Stabbing Planes*

Paul Beame!, Noah Fleming?, Russell Impagliazzo3,
Antonina Kolokolova*, Denis Pankratov®, Toniann Pitassi

Robert Robere”

6, and

1 University of Washington, Seattle, USA
beame@cs.washington.edu

2 University of Toronto, Toronto, Canada
noahfleming@cs.toronto.edu

3 University of California, San Diego, USA
russell@cs.ucsd.edu

4 Memorial University of Newfoundland, St. John’s, Canada
kol@mun.ca

5 University of Toronto, Toronto, Canada
denisp@cs.toronto.edu

6 University of Toronto and Institute for Advanced Study, Toronto, Canada
toni@cs.toronto.edu

7 University of Toronto, Toronto, Canada
robere@cs.toronto.edu

—— Abstract

We introduce and develop a new semi-algebraic proof system, called Stabbing Planes that is in
the style of DPLL-based modern SAT solvers. As with DPLL, there is only one rule: the current
polytope can be subdivided by branching on an inequality and its “integer negation.” That is, we
can (nondeterministically choose) a hyperplane axz > b with integer coefficients, which partitions
the polytope into three pieces: the points in the polytope satisfying ax > b, the points satisfying
ax < b—1, and the middle slab b—1 < ax < b. Since the middle slab contains no integer points it
can be safely discarded, and the algorithm proceeds recursively on the other two branches. Each
path terminates when the current polytope is empty, which is polynomial-time checkable. Among
our results, we show somewhat surprisingly that Stabbing Planes can efficiently simulate Cutting
Planes, and moreover, is strictly stronger than Cutting Planes under a reasonable conjecture.
We prove linear lower bounds on the rank of Stabbing Planes refutations, by adapting a lifting
argument in communication complexity.

1998 ACM Subject Classification F.0 General
Keywords and phrases communication complexity, cutting planes, proof complexity

Digital Object Identifier 10.4230/LIPIcs.ITCS.2018.10

1 Introduction

While defined in terms of non-deterministic algorithms for the Tautology problem, proof
complexity has also provided indispensable tools for understanding deterministic algorithms
for search problems, and in particular, for Satisfiability algorithms. Many algorithms for

* This work was partially supported by NSERC and by NSF awards CCF-1524246, CCF-1412958,
CCF-1213151. Part of the work was done while at Simons institute.
t Full version of this paper is available at[1], https://arxiv.org/abs/1710.03219

© Paul Beame, Noah Fleming, Russell Impagliazzo, Antonina Kolokolova, Denis Pankratov,
B Toniann Pitassi, and Robert Robere;

licensed under Creative Commons License CC-BY
9th Innovations in Theoretical Computer Science Conference (ITCS 2018).
Editor: Anna R. Karlin; Article No. 10; pp. 10:1-10:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ITCS.2018.10
https://arxiv.org/abs/1710.03219
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2

Stabbing Planes

search can be classified according to the types of reasoning they implicitly use for case-
analysis and pruning unpromising branches. Particular families of search algorithms can be
characterized by formal proof systems; the size of proofs in these formal proof system, the
time of the non-deterministic algorithm, captures the time taken on the instance by an ideal
implementation of the search algorithm. This allows us to factor understanding the power of
search algorithms of a given type into two questions:

1. How powerful is the proof system? For which kinds of input are there small proofs?

2. How close can actual implementations of the search method come to the ideal non-
deterministic algorithm?

As an illustrative example, let us recall the DPLL algorithm [10, 9], which is one of the
simplest algorithms for SAT and forms the basis of modern conflict-driven clause learning
SAT solvers. Let F = C;y ACy A--- A C,, be a CNF formula over variables 1, xa, ..., ZTy.
A DPLL search tree for solving the SAT problem for F is constructed as follows. Begin by
choosing a variable z; (non-deterministically, or via some heuristic), and then recurse on the
formulas F | x; = 0, F [z; = 1. If at any point we have found a satisfying assignment, the
algorithm outputs SAT. Otherwise, if we have falsified every literal in some clause C, then
we record the clause and halt the recursion. If every recursive branch ends up being labelled
with a clause and a falsifying assignment, then the original formula F is unsatisfiable and
one can take the tree as a proof of this fact; in fact, such a DPLL tree is equivalent to a
tree-like Resolution refutation of the formula F.

