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Abstract
The sample complexity of learning a Boolean-valued function class is precisely characterized by its
Rademacher complexity. This has little bearing, however, on the sample complexity of efficient
agnostic learning.

We introduce refutation complexity, a natural computational analog of Rademacher complex-
ity of a Boolean concept class and show that it exactly characterizes the sample complexity of
efficient agnostic learning. Informally, refutation complexity of a class C is the minimum number
of example-label pairs required to efficiently distinguish between the case that the labels correl-
ate with the evaluation of some member of C (structure) and the case where the labels are i.i.d.
Rademacher random variables (noise). The easy direction of this relationship was implicitly
used in the recent framework for improper PAC learning lower bounds of Daniely and co-authors
[6, 8, 10] via connections to the hardness of refuting random constraint satisfaction problems.
Our work can be seen as making the relationship between agnostic learning and refutation im-
plicit in their work into an explicit equivalence. In a recent, independent work, Salil Vadhan
[25] discovered a similar relationship between refutation and PAC-learning in the realizable (i.e.
noiseless) case.
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1 Introduction

Statistical complexity characterizes the information theoretic threshold for the amount of
data required for any supervised learning task. However, the amount of data required for
efficient learning, whenever it is possible, can be significantly different from the statistical
complexity. For example, algorithms based on polynomial regression ([18, 19, 20]) guarantee
efficient (improper, i.e. return a hypothesis not necessarily in the target class) learning while
using data that is a polynomial factor larger than the statistical complexity. There is a
systematic effort to study the trade-offs between computational and statistical complexity
[4, 5] and a growing body of work has provided explicit examples [11, 7, 2] of natural settings
where efficient learning provably requires data that is at least a polynomial factor larger than
the statistical complexity under some plausible complexity theoretic assumptions.

In the light of the above work, we focus on obtaining a simple and useful characterization
of the sample complexity of efficient supervised learning. There’s a simple and elegant char-
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acterization of the statistical complexity of learning in terms of the Rademacher complexity 1.
In this note, we give a natural analog of Rademacher complexity that precisely characterizes
the amount of data required for efficient agnostic (i.e. noisy, see Definition 2) learning.

For a class C of concepts on Rn, any distribution D on Rn, the Rademacher Complexity
of C, Rm(C) is the following quantity:

Rm(C) = E
xi∼i.i.d.D

16i6m

 E
σi∼i.i.d.{±1}

16i6m

[
1
m

sup
c∈C

m∑
i=1

σic(xi)
] . (1.1)

Classical results [3] establish that Rm(C) = ε if and only if there’s an algorithm to learn C
over D with error at most ε with Θ(m) samples, thus characterizing the sample-complexity
of ε-error agnostic learning.

In this note, we propose a natural computational analog of Rademacher complexity, called
as the Refutation complexity and show that it exactly determines the sample complexity
of efficient agnostic learning. Given random labeled examples {(xi, yi)}i6m where xis are
chosen i.i.d. according to D, we define the problem of refutation as the task of distinguishing
between the following two cases:
(a) Structure: {(xi, yi)}i6m are i.i.d. from some distribution D′ with marginal on xis

being D and E(x,y)∼D′ [c(x)y] = Ω(1). That is, the given example-label pairs come from
a distribution that correlates with some c ∈ C, and

(b) Noise: yis are uniform and independent Rademacher random variables.
We define refutation complexity of C with respect to the distribution D at a running time
of T (n) as the smallest m for which there’s a T (n)-time test for distinguishing between
structure and noise cases above.

To motivate this definition, observe that we can interpret the statistical complexity (via
the connection to Rademacher complexity outlined above) of C over D as the smallest m for
which no concept in C correlates with purely random noise (the i.i.d. draws from {±1}.) Thus,
if the Rademacher complexity of C on D with m samples is small enough, then, given random
labeled examples {(xi, yi)}i6m, we can (via an inefficient procedure) distinguish between the
above two cases by computing the largest correlation of any c ∈ C when evaluated at xis
with the yis. Thus, we can equivalently define statistical complexity as the smallest m for
which the above structure vs noise test succeeds. Thus, refutation complexity can be seen as
a computational analog of Rademacher complexity.

