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Abstract
We consider the problem of fault-tolerant parallel exhaustive search, a.k.a. “Treasure Hunt”,
introduced by Fraigniaud, Korman and Rodeh in [13]: Imagine an infinite list of “boxes”, one
of which contains a “treasure”. The ordering of the boxes reflects the importance of finding the
treasure in a given box. There are k agents, whose goal is to locate the treasure in the least
amount of time. The system is synchronous; at every step, an agent can ”open” a box and see
whether the treasure is there. The hunt finishes when the first agent locates the treasure.

The original paper [13] considers non-cooperating randomized agents, out of which at most
f can fail, with the failure pattern determined by an adversary. In this paper, we consider
deterministic agents and investigate two failure models: The failing-agents model from [13] and
a “black hole” model: At most f boxes contain “black holes”, placed by the adversary. When an
agent opens a box containing a black hole, the agent disappears without an observable trace.

The crucial distinction, however, is that we consider “barely communicating” or “indirectly
weakly communicating” agents: When an agent opens a box, it can tell whether the box has
been previously opened. There are no other means of direct or indirect communication between
the agents.

We show that adding even such weak means of communication has very strong impact on
the solvability and complexity of the Treasure Hunt problem. In particular, in the failing agents
model it allows the agents to be 1-competitive w.r.t. an optimal algorithm which does not know
the location of the treasure, but is instantly notified of agent failures. In the black holes model
(where there is no deterministic solution for non-communicating agents even in the presence of a
single black hole) we show a lower bound of 2f + 1 and an upper bound of 4f + 1 for the number
of agents needed to solve Treasure Hunt in presence of up to f black holes, as well as partial
results about the hunt time in the presence of few black holes.
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1 Introduction

Searching is one of the most studied problems in computer science. As the search space is
often huge, in order to speed up the search time a frequently used approach is to resort to
parallel and/or distributed search. However, employing a large number of parallel searching
agents gives rise to two important issues:
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how to efficiently coordinate them, so that the agents complement each other’s work
instead of being an obstacle to each other
how to deal with the inevitable failures, so that the search is successfully and efficiently
completed and no area of search space is omitted.

On one hand, a tight coordination is desired, so that the agents can efficiently split
their workload and react to behaviour/observations of other agents. On the other hand,
the coordination itself incurs costs that might overwhelm any gains obtained by using more
agents. This has motivated research into non-coordinated and weakly coordinated search
agents, as lack of coordination brings inherent robustness and resilience to failures and
tampering.

There are numerous variants of the search problem, differing in the structure of the search
space, the power and the number of search agents, the communication mechanisms available
to them and in the search space itself, the failure models, termination conditions as well as
cost and payoff functions.

The particular variant of the search problem we are interested in has been introduced by
Fraigniaud, Korman and Rodeh in [13]. It can be seen as an abstraction of a distributed
exhaustive search as employed by BOINC [2] (for Berkeley Open Infrastructure for Network
Computing), made famous for SETI@home. The goal is to exhaustively search the search
space, until a desired item (“treasure”, e.g. SETI signal, cryptographic key, . . . ) has been
found. The search space is linear in nature, in the sense that there is a total ordering of the
candidate solutions: given that a solution has not been found among the smaller candidates,
the next candidate contains the most preferred solution, is the most likely to contain a
solution, or is the least costly to check.

In this setting, a central server controls and distributes the work to volunteers. While
typically there is a strong control over work tasks (which can be made of desired granularity
and uniform size), there is very little control over the volunteer agents executing these work
tasks. Therefore, it is highly desirable (for practical, security and anonymity reasons) to
have no direct communication channels between the worker agents. Furthermore, for legacy
and efficient implementation reasons, it is unfeasible to add environmental communication
channels (e.g. whiteboards at the nodes of the search space). Hence, non-coordinated
protocols are a very good match. It has been shown in [13] that by employing randomized
agents, the cost of non coordination can be as low as a factor of 4.

Still, in this setting, there is a basic coordination mechanism which is always present, by
the very nature of the setting: For each work task, the server knows whether it has been
already solved or not. The central idea of this paper is to investigate how much can this
essentially free information help in efficiently solving the treasure hunt problem.

2 Model, Outline and Related Work

Consider a Treasure Hunt (parallel linear search) problem: Given is a (potentially infinite)
sequence of boxes, one of which contains a treasure. There are k deterministic agents in the
system, each with its own unique ID from {1, . . . , k} 1. Apart from the IDs, the agents are

1 In fact, it is sufficient that the IDs are unique, and from a range {1, . . . ,MAXID}, where MAXID is
an a-priori known upper bound on a maximal ID. A preprocessing phase of cost O(f log k logMAXID)
(where f is an upper bound on the number of failures/black holes) can compact the IDs into the desired
range, using standard parallel processing techniques. In order not to detract from the main focus of our
paper, we prefer to assume this has already been done prior to commencing the treasure hunt.
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identical, and have no means of communication. The system is synchronous and in each step
each agent may open one box to check whether it contains the treasure. We consider only
non-conflicting schedules2, i.e. schedules with the property that, during any time step, each
box is being accessed by at most one agent. When the box containing the treasure is opened,
the hunt is finished. The goal is to minimize the hunt time.

