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—— Abstract

The class TENP, of NP search problems where all instances have solutions, appears not to have
complete problems. However, TEFNP contains various syntactic subclasses and important prob-
lems. We introduce a syntactic class of problems that contains these known subclasses, for the
purpose of understanding and classifying TFNP problems. This class is defined in terms of the
search for an error in a concisely-represented formal proof. Finally, the known complexity sub-
classes are based on existence theorems that hold for finite structures; from Herbrand’s Theorem,
we note that such theorems must apply specifically to finite structures, and not infinite ones.
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1 Introduction

The complexity class TENP is the set of total function problems that belong to NP; that is,
every input to such a nondeterministic function has at least one output, and outputs are easy
to check for validity — but it may be hard to find an output. It is known from Megiddo [21]
that problems in TFNP cannot be NP-complete unless NP is equal to co-NP. On the other
hand, various TFNP problems, such as Factoring and NASH are believed to be genuinely
hard [26, 10, §].

Presently, our understanding of the complexity of TFNP problems is a bit fragmented.
Currently, our main means for deriving evidence of hardness for TENP problems is by showing
completeness in one of the five known subclasses of TFNP, corresponding to well-known
elementary non-constructive existence proofs:

PPP (embodying the pigeonhole principle);

PPAD (embodying the principle “every directed graph with an unbalanced node must

have another”);

PPADS (same as PPAD, except we are looking for an oppositely unbalanced node);

PPA (“every graph with an odd-degree node must have another”), and

PLS (“every dag has a sink”).
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Much is known about these classes. PPP is known to contain PPAD and PPADS,
while essentially all other possible inclusions are known to be falsifiable by oracles, see for
example [1]. They all have complete problems (actually, the most commonly used definition
of, for example, PPAD is “all NP search problems reducible to END OF THE LINE”), and
most (PLS, PPAD, PPA) have many other natural complete problems besides the basic one.

Even the union of these classes does not provide a home for all natural TFNP problems.
For example, Factoring is only known to be reducible to PPP and PPA through randomized
reductions [16]. The problem RAMSEY (e.g., “Given a Boolean circuit encoding the edges of
a graph with 4™ nodes, find n nodes that are either a clique or an independent set”) is not
known to be in any one of the five classes, and the same obtains for a problem that could be
called BERTRAND-CHEBYSHEV (“Given n, produce a prime between n and 2n”).

The status quo in TFNP, as described above, is a bit unsatisfactory. Many natural
questions arise: Are there other important complexity subclasses of TENP, corresponding to
novel nonconstructive arguments? Can the three rogue problems above (along with a few
others) be classified in a more satisfactory way?

More importantly, is there a more holistic, unified approach to the complexity of TFNP
problems? For example, are there TFNP-complete problems? The answer here is strongly
believed to be “no”, as TENP (the set of all polynomial-depth nondeterministic computations
that have a witness, for every input) is very similar in spirit and detail to the classes UP
(computations with at most one witness, for every input) and BPP (computations whose
fraction of witnesses is bounded away from half, for every input), both known to have no
complete problems under oracles [27, 12]. Indeed, Pudldk ([25], Section 6) presents a similar
result specifically for TFNP. Hence, this route for a unified complexity view of total functions
is not available.

This paper aims to develop a more unified complexity theory of TFNP problems. We
define a new subclass of TFNP that includes all five known classes. This new class, which
we call PTENP! (for “provable TFNP”), does have complete problems, and these problems
are therefore natural generalisations of all known completeness results in TFNP.

In particular, we define a kind of consistency search problem, a notion that has recently
been studied in the literature on Bounded Arithmetic [3]. Fix a consistent deductive system
— in this paper we use a propositional proof system that we call Q-EFF (for “quantified
boolean formulae with extended Frege functions”; it allows lines of a proof to define new n-ary
functions). Now consider a Boolean circuit which, when input an integer j, produces the jth
line of an exponentially long purported proof in this system (the line itself is of polynomial
length). Suppose further that this proof arrives at a contradiction (one of the lines is “false”).
There surely must be a mistaken line in this proof; the challenge is to find it! We call this
problem Wrong Proof, and we define PTFNP as the set of all search problems reducible
to it; it is obviously a subset of TENP. We establish that PTFNP contains PPP (and by
extension, PPAD and PPADS), and also PPA and PLS. The study of exponentially-long
proofs that are presented concisely via a circuit was introduced by Krajicek [19].

Of course, any finite collection of problems — or classes with complete problems — can
be generalised in a rather trivial way, by proposing a new problem or class that artificially
incorporates the key features of the old ones. However, Wrong Proof makes no explicit

L The class should perhaps be called PTFNPq.grr since it is defined with respect to a deductive system
Q-EFF that we introduce and use in our proofs here. Similar definitions with respect to other proof
systems are possible. In this paper we just refer to it as PTFNP. A similar point applies to the problem
Wrong Proof used to define PTFNP.
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reference to the problems that are complete for the above complexity classes. Its proof system
Q-EFF uses quantified boolean formulae with polynomially-many propositional variables, an
exponential sequence of n-ary function symbols, and no predicates. The novel features that
we exploit are the ability to use exponentially many steps, together with the exponential
sequence of function symbols.

Does PTFNP contain Factoring, RAMSEY, and BERTRAND-CHEBYSHEV? In the final
section we discuss these questions further. Finally, notice that the heretofore “five subclasses”
of TFNP correspond to five elementary non-constructive existence arguments in combinatorics,
and all these five elementary arguments share one intriguing property: They only hold for
finite structures, and are false in infinite ones. We show in Section 6 that this is no coincidence:
Herbrand’s Theorem from 1930 [13, 6] tells us that any existential sentence in predicate
calculus that is true for all models (finite and infinite) is equivalent to the disjunction of a
finite number of quantifier-free formulas; it follows that the corresponding TFNP problem is
necessarily in P.

1.1 Related Recent Work

Various connections have been made between the complexity of TEFNP problems and formal
proofs, a research direction that seems timely and productive. In a recent paper [2], Arnold
Beckmann and Sam Buss, working within the tradition of bounded arithmetic [3], prove
certain results that appear to be closely related to the present ones. They define a problem
closely related to our Wrong Proof, and in fact in two versions, one corresponding to Frege
systems, and another to extended Frege. Then they show these to be complete for the classes
of total function problems in NP whose totality is provable within the bounded arithmetic
systems Us and V3!, respectively. Our system Q-EFF differs in using propositional variables
only, but arithmetic theories can be translated into propositional ones (see [18], Chapter 9).