Modern SAT solvers still have a DPLL algorithm at the core (now with a highly tuned
branching heuristic that chooses the “right” order for variables and assignments to recurse on
in the search tree), but extends the basic recipe in two ways: smart handling of unit clauses
(if F contains a clause with a single variable z under the current partial assignment, x can
be immediately set so that the clause is satisfied), and clause learning to speed up search: if
a partial assignment p falsifies a clause, then the algorithm derives a new clause C), by a
resolution proof that “explains” this conflict, and adds the new clause to the formula F.

It is the synergy between these three mechanisms — branching heuristics, unit propagation,
and clause learning — that results in the outstanding performance of modern SAT solvers. In
other words, while these algorithms are all formalizable in the same simple proof system,
the sophistication of modern SAT-solvers comes from the attempt to algorithmically find
small proofs when they exist. In many ways, the simplicity of the proof system enables this
sophistication in proof-search methods.

In this work, we introduce a natural generalization of the DPLL-style branching algorithm
to reasoning over integer-linear inequalities, formalized as a new semi-algebraic proof system
that we call the Stabbing Planes (SP) system. We will give a more detailed description later,
but intuitively, Stabbing Planes has the same branching structure as DPLL, but generalizes
branching on single variables to branching on linear inequalities over the variables. We feel
the closeness to DPLL makes Stabbing Planes a better starting point for understanding
search algorithms based on linear inequalities, as in integer linear programming (ILP) based
solvers, than established proof systems such as Cutting Planes.

We compare the power of Stabbing Planes proofs to these other proof systems. Recall
that Cutting Planes (CP) is a proof system for reasoning over linear inequalities using
linear combination and division with rounding rules, and Krajicek’s system R(CP) combines
resolution and CP rules. We show that tree-like R(CP) is polynomially equivalent to Stabbing
Planes (Theorem 9). However, the new formulation as Stabbing Planes proofs both gives
greater motivation to studying R(CP) and greatly clarifies the power of this proof system.
Our main results about this system are:

P. Beame et al.

1. Stabbing Planes has quasi-polynomial size and poly-log rank proofs of any tautology
provable using linear algebra over a constant modulus. In particular, this is true for the
Tseitin graph tautologies, that are very frequently used to prove lower bounds for other
proof systems. (Theorem 6)

2. Stabbing Planes can simulate tree-like Cutting Planes proofs with only constant factor
increases in size and rank (Theorem 11), and general Cutting Planes proofs with a
polynomial increase in size (Theorem 12)

3. Lower bounds on real communication protocols imply rank lower bounds for Stabbing
Planes proofs (Lemma 17)

4. Stabbing Planes proofs cannot be balanced (Theorem 21).

Together, these show that Stabbing Planes is at least as strong as established proof systems

using inequalities, and possibly much stronger. So the proof system combines strength

as a proof system with a simple branching structure that raises the possibility of elegant
algorithms based on this proof system, in particular for pseudoBoolean solvers.

We now give a more precise description of the proof system. Let us formalize the
system in stages. First, observe that the setting is quite different: we are given a system
Ayx > by, Ay > bo, ..., Ay - > by, of integer-linear inequalities over real-valued variables
Z1,%9, ..., %, (for simplicity we will always assume that the inequalities 0 < x; < 1 are
present for each variable x;), and we seek to prove that no {0, 1}-solution exists. The basic
DPLL algorithm works in this setting with little modification: one can still query variables
and assign them to {0, 1} values; now we label leaves of the search tree with any inequality
a; - x > b; in the system that is falsified by the sequence of assignments made on the path
from the root to the leaf. If every leaf ends up being labelled with a falsified inequality, then
the tree certifies that the system of inequalities has no {0, 1}-solutions.

However, with the expanded domain we can consider the DPLL tree geometrically. To be
more specific, imagine replacing each {0,1} query to a variable z; in the decision tree with
two “inequality queries” x; < 0 and x; > 1. Each node w in the tree after this replacement is
now naturally associated with a polyhedral set P, of points satisfying each of the the input
inequalities and each of the inequalities on the path to this node. Since we began with a
DPLL refutation, it is clear that for any leaf ¢ the polyhedral set P, associated with the leaf
is empty, as any {0, 1} solution would have survived each of the inequalities queried on some
path in the tree and thus would exist in one of the polyhedral sets at the leaves.