In a reliable system, k agents can locate the treasure in dx/ke steps, where x is the
(unknown) location of the treasure: in i-th step, the agent j simply opens the box k(i−1) + j.
Let us define the speedup as lim infx 7→∞ x/T (k, x) where T (k, x) is the hunt time with k

agents, if the treasure is in box x. Hence, in a reliable system, k agents achieve a speedup of
k. However, the just mentioned simple algorithm is very sensitive to errors: a failure of a
single agent may lead to the treasure not being found at all. In this paper we study faulty
systems; in particular we investigate treasure hunt under two failure models:

in the failing agents model, also used in [13], at most f < k agents may fail at any time
during the computation. The failure pattern describing at what times which agents fail is
chosen by an adversary.
in the black holes model, we assume that at most f of the boxes contain a black hole.
Whenever an agent opens a box with a black hole, the agent disappears without any
trace. Again, the locations of the black holes are chosen by the adversary.

Consider first the failing agents model. Denote Tf (k, x) the hunt time with k agents,
taken as the worst case over all possible failure patterns in which up to f agents fail. Clearly,
f = k−1 failing agents may be tolerated by a trivial algorithm in which every agent performs
a sequential scan, having Tf (k, x) = x+ k 3. However, this algorithm achieves only speedup
of 1. Moreover, for f = k−1 essentially nothing better can be done, since the best achievable
speedup for f failing agents is k/(f + 1) (see Claim 3.3).

The situation is even more bleak in the black hole model. Here even a single black hole
makes the problem unsolvable in the deterministic setting (Claim 3.5). The proof of this
heavily relies on the fact that the number of boxes is unbounded. If that is not true, the
problem becomes solvable – Corollary 4 shows that treasure hunt can be solved by O(

√
n lnn)

agents, where n is the number of boxes. The situation in randomized setting remains open.
The main contribution of this paper is to show that even a very limited means of

communication have great impact on the solvability of the problem. The sole means of
communication provided by the system is the following: When an agent opens a box, it
learns whether this box has been opened before.

Even though the agents have no way to directly communicate, they can deduce the
presence of faults from the presence of closed boxes which should have been opened by
the agents that died. However, such boxes can be identified only by opening them, thus
destroying any evidence; this read-once property makes algorithms in this setting rather
tricky.

As we shall see shortly in Claim 3.6, even this indirect communication channel increases
the power of the system: e.g. three agents can find the treasure in the presence of one black
hole. The aim of this paper is to investigate the power of this indirect communication. In
particular, the two central questions we try to answer are “How fast can barely communicating
agents find the treasure in the failing agents model?” and “How many black holes can be
tolerated in the black hole model?”.

2 This simplifies arguments and technical issues; as we will see, the cost is negligible.
3 The additive term is present because in order to ensure a non-conflicting schedule, the agents start their

scans one after another.

OPODIS 2017
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For the first question, note that no speedup is possible in any of these models: indeed, in
both failure models it is possible that k− 1 agents die right at the beginning, leaving a single
deterministic agent to do essentially the whole search. That’s why we turn to competitive
analysis, which is a well-established tool for analyzing similar types of adversarial settings,
for the measurement of time efficiency: consider a setting where the agents are immediately
notified about a failure (or, in the black holes model, when an agent enters a black hole). In
this setting, there is a simple optimal algorithm which in each step assigns all k′ living agents
to the first k′ unopened boxes. We compare the hunt time of a distributed algorithm to the
hunt time of this optimal algorithm. In particular, the competitive ratio of an algorithm
with k agents is rk = lim supx 7→∞ supF TF (k, x)/OPTF (k, x) where F is the failure pattern
describing at what times which agents fail, x is the location of the treasure, and TF (k, x)
(resp. OPTF (k, x)) is the hunt time of the algorithm (resp. of the optimal algorithm). This
measure is somewhat similar to the non-coordination ratio of Fraigniaud, Korman, and Rodeh
[13]; the difference is that the latter considers the ratio of expected speedups, and as we have
seen the speedup is not useful in the deterministic case. Also note that if we fix a failure
pattern in which k − 1 agents die at the beginning, the measure becomes directly related to
speedup.

2.1 Our Results
We show that two agents (with the possibility that one of them fails) can achieve hunt time
TF (2, x) ≤ OPTF (2, x) + O(

√
x) (Claim 3.4). Since OPTF (2, x) ≥ x/2, the algorithm is

1-competitive. This result is generalized to k agents with the possibility that k − 1 of them
fail in Theorem 2, in which case a hunt time TF (k, x) ≤ OPTF (k, x) + O(k3√x) can be
achieved, again yielding a 1-competitive algorithm.

For the systems with black holes, we show that 2f + 1 agents are needed in order to
guarantee a successful treasure hunt with f black holes (Theorem 6). We provide an upper
bound in Theorem 8, showing that 4f+1 agents are sufficient. The downside of the algorithm
from Theorem 8 is that if the treasure is located at box x, boxes up to O(xf2) are used,
making heavy use of the fact that the number of boxes is unlimited. At the expense of
using O

(
(f ln f)2) agents, we develop in Theorem 9 an algorithm that uses only boxes up to

x+O
(
(f ln f)2) in the case the treasure is in box x. This algorithm can be tweaked to work

also for the setting where the number of boxes is finite (by having a set of agents dedicated
to exploring the last O

(
(f ln f)2) boxes).