The main result of this note is the following theorem:

I Theorem 1 ( Refutation Complexity = Agnostic Learning Complexity, Informal). C has an
efficient agnostic learning algorithm over a distribution D with m samples if and only if the
refutation complexity of C at some polynomial running time is at most O(m).

1.1 Comparison with [25]
In a recent, independent work, Vadhan [25] used similar arguments to establish a similar
equivalence to Theorem 1 between distribution independent PAC learning in the realizable
case (i.e. when the labels perfectly correlate with some concept in the target class) and a
slightly different notion of refutation. In this notion, the refutation algorithm is required to
distinguish the case that the sample that realizable (i.e., the labels agree with some concept

1 The related notion of VC Dimension of C characterizes the data required to learn C over worst-case
distributions.
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from the class) from the case that the labels in the sample are i.i.d. Rademacher random
variables.

Since agnostic learning is provably different from realizable PAC learning in general, the
notions of refutation that characterize the complexity of learning in the two models have
to be necessarily different. Another interesting point of difference is that our equivalence is
distribution-specific and thus slightly more fine-grained in that it allows relating learnability
on a given distribution to refutation on the same distribution. In contrast, Vadhan’s
characterization holds for distribution independent PAC learning. This difference arises
entirely due to the the difference in the black-box boosting algorithms one can use in PAC vs
agnostic settings2: in the PAC learning case, the boosting algorithms modify the distribution
of examples over the course of the execution and thus the characterization holds only in
a distribution independent setting. In the agnostic setting, there are distribution specific
boosting algorithms (such as that of [17, 14]) that work by changing only the distributions of
the labels while keeping the distribution of the example points unchanged. It is an interesting
direction to investigate notions of refutation that allow distribution-specific characterization
of PAC learning in realizable case.

It’s interesting to note how slight changes to in the formulation of the refutation problem
changes the model of learning that it characterizes.

1.2 Discussion
Proper vs Improper Learning and the Framework of [9]

The agnostic learning algorithm we obtain using a refutation algorithm is improper - that is,
it doesn’t necessarily produce a hypothesis from the class C. This is not accidental - it’s well
known that the flexibility of improper learning allows circumventing computational hardness
results that afflict proper learning. A simple example is the class of 3-term DNF formulas in
n variables: unless RP = NP, there’s no polynomial time proper learning algorithm for this
class [21], however, there’s a simple poly(n, 1/ε)-time improper learning algorithm for it (for
a discussion see, [24]). On the flip side, the power of improper learning makes the task of
proving lower bound against such algorithms harder. The equivalence between refutation
and agnostic learning holds for all (and thus, also improper) learning algorithms and thus
can serve as a useful handle in understanding the complexity of improper learning.

Indeed this connection and in particular, the implication that learning implies refutation
is implicit in the influential work of Daniely and co-authors [6, 10, 8] who showed (in the
language of this paper) that a refutation algorithm for the concept classes of halfspaces and
DNF formulas can be used to refute certain random constraint satisfaction problems [1, 12].
These works used such a reduction along with standard hardness assumptions for refuting
random CSPs to obtain the first hardness results for improper PAC learning for the above
classes.

Our equivalence establishes the converse of the connection in these works and makes
the connection between refutation and agnostic learning explicit. While a priori, it might
appear that refutation (which asks for distinguishing between a pure noise in the labels
from a correlated set of labels) is easier than agnostic learning, this work shows that any
lower bound on (improper) learning has to necessarily be a lower bound for an associated
refutation problem. Thus, to an extent, it shows that the above framework for improper
agnostic learning lower bounds is essentially complete.