The stabbing planes system is then the natural generalization of the previous object: an
SP refutation consists of a generalized DPLL refutation where each node is labelled with an
arbitrary integral linear inequality Az > b (that is, the vector A and the parameter b are both

integral), and the outgoing edges are labelled with the inequalities Az > b and Az < b — 1.

Clearly, any integral vector x € Z™ will satisfy at least one of the inequalities labelling the
outgoing edges, and so if the polyhedral set at each leaf (again, obtained by intersecting the
original system with the inequalities on the path to the leaf) is empty then we have certified
that the original system of inequalities has no integral solutions. (See Figure 1 for a simple
example.) The main innovation of Stabbing Planes is its simplicity: refutations are simply
decision trees that query linear inequalities. Note that the more obvious extension of DPLL
to linear inequalities would branch on Az > b and its actual negation, Az < b. However with
this branching rule, we would have to add additional rules in order to have completeness. By
branching on an inequality and its “integer negation”, we are able to get by with just one
rule analogous to the resolution rule in DPLL.

From the perspective of SAT solving, even though tree-like Resolution and the search
for satisfying assignments encapsulated by DPLL are equivalent, it is the search point of
view of DPLL that has led to the major advances in SAT algorithms now found in modern

10:3

ITCS 2018

10:4 Stabbing Planes

z+y>2
Tr+y
w+yi}// T+y>2 l<z+y<2
z+y <
r—=y
LA z-y>1
r—y>1 r—y<0
O<zrz—y<l1
K/ \’\-(K/ \’\-(
Tt —y <0

Figure 1 A partial SP refutation and the result on the unit square. The shaded areas are
“removed” from the polytope, and we recurse on each side.

conflict-directed clause learning (CDCL) SAT solvers. A natural hypothesis is that it is much
easier to invent useful heuristics in the language of query-based algorithms, as opposed to
algorithms based on the resolution rule. Stabbing Planes offers a similar benefit with respect
to reasoning about inequalities.

With the exception of mixed integer programming (MIP) solvers (such as CPLEX [19]),
current solvers that, like Stabbing Planes, manipulate integer linear inequalities over Boolean
variables are generally built on the same backtracking-style infrastructure as DPLL and
CDCL SAT solvers but maintaining information as integer linear inequalities as opposed to
clausal forms. The solvers are known as pseudoBoolean solvers and have been the subject of
considerable effort and development.

PseudoBoolean solvers work very well at handling the kinds of symmetric counting
problems associated with, for example, the pigeonhole principle (PHP), which is known to be
hard for CDCL SAT solvers, as well as other problems where the input constraints are much
more succinctly and naturally expressed in inequality rather than clausal form. Innovations
in pseudoBoolean solvers include use of normal forms for expressing constraints, techniques
to generalize fast unit propogation and watched literals from DPLL to the analogue for
integer linear inequalities, as well as methods to learn from conflicts and simplify learned
constraints when integer coefficients from derived inequalities get too large [29, 5]. Despite
all of this, even for the best pseudoBoolean solvers, the benefits of expressibility are usually
not enough compensation for the added costs of manipulating and deriving new inequalities
and they outperform CDCL solvers only in very limited cases in practice [5].

A key limitation of these pseudoBoolean solvers is the fact that all branching is based
on assigning values to individual variables; i.e., dividing the problem by slabs parallel to
one of the coordinate axes. Stabbing Planes eliminates this constraint on the search and
allows one to apply a divide and conquer search based on arbitrary integer linear constraints
that are not necessarily aligned with one of these coordinate axes. This opens up the space
of algorithmic ideas considerably and should allow future pseudoBoolean solvers to take
fuller advantage of the expressibility of integer linear constraints. For example, a Stabbing
Planes search could choose to branch on a linear inequality that is derived from the geometric
properties of the rational hull of the current constraints by, say, splitting the volume, or
by doing a balanced split at a polytope vertex, since properties of the rational hull can be
determined efficiently. Such operations could be done in conjunction with solvers such as
CPLEX to obtain the best of both kinds of approaches.

P. Beame et al.

Beyond the prospect of Stabbing Planes yielding improved backtracking search for
pseudoBoolean solvers, Stabbing Planes should allow the same kind of learning of inequalities
from conflicts that is being done in existing pseudoBoolean solvers, and hence get the benefits
of both. In this work we do not focus on the theoretical benefits of learning from conflicts
because we already can show considerable theoretical benefit from the more general branching
alone and because the theoretical benefits of the restricted kinds of learned linear inequalities
from conflicts available even in existing solvers are not at all clear.