There are some well-known reducibilities amongst PPAD-like complexity classes, for
example that PPAD reduces to PPADS, which reduces to PPP. Buss and Johnson [7] connect
these results with derivability relationships (in a proof system) amongst the combinatorial
principles that guarantee that they represent total search problems; so for example, the
principle underlying PPAD can be derived from the one underlying PPADS, and generally,
any such derivability result would tell us that the deriving corresponding complexity classes
generalises the other. Our focus here, in contrast, is on formal proofs that correspond with
individual instances of TENP problems (finding an error in the proof allows us to find a
solution for the corresponding problem-instance).

Pudlék [25] shows how every TFNP problem reduces to a Herbrand consistency search
problem: any TFNP problem X is characterised by an associated formula ® whose Herbrand
extension is guaranteed to be satisfiable, but the challenge of finding a satisfying assignment
is equivalent to X. This correspondence is somewhat reminiscent of Fagin’s theorem. The
focus of [25] is not on syntactic guarantees that we have a total search problem: it would be
hard to check whether a given ® corresponds to a TFNP problem. By contrast, our definition
of Wrong Proof is intended as a highly-general TFNP problem for which there is a syntactic
guarantee that any instance has a solution.

In contrast with most TEFNP-related work within bounded arithmetic, we focus on the
“white box” concise circuit model of the functions that define the problems characterising
the complexity classes of interest. In some respects this makes a significant difference: for
example, a recent paper of Komargodski et al. [17] shows that any such TFNP problem has
a query complexity proportional to the description-size of a problem instance. However, a
reduction using the oracle model should allow a logical description of a circuit to be plugged
in.
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Finally, Hubacek et al. [14] show that hard-on-average NP problems lead to hard-on-
average TFNP problems. The TFNP problems thus constructed are specific to the associated
NP problems; our concern here, in contrast, is to identify a single easily-understood TFNP
problem that generalises previous ones.

1.2 Background on propositional proofs and the pigeonhole principle

In 1979, Cook and Reckhow [9] initiated the study of the proofs of propositional tautologies,
with regard to the question of how long do such proofs need to be. Abstractly, a proof system
for a language (here, the set of tautologies) is a scheme for producing efficiently-checkable
certificates for words in that language. As noted in [9], a polynomially bounded proof system
for tautologies is only possible if NP is equal to co-NP. They obtain results that various
proof systems can efficiently simulate each other; these results allow us to conclude that one
such system is polynomially bounded if and only if another such system is.

[9] introduce Frege and extended Frege systems: roughly, in a Frege system a proof consists
of a sequence of lines containing propositional formulae that are either generated by some
axiom scheme (and are known to hold for that reason) or are derivable by modus ponens
from two formulae in previous lines of the proof. In an extended Frege system, we also allow
lines that introduce a new propositional variable and set it to equal a propositional formula
¢ over pre-existing variables. The new variable can then be plugged in to a larger formula as
a shorthand for ¢, and if this process is iterated, it may result in an exponential saving in
space. It remains a central open problem in proof complexity whether extended Frege proofs
can in general be simulated by Frege proofs, with only a polynomial blowup in size of the
proof.

In studying this question, various candidate classes of formulae have been considered,
the most widely-studied being ones that express the pigeonhole principle, as introduced
in [9]. The “n+ 1 into n” version of this, denoted PHP" ™!, states that a function from n + 1
input values to n output values must map two different inputs to the same output. That
is, f: [n+ 1] — [n] must have a collision: two inputs that f maps to the same output?. f
can be described by a propositional formula ¢ (whose variables indicate which numbers map
to which according to f, specifically, variable P;; is TRUE if and only if ¢ is mapped to j)
stating “each number in the domain maps to some number in the codomain, and any pair
map to different values.” By the pigeonhole principle, v is unsatisfiable, so its negation ¢
is a tautology (and ¢ has size polynomial in n). [9] gave polynomially-bounded extended
Frege proofs of these expressions. Buss [5] subsequently gave polynomially-bounded Frege
proofs of these, and in [4] quasi-polynomial size Frege proofs that are a reformulation of the
extended Frege proofs of [9]. See [4] for a discussion of other candidate classes of formulae
and progress that has been made on them.

Papadimitriou [23] introduced the PIGEONHOLE CIRCUIT problem, in which a pigeonhole
function on an ezponential-sized domain is concisely presented via a boolean circuit C. 1
as constructed above would be exponentially large in C, but a “dual” statement that two
inputs to C' map to the same output can still be expressed as a concise propositional formula
¢. By construction, ¢ is satisfiable, and a short proof of this fact consists of a satisfying
assignment, but in general such a satisfying assignment appears to be hard to find, and this
search characterises the complexity class PPP. In seeking to better understand the challenge,
we find a new point of contact between the pigeonhole principle and proof complexity. The

2 We use the standard notation that for a positive integer z, [z] denotes the set {1,2,...,z}.
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difference here is we have a propositional formula that is known to be satisfiable; we want to
exhibit a proof of this; but the naive approach of just exhibiting a satisfying assignment is
believed to be hard, so instead we fall back on a long and “opaque” proof of satisfiability.
A general question we have only partly answered is, what sort of logic is needed to express
such a proof? Our deductive system Q-EFF is first-order, but we require (exponentially
many) lines that define the behaviour of additional function symbols (mapping n-bit strings
to single-bit outputs). This seems to be a more powerful facility than the additional variable
symbols allowed by extended Frege proofs (hence the name Q-EFF for “extended Frege
functions”). As we discuss in the penultimate section, it would be of interest to see if these
proofs could be done just defining exponentially many additional propositional variables.

1.3 Organisation of this paper

Section 2 gives details of our deductive system and the problem Wrong Proof. Section 3
shows how to prove unsatisfiability of certain existential expressions, in such a way that any
error in the proof allows a satisfying assignment to be readily reconstructed. Sections 4 and
5 reduce PPP, PPA, and PLS problem-instances to proofs that corresponding existential
expressions are satisfiable. (The expressions are the ones we can also “prove” unsatisfiable.)
In Section 6 we apply Herbrand’s theorem to show that only “finitely valid” combinatorial
principles may give rise to hard total search problems. We conclude in Section 7.