2.2 Related Work
The first work evaluating the search time as a function of the location of the searched item
is [4, 5]. In this paper, which became a classic of online computing, the authors studied the
cow-path problem with a single agent, and showed that locating the treasure (gate in their
case) takes time 9d, where d is the distance from the origin. As in our model, the search
space is linear in nature and the search is for a single item. However, the principal difference
is that unlike in our model in which the agents have direct access to boxes and pay unit price
to access any box, in [5] the agent has to arrive to the box in order to search it, paying cost d
to reach a box at distance d from its current location. In fact, in [5] authors consider several
variants of the search problem, including searching in 2D and searching for large objects
of known shape (lines, circles) but unknown location. [3] considers parallel search of large
object by two robots, while the randomized version of the original cow-path problem was
studied in [16]. The generalization of the cow path problem to many agents is studied in [7],
where it is shown that independently of the number of agents, the group search cannot be
performed faster than in time 9d− o(d).
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A closely related research has been focused on ANTS problem, introduced in [12] and
motivated by modeling ants foraging for food. The agents (ants) are randomized non-
communicating Turing machines; the goal is to locate a treasure placed adversarially at
some distance d from the origin. It is shown that n ants are able to achieve speedup of n,
locating the treasure in time O(d+ d2/n). Further work focused on limiting the power of
the agents to finite machines [11] (but adding local communication), as well as considering
agent failures [20]. In [21], the trade-off between the speedup and selection complexity of the
ANTS problem is investigated, where the selection complexity is a measure of how likely
the search strategy is to evolve in a natural environment. In [8], an infinite d-dimensional
grid is explored by a group of probabilistic finite automata that can communicate only in
a face-to-face manner. The aim is to find a hidden treasure, and the main question is how
many agents are required to guarantee a finite expected hitting time. The destructive-read
aspect of opening boxes in our model corresponds precisely to the ANTS model with a single
pheromone. However, the crucial difference from our model is that ants have to pay the cost
of travelling to the searched location, while in our model any box can be accessed directly at
a unit cost.

Another closely related area of research deals with variants of the do-all problem: there
are p processors that must collectively perform n tasks, such that each task is performed by
at least one processor. The problem has been analyzed in a number of settings: synchronous
processors with crashes (and possible restarts) under various modes of communication
(full knowledge, message passing, etc.), asynchronous processors with adversarially limited
rendezvous communication, etc. For a survey of results see [14].

Treasure hunt as a rendezvous between a searching agent and a static one has been
studied in general graphs in [25, 26], in the context of universal traversal sequences. Finite
search space, paying for edge traversal and a single searching agent make these results only
tangentially relevant to our work. For a survey of results about the treasure hunt and
rendezvous of two agents see also the book [1].

There is a long history of searching with failures in the classical Ulam-Renyi two players
search game, where the failures represent incorrectness of the received answers. See [23] for
a comprehensive survey of older results, and [15] for an example of more recent result in this
area. Still, these works are only remotely related to our results.

In the black hole search problem introduced in [10, 9] (see [24] for a recent survey), some
nodes of the network are black holes – nodes which destroy without observable trace any
agent that enters them. The goal of the agents is to explore the network and locate all black
holes. As in the ANTS problem, the agents pay for moving along the network, however, the
primary focus is on establishing the number of agents necessary/sufficient to locate the black
holes. Another difference from our setting is that the black holes search is considered solved
only when all black holes have been identified, while in treasure hunt the hunt ends when
the first agent locates the treasure.

The paper motivating our work and the one with the model closest to ours is [13], in which
the authors show that k randomized non-cooperating agent achieve expected speedup of
k/4 + o(1) in solving the linear treasure hunt problem. In a recent follow-up [18], the authors
investigate a variant of the problem, where the treasure is placed uniformly at random in one
of a finite, large, number of boxes. They devise a non-coordinating algorithm that achieve a
speed-up of k/3 + o(1). In [19], an optimal algorithm for the case when the treasure is placed
randomly with a known distribution is presented, and its running time is calculated for
some specific distributions. The key differences are that we consider barely communicating
deterministic agents and extend the results also to the black holes model of failures.

OPODIS 2017
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A somewhat related paper is [6], in which a similar problem is studied w.r.t. advice
complexity: Given a number of n closed boxes, an adversary hides k <

√
n items, each of

unit value, within k consecutive boxes. The goal is to open exactly k boxes and gain as many
items as possible.

3 Results

3.1 Building Blocks
As a point of interest, observe that given a long enough sequence of boxes guaranteed to
not have been opened yet, the agents may implement any fault-tolerant message passing
protocol; we present a general approach here. However, directly applying this approach on
standard fault-tolerant message-passing protocols would generally result in too high search
complexity. In the rest of the paper we use more efficient solutions specifically tailored to
the problem at hand.

Let us consider the usual synchronous setting with k processors that start with some
input values, and perform an r-round protocol, where in every round each processor receives
messages from all other processors, performs some local computation, and sends messages to
other processors. After r rounds, each processor has some output value. Moreover, a number
of processors may crash during the protocol; in particular, a processor may also crash in the
middle of the sending phase, in which case the messages to an arbitrary set of processors are
delivered. Suppose that we have k agents that are assigned the same input values as the
processors. We have the following observation:

I Claim 3.1. Consider a message passing protocol with k processors and r rounds, that
exchanges m-bit long messages, and tolerates 2f processor-crashes. This protocol can be
implemented by k agents in 2k(r − 1)(m+ 1) steps in the presence of 2f agent failures (or
f black holes), provided that at the beginning the agents agree on a set of (r − 1)k2(m+ 1)
unopened boxes.