2 We thank Salil Vadhan for pointing this out to us.
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Connections to Boosting/Property Testing

It is also illuminating to view the equivalence we show as saying that an oracle for refutation
is sufficient for agnostic learning. This naturally leads to the question of what kind of oracle
access to C is sufficient for (agnostic) learning. We discuss two natural oracles here: a
weak-learning oracle and a property-testing oracle.

Known boosting (see [15, 23], [17, 14]) algorithms imply that a weak-learning oracle is
sufficient for agnostically learning of C. A weak learning oracle takes random example-label
pairs and returns a hypothesis whose correlation with the labels from the input distribution
is at least an inverse polynomial fraction of the correlation of the best-fitting hypothesis
from C. In learning literature, this is sometimes referred to as a weak-optimization oracle
for C - in that, it gives a inverse polynomial (potentially improperly) approximation to the
correlation of the best fitting hypothesis from C. It is not hard to see that such an oracle is
enough to solve the refutation problem and thus is a potentially stronger access to C than
the refutation algorithm.

Our result implies that an much weaker algorithm is enough to get an agnostic learning
algorithm - the refutation oracle doesn’t return any hypothesis, it “merely” distinguishes
between the case that the labels are completely random and independent of the examples
from the case that the labels come from some distribution that correlates with some concept
in C.

It is also instructive to compare a refutation oracle (or a “structure“ vs ”noise” tester)
for C with a “property-tester” for C. An α-approximate property-testing algorithm for C
uses random example-label pairs 3 from some distribution and accepts if the labels achieve
a correlation of at least α with C and rejects if tevery c ∈ C has a correlation of at most
α− ε with the labels. We can interpret a property tester, thus, as a variant of the refutation
oracle that must treat a distribution on example-label pairs that has a correlation of at most
α− ε with every c ∈ C as “noise.” In particular, the notion of what is “unstructured/noise”
for a property tester is more stringent compared to a refutation algorithm. Indeed, this
is not surprising: while testing is known to be no harder than proper learning, it can be
harder than improper learning for some concept classes, once again illustrating the difference
between proper and improper learning [16].

Using Refutation to get Learning Algorithms

It will be extremely interesting to understand if the equivalence between refutation and
learning allows an application in the direction opposite to the one employed in the work
of Daniely and co-authors and get new algorithms for agnostic learning. This is perhaps
not too optimistic. The works of Daniely and co-authors establish a natural connection
between the refutation problem for a concept class and refuting random CSPs. There are
known algorithms for refuting random CSPs (see for e.g. [22, 13, 1]) that use techniques that
appear different from the usual tool-kit in agnostic learning (for e.g. the use of semi-definite
programming) that might prove useful in obtaining new agnostic learning algorithms by
building the required refutation algorithms.

3 Property testers are usually defined with α = 1 and are in general also allowed to use membership
queries. We use a definition that is similar in spirit but is more relevant for the comparison here.
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1.3 Proof Overview
It is easy to see that efficient learning implies efficient refutation. For the other direction, we
give an explicit, efficient algorithm that invokes the refutation algorithm a small number
of times to get an agnostic learner for the class C. This algorithm works in two steps - in
the first step, it uses a refutation algorithm to come up with a weak-agnostic learner: i.e.
a hypothesis that achieves a correlation with the labels that is some tiny fraction of the
correlation of the best hypothesis from C. In the second step, it combined an off-the-shelf
boosting algorithm with the weak learner above to get an agnostic learner with small error.

The key idea in the transformation of a refutation algorithm into a weak-learner is to view
the black-box refutation algorithm as a “code” for computing a function by manipulating
the example-label pairs that it takes as input. A simple hybrid argument then shows that
there’s a small list of hypotheses generated by manipulating the inputs to the refutation
algorithm that contains a good weak learner. We can find the best weak learner from the list
by evaluating the error of each of the hypotheses in the list over a fresh batch of samples
from the underlying distribution.

1.4 Preliminaries
We use Um to denote the uniform distribution over {±1}m for any m ∈ N. We define agnostic
learning here.