2 Deductive systems and the Wrong Proof problem

A deductive system (or proof system) is a mechanism for generating expressions in some
well-defined (formal) language. The expressions should come with a semantics, defining
which ones are true and which false. A basic property of a system is consistency, that it
should not be able to generate two expressions that contradict each other. Consistency is
ensured if the rules of the system are valid, in the sense that we cannot deduce any false
expressions from true ones. For the deductive system Q-EFF in this paper, the language (and
corresponding semantics) of interest is simple and straightforward, and it is not hard to check
that it is consistent. The Wrong Proof problem of Definition 2 formalises the computational
challenge of receiving a proof of two expressions that contradict each other, and searching for
an erroneous step in the proof (guaranteed to exist by the contradiction that we are shown).

The set of expressions that can be produced by a deductive system are called the theorems
of the system. The system is usually given in terms of a set of azioms and inference rules
that allow theorems to be derived from other theorems. A proof consists of a sequence of
numbered lines. A line contains a well-formed formula that either holds due to some axiom,
or is inferable from the contents of previous lines. A typical line contains one of the following
kinds of expression:

00 -A or (FA or FA,

where A is a well-formed formula inferred at the current line, and £, ¢ are the numbers of
earlier lines (¢, ¢ are thus strictly smaller than the current line number). The expression
“¢,¢' = A” means that the current line claims that A is inferable from the formulae located at
lines ¢ and ¢’ (using one of the given inference rules). “/ = A” means that A is inferable from

the formula located at line £. “F A” means that A holds ipso facto (due to an axiom, e.g.

rule (1) lets us write - (A V —A), for any well-formed formula A).
Our system makes use of a kind of extension aziom line, written as f(z) <> ¢(z), where f
is a new function symbol whose value on input z is defined by ¢. f should not occur within

37:5

ITCS 2018



37:6

Towards a Unified Complexity Theory of Total Functions

¢, or in any previous line. So, these lines allow us to define new boolean functions that may
appear in later lines.?

» Definition 1. With respect to some given consistent deductive system, a circuit-generated
proof consists of a directed boolean circuit C' having n input nodes. C' has a corresponding
formal proof having 2™ lines. The output of C on input ¢ € [2"] contains the theorem that
has been deduced at line ¢, together with the numbers of any earlier line(s) from which £’s
theorem has been deduced.

In constructing circuit-generated proofs, it is often convenient to identify various expo-
nentially-long sequences of line numbers without assigning numerical values to those line
numbers. We can accommodate a collection of such sequences in a circuit-generated proof
of size O(n), possibly padded out with unused lines whose theorems consist of the constant
TRUE.

» Definition 2. Let S be a consistent deductive system having the property that any line ¢
of a proof that uses S can be checked for correctness in time polynomial in the length of £.
An instance of Wrong Proof consists of a circuit-generated proof Ilo represented by boolean
circuit C.

IIc contains two given lines (say, lines 2™ and 2" — 1) that contradict each other: One
of them contains as its theorem some expression A and other contains expression —A. The
challenge is to identify some line number ¢ whose corresponding theorem is not derivable in
the way stated by C(¢). Since S is consistent and we have observed a contradiction, such a
line must exist.

Wrong Proof is in TFNP: any incorrect line of an instance of Wrong Proof can readily
be verified to be incorrect. We have so far defined Wrong Proof rather abstractly, with
respect to an unspecified deductive system. In this paper we focus on a specific deductive
system that we describe in detail in the rest of this section.

2.1 The formulae and theorems of our system Q-EFF; some notation

We work with expressions of quantified propositional logic (variables take values TRUE/FALSE),
augmented with a sequence of n-ary function symbols. We also use, for convenience, sym-
bols such as x and y to denote vectors of n propositional variables, and expressions like
x < y to denote relationships between x and y, regarding these vectors as represent-
ing numbers in [27]. z(®, 2 22 denote respectively the n-vectors (FALSE, ..., FALSE),
(FALSE, . ..,FALSE, TRUE), (FALSE,...,FALSE, TRUE, FALSE), or the numbers 2",1,2. Since
the all-zeroes vector z(°) corresponds to 27, this means that 2(®) > z for any other vector =
(this convention tends to reduce clutter in our expressions).

In this paper, the two contradictory statements in an instance of Wrong Proof take
the form 3z, 2/ (¢(x,2')) and Iz, 2’ (P(x, 2’)), asserting that some 2n-variable formula ¢ is
(respectively, isn’t) satisfiable. We continue with more detail on the expressions used in our
proofs.

3 This facility to define the behaviour of new functions is a rather novel feature of our system, and gives
rise to the question of whether we should be able to make do with standard extended Frege axioms. An
extended Frege system is a propositional proof system that allows us to use extension axiom lines of
the form z(™*™®) > ¢, where z(™*®) is a variable symbol that has not occurred previously in the proof,
and ¢ is a formula that gives the value of z("**) in terms of pre-existing variables. So, we are allowing
ourselves to define new functions on vectors of boolean variables, as opposed to just individual variables.
In Section 3.1 we explain why it is useful to have these extension-axiom lines that define new functions.
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For complexity parameter n, the vocabulary we use contains a polynomial-size collection of
variable symbols, together with an exponential-size collection of n-ary function symbols; these
are denoted by f; where ¢ € [2"]. In our proofs, for is defined in terms of an instance of some
TFNP problem, and (for each i € [2"]) f;_1 is defined in terms of f; via an extension-axiom
line. There are no predicates. The expressions we use are first-order, in that they may have
quantification over the variable symbols, but not the functions.

While we work with expressions whose variables represent vectors of propositional vari-
ables, note that such expressions represent polynomially-larger expressions whose variables
are simple propositional variables. Variable x represents (x1,...,x,) where the x; are pro-
positional variables, and expressions involving x can be converted to basic propositional
formulae in the individual z; without an excessive blowup in the size of the formula. This
extra syntax makes our expressions more concise and readable. For example, given non-zero
vectors x, o', the expression x < z’ represents the following propositional formula involving
the variables z; and z} (treating x; and ) as the most significant bits):

oy ATV (21 =2 A (tza Ay V (e = 2h A (g Aay Vo (map Ax))) )

Another notational convenience that we use is expressions such as Vr < y(¢(x,y)),
meaning Ve, y(x < y — ¢(x,y)), or if y is a vector of propositional constants, it would mean
Va(x <y — ¢(x,y)). Similarly, Iz # y(¢d(x,2’)) means Iz, 2’ (x # =’ A ¢(x, 2')).

