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—— Abstract

In this paper, we propose a new mechanism — the Disagreement Mechanism — which elicits
privately-held, non-variable information from self-interested agents in the single question (peer-
prediction) setting.

To the best of our knowledge, our Disagreement Mechanism is the first strictly truthful
mechanism in the single-question setting that is simultaneously:

Detail-Free: does not need to know the common prior;

Focal: truth-telling pays strictly higher than any other symmetric equilibria excluding some

unnatural permutation equilibria;

Small group: the properties of the mechanism hold even for a small number of agents,
even in binary signal setting. Our mechanism only asks each agent her signal as well as a forecast
of the other agents’ signals.

Additionally, we show that the focal result is both tight and robust, and we extend it to the
case of asymmetric equilibria when the number of agents is sufficiently large.
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1 Introduction

User feedback requests (e.g Ebay’s reputation system and the innumerable survey requests
in one’s email inbox) are increasingly prominent and important. However, the overwhelming
number of requests can lead to low participation rates, which in turn may yield unrepres-
entative samples. To encourage participation, a system can reward people for answering
requests. But this may cause perverse incentives: some people may answer a large of number
of questions simply for the reward and without making any attempt to answer accurately.
In this case, the reviews the system obtains may be inaccurate and meaningless. Moreover,
people may be motivated to lie when they face a potential loss of privacy or can benefit in
the future by lying now.

It is thus important to develop systems that motivate honesty. If we can verify the
information people provide in the future (e.g via prediction markets), we can motivate
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honesty via this future verification. However, sometimes we need to elicit information
without verification since the objective truth is hard to access or even does not exist (e.g. a
self-report survey for involvement in crime). In our paper, we focus on the situation where
the objective truth is not observable.

One important framework for designing incentive systems without verification is peer
prediction [19]. Peer prediction uses each person’s information to predict other people’s
information and pays according to how good the prediction is. Peer prediction assumes
people’s information is related and the systems and the people share a common prior. In
the peer prediction mechanism, if an agent believes everyone else tells the truth, the best
strategy to maximize her expected payment is telling the truth as well. In other words, peer
prediction is truthful in the sense it has truth-telling as an equilibrium.

A series of work [20, 27, 21, 22, 30, 24, 7, 28, 29, 26, 11, 12, 16] extends peer prediction to
incorporate some other desired properties in addition to truthful property, which we highlight
here.

Detail-Free: A detail free mechanism does not need to know the common prior which is a
clear advantage if deploying these mechanisms in the real world.

Focal: We hope the mechanism can pay the truth-telling equilibrium strictly more than
other equilibria in expectation. However, we show this is not technically possible in
the detail-free setting, and so instead we say a mechanism is focal if truth-telling pays
strictly higher than any other symmetric equilibria excluding some unnatural permutation
equilibria (see definition for permutation equilibria in Section 2). We emphasize that the
focal property is very important, since in a non-focal mechanism, non-informative and
effortless equilibria like everyone reporting the a priori most likely answer may pay equally
or even much better than the truth-telling equilibrium, possibly incentivizing agents to
coordinate on effortless and non-informative equilibria. Recent research [9] indicates that
individuals in lab experiments do not always truth-tell when faced with peer prediction
mechanisms; this may in part be related to the issue of equilibrium multiplicity.

Small group: The properties of the mechanism hold even when the number of agents is
small.

General Informative Symmetric Common Prior: The mechanism should make minimal as-
sumptions on the common prior. It is required that the prior be “informative” (that is
each agents’ signals contain stochastic information about the other agent’s signals).

Finite Signals: The mechanism should only assume that the number of signals is finite, not
binary.

Another desirable mechanism design property is the minimal property. A mechanism is
minimal if it only requires agents to report their information rather than forecasts for other
agents’ reports. However, no detail free, strictly truthful mechanism can be minimal® [21].
We will introduce several strictly truthful, minimal mechanisms (not detail free) in the related
work. Our mechanism is not minimal since it is detail free and strictly truthful.

Our Contributions

To the best of our knowledge, our Disagreement Mechanism is the first mechanism in the
single-question setting that simultaneously has the small group, focal, strictly truthful and

L There exists detail free, strictly truthful mechanism that is “almost” minimal. For example, Riley [24]
designs strictly truthful, detail free mechanism with optional prediction report.
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Table 1 Detail Free Multi-Signal Single-Question Mechanisms Comparison

Strictly Truthful —Small group Focal General Symmetric Prior

Bayesian Truth Serum [20] X X N
Logarithmic PTS [23] N
Multi-Signal SM [26]
Multi-Valued RBTS [21]
Minimal Truth Serum [24]
Divergence-Based BTS [22]

Disagreement Mechanism

X X X X X X
X X X X X

¢ BTS requires an additional assumption — conditioning on the state, the signals are independently

assigned to agents. But this conditional independence assumption is very natural in this literature, thus
we still put X here.

detail free properties (see Table 1), even in binary signal setting. Moreover, our Disagreement

Mechanism can be applied to a general family of symmetric prior, and

1. we show the focal property is tight in the sense that for the set of symmetric equilibria
(what we call permutation equilibria) that have the same expected payment with truth-
telling in our Disagreement Mechanism, no detail free, truthful mechanism can pay
truth-telling strictly higher than permutation equilibria.

2. we show the focal property is robust in the sense that any symmetric equilibrium that
has expected payoff close to truth-telling must be “close” to a permutation equilibrium;

3. we extend this focal property to asymmetric equilibria when the number of agents is
sufficiently large in the sense that any asymmetric equilibrium which is “close” to a per-
mutation equilibrium has expected payoff “close” to that of the truth-telling equilibrium,
and any equilibrium that is not “close” to a permuation equilibrium pays strictly less
then the truth-telling equilibrium.

The permutation equilibria are intuitively unnatural and risky as they require extreme
coordination amongst the agents and as much effort as truth-telling. For symmetric equilibria
that are not permutation equilibrium, every agent’s expected payment is strictly less than
the expected payment she obtains when everyone tells the truth. Thus our results about
symmetric equilibrium are quite strong, despite the impossibility result. Asymmetric equilib-
rium require more coordination between agents than symmetric equilibrium. Additionally,
the possible total gains from doing so are limited and go to zero as the number of agents
increase.