From a proof complexity perspective, the SP system turns out to be polynomially

equivalent to the semi-algebraic proof system tree-like R(CP), introduced by Krajicek [23].

Roughly speaking one can think of R(CP) as a mutual generalization of both Cutting Planes
and Resolution — the lines of an R(CP) proof are clauses of integer linear inequalities, and
in a single step one can take two clauses and either apply a cutting-planes rule to a single
inequality in each clause or apply a resolution-style “cut”. However, SP perspective turns
out to be quite useful: we show that SP has quasi-polynomial size refutations of the Tseitin
principle, and also that SP can polynomially-simulate Cutting Planes (neither result was
previously known to hold for tree-like R(CP)).

We also investigate the relationship between SP refutations and communication complexity.

Given an unsatisfiable CNF F and any partition of the variables (X,Y") of F into two sets,
one can consider the following two-party search problem Searchy y (F): Alice receives an
assignment to the X-variables, Bob receives an assignment to the Y-variables, and they
must communicate and output a falsified clause of F under their joint assignment. At this
time all strong lower bound results for Cutting Planes refutations essentially follow from
studying the communication complexity of Searchx y (F). In particular, depth-d (respectively,
length-L tree-like, length-L space s) CP refutation of F yields an d-round (respectively,
O(log L)-round, O(slog L)-round) real communication protocols for Searchx y (F), and a
length-L CP refutation of F yields a size L real communication game [24, 27, 6, 11, 16].
Each of these results has been used to derive strong lower bounds on Cutting Planes
refutations by proving the corresponding lower bound against the search problem [24, 11,
17, 13, 27, 6]. Furthermore, the above lower bound techniques hold even for the stronger
semantic Cutting Planes system (the lines of which are integer linear inequalities, and from
two integer linear inequalities we are allowed to make any sound deduction over integer
points) [12]. This makes the known lower bounds much stronger, and it is quite surprising
that all one needs to exploit for strong lower bounds is that the lines are linear inequalities
(rather than exploiting some weakness of the deduction rules). However, this strength also
illustrates a weakness of current techniques, as once the lines of a proof system P become
expressive enough, semantic proof techniques (i.e. ones that work for the semantic version of

the proof systems) completely break down since every tautology has a short semantic proof.

Therefore, it is of key importance to develop techniques which truly exploit the “syntax” of
proof systems, and not just the expressive power of the lines.

Hence, it is somewhat remarkable that we are able to show that these results still hold if
we replace real communication protocols with SP refutations. That is, we show:

A depth-d CP refutation of F yields a depth-d SP refutation of F.

A length-L tree-like CP refutation of F yields a depth O(log L) SP refutation of F.

A length-L, space s CP refutation of F yields a depth O(slog L) SP refutation of F.

A length-L CP refutation of F yields a size O(L) SP refutation of F.

Since SP is a syntactic system this further motivates studying its depth- and size-complexity.

We can use semantic techniques to get some lower bounds for SP: we show that a size-S and
depth-d SP refutation yields a real communication protocol with cost O(d) and for which

10:5

ITCS 2018

10:6

Stabbing Planes

the protocol tree has size O(S - n). This simulation yields new proofs of some depth lower
bounds already known in the literature; however, these lower bounds are complemented
by showing that neither SP refutations nor real communication protocols can be balanced.
This should be viewed in a positive light: the depth- and size-complexity problems are truly
different for SP, and furthermore, one seemingly cannot obtain size lower bounds for SP by
proving depth lower bounds for real communication protocols (in contrast to, say, tree-like
Cutting Planes). In sum, SP appears to be a very good candidate for a proof system on the
“boundary” where current techniques fail to prove strong size lower bounds.

The rest of the paper is outlined as follows. After some preliminaries in Section 2, we give
a simple refutation of the Tseitin problem in SP in Section 3. In Section 4, we prove a raft of
simulation and equivalence results for SP — showing it is equivalent to R(CP), relating it to
Cutting Planes in various measures such as depth, length, and space, and showing how an
SP proof yields a real communication protocol for the canonical search problem. Finally, in
Section 5, we prove depth lower bounds for SP and some impossibility results for balancing.