Proof. The unopened boxes will be viewed as forming an arrayM [t, i, j], where t = 1, . . . , r−1
denotes the round, and i, j = 1, . . . , k are a pair of agents. The entry M [t, i, j] consists of
m + 1 boxes that represent a message sent from processor i to processor j in t-th round.
Each round t of the protocol is simulated as follows: at the beginning each agent j checks all
entries M [t− 1, i, j], i = 1, . . . , k (if t > 1). If the last (i.e. m+ 1st) box from an entry is
opened, it signals that the writing of M [t− 1, i, j] was successful, and in that case j considers
the opened/unopened status of the first m boxes of M [t−1, i, j] as bits of the message from i.
Then agent j performs the local computation of processor j, and then writes values M [t, j, i],
i = 1, . . . , k based on the messages sent by the protocol. The last entry of M [t, j, i] is opened
to signal successful write. Both reading and writing of a round require k(m+ 1) time steps,
with the exceptions that there is no read phase in round 1, and no write phase in round r.
So overall, the simulation takes 2k(r − 1)(m+ 1) steps. Since no messages are sent in the
last round, the overall number of boxes used by the communication is (r − 1)k2(m+ 1).

Clearly, if an agent fails, it can be interpreted as a failure of a processor in the message-
passing protocol. The last bit of M [t, i, j] ensures that if an agent fails in the middle of
writing an entry, incorrect message will not be considered.

On the other hand, note that every box is opened by at most two agents. Hence, a black
hole can kill at most two agents, which leads to a crash of at most two processors. J

I Remark. Note that in the end, some boxes of M [t, i, j] may remain unopened and hence
need to be explicitly “cleaned” later on.
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Observe that if in each round each processor communicates with at most one counterpart,
the time complexity is 2r(m + 1). Now we sketch how the simulation of message passing
mechanism from the previous protocol can be used to compact the agents’ IDs from a set
S = {1 . . . ,MAXID} to {1, . . . k}.

Let T be a complete binary tree with leaves corresponding to the set S. The leaves
representing the ID of some agent are assigned to that agent, other leaves are free.
Each internal vertex is assigned to the agent with the smallest ID in its subtree, or is free,
if there is no such agent. Note that this assignment can be constructed level-by-level: for
each internal vertex v there are at most two candidate agents. They don’t know each
other IDs, but may use a pre-determined place in the scratchpad (depending only on v)
to exchange messages and find out the IDs. Hence, from that point on each agent knows
which vertices are assigned to it.
Use a message passing converge-cast in the tree (each agent simulates all vertices assigned
to it) to collect the number of agents to the root. Along the way, collect also the number
of active agents in each left and right subtree.
Send this information back towards the leaves, where each agent computes its rank.
Verify that each agent has computed its rank: Agent with rank i writes in row i of a
k×k scratchpad and afterwards reads column i of the scratchpad. The number of opened
boxes must equal the computed number of agents.
If the verification fails (there must have been failure during the computation), repeat the
whole process again.

As the depth of the tree is logMAXID and f+1 repetitions are sufficient to have a failure-
free run, the computed values are at most k, and in each round each node communicates
only with its children and parent, we obtain:

I Claim 3.2. The processor labels can be compacted from {1 . . . ,MAXID} to {1, . . . k} in
O(f log k logMAXID) time steps.

Of course, compacting the IDs opens the boxes used in the scratchpads and can mess-up a
subsequent treasure hunt algorithm. In some algorithms (e.g. for Theorem 8), it is sufficient
to remember where the scratchpads used in the preprocessing end, so the new scratchpads
needed use unopened boxes. Otherwise, a subroutine using non-communicating agents can
be used to ensure opening of all boxes located in the pre-processing’s scratchpads.

In the sequel we shall use the following coordination problem (actually a binary consensus
on whether the agent 1 is alive) as a building block in more advanced algorithms: An
unknown subset of the agents is alive. There is a distinguished leader agent all alive agents
agree on (w.l.o.g.4 agent 1); however, the leader might not be alive. All agents have to agree
on a common boolean value, such that if 1 was dead at the beginning of the protocol, all
agents agree on false, and if 1 was alive and there were no faults during the protocol, all
agents agree on true. In view of Claim 3.1, we could use a well known simple consensus
protocol (see e.g. [22]) to solve the problem in O(k2) steps using O(k3) boxes. However,
there is a more efficient solution:

I Lemma 1. The coordination problem can be solved in 2k−2 steps, provided that the agents
agree on a set of k(k − 1)/2 unopened boxes.

4 If the agreed-upon leader is i, the agents cyclically assign themselves virtual IDs such that i gets 1:
agent (i + j) mod k gets virtual ID of 1 + j mod k.

OPODIS 2017
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Proof. The boxes will be viewed as an upper triangular matrix M [i, j], i = 1, . . . , k; j =
i+ 1 . . . , k, such that open box M [i, j] is a signal from agent i to agent j that agent 1 was
alive at the beginning of the protocol.

Each agent has a boolean value that is initialized to true for agent 1, and false for other
agents. The algorithm for each agent consists of two phases. In the look phase, agent i > 1
in step i+ r − 1 opens box M [r, i] for r = 1, . . . , i− 1. If it finds the box already opened, it
sets its value to true. Afterwards, in the shout phase, an agent with value true opens box
M [i, r] in steps i− 2 + r for r = i+ 1, . . . , k. Note that the agent 1 (if alive) skips the look
phase and proceeds directly to the shout phase.