2.2 Axioms and inference rules

We use the following kinds of rules:
Axioms (written as - A) let us write down certain expressions that can be seen to evaluate
to TRUE based on some easily-checkable property, for example A is of the form BV —B.
Inference rules, written as A, B - C for example, say that given expressions A and B, we
can write the expression C.
Equivalences, written as A = B, say that two expressions are logically equivalent. An
equivalence represents a rule of replacement in that it may be applied to sub-expressions
of any expression that appears in a line of a proof. For example, using the equivalence
AN B = B A A we could take a line ¢ containing the expression TRUE V (x; A y;) and
write a new line containing ¢ - TRUE V (y; A x;).
“Extension axiom” lines define new n-ary functions, and are written as f(z) + ¢(z),
where f is a new symbol that has not appeared previously in the proof, and ¢ specifies
how f behaves on input (n-vector) x. So, this kind of line means Vz(f(z) £ ¢(z)), and
the system can use Va(f(x) = ¢(z)) as a theorem.

Some of the rules we list below are redundant in the sense that they could be simulated
using the others. We prefer to limit ourselves to rules that are not too novel and ad-hoc,
that are clearly consistent, and which, crucially, allow that any individual line of a proof can
be checked for correctness in time polynomial in n. Section 2.3 contains rules that we prove
can be simulated by the ones in Section 2.2; usage of these additional rules allows some of
the formal proofs to be presented more cleanly. We have not however tried to minimise the
collection of rules in Section 2.2; some of the rules in the section can be simulated using the
others.

As noted earlier, our extension axiom lines are somewhat novel. A standard extension-
axiom line of an extended Frege proof may introduce a new propositional variable and set its
value to equal some expression in terms of pre-existing values. Our extension-axiom rules
(see rule (13)) allow us to define new functions via expressions that define their behaviour in

37:7

ITCS 2018



37:8

Towards a Unified Complexity Theory of Total Functions

terms of pre-existing functions. So we call the proof system Q-EFF (for “extended Frege
functions”) on account of this novel feature.

In the following, A, B, C represent arbitrary well-formed formulae and x, y are length-n
vectors of propositional variables, where z (say) may also be thought of as ranging over
integers in the range [2"], as noted in Section 2.1. The equivalences we allow ourselves
to use include standard rules of replacement, such as commutativity, associativity, and
distributivity of propositional connectives, removal of double negation, and de Morgan’s
rules. We alsouse A= AVA=AANA=AANTRUE = AV FALSE, also A - B=-BV A,
and the identity A — (B — C) = (A A B) — C. We also allow a step of a proof to rename
a bound variable throughout the subexpression where it occurs. These equivalences may
be applied to any expression arising in a derivation, also they may be applied (in a simple
step) to any well-formed subexpression of a larger expression arising in a derivation. So, a
proof line of the form ¢ + A may state that A is derived from expression A’, where A’ is the
theorem derived at line £, via applying one of these basic manipulations to A’, or to some
subexpression of A’. It is easy to see that any such step may be checked for correctness in
polynomial time, and there is no need for a line to specify which rule is being used.

For any well-formed expression A, we may use any of the following lines in our proofs:

F(A—A), F(Av-A), F TRUE. (1)

Modus ponens (rule (2)) states that if lines ¢ and ¢’ contain theorems A and A — B
respectively, a subsequent line containing the expression “¢,¢' = B” is a valid line.

A, A> B + B. (2)

“Conjunction introduction” (rule (3)) states that if lines ¢ and ¢’ contain theorems A and
B respectively, a subsequent line containing the expression “/,¢' = A A B” is valid.

A, B + AANB. (3)

A “case analysis” rule (4) (a form of disjunction elimination) means that if lines ¢ and ¢’
contain theorems B — A and =B — A, then a subsequent line containing “/, ¢/ = A” is valid.

B—A -B—AF A (4)

The disjunction introduction rule (5) means that if line ¢ contains theorem A, then a
subsequent line containing ¢ - A V B is valid.

A F (AVB). (5)
Antecedent strengthening:
(A=>C) F (AANB = Q). (6)

Basic equivalences for quantified variables: let x; be an individual propositional variable;
let A(TRUE) and A(FALSE) be obtained by plugging in the constants TRUE and FALSE
respectively in place of x;, in A(z;). Then we have:

Jz;(A(z;)) = A(TRUE) V A(FALSE)
Vai(A(xz;)) = A(TRUE) A A(FALSE)

(7)
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Distributive rules for quantifiers (recall z is a vector of variables):

Jz(A(z)) vV Iz(B(x)) = Jz(A(z) V B(z)) (8)
Vz(A(z)) AVz(B(z)) = Vz(A(z) A B(z))

(In the context of circuit-generated proofs, the distributive rules (8) can be derived
from the previous rules. Recall that x denotes the n-vector (z1,...,z,). Starting from the
expression Vz(A(z) A B(x)), we go via intermediate expressions of the form
V(z1,. .., 2;)(Y(@js1, - o) A(@) AY(2j41, . .. ,n)B(x)) to end up with Yz (A(z)) AVz(B(x)),
while keeping all intermediate expressions to be of polynomial length.)

Bringing quantifier to front: suppose A contains no variables in x, then if o is any boolean
connective, we have

Ao3x(B) =3z(Ao B) (9)
AoVz(B) =Vz(Ao B)

Universal instantiation: let A(t) be the expression obtained by plugging in term ¢ in place
of variable symbol = (¢ is any term, i.e. a propositional variable or constant, or a function
symbol applied to other terms.)

Ve(A(z)) F Af). (10)

Universal generalization: if z and y are n-vectors of propositional variables, and x is a
vector of free variables, we have

A(z) F YyA(y). (11)

Existential generalization: if A(z) is obtained by plugging in variable(s) z in place of
term(s) ¢, we have

A(t) F 3a(A()). (12)

Extended Frege-style definitions of functions:

We use extension axioms written as:

f(@) & o(x) (13)

where ¢ is an expression that defines the value of f(x). ¢ may include functions defined
earlier, but not f. f is a new function symbol, x is a vector of variable symbols, and ¢(z) is
a formula that specifies the value taken by f on any input x. This rule can be understood as

saying Vo (f(z) £ ¢(x)).