High Level Techniques

Our Disagreement Mechanism pays agents individually (locally) for “agreement” and globally
for “disagreement”. When agents collude, they share information about their strategies.
Since they are paid individually for “agreement”, they will use their information about other
people’s strategies and “agree to agree” which reduces their global payoff which depends on
“disagreement”.

Essentially, when agents collude, our Disagreement Mechanism encourages each agent to
implicitly admit their collusion by unilaterally increasing their individual payoff for doing
so, but the mechanism then simultaneously decreases the total payoffs to all agents. Only
when agents do not choose to collude and lack information about other people’s strategies,
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can they “agree to disagree.” In this case, even when they maximize their individual payoff,
globally they still have a lot of disagreement.

Technical Contributions

In addition to the above results, our works has several contributions in the techniques

employed:

1. Our Disagreement Mechanism encourages not only agents with the same private informa-
tion to agree, but also agents with different private information to disagree. We present a
novel way to measure the amount of “information” by casting the reports as multiple
labelled points in a space and measuring the quality of the “classification”.

2. To show that the “classification” quality always decreases with non-truthful equilibria,
we exploit tools from information theory, namely Imformation Monotonicity. Despite
their natural and powerful application, to our knowledge, this is the first time such tools
have been explicitly employed in the peer prediction literature.

1.1 Related Work

After Miller et al. [19] introducing peer prediction, a host of results (see, e.g., [20, 27, 21,
22, 30, 24, 7, 28, 29, 26, 11, 12, 16]) have followed. In this section, we will introduce them
and classifies them into several categories according to the properties they (do not) have.

(1) Single-question, detail free, focal (not small group): Bayesian Truth Serum (BTS) [20]
first successfully weakened the known common prior assumption (detail free) and solves the
equilibrium multiplicity issue (focal). Prelec [20] also provides an important framework for
mechanisms without known common prior. BTS requires the agents report — in addition
to their reported signal — a forecast (prediction) of the other agents’ reported signals, and
uses this predictions in lieu of the common prior. BTS incentives agents to report accurate
forecasts by rewarding forecasts that have the ability to predict the other agents’ reported
signal. However, BTS has two weakness: (1) BTS requires that the number of agents goes
to infinity (or is large enough in a modified version) since the mechanism needs agents to
believe it has access to the true distribution from which agents’ signals are drawn. (2) The
analysis of non-truthful equilibria provided in [20] requires that the number of agents goes to
infinity and only proves that truth-telling has total expected payment at least as high as
other equilibrium. Specifically, it does not rule out the existence of many other equilibrium
which are all paid the same as the truth-telling equilibrium.

Logarithmic Peer Truth Serum (PTS) [23] extends BTS to a slightly different setting
involving sensors, but still requires a large number of agents.

(2) Single-question, small group, detail free (not focal): Several mechanisms [27, 21, 22,
24, 28, 29, 26] are based on the BTS framework and address the first weakness of BTS.
Robust Bayesian Truth Serum (RBTS) [27] is a mechanism which can only be applied to
binary signals. Multi- Valued RBTS [21] and Multi-Signal Shadowing Method (Multi-Signal
SM) [26] can be applied to non-binary signals while they require an additional assumption
that an agent will think the probability that other agents receive signal o higher if he
himself also receives o. Divergence-based BTS [22] can be applied to non-binary signals and
does not require additional assumptions on the prior. All of those works do not solve the
equilibrium multiplicity issue, but do work for a small number of agents. Minimal Truth
Serum (MTS) [24] is a mechanism where agents have the option to report or not report
their predictions, and also lacks analysis of non-truthful equilibria. MTS uses a typical
zero-sum technique such that all equilibria are paid equally. In contrast, we show that
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in our Disagreement Mechanism any equilibrium that is even close to paying more than
the truth-telling equilibrium must be close to a small set of permutation equilibrium. The
Divergence based BTS only requires the common prior assumption to be truthful. Because
of its generality, we use it as a building block in our Disagreement Mechanism. However,
the Divergence based BTS contains effortless equilibrium that pay significantly more than
truth-telling. Moreover, analyzing the set of equilibria in Divergence-based BTS is very
complicated and becomes a main technical obstacle in our paper. Thus, while the above
work addresses the first weakness of BTS, it exacerbates the second.

(8) Single-question, small group, minimal (not detail free): Jurca and Faltings [11, 12]
use algorithmic mechanism design to build their own peer prediction style mechanism where
truth-telling is paid strictly better than non-truthful pure strategies but leave the analysis
of mixed strategies as a open question. Frongillo and Witkowski [8] consider the design for
robust, truthful and minimal peer prediction mechanisms with the prior knowledge and lack
the analysis of non-truthful equilibria. Kong et al. [16] modify the peer prediction mechanism
such that truth-telling is paid strictly better than any other non-truthful equilibrium. Thus,
the mechanism designed in Kong et al. [16] is focal. Additionally, they optimize the cost
their mechanism needs over a natural space. The assumption that the mechanism knows
the prior, allows these mechanisms to not ask for a prediction report. However, unlike the
current work, the mechanism still needs to know the prior and the analysis only works for
the case of binary signals.

(4) Different Settings: Several works are not in the traditional one-question setting. Some
of these works make the additional assumption of multiple a priori similar questions so
that the mechanism need not explicitly ask the agents for a prediction. The mechanism in
Dasgupta and Ghosh [6] uses the presence of multiple questions to elicit agent strategies
with high effort, addressing the equilibrium multiplicity issue for binary signals in their
setting. Recently Kong and Schoenebeck [14] and Shnayder et al. [25] independently extend
the mechanism in [6] to non-binary signal setting but still require the presence of multiple
questions. Our setting is different since the agents only have one question (and thus we do
not have to assume relations between questions) and our results for equilibrium multiplicity
issue are robust to non-binary signals.