2 Preliminaries

Before we define the new proof system formally, we need to make a few general definitions
that are relevant to semi-algebraic proof systems.

An integer linear inequality (or simply a linear inequality) in the variables © = x1,...,z,
is Ax > b, where A € Z" and b € Z. A system of linear inequalities F is unsatisfiable if there
is no Boolean assignment « € {0,1}" which simultaneously satisfies every inequality in F.
We sometimes refer to inequalities as lines and write L = Ax > b. The integer negation of a
line L is the inequality =L = Az < b — 1.

An unsatisfiable formula in a conjuctive normal form (CNF) defines an unsatisfiable
system of linear inequalities F in a natural way. A clause \/f=1 z; V \/i=1 —x;, is translated
into the inequality Zle x; + Zézl(l — ;) > 1, and F is the set of translations of all clauses.
We assume that F always contains the axioms x; > 0 and —z; > —1 for all variables x;, as
we are interested in propositional proof systems for refuting unsatisfiable Boolean formulas.

» Definition 1. A propositional proof system P is a non-deterministic polynomial time Turing
machine (TM) deciding the language of unsatisfiable CNF formulas. Given an unsatisfiable
CNF, the NP-certificate is called the proof or the refutation.

The strength of proof systems is compared using the notion of polynomial simulation.

» Definition 2. Let P; and Ps be two proof systems. We say that P; polynomially simulates
Py if for every unsatisfiable formula F, the shortest refutation of F in P; is at most
polynomially longer than the shortest refutation in Py. P; is strictly stronger than Ps if Py
polynomially simulates Ps, but the converse does not hold. Finally, we say that P; and Po
are incomparable if neither can polynomially simulate the other.

We now describe the proof system Stabbing Planes, our central object of study.

» Definition 3. Let F be an unsatisfiable system of linear integral inequalities. A Stabbing
Planes (SP) refutation of F is a threshold decision tree: a directed binary tree in which each
edge is labelled with a linear integral inequality. If the right outgoing edge of a node is labelled
with Az > b, then the left outgoing edge has to be labelled with its integer negation, Ax < b—1.
We refer to Az (or the pair of inequalities Az < b— 1, Ax > b) as the query corresponding to
the node. The slab corresponding to the query is {z* € R™ | b — 1 < Ax™ < b}.

P. Beame et al.

Let the set of all paths from the root to a leaf in the tree be denoted by {p1,...,p¢}.

Each leaf i is labelled with a non-negative linear combination of inequalities in F with the
inequalities along the path p; that yields 0 > 1.

The size of a SP refutation is the number of bits needed to represent every inequality in

the refutation. The length of a SP refutation is the number of nodes in the threshold tree.

The size (length) of refuting a system of linear inequalities F in SP is the minimum size
(length) of any SP refutation of F. The rank or depth of a SP refutation P is the longest
root-to-leaf path in the threshold tree of P. The rank (depth) of refuting F in SP is the
minimum rank (depth) over all SP refutations of F.

Refutations in SP have an intuitive geometric interpretation: each step of a refutation can
be viewed as nondeterministically removing a slab from the solution space and recursing on
the resulting polytopes on both sides of the slab. The aim is to recursively cover the solution
space with slabs until every feasible point within this polytope is removed. An example of
this can be seen in Figure 1 in the introduction. In particular, the polytope at any step of
the recursion is empty if and only if there exists a convex combination of the axioms and

inequalities labelling the corresponding root-to-leaf path in the refutation equivalent to 0 > 1.

This is summarized in the following fact which follows directly from the Farkas’ lemma. The
“moreover” part of the following fact is an application of Carathéodory’s theorem, and will
be useful for technical reasons later in the paper. We refer the interested reader to [30] for
some background on polytope theory.

» Fact 4. Let F = {A1x > by,..., Anx > by} be a system of integer linear inequalities.
The polytope defined by F is empty if and only if there is a non-negative (rational) linear
combination of the inequalities of F which evaluates to 0 > 1. Moreover, the non-negative
linear combination can be taken to be supported on < n of the inequalities from F, where n
is the dimension of the space to which x belongs.

