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Abstract
The cost of accessing shared objects that are stored in remote memory, while neglecting accesses
to shared objects that are cached in the local memory, can be evaluated by the number of remote
memory references (RMRs) in an execution. Two flavours of this measure – cache-coherent
(CC) and distributed shared memory (DSM) – model two popular shared-memory architectures.
The number of RMRs, however, does not take into account the granularity of memory accesses,
namely, the fact that accesses to the shared memory are performed in blocks.

This paper proposes a new measure, called block RMRs, counting the number of remote
memory references while taking into account the fact that shared objects can be grouped into
blocks. On the one hand, this measure reflects the fact that the RMR incurred for bringing a
shared object to the local memory might save another RMR for bringing another object placed
at the same block. On the other hand, this measure accounts for false sharing: the fact that an
RMR may be incurred when accessing an object due to a concurrent access to another object in
the same block.

This paper proves that in both the CC and the DSM models, finding an optimal placement is
NP-hard when objects have different sizes, even for two processes. In the CC model, finding an
optimal placement, i.e., grouping of objects into blocks, is NP-hard when a block can store three
objects or more; the result holds even if the sequence of accesses is known in advance. In the DSM
model, the answer depends on whether there is an efficient mechanism to inform processes that
the data in their local memory is no longer valid, i.e., cache coherence is supported. If coherence
is supported with cheap invalidation, then finding an optimal solution is NP-hard. If coherence
is not supported, an optimal placement can be achieved by placing each object in the memory of
the process that accesses it most often, if the sequence of accesses is known in advance.
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1 Introduction

In a typical multiprocessor, processes communicate by concurrently accessing objects in the
shared memory. To reduce the high cost of access to the shared memory, a fast memory,
local to each process, is used to cache recently-used objects. The cost of a cache hit – finding
an object in the process’s local memory – is negligible relative to the cost of a cache miss,
which requires an access to the shared memory. We assume that a block is not evicted from
the local memory unless it is required by some other process; that is, the local memory is
large and fully associative.

A remote memory reference (RMR) [25] is incurred for every cache miss, according to
one of two models: In the cache coherent (CC ) model, the first time a process accesses an
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18:2 Remote Memory References at Block Granularity

object it puts the object in its local memory; subsequent reads and writes to the same object
by the same process are free, as long as no other process modifies the object between them;
otherwise, the object must be updated in the local memory again, incurring an RMR. In the
distributed shared memory (DSM ) model, each object is created in the local memory of some
process, before the first access to it occurs; an access to the local memories of other processes
incurs one RMR, while an access to the local memory is free. If cache coherence and cheap
data invalidation is supported then, like in the CC model, the object will be copied by other
processes for read operations, while write operations invalidate the copies at other processes.
Making a copy incurs an RMR, while accesses to an existing copy do not. If invalidation is
not supported, the object remains in the local memory of the process that created it, and
any access to it by a different process incurs an RMR.

Both models, however, ignore the fact that access to the shared memory is performed
in blocks, namely, several objects are placed together and moved together between local
memories and shared memory. When an object is read into the memory, all the objects in
the same block are moved, so that later accesses to them incur a cache hit. Similarly, if one
object is moved to another process, accesses to the other objects in the same block causes
a cache miss, even if no other process has accessed them in between. This phenomenon is
called false sharing [23, 11].

Many works deal with cache-conscious organization of the memory, namely, the placement
of objects in blocks so as to increase the number of cache hits, e.g., [8, 9, 20]. However, as
we discuss in Section 1, these works consider only single-process scenarios and do not take
into account the effects of concurrent access to blocks. Algorithms and lower bounds on the
number of RMRs, which capture the effects of concurrency, do not take into account the
granularity of memory accesses, which are done in blocks.

Our Contributions

We introduce the block RMRs complexity measure. In the CC model, when a process accesses
a block, an RMR is incurred when the block is brought to its cache, and later accesses to
the same block are free, as long as no other process writes an object in this block. For this
model, we prove that finding an optimal placement of objects into blocks, i.e., a placement
with a minimal number of block RMRs, is NP-hard when blocks can hold three or more
objects; the result holds even when the sequence of accesses is known and all objects have
the same size (Section 3.2). The problematic access sequence is a natural one, in which two
processes perform a traversal on a graph. When blocks can hold two objects of the same size
and the access sequence is known, we present an efficient algorithm for placing objects in
blocks for the block-based CC model (Section 3.1).

In the block-based DSM model, each block is created in a specific process when the
execution starts, and each access to a block not in a process’s own cache incurs an RMR.
If cache coherence is supported then an object may have several copies, in which case,
consecutive accesses to the same block are free, as long as no other process writes an object
in this block. If cache coherence is not maintained, then the object remains in the local
memory of the process that created it, and accesses from other processes incur an RMR,
while accesses of the creating process are free.

For the block-based DSM model, we prove that the number of block RMRs depends on
the cost of invalidation and existence of cache coherence. If invalidation cost is negligible and
cache coherence is supported then finding a placement of objects into blocks is NP-hard, even
if the access sequence is known and all objects have the same size. If cache coherence is not
supported, we show that the number of block RMRs is indifferent to the order of accesses
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in the sequence, and use this result to design an algorithm that finds a placement with an
optimal number of block RMRs, when the access sequence is known in advance. (The results
for the DSM model appear in Section 4.)