In addition to the multiple questions setting, there are many other works in the settings
that are different from our results. For example, Cai et al. [4] and Liu and Chen [17]
consider the machine learning setting. Kamble et al. [13], Mandal et al. [18], and Agarwal
et al. [1] consider the heterogeneous setting in the multiple questions setting. Zhang and
Chen [30] consider a sequential game. Faltings et al. [7] consider a setting where they have an
estimation of the public distribution of previous answers on other a priori similar questions.

2  Preliminaries, Background, and Notation

We recommend that the eager reader skip to the end of Section 2.4 where Hellinger Divergence
is discussed and then refer back to the earlier preliminaries only as needed. Section 3 states
the main theorem and outlines the technical contributions.

See notation table in Appendix A.

2.1 Prior Definitions and Assumptions

We consider a setting with n agents and a set of signals ¥, and define a setting as a tuple
(n,X). Each agent 7 has a private signal o; € ¥ chosen from a joint distribution @ over
" called the prior. Given a prior @, for ¢ € X, let ¢;(0) = Prg[o; = o] be the a priori
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probability that agent ¢ receives signal o. Let ¢;;(c’|0) = Prglo; = o'|o; = o] be the

probability that agent j receives signal o given that agent ¢ received signal o’.
We say that a prior Q over X is symmetric if for all o, o/ € ¥ and for all pairs of agents

i # j and 7' # j' we have ¢;(0) = ¢ (0) and ¢; j(o|0’) = ¢ir j/(o|0’). That is, the first two

moments of the prior do not depend on the agent identities. Because we will assume that

the prior is symmetric, we denote g;(c) by ¢(c) and ¢; j(o|c’) (where i # j) by ¢(o|c”). We

also define q, = ¢(-|o). We assume the common prior shared by agents is

symmetric: we assume throughout that the agents’ signals o are drawn from some joint
symmetric prior Q;

non-zero: for any 0,0’ € 3, ¢(0) > 0,q(clo’) > 0;

informative: we assume if agents have different private signals, they will have different
expectations for the fraction of at least one signal. That is for any o # ¢’, there exists
o' such that ¢(¢”|0) # q(o”|0");

fine-grained: this assumption conceptually states that one state is not just a more likely
version of another state. While we defer the exact definition to the full version, a slightly
stronger version of this assumption is that ¢(o|-) are linearly independent. This additional
fine-grained assumption is required only when we need to show truth-telling is strictly
better than other symmetric equilibria that are not permutation equilibria;

ensemble: the first two moments of the prior are fixed as the number of agents increases,

We sometimes will denote the class of priors that satisfy all five of these assumptions as
SNIFE priors (see formal definitions of the above SNIFE prior assumptions in Appendix B.).

2.2 Game Setting and Equilibrium Concepts

Given a setting (n,X) with prior @, we consider a game in which each agent i is asked to
report his private signal o; € ¥ and his prediction p; € Ay, a distribution over X, where
Pi = d,,. For any o € ¥, pi(o) is agent i’s (reported) expectation for the fraction of other
agents who has received o given he has received o;. However, agents may not tell the truth.
We denote the spaces of reports as > x Ay by R. We define a report profile of agent i as
r; = (64, Di) € R where &; is agent ¢’s reported signal and p; is agent i’s reported prediction.

We would like to encourage truth-telling, namely that agent ¢ reports ¢; = 0;, Pi = Q-
To this end, agent ¢ will receive some payment v;(6;, Ps, 65—, P—;) from our mechanism where
(6_i,D—:) are all agents’ report profiles excluding agent .

We define strategy as a mapping from each possible signal ¢ and prior @ to a distribution
over the report profile space.

We define a strategy profile s as a profile of all agents’ strategies {s1, s2,...5,} and we
say agents play s if for any 4, agent ¢ plays strategy s;. We say a strategy profile is symmetric
if each agent plays the same strategy. Assuming a fixed prior @, for any strategy profile
s = (81,52, ...,8n), we will represent the marginal distribution of an agent i’s strategy for her
signal report as a matrix 6; where 0;(6,0) is the probability that agent will report signal
& when his private signal is ¢. Note that 0; is a transition matriz, since its entries are all
non-negative and the sum of its every column is 1. We call 8; the signal strategy of agent
i. We also call (61,05, ...,0,) the signal strategy of s. In the symmetric case, we call 8 the
signal strategy of s. We say a signal strategy € is 7-close to a permutation matrix if for any
row of @, there is at most one entry that is greater than 7.

We informally define a permutation strategy profile as a strategy profile where agents
“collude” to relabel the signals and then tell the truth with respect to the relabelled signals.
When agents play a permutation strategy profile, they play the same signal strategy which is
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a permutation matrix 6,. We defer the formal definition of the permutation strategy profile
to the full version. We will show that if truth-telling is an equilibrium, then all permutation
strategy profiles are equilibria as well. Thus we sometimes call these permutation strategy
profiles permutation equilibria. We define the agent welfare of a strategy profile s
and a mechanism M for setting (n,X) with prior @ to be the expectation of the sum of
payments to each agent and we write it as AWx(n, 2, Q, s). Note that for symmetric strategy
profile, the agent welfare is proportional to each agent’s expected payment since everyone
plays the same strategy. A Bayesian Nash equilibrium consists of a strategy profile
s = (s1,...,8,) such that no player wishes to change her strategy, given the strategies of
the other players and the information contained in the prior and her signal. See formal
definitions in the full version of this paper.

2.3 Mechanism Design Tools: f-divergence and Proper Scoring Rules

Now we introduce f-divergence and strictly proper scoring rules, which are two of the main
tools we will use in our mechanism design. f-divergence ([2, 5]) is always used in measuring
the “difference” between distributions. One important property of the f-divergence family is
information monotonicity: for any two distributions, if we use the same way to post-process
each distribution, the two distributions will become “closer” because of potential information
loses.

f-divergence

f-divergence [2, 5] Dy : Ay x As; — R is a non-symmetric measure of difference between
distribution p € Ay, and distribution q € Ay, and is defined to be

Ds(p,a) =Y p(o)f (p(a)>

= q(o)

where f(-) is a convex function.

