F (u, v))2, converges to

0 as n→∞.

1.2 Related Works
The matrix estimation problem introduced above, as special cases, includes problems from
different areas of literature: matrix completion popularized in the context of recommendation
systems, graphon estimation arising from the asymptotic theory of graphs, and community
detection using the stochastic block model or its generalization known as the mixed member-
ship stochastic block model. We shall discuss key representative results here. We discuss the
scaling of the sample complexity with respect to d (model complexity, usually rank) and n
for polynomial time algorithms, including results for both mean squared error convergence,
exact recovery in the noiseless setting, and convergence with high probability in the noisy
setting.

In the context of matrix completion, there has been much progress under the low-rank
assumption and additive noise model. Most theoretically founded methods are based on
spectral decompositions or minimizing a loss function with respect to spectral constraints
[23, 24, 14, 15, 32, 30, 18, 17, 16].

1 The asymmetric variation of this question can be casted as symmetric version. See [7] for a detailed
discussion.
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Most of the results in matrix completion require additive noise models, which do not
extend to setting when the observations are binary or quantized. The Universal Singular
Value Thresholding (USVT) estimator [16] is able to handle general bounded noise, although
it requires a few log factors more in its sample complexity compared to what is conjectured
optimal and what our result achieves for low-rank matrices.

There is also a significant amount of literature which looks at the estimation problem
when the data matrix is binary, also known as 1-bit matrix completion, stochastic block
model (SBM) parameter estimation, or graphon estimation. The latter two terms are found
within the context of community detection and network analysis, as the binary data matrix
can alternatively be interpreted as the adjacency matrix of a graph – which are symmetric, by
definition. Under the SBM, each vertex is associated to one of d community types, and the
probability of an edge is a function of the community types of both endpoints. Estimating
the n×n parameter matrix becomes an instance of matrix estimation. In SBM, the expected
matrix is at most rank d due to its block structure. Precise thresholds for cluster detection
(better than random) and estimation have been established by [1, 2, 3]. Our work, both
algorithmically and technically, draws insight from this sequence of works, extending the
analysis to a broader class of generative models through the design of an iterative algorithm,
and improving the technical results with precise MSE bounds.

The mixed membership stochastic block model (MMSBM) allows each vertex to be
associated to a length d vector, which represents its weighted membership in each of the d
communities. The probability of an edge is a function of the weighted community memberships
vectors of both endpoints, resulting in an expected matrix with rank at most d. Recent work
by [33] provides an algorithm for weak detection for MMSBM with sample complexity d2n,
when the community membership vectors are sparse and evenly weighted. They provide
partial results to support a conjecture that d2n is a computational lower bound, separated
by a gap of d from the information theoretic lower bound of dn. Our result achieves close
to this conjectured lower bound, with a sample complexity of ω(d5n) in order to guarantee
consistency, which is much stronger than weak detection, in a much more generic setting.

Graphon estimation extends SBM and MMSBM to the generic Latent Variable Model
where the probability of an edge can be any measurable function f of real-valued types (or
latent variables) associated to each endpoint. Graphons were first defined as the limiting
object of a sequence of large dense graphs [13, 19, 29], with recent work extending the theory
to sparse graphs [11, 12, 10, 34]. In the graphon estimation problem, we would like to
estimate the function f given an instance of a graph generated from the graphon associated
to f .

[20, 25] provide minimax optimal rates for graphon estimation; however a majority of the
proposed estimators are not computable in polynomial time, since they require optimizing
over an exponentially large space (e.g. least squares or maximum likelihood) [35, 9, 8, 20, 25].
[9] provided a polynomial time method based on degree sorting in the special case when the
expected degree function is monotonic. To our knowledge, existing positive results for sparse
graphon estimation require either strong monotonicity assumptions [9], or rank constraints
as assumed in the SBM, the 1-bit matrix completion, and in this work.

We call special attention to the similarity based methods which are able to bypass the
rank constraints, relying instead on smoothness properties of the latent function f (e.g.
Lipschitz) [36] as well as this work [27, 7]. They hinge upon computing similarities between
rows or columns by comparing commonly observed entries. Similarity based methods, also
known in the literature as collaborative filtering, have been successfully employed across
many large scale industry applications (Netflix, Amazon, Youtube) due to its simplicity
and scalability [21, 28, 26, 31]; however the theoretical results have been relatively sparse.