If agent 1 is not alive at the beginning of the protocol, by a simple minimization argument,
no agent can acquire value true: First, note that for every box M [i, j], if the agent i has
value true, it will open M [i, j] before agent j opens it. Let t be the first time when some
agent i obtains value true. To do so, it must have opened an already opened box M [t− i, i],
i.e. the agent t− i already had a value true – a contradiction.

Further, if agent 1 is alive, and there are no faults, it successfully opens all boxes M [1, i],
and subsequently every agent j finds an open box at M [1, j], acquiring value true.

Finally, we argue the agreement, i.e. if there is some surviving agent that finishes with
value true, then all surviving agents finish with value true. Let i be the smallest5 surviving
agent that finished with value true. Then i opened boxes M [i, j] for j > i in its shout phase,
and all larger surviving agents opened those boxes in their look phases and hence gained
value true. J

3.2 Hunt Time in the Failing Agents Model
First let us observe that in systems without communication, the best possible speedup is
k/(f + 1):

I Claim 3.3. Consider a system with k non-communicating agents, in which at most f < k

agents may fail. There is an algorithm that achieves hunt time Tf (k, x) ≤ x(f + 1)/k+
(

k−1
f

)
.

Moreover, for any algorithm, Tf (k, x) ≥ x(f + 1)/k.

Proof. For the upper bound, let m =
(

k
f+1
)
. We construct a schedule for m boxes and k

agents, such that after t =
(

k−1
f

)
= m(f + 1)/k steps, every box is opened by f + 1 distinct

agents. The algorithm repeats this schedule in sequence for first, second, etc. m-tuple of
boxes. Hence, if the treasure is somewhere in the i-th tuple (i.e. dx/me = i), at least one
agent opens the box with the treasure by the time

ti ≤ t
( x
m

+ 1
)

= x
f + 1
k

+
(
k − 1
f

)
.

What remains to be shown is how to construct the schedule. Consider a bipartite graph with
partitions A, B, where A contains k vertices, and B contains

(
k

f+1
)
vertices, corresponding

to all f + 1 element subsets of A. An edge connects every vertex from v ∈ A with all
vertices from B, such that v is in the corresponding set. Obviously, this graph has maximum
degree t =

(
k−1

f

)
, and following König [17], it can be colored by t colors. This coloring is

naturally interpreted as a schedule: an agent corresponding to a vertex from A opens a box
corresponding to a vertex from B in time that is represented by the color of the edge.

5 w.r.t. the virtual IDs
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For the lower bound, the same argument works: let x =
(

k
f+1
)

+ 1, and consider the first
x boxes. Let t =

(
k−1

f

)
, and consider the actions of the k agents in a fault-free execution over

the first t steps. Construct a t-colored bipartite graph of agents and boxes by connecting
an agent i with box j by an edge with color c iff the agent opened the box in time step
c. The graph has at most kt edges, so there must be a box x′ ≤ x that is visited at most
bkt/xc ≤ f times during the first t steps. Hence, if f agents may die, the adversary may
delay the opening of x′ to some time t′ > t. Putting it together we have

t′ > t = (x− 1)(f + 1)
k

≥ x′(f + 1)
k

− f + 1
k

and the result follows, since (f + 1)/k is at most 1. J

However, even barely communicating agents can achieve competitive ratio of 1:

I Claim 3.4. Two agents (with the possibility that one of them fails) can achieve hunt time
TF (2, x) ≤ OPTF (2, x) +O(

√
min{t1, x}), where t1 is the time of the failure.

Proof. The algorithm proceeds in phases, the aim of phase i is to open the next 2i boxes.
The agent A0 consecutively opens the even boxes, and the agent A1 opens the odd boxes.
At the end of the phase, each agent opens the last box that should have been opened by the
other agent. If agent Aj finds an unopened box, it means that A1−j died during the phase.
Aj then goes back over the boxes that should have been opened by A1−j , until it finds an
opened box. Aj then proceeds sequentially from the beginning of the next phase.

Obviously, each box is eventually opened. What must be argued is how long the hunt may
take compared to the optimal algorithm OPT . Note that in OPT , each agent that is alive
opens a new box, and the opened boxes always form a consecutive interval. In order to
obtain the result, we count the number of steps the algorithm behaves differently. First,
before the failure occurs in phase i, there is one time step of delay per phase, in which both
agents check each other. This accounts for at most i = O(

√
min{t1, x}) time steps. Finally,

after the failure of one agent, the remaining agent may proceed to the end of the phase, and
then return to find the treasure, accounting for another at most 2i = O(

√
min{t1, x}) time

steps. If the treasure is located beyond the phase in which the failure occurred, no additional
delay is incurred. J

Now let us generalize the result to k agents. The main idea it the same as in the previous
claim: proceed in phases of linearly increasing length, divide each phase among the surviving
agents, then check at the end if some agents died during the phase, and if so, finish their part.
However, care must be taken, because now also an agent finishing the part of an already
failed agent, may fail. Also, in order to divide the work among themselves, the agents need
to know the number of surviving agents, which is not always possible. We can formulate the
following theorem:

I Theorem 2. k agents (with the possibility that k − 1 of them fails) can achieve hunt time
TF (k, x) ≤ OPTF (k, x) +O(k3√x).