2.3 Further rules derivable from the ones of Section 2.2

It is useful to note the following further rules for writing down lines of a proof, which can be
simulated by the ones of Section 2.2. We can assume we have the “hypothetical syllogism”
rule, A— B, B - CF A — C (we can simulate this using the rules of Section 2.2: a
combination of modus ponens and case analysis). We can also assume we have an “axiom”
saying that expressions of the following form can be written down for free: Va(A(x)) — A(t),
where ¢ is a n-vector of terms that is plugged in for (n-vector) z in A. (We can write down
Va(A(z)) — Va(A(z)), equivalently Vo (A(x)) — VYy(A(y)), where y is another n-vector of
propositional variables, equivalently Va,y(A(z) — A(y)), then by universal instantiation,
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Vz(A(z) = A(t)), which is equivalent to Vz(A(x)) — A(¢).) In a similar way, we can write
down expressions of the form A(¢) — Jx(A(x)).
We also use the equivalences (derivable from (7) and de Morgan’s rules):

—3z(A)

V:c(ﬁA)

Jz(—A) (14)

In constructing circuit-generated proofs, it is also convenient to allow the following kind of
line. Suppose ¢ is a propositional formula over a vector = of n terms, consisting of variables,
or functions applied to variables. Let i € [2"] be a satisfying assignment of ¢, so i is a vector
of n constants TRUE/FALSE. We use the following rule, which can be simulated by previous
ones:

F oo =i ¢(x). (15)

We also make use of equivalence (16), which can be simulated in a straightforward way
using the previous rules. Letting x be an n-vector of propositional variables and ¢ an n-vector
of propositional constants, and ¢ a quantifier-free boolean formula, we have

r=i—=¢x) = ¢®). (16)

3 Preliminaries to the reductions to Wrong Proof

In this section we establish results that are useful subsequently, and we discuss certain
features that our reductions all have in common with each other.

An instance of Wrong Proof is supposed to consist of proofs of two contradictory
statements, and in our reductions, these statements take the form 3(z,z’)é(x,2’) and
—3(x,2")p(z, "), for n-vectors x, 2’ of propositional variables. ¢ depends on the specific
instance of a TFNP problem that we reduce from.

Any problem in TENP is reducible to the search for a satisfying assignment to a proposi-
tional formula ¢, where ¢ obeys some syntactic constraint that guarantees that it does, in fact,
have a satisfying assignment.* In reducing to Wrong Proof, we “prove” the contradictory
statements (x, z')p(z, 2’) and —I(z, 2")¢p(x, ') where x, 2’ are vectors of n propositional
variables. In fact, the ¢ that we use is not purely propositional; it includes a function symbol
that is constructed (using our extension-axiom rule) to encode a TFNP problem-instance, in
a way described in Section 3.2.

The proofs of these contradictory statements consist of sequences of applications of the
rules of Sections 2.2, 2.3, and they are instances of Wrong Proof, i.e. long proofs presented
via a circuit. The error occurs in the “proof” of =3(x,2")¢(x, z’). Of course, it’s trivial to
exhibit a faulty proof of the unsatisfiability of ¢, but we require something more, namely
that any error should let us efficiently reconstruct a satisfying assignment of ¢. Lemma 3
shows how to construct such a proof. The three expressions in the statement of Lemma 3
correspond to the existence principles underlying PPP, PPA, and PLS (recall that PPAD
and PPADS are special cases of PPP).

4 To see this, note that for any problem X € TFNP, any instance I of size n has a solution S; of size
poly(n); solutions are checkable with a poly-time algorithm .4 that takes candidate solutions as input
and outputs “yes” iff A received a valid solution. A can be converted to a circuit and thence to a
propositional formula that is satisfied by inputs representing any valid solution S of instance I along
with extra propositional variables for gates of the circuit.
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The proofs of 3(x, 2")p(x, 2’) are done separately for each TEFNP problem of interest, in
Sections 4 for PPP and 5 (but we leave to the full version, any detail on the proofs for PPA
and PLS.). Section 3.1 introduces the general approach taken in Sections 4 and 5. Section 3.2
presents Lemma 3 that shows how to make a suitable proof of —3(z, z")¢(x, 2’).

3.1 Overview of the reductions of Sections 4 and 5

In Sections 4 and 5, we consider computational problems PIGEONHOLE CIRCUIT, LONELY,
and ITER, which are complete for PPAD, PPA, and PLS respectively. We reduce each of
these problems to WRONG PROOF.

Any instance of the problems PIGEONHOLE CIRCUIT, LONELY, and ITER is defined in
terms of a boolean circuit C'. Section 3.2 begins with a general method to define a function
f using the rules of Q-EFF| so that f is the function computed by C'. We derive from C
an existential formula ® = 3(z,a’)¢(x,2’) in terms of f stating (correctly) that there is
a solution associated with the instance of the problem. We have noted that Section 3.2
shows how to “prove” =®. Sections 4 and 5 show how to construct contrasting (and correct!)
circuit-generated proofs of ®. The approach to proving that ® is satisfiable, is based on a
syntactic feature that assures us that it is, indeed, satisfiable. These syntactic features are
different for the three problems under consideration (which is why we have three different
complexity classes), so we need three distinct reductions.

At this point we are ready to explain our usage of extension axioms (rules of type (13))
to define long sequences of new n-ary boolean functions. In the context of PIGEONHOLE
CIRCUIT, any instance I has an associated function fj : [2"] — [2" — 1], and the search is for
two inputs to f; that map to the same output. Call such a pair of inputs a “collision” for f;.
We reduce the search for a collision for f; to the search for a collision for a new function
fr:[2"=1] — [2" —2]. f} is defined in terms of f; using an extension-axiom line. We reduce
this in turn to the search for a collision for a new function f} : [2" — 2] — [2" — 3], and so
on. With an exponential sequence of similar reductions (that can all be efficiently generated
via a circuit), we eventually reduce to the search for a collision of a function from {1,2} to
{1}, whose existence has a simple (formal) proof. LONELY and ITER have similar sequences
of functions.

Functions defined using rules of type (13) have the codomain {TRUE, FALSE}. fr can of
course be defined in terms of n n-ary functions that map to individual bits of the output of
fr1, as can each of the exponential sequence of functions that is derived from it.