We introduce three properties of f-divergence:

(1) Information Monotonicity [5, 3]: For any p,q, and transition matrix § € RI*IxI>I
where 0(c,0’) is the probability that we map o’ to o, we have D(p,q) > D*(0p, 6q).
When 6 is a permutation matrix 6, D(p,q) = D(0.p,0,q). When 6 is not a permutation,
the inequality is strict if p and q satisfy some weak conditions. The weak conditions are
closely related to the definition of fine-grained prior (see Appendix C for more details.).

(2) Non-negative [5] For any p,q, Df(p,q) > 0 and D¢(p,q) = 0 if and only if p = q.

(3) Convexity [5]: Both D¢(-,q) and Dy(p,-) are convex functions for any p, q.

Hellinger-divergence

If we pick the convex function f(-) as (y/z — 1)?, we will obtain Hellinger-divergerce [5]

D*(p,q) = Y _(v/p(o) — Va(0))’

oa

Thus Hellinger-divergence is a type of f-divergence.
In addition to the above three properties, we highlight two important properties Hellinger-
divergence has:
(4) Square root triangle inequality [5]: |\/D*(p,q) — \/D*(p,d’)| < /D*(d’,q) for any
p.q,q’
(5) Bounded divergence [5]: 0 < D*(p,q) <1

ITCS 2018
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Proper Scoring Rules

Now we introduce strictly proper scoring rules, another key tool we will use in our mechanism
design. Starting with [19], proper scoring rules have become a common ingredient in
mechanisms for unverifiable information elicitation (e.g. [20, 27]).

A scoring rule PS : ¥ x Ay — R takes in a signal ¢ € ¥ and a distribution over signals
0y, € Ay and outputs a real number. A scoring rule is proper if, whenever the first input is
drawn from a distribution dyx;, then the expectation of PSS is maximized by dx. A scoring
rule is called strictly proper if this maximum is unique. We will assume throughout that
the scoring rules we use are strictly proper. By slightly abusing notation, we can extend a
scoring rule to be PS : Ay x Ay — R by simply taking PS(dx, %) = Eysy (0, 0%). We
note that this means that any proper scoring rule is linear in the first term.

» Example 1 (Example of Proper Scoring Rule). Fix an outcome space X for a signal o. Let
q € Ay, be a reported distribution. The Logarithmic Scoring Rule maps a signal and reported
distribution to a payoff as follows:

L(0,q) = log(q(0)).
Let the signal o be drawn from some random process with distribution p € Asy.
Then the expected payoff of the Logarithmic Scoring Rule

Eocp[L(o,@)] = > a(o)logq(o) = L(p,q)

According to [10], this value will be maximized if and only if q = p.

Proper scoring rules are a key tool in the design of mechanisms [20] in the BT'S framework.
In such mechanism, agents are asked to report their private information and forecast for other
agents and paid based on a “prediction score” and an “information score”. The prediction
score is usually calculated by a proper scoring rule and the information score is customized.

Prediction Score via Proper Scoring Rules. Agents will receive a prediction score based
on how well their prediction predicts a randomly chosen agent’s reported signal. Say an agent
1 reports prediction p; then a random agent, call him agent j, is chosen, agent ¢ will receive a
prediction score PS(6;,p;) where PS is a proper scoring rule. Note that any proper scoring
rule works. PS(6,,P;) is maximized if and only if agent i’s reported prediction p; is his
expected likelihood for &;. Agent ¢ cannot pretend to have a different expected likelihood
without reducing his expectation for his prediction score.

3 The Disagreement Mechanism

3.1 Buiding Block — Divergence-Based BTS

In this section, we introduce a building block of our Disagreement Mechanism — Divergence-
Based BTS [22]. It follows the BTS framework and still pays agents an “information score” and
a “prediction score”. The main idea of Divergence-Based BTS is that the mechanism punishes
the Inconsistency of agents — the “difference” between two random agents’ predictions
when they report the same signal. The common prior assumption tells us agents cannot
agree to disagree. That is, if two agents receive the same private information, they must
have the same “belief” about the world. In our setting, if agents tell the truth, whenever two
agents report the same signal, they will report the same prediction as well. Thus, everyone
telling the truth is a consistent strategy. Since Divergence-Based BTS punishes inconsistency,
the truth-telling strategy will be encouraged in Divergence-Based BTS.
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Divergence-Based BTS [22] M:

Let a, 8 > 0 be parameters and let PS be a strictly proper scoring rule, then we define

M(a, B, PS)? as follows:

1. Each agent i reports a signal and a prediction r; = (64, D;)

2. For each agent i and agent j, we define a prediction score that depends on agent i’s
prediction and agent j’s report signal

scorep(ri, ;) = PS(6;,Di),
and an information score
0 6;,#6;
(PS(Pj, Dj) — PS(Dj,Pi)) 6i=0;

3. Each agent i is matched with a random agent j. The payment for agent i is

scorer(ry,r;) = {

payment pq(a,p,ps) (i, ) = ascorep(ri,rj) + Bscorer(ri, rj).

» Theorem 2. [22] For any «, 8 > 0 and any strictly proper scoring rule PS, M(a, 8, PS)
has truth-telling as a strict Bayesian-Nash equilibrium whenever the prior Q is informative
and symmetric.

Main Drawback of Divergence-Based BTS

The main drawback is that there may be many other equilibria that have the same payoff
with truth-telling. Agents can simply report the a priori most popular signal and predict
that everyone does the same. This strategy is a consistent equilibrium and gives agents the
maximum possible payoff since their predictions are perfect. In particular, for any non-trivial
prior, this strategy pays strictly more than the truth-telling equilibrium — so that it Pareto
dominates truth-telling.