OPODIS 2017



14:10 Treasure Hunt with Barely Communicating Agents

Algorithm 1 Algorithm for one phase.
1: procedure Phase(i)
2: if i > 1 ∧ Si 6= Si−1 then
3: all agents check all ki−1di−1 boxes from phase i− 1
4: end if
5: divide the kidi boxes among the ki agents
6: each agent checks the assigned di boxes
7: compute set Si+1 using k3 boxes from phase i+ 1
8: end procedure

Proof. The algorithm proceeds in phases. Each phase i starts with a set Si ⊆ {1, . . . , k},
such that all agents agree on Si, and Si contains all agents that are alive at the beginning of
phase i. Initially S1 = {1, . . . , k}. Let ki = |Si|, and di = k3i. The aim of phase i is to check
kidi boxes.

The kidi boxes are divided among the ki agents such that each agent is responsible for one
class of boxes modulo ki. Agents spend di time steps to check the assigned class. However,
some agent may have died during the phase, and some of them might have already been
dead at the beginning. At the end of the phase, the agents agree on the new set Si+1 as
follows. Each agent j ∈ Si in turn uses the consensus algorithm from Lemma 1, using a fresh
set of k2 boxes from the next phase. If the result of the consensus algorithm is true, j is
included in the set Si+1. If, at the beginning of phase i + 1, Si = Si+1, it means that all
agents from Si were alive when the consensus computation started, and so all boxes from
phase i have been checked. If, on the other hand Si+1 6= Si, some agents from Si died. It
might have been during the consensus computation, but in any case, the boxes of phase i
must be rechecked. In order to avoid the necessity to argue about further failures, all agents
from Si+1 recheck all boxes from phase i. Since at least one agent is guaranteed to survive,
all boxes from phase i will be opened.

To argue about the speedup, we again count the number of time steps in which the
algorithm behaves differently from OPT . First, there are O(k2) time steps to compute the
set Si+1 in each phase. Since there are O(

√
x) phases, this account for O(k2√x) steps. Also,

there are at most O(k) failures, and each failure can trigger at most one recheck of a phase.
Since a phase contains at most O(k2√x) boxes, this accounts for another O(k3√x)

steps. J

3.3 Number of Agents in Black Holes Model
While in the failing agents model even a failure of k − 1 agents can be tolerated without
communication, in the black holes mode a single black hole can prevent any deterministic
non-communicating algorithm from finding the treasure:

I Claim 3.5. Consider a system with k non-communicating agents with a single black hole.
There is no algorithm that always successfully finds the treasure.

Proof. For a box given x, let the signature of x, τx = [tx,1, . . . , tx,k] be the k-tuple such that
tx,j is the first time that agent j opens x in a fault-free execution; if j never opens x, then
tx,j = ∞. If there are two boxes x, x′ such that τx ≤ τx′ , i.e. for all j tx,j ≤ tx′,j , then
placing a black hole in x and treasure in x′ results in the algorithm never finding the treasure.
To conclude, it is sufficient to find two such boxes. Let us call a pattern of a signature τx

the set of positions j for which τx,j =∞. Since there is a finite number of patterns (namely,
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less than 2k), and the number of boxes in unlimited, there is a pattern p that is shared by
infinitely many boxes. Let us fix a box b with pattern p, and count the maximum number of
boxes x (with pattern p) for which τx 6≥ τb. For any such box x there must be some index j
such that tx,j < tb,j , and tb,j is finite. However, for any (finite) integer d there is at most
one box x such that tx,j = d. Hence, there are at most finitely many boxes (with pattern p)
such that τx 6≥ τb. Since the number of boxes with pattern p is unlimited, there is a box x
for which τx ≥ τb. J

At the core of the proof of the previous claim is the fact that the sequence of boxes is
potentially unlimited. If there is an upper bound on the number of boxes, the situation is
much different.

I Lemma 3. For large enough z, let x = z4. Boxes [x] = {1, 2, . . . , x} can be cleared in z3

steps by g(x) agents without communication in the presence of at most z black holes, where
g(x) = O(z2 ln z).

I Corollary 4. For n ≥ f4, O(
√
n lnn) non-communicating agents can perform treasure hunt

in the presence of f black holes.

I Corollary 5. In the algorithm from Lemma 3, every box e is scheduled to be opened by at
least z + 1 agents.

Let us focus now on the barely communicating model. We start by observing that
enhancing the model with communication indeed makes it stronger, as it can now cope with
a single black hole:

I Claim 3.6. Three agents can find the treasure in the presence of one black hole.

Proof. The first agent, A, starts by sequentially opening the boxes, i.e. A opens box i

at time i, i = 1, 2, . . .. It is followed by two agents, B1, B2 opening even and odd boxes,
respectively, i.e. Bj opens box 2i+ 1− j at time 2i+ 1, i = 1, 2, . . .. If no box contains a
black hole, B1, B2 are always behind A, and see their boxes had already been opened. So
when there is a black hole, A finds it first, and dies there, followed by one of the agents B1,
B2. The other B agent survives, and finds an unopened box, z, in the next step. Then it
knows that the black hole is located in z − 1, so it can finish the search sequentially. J

Let us note that each black hole can kill at least two agents, giving us a lower bound on
the number of agents:

I Theorem 6. 2f + 1 agents are needed to perform treasure hunt in the presence of f black
holes.

Proof. For the sake of contradiction consider a treasure hunt algorithm with at most 2f
agents. We construct a configuration of f black holes such that in finite time all 2f agents
will be killed. Since the number of boxes is unlimited, if the treasure is located far enough, it
will not be found.