I Definition 2 (Agnostic Learning with respect to a distribution D). Let C be a class of
Boolean concepts C ⊆ {f : {±1}n → {±1}}. C is said to be ε-agnostically learnable in time
T (n, 1/ε) and samples S(n, 1/ε) if there’s an algorithm A running in time T (n, 1/ε) that
takes S(n, 1/ε) random labeled examples {(xi, yi) | 1 6 i 6 m} where (xi, yi)s are i.i.d. from
D′, such that the marginal on xi is D and outputs with probability at least 3/4, a hypothesis
h : {±1}n → {±1} such that E(x,y)∼D′ [1 [h(x) 6= y]] 6 infc∈C E(x,y)∼D′ [1 [c(x) 6= y]] + ε.

2 Refutation Complexity

In this section, we define refutation complexity of a class of hypothesis with respect to a
distribution D.

I Definition 3 (Refutation Algorithm for Distribution D). Let C ⊆ {f : Rn → {±1}} be a
class of Boolean concepts. Let D be a distribution on Rn.

A δ-refutation algorithm A for C on D with m = m(n) samples is a (possibly randomized)
algorithm that takes input an m-tuple of points {x1, x2, . . . , xm} ⊆ {±1}n and an m-tuple
of labels (σ1, σ2, . . . , σm) ∈ {±1}m and outputs either noise or structure with the following
guarantees:
1. Completeness: If {(xi, σi)}i6m are i.i.d. from a distribution D′ on Rn ⊗ {±1} such

that the marginal on Rn equals D and supc∈C E(x,σ)∼D′ [c(x)σ] > δ, then,

P
{(xi,yi)}i6m∼i.i.d.D′

internal randomness of A

[ output = structure] > 2/3.

2. Soundness:

P
(σ1,σ2,...,σm)∼Um

x1,x2,...,xm∼D
internal randomness of A

P[ output = noise] > 2/3.

ITCS 2018
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I Definition 4 (δ-Refutation Complexity). Let C ⊆ {f : {±1}n → {±1}} be a class of Boolean
concepts. Let D be a distribution on {±1}n.

The δ-refutation complexity of C on a distribution D with running time T (n) denoted by
RT (n),δ(C), is the smallest m = m(n, δ) such that there exists a δ-refutation algorithm for C
on D running in time T (n) and m-samples. When T (n) is not stated explicitly, we assume
T (n) = poly(n) for some fixed polynomial in n.

I Remark. Observe that the refutation complexity, just as Rademacher complexity is
distribution dependent. Further, for T (n) = ∞, δ-refutation complexity degenerates into
Rademacher complexity. At non-trivially bounded running times (of special interest, of
course, is polynomial time algorithms), refutation complexity captures the sample complexity
of efficient agnostic, improper learning C over D as we show next and thus can be much
larger than the Rademacher complexity.

3 Learning vs Refutation Complexity

In this section, we establish the equivalence between agnostic learning a class C over a given
distribution D and the refutation problem with respect to the distribution D for the concept
class C.

We begin by showing the Learning implies Refutation, which is the easy direction.

I Lemma 5 (Learning implies Refutation). Suppose C is ε-agnostically learnable in time
T (n, ε) and samples S(n, ε) over the distribution D. Then, the refutation complexity of C
with respect to the distribution D at the running time T (n, δ/4) is at most 2S(n, δ/4)+128/δ2.

Proof. Let m = S(n, δ/4) + 64/δ2.

The δ-refutation algorithm gets input x1, x2, . . . , x2m and σ1, σ2, . . . , σ2m. It runs the
ε-agnostic learner on examples {(xi, σi)}mi=1 for ε = δ/4 and obtains a hypothesis h. Let
corh = 1

m

∑2m
i=m+1 σi · h(xi). If corh > δ/2, output structure otherwise output noise.