The above extreme example provides a effortless and meaningless equilibrium but is
preferred by agents in Divergence-Based BTS. To deal with this problem, one key observation
is that in the meaningless equilibrium mentioned above, the unitary predictions implies their
report profiles have little information. At a high level, the “disagreement” between agents
represents the amount of information their report profiles have. Motivated by this extreme
example, we design a new mechanism — the Disagreement Mechanism — that encourages
“disagreement”.

3.2 The Disagreement Mechanism and Main Theorem

In this section, we will describe our Disagreement Mechanism and state our main theorem.
To design our mechanism, we start with the Divergence-Based BTS and (a) first use a typical
trick to create a zero-sum game which has the same equilibria as the Divergence-Based BT'S;
(b) pay each agent an extra score that only depends on other agents which will not change

the structure of the equilibria. We want this extra score to represent “classification score’
(See Figure 1).

2 This mechanism is a little bit different from Divergence-Based BTS mechanism [22]. Divergence-Based
BTS uses specific proper scoring rule (log scoring rule). But it is easy to see using general proper scoring
rules still keeps the strictly truthful property of Divergence-Based BTS. We defer the proof to the full
version.
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Low Classification Score High Classification Score
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Figure 1 Illustration for Classification Score: Each point represents an agent’s report profile —
the color represents the signal the agent reports; the position represents the prediction the agent
reports. We informally define Inconsistency as the average disagreement between every two agents’
predictions when they report the same signal and Diversity as the average disagreement between
every two agents’ predictions when they report different signals. We informally define Classification
Score as Diversity minus Inconsistency. Note that the report profiles in the right figure will have a
much higher classification score than those in the left figure since the right figure has high Diversity
and low Inconsistency.

Disagreement Mechanism M™*(a, 3, PS(-,-))
r = {ry,rg,...,mn} is all agents’ report profiles where for any r, r; = (6, P:)-

1. Zero-sum Trick: Divide the agents arbitrarily into two groups — group A and group
B — such that both A and B have at least 3 agents. Each group of agents plays the
game (mechanism) M that is restricted in their own group. For group A, each agent i
receives a

scorepm(ia,r) = payment pq(a,p,ps(-,)) (i, Ta)
1 .
T Z payment pa,8,ps(-,)) (1B, TB)
JjBEB

Where payment pq(a,3,ps(.,)) (14, T4) is agent i4’s payment when he is paid by mechanism
M(a, 8, PS(-,+)) given group A’s report profiles r 4 and that he can only be paired with a
random peer from group A (we have similar explanation for payment yq(a,s,ps(.,-)) (1B, TB))-
For agents in group B, we use the analogous way to score them.

2. Additional Classification Reward: Each agent ¢ is matched with two random agents
J,k # i chosen from all agents (including group A and group B), the payment for agent 4
is

payment s+ (a,8,pS(.,) (4, ) = scorep (i, 1) + scorec(ry, ry)
where
D*(b;,br) 6 # ok
scorec(rj,Tk) =
—\/D*(D;,Pr) ;=%
recall that D* denotes the Hellinger Divergence.

» Theorem 3 (Main Theorem). For any number of signals m, given any SNIFE prior, if the
number of agents n > 6, then in M¥(a, B, PS(:,-)) with § < L

4m’
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1. (Strictly truthful) truth-telling is a strict Bayesian Nash equilibrium;

2. (Focal) in any permutation equilibrium, every agent has equal expected payment with
truth-telling; and in any symmetric equilibrium that is not a permutation equilibrium,
every agent’s expected payment is strictly less than that of truth-telling.

3. (Robust Focal) any symmetric equilibrium that pays within v1 of truth-telling 3 must be
71(71) close to a permutation strategy profile; and moreover

4. (Tight) no detail free mechanism can have truth-telling as an equilibrium that has strictly
higher agent-welfare than all other permutation equilibria.

where T1(v1) = O(¢/71), (the constants we omit only depend on the first two moments of

prior Q)*.

We extend our results to asymmetric equilibria when the number of agents is sufficiently
large in the full version.

3.3 Proof Highlights

In this section we give a few proof highlights.

First note that to show each agent’s expected payment in a symmetric equilibrium is less
than that of truth-telling, we only need to show the sum of all agents’ expected payments —
agent welfare — is less than that of truth-telling since everyone plays the same strategy in a
symmetric equilibrium.

We first show that the agent welfare of our Disagreement Mechanism is the Classification
Score, which follows by a straightforward computation. It remains to show that Classification
Score has the aforementioned properties.

Best Prediction Strategy Profiles: We call a strategy profile a best prediction strategy
profile if for any ¢, agent ¢ reports a prediction that maximizes his prediction score. By some
calculations, we know agent ¢’s best prediction is 0_;q,, given o; is his private signal and

Zj¢q‘,9

recall that 0_; = =%} " where (6,05, ....,0,) is the signal strategy. We call this strategy
profile a symmetric best prediction strategy profile if there exists a signal strategy € such
that 6; = 6 for any i. Based on the definition of permutation strategy profile, it is clear that
any permutation strategy profile is a symmetric best prediction strategy profile.

Consider two agents who report different signals. If they use a permutation strategy
profile m whose signal strategy is 6, then their predictions will be 6,q.,0,q, given their
private signals are o # o’. If they use a symmetric best prediction strategy, then their
reported predictions will be 8q,, 0q, . In the first case, the Hellinger divergence between the
two agents’ reported predictions is D*(0:qs,0:9s') = D*(qs, Qo) while in the second case,
the Hellinger divergence between the two agents’ reported predictions is D*(0q,,0q,) <
D*(qv,9¢) = D*(0295,0:9,). The inequality follows from the information monotonicity
of Hellinger divergence. Thus, the two agents’ predictions in the second case is “closer”
than those in the first case. So a permutation strategy profile is more diverse than any
other symmetric best prediction strategy, and additionally has no inconsistency. To make
permutation strategy profiles beat symmetric best prediction strategy profiles, it is enough
to just pay agents the additional diversity reward.