The configuration of black holes will be constructed in phases. First, consider the
computation C0 of the algorithm in a configuration without black holes. There must be a
box that is checked by at least two agents: if every box is checked by at most one agent, then
there must be an agent that is the only one to check at least two boxes. By placing a black
hole in the first one, and the treasure in the second one, we have a configuration in which
the algorithm fails to find the treasure. Consider the first time t1 when an agent checks an
already opened box x1. Construct a computation C1 by placing a black hole in box x1. We
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claim that up to time t1, the computations C0, and C1 are identical: indeed the agents are
deterministic, and up to time t1 each of them opens a yet unopened box. In C1, the black
hole at x1 killed two agents, the second one at time t1. Let S1 be the set of unopened boxes
at t1, and repeat the same argument. There must be a box from S1 that is opened by two
agents in C1 (after time t1). Construct a computation C2 by placing a black hole in the
first box x2 from S1 that is visited by a second agent at time t2. Up to t2, C1 and C2 are
identical: let t′2, t1 < t′2 < t2, be the time x2 is first opened by an agent A. Clearly, C1 and
C2 are identical up to t′2. After t′2, agent A in C1 either opened boxes outside S1 that were
already opened anyway, or another boxes from S1 that were never opened by another agent
(up to t2). In any case, the disappearance of A in C2 has no effect on the set of opened boxes
in C2. Hence, the black hole kills another two agents. Continuing this way, we find a set of
f black holes that kill all 2f agents. J

We now proceed to showing an asymptotically matching upper bound of 4f + 1. The
idea is to sequentially scan the boxes in phases, where i-th phase ensures that the i-th box is
opened. In order to do so, the agents elect a leader that probes the box, and let the others
know if it survived, using a fresh set of boxes. However, if the agents agree that the leader is
not alive, they still can not be sure whether the i-th box contains a black hole, since the
leader election algorithm itself might have failed. Hence, the i-th box must be checked once
more, maybe requiring several iterations in a single phase. However, care must be taken that
if the i-th box is indeed a black hole, not too many agents die there. First, let us formulate
the leader election algorithm that will be employed:

I Lemma 7. Using a set of k fresh boxes, the agents may perform an algorithm, such that
1. At most one agent declares itself a leader.
2. If the k boxes do not contain a black hole, exactly one leader is elected.

Proof. In the first step, agent i opens the i-th box. Then it scans the subsequent boxes,
until it either finds an opened box, or reaches the last box. In the latter case, the agent is
declared a leader. J

I Theorem 8. 4f + 1 agents are sufficient to find the treasure in the presence of f black
holes.

Proof. The algorithm works in phases, such that at the end of phase i, boxes {1, . . . , i}
(and possibly some others) are opened. A phase to check box x consists of several iterations.
Each iteration considers a fresh set of k2 + k + 1 boxes, called a scratchpad, that are used
for communication, and have the following structure: there are two sets of k boxes to
perform a leader election algorithm from Lemma 7, two sets of k(k− 1)/2 boxes to perform a
coordination algorithm from Lemma 1, and one box called survival flag. The iteration starts
by the agents performing a leader election. Subsequently, all agents except the leader perform
another leader election algorithm to elect a deputy. Next, the leader opens the survival
flag box, and immediately proceeds to check x, after which it performs the coordination
algorithm from Lemma 1 to signal the other agents. If the result of the coordination is true,
both the iteration, and the phase are ended, and a new phase starts to check the next box. If
the result of the coordination is false, the deputy checks the survival flag. If it was opened,
the deputy uses the second coordination algorithm to inform the other agents. If the result
of the second coordination is true, again, both the iteration, and the phase are finished. If
the result is false, new iteration of the same phase starts.

First, we show that at the end of a phase, box x was opened. The phase ends only when
at least one of the coordination algorithms results in true. The first one may result in true
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only when the leader survives the visit of box x. The second one only if the deputy finds the
survival flag open and survives to tell that to others. Hence, the leader also survives opening
the survival flag and as it immediately proceeds to open box x, x was definitively opened.

Second, let us note that if the scratchpad does not contain a black hole, the corresponding
iteration is the last iteration of a phase. Indeed, if there is no black hole in the scratchpad,
both leader, and deputy are successfully elected. The leader then successfully opens the
survival flag, and proceeds to open x. If it survives, it again successfully performs the
coordination, and phase ends. If the leader dies in x, the deputy reads the survival flag, and
successfully signals the others.

Finally, let us count how many agents may die. In any given iteration, agents may die
either in the scratchpad or in the box being checked, x. The scratchpads use fresh boxes in
each iteration, and each box in the scratchpad is accessed by at most two different agents.
Hence, a single black hole may kill at most two agents in a scratchpad. Note that the
particular box with the black hole will be checked at some later phase (playing the role of x)
where it may kill additional agents; these will be accounted for separately. Overall during
the whole computation, at most 2f agents die in scratchpads.

Now let us count the agents that die while entering the checked box x. Obviously, there
must be a black hole located in x, so there are at most f such boxes, each of them killing
several agents over a number of iterations. However, as argued above, an iteration without a
black hole in the scratchpad ends the phase. As there are, overall, at most f iterations with
a black hole in the scratchpad, at most 2f agents die when entering the checked box.

Altogether, at most 4f agents may die. J

While the previous theorem showed that 4f + 1 agents are sufficient, it relied heavily
on the fact that the number of boxes is unlimited. Indeed, in order to locate the treasure
in box x, boxes up to O(xf2) were used. A natural scenario, however, is that the number
of boxes is finite. The algorithm from the previous theorem can not be used in this case,
since it would not be able to find a treasure located in the last part of the boxes. In order to
remedy this situation, we propose another algorithm that uses more agents (in particular,
O
(
(f ln f)2) of them), but uses only boxes up to x+O

(
(f ln f)2) to locate the treasure in

box x. Although omitted in this paper, it is possible to adjust the algorithm to the setting
with finite number of boxes (by using a few additional agents).