We have aimed to make the presentation as consistent as possible for the three reductions
to Wrong Proof. The following presentational aspects are shared by the reductions. We let
C denote a typical instance of a TFNP problem, since the problem-instances we consider are
represented as (boolean) circuits. II¢ denotes the corresponding instance of Wrong Proof.
We describe Il¢ in terms of the lines of Il¢, as opposed to the circuit that generates it: for
the exponential sequences of lines that we define, we assume it is easy to check that they
can be compactly represented using a circuit. f denotes the function computed by C; f is
constructed using extension-axioms as described at the start of the next subsection. We set
a new function fon equal to f. The reductions use sequences of well-formed expressions that
appear in the instances of Wrong Proof, that we denote A;, C; and F;, for i € [2"]. F; is
an extension-axiom line that defines new function f;_; in terms of f;. A; asserts implicitly
(or non-constructively) that an instance of a problem corresponding to function f; has a
guaranteed solution (due to a syntactic property of f;). C; is an existential expression that
asserts that same thing explicitly. We end up proving Cy» that states the existence of a
solution, and Ca» is equivalent to ®. This contradicts the expression —® that is “proved”
using Lemma 3.
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Here we give some detail on the first reduction (from PIGEONHOLE CIRCUIT), leaving
out further detail that appears in appendices of the full version of this paper. We leave to
the full version the details on the reductions from LONELY and ITER.

3.2 Construction of functions from circuits, and a method for locating
the errors in instances of Wrong Proof

Given a boolean circuit C with n input nodes, Q-EFF can define a function f that computes
C as follows. Each gate g of C has an associated n-ary function f;, mapping the inputs to
C to the value taken at g. We can construct f using a sequence of extension-axiom rules
(of type (13)), in which if, say, gate g is the AND of gates ¢’ and ¢, then we add the rule
fq(x) > fg(x) A fgr(x). If g is the j-th input gate, then f, is defined by fy(x) <> x;, where
x; is the j-th component of n-vector x.

» Lemma 3. Suppose f is defined according to the above construction. Consider the
expressions’

Iz, 2')((x £ 2’ A fz) = f(a") V fz) = 2?),

Yo, 2 )(f(2D) £ 20V (@ £ 20 A f(z) =2) V (@ = f(@) Ax £ F@)),

3z, 2 )(f(a) =2V f(z) <z V(' = f(z) A f@) = f(2))).
We can efficiently construct circuit-generated proofs of the negations of these expressions in
such a way that any error in the proof allows us to efficiently construct (x,z’) satisfying the
expression.

The expressions in the statement of Lemma 3 are the principles underlying PPP, PPA,
and PLS, used in Theorems 4, 6, 7. They are all satisfiable, so their negations are all false.

Proof. The negation of any of the above expressions takes the form V(x,2’)(¢(x, 2’)), where
¢ performs some test on values of z, 2/, f(z), and f(a’). For example, the negation of the
first of these expressions is

V(o) ((@ # ' A fl@) = F@) V fla) = 2@). (17)

We show how to construct a circuit-generated proof of (17) such that any error will identify
a pair of n-vectors x,x’ whose existence is claimed by the first of the three existential
statements. The following approach applies also to the negations of the other two existential
expressions in the statement of this lemma.

Let M be the matrix of (17), i.e. the subexpression —((x # 2/ Af(z) = f(z'))Vf(z) = z(O).
We continue by giving a method for proving the following stronger expression, from which
(17) is derivable:

V(z,2')(C1 A...\NCp A M) (18)

where C; are clauses that construct the values of f(z), f(z') by working through the values
taken at the gates of the circuit; the C; are of the form fy(x) = fy(x)o fg (z) (for o € {A,V}),
or fg(xz) = —fy(x), or fo(x) = z; (in the case that g is the j-th input gate). M is a boolean
combination of expressions of the form fy(x) = fy/(2') or fg(x) # fy(2'), for output gates
g,¢’, or of the form f,(x) = TRUE/FALSE.

5 Recall that z(? and ") denote the all-zeroes bit-vector, and the bit vector corresponding to number 1.
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Let ¢/(z,2') = C1A.. .ACypy AM, and for i € [22"] let ®, be the formula V(z2’ < i)¢'(z,2’),
where xzz’ represents the 2n-digit number 2" (x —1)+2’. It can be formally proved that (18) is

equivalent to @), ; we omit the details. For each i € [22"], some line ¢; of the proof contains @/,

We show below how to prove expressions of the form (z2’ = i) — ¢'(x, 2’), which we then use
to derive ®} from ®;_, in conjunction with (zz’ = i) — ¢'(x,2’). In particular we can derive
O, A((za! =1i) = ¢ (x,2")), equivalently Vea'((za’ < i — ¢ (x,2"))A(z2' =i — ¢'(x,2))),
equivalently Vez'((za’ < iV za’ =1i) = ¢'(x,2')), equivalently (via an equivalence shown in
the full version of this paper), Vza'(z2’ < i — ¢'(z,2')), which is the same as P.

How to formally prove (rxx’ = i) — ¢'(x,x’): For each gate g of C, in the order in
which the functions f; are defined, we can prove a line saying

(x2 =) = fo(x) = Jo()

where jgs(x) € {TRUE, FALSE} is the appropriate propositional constant. This is done by
using the extension-axiom line that defines f,, with gate ¢’s inputs. (If say g takes inputs
from ¢’ and g¢”, we use previous lines containing expressions (zz’ = i) — fy (z) = jg (),
(22’ = 1) = fyr(@) = Gy (2).

Letting ¢g(1),. .., g(m) be the sequence of gates, listed in the order in which their functions
fg1)s -+ fg(m) are defined, we have

(33.13, = Z) — /\ (fg(r) (33) = jg(r) (.’13), fg(r) (JJ/) = jg(r) (xl))

re[m]

It then suffices to prove

((LL'.T/ = Z) A /\ (fg(r)(m) = jg(r)(m)7 fg(r) (xl) = ]g(r)(ml))> - M

re[m]

which is a line of type (15), and can be proved by the procedure of plugging in the constants
i, Jg(r)(2), Jg(r) (') in place of the terms x, ', fy(r)(2), fg(r)(2') in the way described below
Equation (15). An error in the proof will correspond to this expression evaluating to FALSE,
and getting treated as TRUE.

To conclude, note that we can construct a small circuit that on input i € [22"], outputs
the above proof of (zz’ = i) — ¢'(x,z’). The circuit can be extended to a concise proof
of (17). <

4 Reduction from PPP to Wrong Proof

In this section we establish the following result:

» Theorem 4. Any problem that belongs to the complexity class PPP (which includes PPAD
and PPADS) is reducible to Wrong Proof (with respect to our deductive system Q-EFF of
Sections 2.1, 2.2).

The complexity class PPP is defined as the set of all problems reducible to the problem
Pigeonhole Circuit, which is informally described as follows: suppose we are given a boolean
circuit having n bits of input and output. Suppose that no input maps to the all-ones output.
By the pigeonhole principle, there must be a collision, a pair of input vectors that map to
the same output. The problem is to find a collision. Notice that this problem is in NP, since
a collision is easy to verify, but finding one seems hard. We use the following definition of
Pigeonhole Circuit.