3 Note that it is an additive gap.

4 Actually 71(11) = % 3/ C2Z;C4
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General Equilibria: However, the biggest challenge is that there exists equilibria that are
not best prediction strategy profiles. Thus, it is not enough to just pay agents an additional
diversity reward. To deal with this challenge, we replace diversity by classification score. To
show that classification score works, we map each equilibrium s* to a strategy profile s;p
that belongs to best prediction strategy profiles. The technical heart of the proof bounds the
classification score of an equilibrium strategy profile s* by the diversity of its corresponding
best prediction strategy profile s;; . Once we finish this, we can bound the classification
score of any equilibrium strategy profile by the classification score of permutation strategy
profiles (note that for permutation strategy profiles, the classification score is equal to the
diversity since they are consistent strategy profiles) and complete the proof.

Arriving at this bound requires a non-trivial understanding of the structure of the
equilibria, and especially the relation between the different agents’ prediction reports in any
equilibria. Given a strategy profile for the reports, we obtain a system of linear equations
relating the prediction reports. Achieving this bound also requires the delicate use of the
triangle inequality applied to v/D*. That is why we pick the Hellinger divergence rather
than any other f-divergence.

Basically, considering that agents lie for the signal reports, we will show that it’s better
for them to report their best predictions. Moreover, the information monotonicity shows
that even when the agents report their best predictions, it is still worse than truth-telling.
Thus, our mechanism is focal.

Asymmetric Equilibria: In the more complicated asymmetric case, the difficulty is that
even if agents play best prediction strategy profiles, we cannot use information monotonicity
to prove permutation strategy profiles gain the strictly highest classification score. However,
if the number of agents is large enough, we will see any strategy profile that belongs to best
prediction strategy profiles family is “almost symmetric”. Using “almost symmetric” result,
we can generalize the above framework to approximate work for asymmetric case.

Finally, we show that equilibrium that having the classification score close to that of
truth-telling, must be close to a permutation equilibrium.

Tightness Result: The intuitive explanation for this tightness result is that the agents can
collude to relabel the signals and the mechanism has no way to defend against this relabelling
without knowing some information about agents’ common prior. The key idea to prove that
result is what we refer to as Indistinguishable Scenarios, that is, for the scenario A where
agents collude to relabel the signals, there always exists another scenario B where agents tell
the truth such that no detail free and truthful mechanism can distinguish A and B.

3.4 Proof Outline for Main Theorem

In this section, we give the proof outline for our main theorem. Recall that we informally
defined Inconsistency as the average disagreement between every two agents’ predictions
when they report the same signal and Diversity as the average disagreement between every
two agents’ predictions when they report different signals. We also defined Classification
Score as Diversity minus Inconsistency. Here we give technical definitions of those concepts.

We first introduce a short hand which will simplify the formula for Diversity and Incon-
sistency.

A

/A Pr(j, k) :/ Pris; p)es;(0,) (05 D5) Pr(sy . pr)esi(on) (Ok: Pk)
7.k 6;,P5,0k,Pk
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where s; is the strategy of agent j and s;(o;) is a distribution over agent j’s report profile
(6,P;) given agent j receives private signal o; and uses strategy s;, and similarly for agent
k. This defines the natural measure on the reports of agents j and k given that they play
strategies s; and s, and a fixed prior @ (which is implicit), and allows us to succinctly
describe probabilities of events in this space.

We define Diversity as the expected Hellinger divergence D* between two random agents
when they report different signals, so

Diversity = Z Z Pr(j, k)Pr(Uj,ok)[APr(j,/%)(S(&j # 65)D*(Pj, Dk)

j 00k 7.k
k#j

where Pr(j, k) is the probability agents j, k are picked, and Pr(oj,oy) is the probability
that agent j receives private signal o; and agent k receives private signal oy,.

Similarly, we can write down the technical definition for Inconsistency. But here we do
not use Hellinger divergence as the “difference” function in Zu,ueU,cT(u)=cT(w) D(u,v), we
use square root of the Hellinger divergence which is the Hellinger distance as the “difference”
function. The reason is we want to use the convexity of the Hellinger divergence and the
triangle inequality of the Hellinger distance. We will describe the details in the future. For
now we give a technical definition for Inconsistency:

Inconsistency =~ 3~ Y- Pr(i.Prioy,on) [ Pr(i.0)3(6; = 510y/D* (05, 51)
j 0,0k .;:k
ki
In addition to the Diversity and Inconsistency, we also introduce a new concept —
TotalDivergence — and then we use this value as a bridge. Recall that we defined
Diversity = Zj7k5‘éj70g7f7k Pr(j,k)Pr(c;,0r) fjk Pr(3,k)d(6; # 61)D*(Dj, Dr), now we define
a similar concept

TotalDivergence = Z Pr(j,k)Pr(oj,ok)ﬁ Pr(j,l%)D*(f)j,f)k)

3k\0 0% 7.k

First note that total divergence is robust to summing over j, k or j # k since when j = k,
D* (B, B1) = 0.

We can see TotalDivergence > Diversity since TotalDivergence also includes the divergence
between the agents who report the same signals. We show that the equality holds if and
only if Inconsistency = 0:

» Claim 4. For any strategy profile s, Diversity(s) = TotalDivergence(s) <
Inconsistency(s) = 0

The above claim implies the below claim. We defer the proofs to the full version.

» Claim 5.

ClassificationScore(truthtelling) = Diversity(truthtelling)
= TotalDivergence(truthtelling)

Now we begin to state our proof outline: For any equilibrium s, we define a modified
strategy for s:

We define spp what we call a best prediction strategy of s as a strategy where each agent
uses the same signal strategy which he uses in s but plays his best prediction which maximizes

13:13
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the prediction score. In this case, by some calculations (see full version for a detailed proof),

for any 4, agent i plays 0_;q,,. In the symmetric case, agent i play 0q,,.
The results or our main theorem follows from two technical lemmas:

(1) ClassificationScore(s) < TotalDivergence(spp). [Main Lemma: Lemma 7] This is our
main lemma and the main technical ingredient we use to show our main lemma is the
triangle inequality of the square root of Hellinger divergence. Once we show it, we can
directly prove the focal property of the Disagreement Mechanism: considering that agents
lie for the signal reports, our main technical lemma shows that it’s better for them to
report their best predictions. Moreover, the information monotonicity shows that even
when the agents report their best predictions, it is still worse than truth-telling.