It is straightforward to see that SP is a sound and complete proof system. Completeness
follows from a simple observation that SP polynomially simulates DPLL. To see that SP
is sound, let R be a SP refutation of some formula F. Observe that for any node in R
with outgoing edges labelled Az > b and Ax < b— 1, any 0 — 1 assignment to the variables
a € {0,1}" must satisfy exactly one of the two inequalities. Therefore, if a Boolean solution
a € {0, 1}™ satisfies F, then for at least one of the leaves of R, one cannot derive 0 > 1. This
follows by Fact 4 because the polytope formed by the inequalities labelling root-to-leaf path
is non-empty (« lies in this polytope) .

Next we recall a well-known and extensively-studied proof system: Cutting Planes (CP).

For an introduction to Cutting Planes, we refer an interested reader to Chapter 19 in [21].

» Definition 5. Let F be an unsatisfiable system of linear inequalities. A Cutting Planes
(CP) refutation of F is a sequence of linear inequalities {Lq,..., Ly} such that L, =0 > 1
and each L; is either an axiom € F or is obtained from previous lines via one of the following
inference rules. Let a, 8 be positive integers.

Ax > a Bx >b aAxr > b

Linear Combination: (@A + BB)z > aa + 6b Division: W

We refer to ¢ as the length of the refutation. The length of refuting F in CP is the
minimum length of a CP refutation of F.

The directed acyclic graph (DAG) G = (V, E) associated with a CP refutation {L, ..., Ls}
is defined as follows. We have V' = {L4,...,L;} and (u,v) € E if and only if the line labelling
v was derived by an application of an inference rule involving the line labelling u. Without

10:7

ITCS 2018

10:8

Stabbing Planes

loss of generality, we may assume that there is only one vertex with out degree 0, which we
call the root. The root of G is labelled with L, and the leaves are labelled with the axioms.

The rank or depth of the refutation is the length of the longest root-to-leaf path in G.
The rank of refuting an unsatisfiable system of linear inequalities F is the minimum rank of
any refutation of F in the given proof system. Finally, tree-like CP is defined by restricting
proofs to be such that the underlying graph G is a tree.

It is not known if an arbitrary SP refutation can be transformed into a refutation with
coefficients of polynomial bitsize. Therefore we currently must make the distinction between
SP refutation size and length. Fortunately, all of our results hold in the best possible scenario;
our upper bounds are low weight (polynomial-length); the simulations are length preserving,
and our lower bounds hold for any weight.

3 Motivating Example: SP Refutations of Tseitin Formulas

Tseitin contradictions are among the most well-studied unsatisfiable formulas in proof
complexity, and are the quintessential formulas that are believed to be hard for CP [21].
Despite the fact that exponential lower bounds for CP are known for many natural families
of formulas (including recent lower bounds for random O(logn)-CNF formulas), there are
no nontrivial lower bounds known for the Tseitin contradictions, and for good reason: the
only known lower bound method for CP reduces the problem of refuting a formula in CP
to a monotone circuit problem, for which the corresponding monotone circuit problem for
Tseitin contradictions is easy.

In this section, we demonstrate the power of Stabbing Planes by showing that there exists
a shallow quasi-polynomial size SP refutation of the Tseitin formulas. This, together with
our simulation results from Section 4, show that SP is provably more powerful than CP in
terms of depth, and strongly suggests that SP is strictly more powerful than CP.

Tseitin contradictions are any unsatisfiable family of mod-2 equations subject to the
constraint that every variable occurs in exactly two equations. An instance of Tseitin, denoted
Tseitin(G, ¢) is defined by a connected undirected graph G = (V, E) and a node labelling
¢ € {0,1}V of odd total weight: -, £, = 1 mod 2. For each edge e € E there is a variable
. in Tseitin(G, £), and for each vertex v € V an equation) z. = ¢, mod 2, stating that
the sum of the variables x. incident with v is £, mod 2. The edge equations sum to zero
mod 2 since every variable occurs exactly twice, but the vertex equations sum to one mod 2,
since the node labelling is odd, and therefore the equations are unsatisfiable. When G has

-2DP=1 (lauses.

degree D, we can express Tseitin(G,{) as a D-CNF formula containing |V|

The obvious way to refute Tseitin(G, ¢) under an assignment x is to find a vertex w for
which the corresponding vertex equation is falsified. This can be achieved by the following
divide-and-conquer procedure, which maintains a set U C V such that w € U. The process
begins by setting U = V. Then, V is partitioned arbitrarily into two sets V7, V5 of roughly
the same size. Query z. for all edges e crossing the cut (V1,V3), and suppose that the sum

of all such z, is odd (the case when it is even is similar). We know that either > £, or

veV]
> vev, Lo is even: if the first sum is even then the Tseitin formula restricted to V3 coentlains a
contradiction, and otherwise the formula restricted to V5 contains a contradiction. In either
case, we can remove roughly half of the graph and recurse.