37:13

ITCS 2018



37:14

Towards a Unified Complexity Theory of Total Functions

» Definition 5. An instance of Pigeonhole Circuit consists of a circuit C' having n input bits
and n output bits. A solution consists of either a n-bit string that C' maps to the all-zeroes
string, or two n-bit strings that C' maps to the same output string.

Proof. (of Theorem 4) We reduce from Pigeonhole Circuit to Wrong Proof. Given an
instance C' of Pigeonhole Circuit we need to construct (in time polynomial in the size of
() a circuit-generated proof Il (an exponentially-long, concisely-represented formal proof
containing a known contradiction) whose error(s) allow us to find solution(s) to C.

Recall that n-bit strings correspond with numbers in [2"] (2" being the all-zeroes string).
We include in II¢ a function f : [2"] — [2"], which we construct using Q-EFF according to
the first paragraph of Section 3.2. The (2" into 2™ — 1) pigeonhole principle assures us that

Aw,a) (@ £/ A f@) = F@)V (@) =2") (19)

Lemma 3 of Section 3.2 tells us how to generate a purported proof that (19) does not
hold; the proof will be incorrect, but from error(s) in that proof we can efficiently recover
satisfying assignments of (z # =’ A f(z) = f(2")) V f(x) = 2™, which in turn identify solutions
to the original PIGEONHOLE CIRCUIT problem C.

So the challenge is to write down a (correct) circuit-generated proof of (19). Let T¢
denote the formula of (19) (the “target” formula to be proved, for given C). The proof of
(19) has a known line containing T, whose formal proof begins as follows.

Let S¢ = 3x(f(z) = 2™). Then using the case analysis rule (4), T¢ is inferable from
Sc = Te and =S¢ — Te. S¢ — T¢ is straightforward; note that it is of the form:

JzA(z) — Iz, y(A(x) V B(z, 7))

In the full version of this paper we show how to prove this using Q-EFF.
So, the main challenge that remains is to generate a proof of

-Sc = Tc. (20)

We give the constructions of the formulae A;, C;, and F; discussed in Section 3. Thus,
A; asserts a property of some instance i that implies, non-constructively, the existence of a
solution. Cj is the explicit existential statement of a solution’s existence. F; is an extension
axiom of the form (13), defining the construction of function f;_; in terms of f;.

For i € [2"], i > 2, let A; be the sentence
Vx(xgi = fi(x) gi—l). (21)

A; states that f;([¢]) C [i — 1] (which implies, non-constructively, that f; has a collision in
the range [i — 1]).

For i € [27], i > 2, let C; be the sentence

Jdx # x'(m <i A2 <iA fi(x)=filz") AN fi(z) <i-— 1). (22)
C; states explicitly that f; has a collision in the range [i — 1], with the two colliding inputs in
the range [i]. The pigeonhole principle tells us that C; should follow from A4;, and we will

achieve this (i.e derive C; from A;) using exponentially many steps of a circuit-generated
proof.
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We include a sequence of extension-axiom lines — of type (13) — as follows. For i € [2"],

i > 2, line ¢(F};) contains expression F; defining function f;_; in terms of f; (see Figure 1).

We also use a special line £r — also an extension-axiom line of type (13) — that sets fan equal
to f: formally, £ contains the expression F := fon(z) <> f(2). In the full version we show
in detail how to prove Ag» based on F together with —S¢. For i € [2"], ¢ > 2, F; defines
fi—1 as follows.

i—2 if 2 <iAfi(i)=i—1A fi(x) 1

fia@) o4 16) i z<infili) <i-1Afiz)=i-1 (23)
fi(x) otherwise. (ie.x>1iV fi(z) <i—1)

F; states that f;_; is derived from f; as follows. f;_; and f; are intended to satisfy A;_;
and A; respectively, and suppose we know that f; satisfies A; and want to construct f;_; from
fi in such a way that f;_ satisfies A;_1. (23) ensures that for z € [i — 1], fi—1(x) € [ —2]. If
x € [i — 1] is mapped by f; to i — 1, it is redirected to ¢ — 2 if f;(¢) =i — 1, and if f;(4) is less
than ¢ — 1, it is redirected to f;(i). The construction is designed to allow us to reconstruct a
collision for f; based on an explicit statement of a collision for f;_1. For that, it does not
work to just take inputs that f; maps to ¢ — 1, and let f;_; send them to i — 2; the more
complicated rule of (23) seems necessary. The construction is related to the one of [9], that
also sets fi_1(z) to f;(i) whenever f;(z) =i — 1, but we have a different treatment of the
case that f;(i) = ¢ — 1, which allows us to recurse all the way down to ¢ = 2.

We define a sequence of lines of Il as follows. For all ¢ € [2"], ¢ > 3, we include lines
£(A;) (each line number £(A;) and its contents are efficiently computable from ), such that
L(A;) contains the expression:

£(A;) states that if function f;_; is constructed from f; according to formula F;, and f;
satisfies A;, then f;_; satisfies A;_1. ¢/(A;) and £”(A;) contribute to a formal proof of the
expression of £(A;); all these lines are distinct. In the full version we give details on how to do

this, hence proving f;([i]) C [¢ — 1] for all ¢ > 2, by backwards induction starting at f = fon.

Given all these lines of type (24), together with a line we can derive containing ~S¢c — Agn,
and the lines containing F;, we can infer a sequence of lines containing —Sc — A;, for all
7> 2.

Il contains a special line £(Cs), saying that if we have Ag, then Cy can be proved. Cs is
the “obvious” statement that f,, which maps both () and 3 to (1), has a collision. Line
¢(Cy) is of the form

U(Cy) - Ay — Co; (25)

for some other special line £'(C3) used in a single self-contained proof of (25). £(Cs) states
that Cs can be deduced without any further assumptions about f>. By construction, f;
maps both () and 2(® to (1), so we know where to look for a collision! In the full version
we give details on how to formally prove that f> has this “obvious” collision.

For i € [2"], i > 3, we include lines ¢(C;), (again, these line numbers and the lines
themselves are efficiently computable from 7), where ¢(C;) contains the expression

KI(CZ‘),EH(CZ') = (Az N F; A Cifl) — C; (26)

L(C;) states that if C;_; can be established, then given F; and A; we can deduce C; (a
collision for function f;) where ¢/(C;) and £”(C;) are some further lines used in the proof
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of (26). In the full version we give some more detail on how to construct a formal proof of
(26) using Q-EFF.