Note that this result is valid for any equilibrium s — symmetric or asymmetric — and is
still a main ingredient when we extend the focal property to the asymmetric case.

(2) TotalDivergence(truthtelling) ~ TotalDivergence(sgpp) = 6 =~ m™ when s is a
symmetric equilibrium with signal strategy 0. This, informally, means that if a symmetric
equilibrium pays close to truth-telling, it must be close to a permutation equilibrium, and
thus pays about the same as truth-telling.

3.5 Proof for Main Theorem

In this section, we are going to show the first two parts of Theorem 3. We defer the proof for
other parts and the asymmetric extension to the full version.

Proof of Theorem 3 Part 1: M*(a, 3, PS(-,-)) is strictly truthful.

» Lemma 6. The Disagreement Mechanism has the same equilibria as the Divergence-based
BTS.

We defer the proof of this lemma to the full version. Radanovic and Faltings [22]
have already show M(«, 3, PS(-,-)) has truth-telling as a strict equilibrium for any SNIFE
prior in Theorem 2. Since M™(a, 8, PS(-,-)) does not change the equilibrium structure of
M(a, B, PS(+,+)) according to Claim 6, we have M™(a, 3, PS(-,-)) has truth-telling as a
strict equilibrium for any SNIFE prior as well. <

Proof of Theorem 3 Part 2: M™*(«, 3, PS(-,-)) has truth-telling as a focal equilibrium.
We use our main lemma ClassificationScore(s) < TotalDivergence(spp) directly to prove:

any symmetric non-permutation equilibrium’s agent welfare ( ClassificationScore)
must be strictly less than truth-telling

» Lemma 7 (Main Lemma). For any equilibrium s, if spp is a best prediction strategy of s,
we have

ClassificationScore(s) < TotalDivergence(spp)
If the equality holds, then we have Inconsistency(s) =0 and s = spp.

We defer the proof of our main lemma to the full version. Notice that if all agents
play a symmetric signal strategy 6, then for any j,k, 6_; = 6_;, = 6. For any symmetric
non-permutation equilibrium s, it is possible that the signal strategy of s is not a permutation
or it is a permutation 6, but agents do not report 6,q, given ¢ is their private signal. So
we consider two cases:
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(a) We first consider the case that the signal strategy 6 of s is a permutation matrix 6,
but agents do not report 6,q,. That is, agents collude to relabel the signal but do not
report the best predictions based on the collusion.

ClassificationScore(s) < TotalDivergence(spp)
= 2 PriG:R)Pr(o;,00) D" (0G0, 0-4d)
j,k,05,0%

(Definition of best prediction strategy)
= Z P’I“(j, k)Pr(Uj7o-l€)D*(97Tqu7eﬂ'qo'k)

Jk,05,0k

(In Case (a), the signal strategy 0 of s is a permutation matrix 6, )

= Z Pr(jak)Pr(Ujaak)D*(qaj7QJk)

Jik,05,0k
= TotalDivergence(truthtelling)
= ClassificationScore(truthtelling)

The first inequality follows from our main lemma. The inequality is strict for the
following reason: when the signal strategy 6 of s is a permutation matrix, sgp is a
permutation strategy profile. Based on our main lemma if ClassificationScore(s) =
TotalDivergence(spp), we have s = spp which implies that s is a permutation strategy
profile which is a contradiction to the fact s is a non-permutation strategy profile.
The last equality follows from Corollary 5.

(b) We consider the case that the signal strategy 6 of s is not a permutation matrix. In
this case, agents may or may not report their best predictions. Our main technical
lemma shows that it’s better for them to report their best predictions. The information
monotonicity shows that even when the agents report the best predictions, it is still
worse than truth-telling. We still use case (a)’s proof. Even though the inequality in the
first line may not be strict, the equality in the fourth line must be a strict inequality:

> Pr(j.k)Pr(o;, o)D" (0qs,, 040, )

J,k0j,0k

< Z Pr(j,k)Pr(o;,01)D*(ds;, oy ) (Information Monotonicity)

Jk,05,0k

since based on Corollary 16, when 6 is not a permutation, and @ is fine-grained and
non-zero, the information monotonicity is strict. So in both of the above two cases, we
have

ClassificationScore(s) < ClassificationScore(truthtelling)

if s is not a permutation equilibrium. Therefore, our mechanism is focal. |
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A Notation Table

B Formal Definitions of the SNIFE Priors

» Assumption 8 (Symmetric Prior). We assume throughout that the agents’ signals o are
drawn from some joint symmetric prior Q.

Because we will assume that the prior is symmetric, we denote ¢;(c) by ¢(o) and g¢; j(co|o”)
(where i # j) by g(olo’). We also define q, = ¢(:|0).

» Assumption 9 (Non-zero Prior). We assume that for any 0,0’ € ¥, q(o) > 0,q(a|o’) > 0.

» Assumption 10 (Informative Prior). We assume if agents have different private signals,
they will have different expectations for the fraction of at least one signal. That is for any
o # o', there exists o” such that q(c”|o) # q(c”|c").

The following assumption conceptually states that one state is not just a more likely
version of another state, and can be thought of as a weaker version of assuming ¢(o|-) are
linearly independent.

ITCS 2018
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Table 2 Basic Notations.