We now analyze the completeness and the soundness properties of this algorithm.
First, suppose {(xi, σi)}i62m were i.i.d. according to some D′ such that the marginal on

Rn equals D. Let corf (D′) = E(x,y)∼D′ [f(x)y]. Then, with probability 2/3 over the draw of
the sample, the agnostic learner produces a hypothesis h such that corh > corh(D′)− ε >
corc(D′) − 2ε for every c ∈ C. Thus, if corc(D′) > δ, then, corh > δ − ε/2 > δ/2. Thus, in
this case, the algorithm above outputs structure as desired.

Now suppose σis are i.i.d. Rademacher and independent of xis. Then, since σm+1, . . . ,∼2m
are independent of σ1, . . . , σm, corh 6 4√

m
< δ/2 using that m > 64/δ2. J

I Lemma 6 (Learning by Refutation). Suppose that the δ-refutation complexity of a class of
Boolean concepts C with respect to a distribution D at a running time T (n) is m = RT (n),δ(C).
Then, there’s an algorithm that runs in time T (n)m

2

ε2 and uses O(m
3

ε2 ) samples to (δ + ε)-
agnostically learn C on D.

The proof is in two steps. In the first step, we show that the refutation algorithm yields
a weak agnostic learner for C with respect to the distribution D. In the second step, we use
the distribution specific agnostic boosting algorithm (see [17]) to boost the accuracy of the
weak learner to obtain an agnostic learner. We start by defining a weak-agnostic learner :

I Definition 7 (Weak Agnostic Learner). An (γ, α)-weak agnostic learner for a Boolean
concept class C over a distribution D is an algorithm that takes input random examples
from a distribution D′ on example-label pairs (x, y) such that the marginal on x is D such
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that with probability at least 3/4 over its random input outputs a (randomized) hypothesis
h : {±1}n → {±1} such that E(x,y)∼D′ [y · h(x)] > γ(supc∈C E(x,y)∼D′ [y · c(x)])− α.

I Lemma 8 (Refutation to Weak Agnostic Learner). Suppose that the δ-refutation complexity
of a class of Boolean concepts C with respect to a distribution D at a running time T (n) is
m = RT (n),δ(C). Then, there’s an (γ, α)-weak agnostic learner for C on distribution D that
runs in time T (n) and samples m(n) where α = δ · γ, γ = 2

3m .

We describe a natural class of candidates for a weak learner that come out of running the
refutation algorithm on appropriately chosen hybrids of the distribution D′ and D × U1. We
begin by defining a class of 2(m+ 2) different functions denoted by Wi,b : {±1}n → {0, 1}
for 0 6 i 6 m+ 1 and b ∈ ±1 produced by taking these hybrids. Our weak learners will be a
simple transformation of this class.

Algorithm 1 Hybrid Functions Wi,b

Input: x ∈ Rn, b ∈ {±1}.
Output: Wi,b(x) = z ∈ {±1}.
Operation:

1. Draw (x1, σ1), . . . , (xi−1, σi−1) i.i.d. from D × U1.
Draw (xi+1, yi+1), (xi+2, yi+2) . . . , (xm, ym) i.i.d. from D′.

2. Run the δ-refutation algorithm on input
(x1, σ1), (x2, σ2), . . . , (xi−1, σi−1), (x, b), (xi+1, yi+1), . . . , (xm, ym).

3. Let Wi,b = 1 if the refutation algorithm returns structure and 0 otherwise.

We make some simple observations about Wi,b that will come handy in the argument
below.

Observe that Wm+1,b is the function that evaluates to 1 if the output of the refutation
algorithm on examples drawn from D and labels i.i.d Rademacher variables is structure.
On the other hand, W0,b is the function obtained when the refutation algorithm is run on
example-label pairs from D. Finally, observe that

E
b∼U1

E[Wi,b(x)] = E
(x,y)∼D

E[Wi+1,y(x)] (3.1)

Here, the inside expectation is over all the random choices within the procedure for computing
Wi,bs above. We can now present our candidate weak learners.