Putting it all together, we noted earlier that we have a sequence of lines containing
-Sc — A;, for i € [2™],4 > 2. We also know that C5 follows from Ay (25). We may use these,
along with the lines £(F};) that give us F;, and the lines ¢(C;) (i.e. of the form (26)) to deduce
(by repeated applications of modus ponens and conjunction introduction) =S¢ — Can; using
{r we get (20) as desired. This completes the construction of a formal proof according to
the strategy outlined at the end of Section 3. |

5 PPA and PLS

The analogues of Theorem 4 for the classes PPA and PLS are stated below. We omit here
the proofs, which are quite substantial but similar in spirit with that of Theorem 4, once
appropriate adjustments have been made for the combinatorial idiosyncracies of these two
classes. By the known inclusions, this covers all known syntactic subclasses of TEFNP. The
interested reader can see the details in the full version.

The analogue for PPA reduces from the problem LONELY as defined and shown PPA-
complete in Beame et al. [1]; for PLS we make use of the problem Iter shown PLS-complete
by Morioka [22] (Section 3.2).

» Theorem 6. Any problem that belongs to the complexity class PPA is reducible to Wrong
Proof.

» Theorem 7. Any problem that belongs to the complexity class PLS is reducible to Wrong
Proof.

6 Finitary Existential Sentences and TFNP

To end on a different note, let us look back at the five classes: All five correspond to
elementary combinatorial existence arguments (such as “every dag has a sink”, recall the five
bullets in the Introduction). Importantly, all five combinatorial existence arguments yielding
complexity classes are finitary: They are true of finite structures and not true of all infinite
structures. Is this a coincidence? Can there be an interesting complexity subclass of TENP
defined in terms of an existence argument that is not finitary, but is true of all structures,
finite and infinite?

Seen as sentences in logic, these combinatorial arguments are statements of the form
“for all finite structures (such as topologically sorted dags) there exists an element (a node)
that satisfies a property (has no outgoing edges).” The corresponding logical expression is a
sentence 3z®(Z) in predicate logic, involving a set of existentially quantified variables Z and
an expression ® with any number of other variables, as well as function symbols capturing
structures such as undirected and directed graphs, pigeonhole functions, or total orders and
potential functions. The “for all finite structures” quantification is implicit in the requirement
that the sentence 3z® () be valid on finite structures.

And conversely, it is easy to see any such sentence yields a problem FIND WITNESSs in
TFNP (and consequently a complexity class, through reductions). FIND WITNESSs is defined
as follows: “Given a finite structure for ®, where the finite universe can be assumed to be
an initial segment of the nonnegative integers and the structures are presented implicitly
through circuits computing the functions of ® on elements of the universe encoded in binary,
find a tuple Z of integers that satisfy ®.”
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“naive” choice of f;_1(x) for x such that f;(x) =i — 1, is to set f;_1(x) to be some
fixed value in [i — 2] (here, i — 2). We construct f;_; as shown in examples below.
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Figure 1 Construction of f;—1 from f; (re proof of Theorem 4), such that from f;(z) < i for
all z < i, we have fi_1(xz) <i—1 for all z <1 — 1. Dotted lines represent evaluations of f;_1 on
i, and we are just interested in f;_1 on the domain [ — 1]. Dashed lines are ones that have been
“redirected” in construction of f;_1.

The naive approach of setting f; to some value less than ¢, may create collisions for f;_; for which
we can’t reconstruct a collision for f; based on a collision we found for f;_;.
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We can now formulate the question in the section’s opening paragraph in logic terms:
All five sentences ® corresponding to the five known complexity subclasses of TEFNP are of
course true in any finite model, but all of them happen to be false for some infinite models
(for example, “every dag has a sink” fails for the totally ordered integers). Is this necessary?
Can there be an interesting subclass of TFNP based on a valid sentence 3z2®(Z), that is, one
that is true of all models, finite or infinite?

Employing an ancient theorem in Logic due to Jacques Herbrand [13] (1930) one can
show that the answer is negative:

» Theorem 8. For any valid sentence in predicate logic of the form 3z®(x), the corresponding
problem FIND WITNESSg can be solved in polynomial time.

Sketch. Herbrand’s theorem [13] states that any valid sentence
g -+ ok P(zq, ..., k)

is equivalent to a finite disjunction of the form

\ ®(ti, ... tar),

where the ¢;;’s are terms involving the function symbols and constants of ®, for some fixed
K depending on ®. Solving FIND WITNESSs entails evaluating each of these K logical
formulae of fixed size to identify the combination of terms, and thus ultimately elements of
the universe computed in linear time (with respect to the length of the input) through the
circuits of the input, that indeed satisfy ®. |

7 Discussion

We have defined PTFNP, a subclass of the total function problems with NP verification
of witnesses, which we see as a “syntactic” (in the sense of having complete problems)
approximation of TFNP. We showed that PTFNP contains the five known classes PPP, PPA,
PPAD, PPADS, and PLS.

Our understanding is that the present results are implicit in recent work in Bounded
Arithmetic, but our system Q-EFF is of interest since it seems to allow more direct reductions.
We also highlight the general topic of using more powerful logic to define more expressive
versions of the Wrong Proof problem, and whether new TFNP problems can be defined as a
result. With regard to the “rogue problems” such as Factoring and RAMSEY, these have
also been addressed in the Bounded Arithmetic literature, and similar results are obtainable
for RAMSEY [24, 15] and Factoring [20]. As noted in the Introduction, we are also working
towards using our approach to placing these problems in PTFNP [11]. The topic of more
powerful systems raises a general question of whether we reach a limit where no further
TFNP problems can be expressed. This relates to the open problem in propositional proof
complexity of whether there’s a most powerful proof system, for which the answer is believed
to be negative.

A related question is whether the reductions of the present paper should be modifiable
to work with a weaker proof system than Q-EFF, and the work of Beckmann and Buss [2]
indicates that this should be possible in principle, in particular that one should be able to
use a system with extended Frege lines defining propositional variables rather than functions.
With regard to the extended Frege function lines we use, it is tempting to try to define such



P. W. Goldberg and C. H. Papadimitriou

a function via its bit graph: instead of defining f, could we just introduce boolean variables
f(z) for each z € [2"], and have separate (standard extended Frege) lines for each of them?
This approach does not seem applicable, at least in a direct and straightforward way.
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