Y £  the space of all possible signals
As £  the space of all probability distributions over ¥
o; 2 agent i’s private signal
N A " .
6; = agent ¢’s reported signal
pi or g,;, = agent i’s prediction for other agents’ private signals conditioning on she
receives o;
p: £ agent i’s reported prediction
ri = (64,Di) 2 agent i’s report
A 9
r = all agents’ reports
si 2 agent i’s strategy
0; = the signal strategy (marginal distribution) of s;
.05
0_; = % the average signal strategy excluding 6;
) L Zl 0 :
0, = =%— the average signal strategy
s £  the strategy profile agents have
Q % the common symmetric prior agents share
q(c’'le) & an agent’s expected fraction of other agents who receives ¢’ when this
agent receives o
g(c) 2  the priori expected fraction of agents who will receive o

» Assumption 11 (Fine-grained Prior). We assume that for any o # ¢’ € X, there exists
o, " such that

q(0'|(7//) q(o\a”’)
q(a’|a”) 7& q(o./|0.///)

If this assumption does not hold, then in some sense o and ¢’ are the same signal since
the agents who receive o have the same posterior with the agents who receive o’. Therefore,
We can replace o and ¢’ with a new signal o := o or ¢/, and not lose any information.

We illustrate this in the below example:

q(sils1) aq(sifs2) q(s1fss) 0.1 02 0.3
» Example 12. Q = | q(s2]s1) q(sz2|s2) q(s2]s3) | = 0.2 0.4 0.6 | is not a fine-
q(ssls1) q(ss|s2) q(ss|ss3) 0.7 04 0.1

grained prior since

q(s1s1) - q(s1]s2) - q(s1]s3)

q(s2ls1)  q(s2ls2)  q(sz]s3)

Note that in this example, even we combine s; and ss to be a single signal sg which is
defined as sy := s1 or so, we do not lose any information: if an agent knows that the fraction
of agents who report sg is x, we know his belief for the expectation of the fraction of s; must
be § no matter what private signal he receives.

We only require the fine-grained prior assumption to show that truth-telling is strictly
“better” than any other symmetric equilibrium (excluding permutation equilibrium). In the
above example where the prior is not fine-grained, if agents always report s; when they
receive s or sg, this does not lose information (is not “worse”) comparing with the case

agents always tell the truth. So we cannot say truth-telling is strictly “better” than any other
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equilibrium when the prior is not fine-grained. However, this assumption is not necessary to
show that truth-telling is a strict Bayesian equilibrium of our mechanism, nor to show that
the agent welfare of truth-telling is at least as high as other symmetric equilibrium.

» Assumption 13 (Ensemble Prior). Although we talk of a single prior, in fact we have an
ensemble Q = {Qn}nenn>3 of priors; one for each possible number of agents greater than 3.
We assume that all Q,, are over the same signal set ¥ have identical g(o) and q(o’|o).

When the number of agents n changes, the joint prior actually changes as well, but the
first two moments of the prior are fixed. This allows us to make meaningful statements about
n going to infinity.

C Information Monotonicity

» Lemma 14 (Information Monotonicity ([3])). For any strictly convex function f, f-divergence
Dy(p,q) satisfies information monotonicity so that for any transition matriz 6 € R>*>,
Dy(p,q) = Ds(6p, bq).

Moreover, the inequality is strict if and only if there exists o,0',0" such that 0(o, 0" )p(c’) >

1" 7 p(e”) a(d’
0, 6(c,0"”)p(c”) > 0 and b)) 7 A

)
/) .
We introduce the proof and give an example where the strictness condition is not satisfied

here.

Proof. The proof follows from algebraic manipulation and one application of convexity.

Drtom.0a) =Y 0p) s ({557 ) ®
=30 )ps (5299) @
=300 e <9<01>p > 7 (o)
<Y e Wy > 01e-0p(e")s (&)

=> p(o)f (38) = D¢(p,q) (5)

The second equality holds since (fp)(o) is dot product of the o** row of § and p.

The third equality holds since ) _, 6(c,o’)p(c’) EEZ% =0(o,)q.

The fourth inequality follows from the convexity of f(-).

The last equality holds since ) _6(c0,0") = 1.

We now examine under what conditions the inequality in Equation 4 is strict. Note that
for any strictly convex function g, if Vu, Ay, > 0, (>, Auu) = D, Aug(zy) if and only if
there exists x such that Vu, x,, = z. By this property, the inequality is strict if and only if

there exists o, 0’, 0" such that 2((‘;/,/)) # (31((‘;/,/)) and 6(o,0")p(c’) > 0, 0(c,0")p(c”) > 0. <=

To understand the strictness condition more in Lemma 14, we give an example where the
strictness condition is not satisfied:
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03 06 0
» Example 15. p=(0.10.20.7),q=(0.2040.4), 6= 0.7 04 0
0 0 1

We show by case analysis that we cannot find o,0’,0” such that 6(o,0’)p(c’) > 0,
0(c,c")p(c”) > 0 and I;((C;,)) q((a/))
First note that because 22 + ale”) it cannot be that o’ = o, nor can it be the

p(o’) (e’)
case that o/, 0" € {1,2} because Tg = % and pgzg qgg. Thus it must be that either

o' €{1,2} and 0’ =3 or ¢’ =3 and 0" € {1,2}. Because these are symmetric, we consider

the first case.

Because (o, 0')p(c’) > 0 it must be that o € {1,2}, but because 6(o,c”)p(c”) > 0, it
must be that o = 3. So no assignment of o,0’,¢"” is possible.

Thus, the strictness condition is not satisfied. By simple calculations, we have p =
(0.15 0.15 0.7), q = (0.3 0.3 0.4). By some algebraic calculations, we have D¢(p,q) =
Dy (6p,0q) for any function f.

» Corollary 16. Given SNIFE prior Q, for any 6 that is not a permutation, there exists two
private signals o1 # oo such that D§(0qe,,04s,) < Df(do,,d0,)

Proof. First notice that when 6 is not a permutation, there exists a row of € such that
the row has at least two positive entries, in other words, there exists o,0’,¢” such that
0(o,0"),0(0,0") > 0. Based on the non-zero and fine-grained assumptions of @), there exists
01 # 09 such that

6(c,0")p(c’),0(c,c"”)p(c”) > 0 and p(g,,)) # qg,,) where p = qy,,q = q,,. When

0(o,0")p(c’),0(c,0")p(c") > 0, we have 0(o,-)p > 0. By Lemma 14, we have

Df(0q0'170q(72) <Df(q(,1,q,,2). <
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