FSTTCS 2017
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These recent results suggest that the practical success of these methods across a variety of
applications may be due to its ability to capture local structure.

A key limitation of this approach that this work overcomes is ability to deal with sparsity.
In particular, [36] works when p = 1 (or all data is observed). Our result requires for
p = ω(n−1/2) for any Lipschitz function instead, and p = ω(d5n−1) when the underlying
model is low-rank with rank being d.

2 Algorithm

The algorithm that we propose uses the concept of local approximation, first determining
which datapoints are similar in value, and then computing neighborhood averages for the
final estimate. All similarity-based collaborative filtering methods have the following basic
format:
1. Compute distances between pairs of vertices, e.g.,

dist(u, a) ≈
∫
X1

(f(αu, t)− f(αa, t))2dP1(t). (1)

2. Form estimate by averaging over “nearby” datapoints,

F̂ (u, v) = 1
|Euv|

∑
(a,b)∈Euv

M(a, b), (2)

where Euv := {(a, b) ∈ E s.t. dist(u, a) < ξ(n), dist(v, b) < ξ(n)}.
We will choose the threshold ξ(n) depending on dist in order to guarantee that it is small
enough to drive the bias to zero, ensuring the included datapoints are close in value, yet
large enough to reduce the variance, ensuring |Euv| diverges. In what follows, we describe
two methods to compute distances. The first method uses immediate neighbors to estimate
distance while the second utilizes far-away neighbors to estimate distance. Therefore, the
first method works well when we have denser sampling, p = ω(n−1/2) while the second works
for much sparse regime.

2.1 Distance using Immediate Neighbors
Like classical collaborative filtering using in practice, we approximate the L2 distance of (1)
by using variants of the finite sample approximation,

dist0(u, a) = 1
|Oua|

∑
y∈Oua

(F (u, y)− F (a, y))2, (3)

where y ∈ Oua iff (u, y) ∈ E and (a, y) ∈ E [4, 36, 27]. This approach works well when
p = ω(n−1/2). However, for much sparser setting (i.e. p = o(n−1/2)) with high probability,
Oua = ∅ for almost all pairs (u, a), such that this distance cannot be computed. This requires
us to utilize far-way neighbors.

2.2 Distance using Far-away Neighbors
Some Notations. We shall assume that f has finite spectrum with rank d when regarded
as an integral operator, i.e. for any αu, αv ∈ X1,

f(αu, αv) =
d∑
k=1

λkqk(αu)qk(αv),
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where λk ∈ R for 1 ≤ k ≤ d, qk are orthonormal `2 functions for 1 ≤ k ≤ d such that∫
X1

qk(y)2dP1(y) = 1 and
∫
X1

qk(y)qh(y)dP1(y) = 0 for k 6= h.

We assume that there exists some Bq such that supy∈[0,1] |qk(y)| ≤ Bq for all k.
Let Λ denote the d× d diagonal matrix with {λk}k∈[d] as the diagonal entries, and let Q

denote the d × n matrix where Q(k, u) = qk(αu). Since Q is a random matrix depending
on the sampled α, it is not guaranteed to be an orthonormal matrix (even though qk are
orthonormal functions). By definition, it follows that F = QTΛQ. Let d′ ≤ d be the number
of distinct valued eigenvalues amongst λk, 1 ≤ k ≤ d. Let Λ̃ denote the d× d′ matrix where
Λ̃(a, b) = λb−1

a .

Intuition. To that end, visualize the data via a graph with edge set E , then (3) corresponds
to comparing common neighbors of vertices u and a. A natural extension when u and a have
no common neighbors, is to instead compare the r-hop neighbors of u and a, i.e. vertices y
which are at distance exactly r from both u and a. We compare the product of weights along
edges in the path from u to y and a to y respectively, which in expectation approximates∫

X r−1
1

f(αu, t1)(
∏r−2
s=1 f(ts, ts+1))f(tr−1, αy)d

∏
i∈[r−1] P1(ti)

=
∑
k λ

r
kqk(αu)qk(αy)

= eTuQ
TΛrQey. (4)

We choose a large enough r such that there are sufficiently many “common” vertices y which
have paths to both u and a, guaranteeing that our distance can be computed from a sparse
dataset.