Candidate Weak Learners

For every 0 6 i 6 m+ 1, let hi(x) = Wi,+1(x)−Wi,−1(x).

Proof of Lemma 8. Our weak learning algorithm is given access to random labeled examples
from a distribution D′ on Rn ⊗ {±1}. The weak learner will draw a sample from D′ of size
O(logm) from D′ and chooses the hi that has the maximum correlation with the labels.
Observe that with O(log (m)) samples, the correlations of hi on D′ will be faithfully preserved
with 2/3 probability. Thus, to complete the proof, we only need to argue that one of the his
is always an (α, γ)-weak learner.

To show this, we must argue that there exists an 0 6 i 6 m+ 1 such that:

E
(x,y)∼D′

[y · hi(x)] > 2
3m sup

c∈C
E

(x,y)∼D′
[c(x) · y]− 2

3mδ.

ITCS 2018
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Observe that the guarantees of the weak learner are trivial if supc∈C E(x,y)∼D′ [y ·c(x)] < δ.

Thus assume that supc∈C E(x,y)∼D′ [y · c(x)] > δ. In this case, we will show that
E(x,y)∼D′ [hi(x)y] > 2

3m > 2
3m supc∈C E(x,y)∼D′ [c(x) · y]− 2

3mδ.

Now, observe that over the randomness of both the refutation algorithm and over the
draw of i.i.d. sample from D′ of size m = S(n), E[W0,b(x)] > 2/3 and E[Wm+1,b(x)] 6 1/3
for any b. Thus,

m∑
i=0

E[Wi,y(x)−Wi+1,y(x)] > 1/3,

where the expectation is over the randomness in the draw (x, y) ∼ D′ and over the randomness
in Wi,y for 0 6 i 6 m+ 1.

Thus, there must exist an i such that E[Wi,y(x)−Wi+1,y(x)] > 1/3m. Observe that by
construction

Wi,y(x) = y + 1
2 ·Wi,1(x)− y − 1

2 Wi,−1(x) = y · Wi,1(x)−Wi,−1(x)
2 + 1

2(Wi,1(x) +Wi,−1(x))

= 1
2y · hi(x) + 1

2(Wi,1(x) + Wi,−1(x)). (3.2)

Next, observe that by (3.1), E[ 1
2 (Wi,1(x)+Wi,−1(x))] = E[Wi+1,y(x)]. Taking expectations

on both sides of (3.2) and rearranging, we have: E[y · hi(x)] > 2
3m .

This establishes that for γ = 2
3m and α = δ · γ our algorithm returns (α, γ)-weak agnostic

learner as desired. J

We can now use boosting to get a strong agnostic learner for C over D by using the weak
learning algorithm along with a boosting algorithm. Specifically, we will use the result of
Kalai and Kanade [17] (see also [14]) who showed the following agnostic boosting algorithm
that takes a (γ, α)-weak learner and outputs a hypothesis whose error is competitive within
α with respect to the best fitting hypothesis from the class C.

I Fact 9 (Agnostic Boosting [17]). Let C be a class of Boolean concepts. Let D be a distribution
on {±1}n and ε > 0.

There’s an algorithm that takes random labeled examples from a distribution D′ on
example-label pairs (x, y) such that the marginal on x is D, invokes a (γ, α)-weak learner for
C O( 1

γ2ε2 ) times and outputs a hypothesis h : {±1}n → {±1} such that

E
(x,y)∼D′

[1 [h(x) 6= y]] 6 inf
c∈C

E
(x,y)∼D′

[1 [c(x) 6= y]] + α/γ + ε.

The algorithm needs S(n) ·O( 1
γ2ε2 ) samples and runs in time T (n) ·O( 1

γ2ε2 ) where S(n) and
T (n) are the sample complexity and the running time respectively of the (γ, α)-weak agnostic
learner.

We get Lemma 6 as an immediate corollary of Fact 9 and Lemma 8.
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