By keeping track of a few more variables, we can repeat this procedure recursively until
|U| = 1. Since we reduce the size of U by half each time, this procedure results in the
recursion depth logarithmic in |V|]. It turns out that this procedure can be realized in
Stabbing Planes, where recursion depth roughly corresponds to the depth of the refutation.

This results in a quasi-polynomial size refutation.

P. Beame et al.

» Theorem 6. Let G = (V, E) be an undirected graph, and let £ be a {0,1} vertex labelling
with odd total weight. Then Tseitin(G, £) has an SP refutation of size n@Uogn+DP/logn) gpnq
rank O(D + log® n), where n = |V| and D is the mazimum degree in G.

Proof. If U C V is a set of vertices, then let E(U) = {uv € E | u,v € U}, and Cut(U) =
{uv eE|luelUvwe U}. Similarly, if Uy, Uy C V are disjoint then we let Cut(Uy,Us) =
{uv € E | u € Uy,v € Us}. We construct the SP refutation recursively. During the recursion
we maintain a set U of current vertices (initially U = V). At each recursive step, we split U
into two halves U; and Us and query the total weight k of the edges crossing (U, Us) via SP
inequalities. Knowing k, a few additional queries allows us to determine which of U; or U,
contains a contradiction, and we then recurse on the corresponding set of vertices.

We construct a proof while maintaining the following invariant: for the current subset of
vertices U C V', we have queried linear inequalities implying that ZeeCut(U) z. = k for some
0 <k < |Cut(U)| such that & # > ., £, mod 2. Note that this invariant ensures that our
Tseitin instance restricted to the edges incident on U is unsatisfiable, since summing up all
vertex constraints within U yields >, ccyir) Te + 2cen@) 2Ze =k # X,y bo (mod 2).

Initially we have U = V' and the invariant clearly holds. Now, let U be the current set
of vertices. By the invariant we know that } - cc) e = k for some k # >, £, mod 2.
Partition U into two halves U; and U, arbitrarily, subject to |Ui| = [|U|/2]. We first
determine the value of the edges going between U; and Us by querying ZeeCut(Ul,Ug) Te > [
for 5=1,...,|Cut(Uy,Us)|. To each leaf of this tree we attach a second binary search tree
for determining the value |Cut(U1)| by querying >, cougrr,) Te = 7 for v =1,...,[Cut(Uy)].
After these queries, at each leaf of the “combined” tree we will have » Ur,Uz) Te = [and
2 ecCut(t,) Te = 7 for some B and . Furthermore, since [Cut(Uy)| + [Cut(Uz)| = [Cut(U)| +
2|Cut(Uy, Uz)|, we will have 3 ccyo(,) Te = 0, Where 0 +y =k + 25, 0 < 6 < [Cut(U2)].

For any leaf of this tree where 6 > |Cut(Us)|, we can derive a contradiction by summing the
axioms —x, > —1 for all e € Cut(Uy) with zeecut(Uz) T, > 0. Otherwise, for the remaining
leaves observe that 6+ =k # >y, Lo+, cp, bo (mod 2). Now, if v # 3 _; £(v) mod 2,
then recurse on Uy. Otherwise, § # >~ i, #(v) mod 2. Then recurse on Us.

Our recursion terminates when U contains a single vertex v. By the invariant, we
have derived }_ ey e = k # £(v) mod 2 for some 0 < k < |Cut({v})|. The axioms
of Tseitin(G, ¢) rule out Boolean assignments to the variables z. for e € Cut({v}), which
contradict £(v); these axioms do not prohibit incorrect fractional assignments. Therefore,
to derive a contradiction, we still need to enforce that the variables z. for e € Cut({v})
take {0,1} values. We achieve this by querying all variables z, for e € Cut({v}) via SP
inequalities z. > 1,x, < 0. This results in a complete binary tree of depth < D. Clearly,
0 > 1 is immediately obtained at the leaves that disagree with ZeECut({'U}) ze = k. At the
leaves that agree with > ecCut({v}) Te = k, the