Definition of Distance. We first expand local neighborhoods of radius r around each vertex.
Let Su,s denote the set of vertices which are at distance s from vertex u in the graph defined
by edge set2 E . Specifically, i ∈ Su,s if the shortest path in G = ([n], E) from u to i has a
length of s. Let Bu,s denote the set of vertices which are at distance at most s from vertex
u in the graph defined by E , i.e. Bu,s = ∪st=1Su,t. Let Tu denote a breadth-first tree in G
rooted at vertex u. The breadth-first property ensures that the length of the path from u to
i within Tu is equal to the length of the shortest path from u to i in G. If there is more than
one valid breadth-first tree rooted at u, choose one uniformly at random. Let Nu,r ∈ [0, 1]n
denote the following vector with support on the boundary of the r-radius neighborhood of
vertex u (we also call Nu,r the neighborhood boundary):

Nu,r(i) =
{∏

(a,b)∈pathTu
(u,i) M(a, b) if i ∈ Su,r,

0 if i /∈ Su,r,

where pathTu
(u, i) denotes the set of edges along the path from u to i in the tree Tu. The

sparsity of Nu,r(i) is equal to |Su,r|, and the value of the coordinate Nu,r(i) is equal to the
product of weights along the path from u to i. Let Ñu,r denote the normalized neighborhood
boundary such that Ñu,r = Nu,r/|Su,r|. We will choose radius r = 6 ln(1/p)

8 ln(pn) .

2 For establishing correctness of algorithm, the edges are divided into three random subsets. See [7] for
details. Here, to keep exposition simple, we will ignore this technical aspect. We conjecture that similar
results hold for this variant of the algorithm as well.

FSTTCS 2017
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1. For each pair (u, v), compute dist1(u, v) according to( 1−p
p

)(
Ñu,r − Ñv,r

)T
M
(
Ñu,r+1 − Ñv,r+1

)
.

2. For each pair (u, v), compute distance according to

dist2(u, v) =
∑
i∈[d′] zi∆uv(r, i),

where ∆uv(r, i) is defined as( 1−p
p

)(
Ñu,r − Ñv,r

)T
M
(
Ñu,r+i − Ñv,r+i

)
,

and z ∈ Rd′ is a vector that satisfies Λ2r+2Λ̃z = Λ21. z always exists and is unique
because Λ̃ is a Vandermonde matrix (see below where both Λ and Λ̃ are defined) and
Λ−2r1 lies within the span of its columns.

3 Main Results

We state results for both type of distances: using immediate neighbors and using far-away
neighbors.

3.1 Distance Using Immediate Neighbors
The distance defined using immediate neighbors (cf. (3)) was analyzed in [27]. It proves that
a similarity based collaborative filtering-style algorithm provides a consistent estimator for
matrix completion under the additive noise model with generic function as long as the latent
function is Lipschitz, not just low rank; however, it requires Õ(n3/2) samples. We refer a
reader to see [27] precise statement of the theorem.

3.2 Distance Using Immediate Neighbors
The distance defined using far-away neighbors (cf. dist1 and dist2) was analyzed in [7].
It establishes that the expected squared error of the estimate computed in (2) using dist1
converges to zero with n for p = ω(n−1+ε) for some ε > 0, i.e. p must be polynomially larger
than n−1. On the other hand, the expected squared error of the estimate computed in (2)
using dist2 conveges to zero for p = ω(d5n−1).

It should be noted that computing dist1 does not require knowledge of the spectrum of
f . But, computing dist2 requires full knowledge of the eigenvalues (λ1 . . . λd) to compute
the vector z. It seems plausible that the technique employed by [2] could be used to design a
modified algorithm which does not need to have prior knowledge of the spectrium. They
achieve this for the stochastic block model case by bootstrapping the algorithm with a
method which estimates the spectrum first and then computes pairwise distances with the
estimated eigenvalues.
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