The first idea is to use the algorithm from Lemma 3 to clean the scratchpad after each
iteration. However, it can not be used in a straightforward manner, since the size of the
scratchpad is quadratic in the number of agents, and Lemma 3 needs at least Ω(

√
n lnn)

agents to clean it. Therefore we shall implement a similar idea more carefully.
I Theorem 9. O(f2 ln2 f) agents can locate the treasure in the presence of f black holes,
even if the number of boxes is limited, provided that it is at least x+O(f2 ln2 f) where x is
the location of the treasure.

The algorithms from Theorems 8 and 9 are very slow, in fact much slower than a single
searching agent in absence of black holes. Hence, the question is: What kind of speedup can
be achieved in the presence of black holes, given sufficiently many agents?

As we see in the following theorem, a single black hole does not pose much of a problem:
I Theorem 10. In the presence of one black hole, k > 2, k even, agents can locate the
treasure in time T (k, x) ≤ x/(k − 2) +O(k +

√
x) ≤ OPT (k − 2, x) +O(k +

√
x).

Proof. Divide the sequence of boxes into k′ classes modulo k′ = (k − 2)/2 called rows. Each
row is divided into blocks, with i-th block being of length 2(k′ + i). Two explorer agents LEr

and REr are assigned to each row. In addition, there are two checking agents: LC and RC.
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Let sr,i, tr,i be the first and the last box of i-th block of row r. The algorithm works in
phases; the aim of each phase is to clear one block in each row. At the beginning of phase
i, the explorer agents in each row scan the block in opposite directions, i.e. the agent LEr

opens boxes starting by sr,i and finishing just before tr,i (i.e. without touching tr,i), while
REr symmetrically starts at tr,i and proceeds leftwards. If an explorer opens an already
opened box, its task in the current phase is finished; it then proceeds to the next phase (to
clear the next block). Let Ti = 1 +

∑i−1
j=1(k′ + j + 1); note that without any black hole, all

explorers start phase i in time step Ti.
The activity of the checking agents in block i is also counted in the phase i: The left

checking agent LC scans the sr,i boxes. If all of them have already been opened, it becomes
RC for the next phase. However, if it finds an unopened box in row r, it continues as LEr

in the current phase, and onwards. The RC agent works in a symmetrical way. Moreover,
the checking agents make sure not to start any activity in block i before time Ti + 1; this
ensures that they do not to interfere with the explorers.

First, let us consider an execution without a black hole. In this case, the explorers
are always ahead of checkers (who don’t play any role in the analysis yet), and they start
exploring each block i at time Ti. In each phase, all explorers open a new box in every step.
The only exception is the last step of the phase, when already opened boxes are probed
by all explorers. Hence, if the treasure is located in a box x in i-th block, the delay w.r.t.
OPT (k − 2, x) is at most the number of blocks (i.e. i− 1) plus the length of the block (i.e.
2(k′ + i)). As x ∈ Θ((k + i)2), the theorem holds.

Now let us consider a black hole located in a row r. All other rows are unaffected, and
proceed as in the case without black holes. Moreover, if the treasure is found before the
black hole, again, the analysis of the case without black holes applies. Let us focus only
on row r, and let us assume that the black hole is encountered before the treasure. If the
black hole is in the interior of the block (i.e. not the first or last box), both explorer agents
die, with no unopened boxes left in this block; both checkers find unopened boxes in the
next phase, become corresponding explorers for row r, and the algorithm proceeds without
further delays and faults. If the black hole is in the first box of row r at phase i, both LEr

and LC die there. REr checks the whole block i of row r, and proceeds to the next phase,
as well as RC. However, RC continues as LC in phase i+ 1, detects unopened first box and
becomes LEr. Analogously, if the black hole is in the last box of a block, the right explorer
and checker die there, and the left checker eventually becomes the right explorer for the rest
of the computation.

Note that the presence of the black hole in row r delays the exploration of row r by the
delay between the time the explorer would have started exploring the block, and the time
the checker checks whether it has indeed done so. As mentioned above, this delay is at most
r + i. J

Observe that the technique used in the proof of Theorem 10 cannot be extended to more
black holes. In fact, it is unclear what kind of speedup is possible in the presence of up to f
black holes.

4 Conclusions and Open Problems

We have shown that adding even very weak indirect coordination (namely, the ability to
detect whether a box has been previously opened, opening it and destroying the information
in the process) allows deterministic agents to solve treasure hunt (a) with competitive ratio 1
in the failing agents models, and (b) with asymptotically optimal number of agents in the
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black hole model. This is somewhat surprising, as this is in some sense the weakest natural
form of coordination.

Several research questions remain open:
what is the hunt time in the black hole model? We have some partial results for 1 and
2 black holes, but not a general solution. It is not clear whether it is possible to have
speedup of Ω(k − f).
how to solve treasure hunt with black holes using randomized non-coordinated agents?
How many agents are needed and what would be the speedup? What about allowing
both weak coordination and randomization?
our solutions are not robust w.r.t. to timing and ordering of boxes. How do you make
them robust and at what cost?
what is the weakest coordination (a) that still allows competitive ratio of 1 in the failing
agents model? (b) that allows to solve treasure hunt by deterministic agents?
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in the manuscript.
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