For both models, we prove that handling objects with varying sizes makes the problem
NP-hard (Appendix A). This result is achieved with an access sequence in which two processes
traverse a tree one after the other. Because of this result, the rest of the paper concentrates
on the case where all objects have the same size.

Related work

Remote memory references have been proposed as a way to predict the scalability of shared-
memory programs [25]. They have been applied for evaluating the complexity of mutual
exclusion algorithms and presenting lower bounds for it, in the CC and DSM models (see
the survey [3]). Other works investigated problems like leader election [16] and renaming [2].

False sharing [23, 11, 6] occurs when different objects, placed in the same block, are
accessed by different processes, causing cache misses that would not occur if the objects were
in separate blocks. Bolosky and Scott [6] introduced models for false sharing and compared
how well they align with the intuitive understanding of this phenomenon. Their interval
definition says that the cost of false sharing is the difference in performance between a policy
that makes optimal placement decisions, but enforces consistency on a whole-block basis,
and one that enforces consistency only for real conflicts between accesses. Our definitions
capture this formally by the difference between the number of block RMRs and the number
of RMRs, and allow us to prove the NP-hardness result conjectured in [6].

A large body of research studies memory locality for sequential computing. Cache-
conscious algorithms take into account the structure of the cache, i.e., cache size, block size,
placement of objects in blocks and other parameters, in order to minimize cache misses.
Petrank and Rawitz [20] showed that the problem of partitioning data into the blocks of
a single cache of limited size is NP-hard, and in fact, it is hard to approximate. Our NP-
hardness proof for the CC model employs multiple processes, instead of bounding the size of
the cache, and is achieved using traversals, rather than with an arbitrary access sequence as
in their result. However, we do not show that approximating the optimal solution is hard; in
fact, it is not, since the number of RMRs for the sequence divided by the size of the block is
a lower bound on the number of block RMRs.

Lavaee [18] showed that the problem of data packing, using a fully associative, limited-size
cache and for a single process, is NP-hard. By using multiple processes, our result is achieved
with a more natural access sequence that does not require dummy objects in order to fill the
cache and cause data to be evicted.

Afek et al. [1] introduce a memory allocation scheme that is cache index-aware, i.e., takes
into account that objects are placed in a cache “row” that coincides with their cache index,
which is a consecutive subset of the bits in their memory address.

Cache-oblivious algorithms [14, 22] optimize the object layout in the memory and their
design is indifferent to cache parameters, such as size and block size. For example, a
partitioning of tree nodes into blocks that reduces the number of blocks accessed is given by
van Emde Boas trees [24]. Cache-oblivious algorithms were suggested for matrix transposition
and FFT [14] for priority queues [4] and for sorting [14, 7, 12, 13]. All these algorithms are
designed for a single process and do not take multi-threading into account.

More recent work attempts to provide cache-oblivious algorithms in multiprocessing
environments. One such variant is the parallel cache-oblivious model [5]. In general, the
number of cache misses for algorithms in this model is higher than in the regular cache-
oblivious model, due to restrictions needed to minimize false sharing and memory imbalances
between sub-tasks. However, for some tasks, the asymptotic bounds are not affected.
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18:4 Remote Memory References at Block Granularity

Multi-core oblivious cache-oblivious algorithms [10] are unaware of both the number of
cores and the cache parameters. In these algorithms, different processes cooperate in order
to complete a single task and data placement is designed to avoid cache misses as much as
possible. Our work focuses on multi-process environment as well, but takes into account
possible contention between noncooperative tasks run by different processes which may access
the same object, for example, concurrent accesses to the same data structure. Our NP-
hardness results hold even when the block size B is known and use only two processes. This
makes them stronger and they also immediately apply to Multi-core oblivious cache-oblivious
algorithms.

2 RMRs and Block RMRs in the Cache Coherence Model

We consider an asynchronous system in which a set of n processes, P = {p1, . . . , pn}, execute
concurrently and communicate by accessing a set O of shared objects. Each process has a
local cache memory associated with it. Objects placed in the local memory can be easily
retrieved, and the cost of doing so is negligible compared with the cost of fetching objects
from another process’s local cache, or from the main shared memory. A process may read an
object’s current value, or write a new value to an object.

Objects may be part of the same data structure, for example, vertexes of a graph. A
common access pattern to such data structures is a traversal: a sequence of accesses by a
single process to the vertexes of the graph, where each pair of consecutive accesses in the
sequence π, either access the same vertex or adjacent vertexes.

The local memory is partitioned into blocks of size B, each of which can contain objects
whose combined sizes is at most B. The local memory can hold an unbounded number of
blocks and therefore, blocks are not evicted due to lack of space. A B-block placement of O is
a partition of the objects in O into disjoint sets (blocks), Õ = {O1, . . . , O`}, each containing
objects with a combined size of at most B. We assume each object can be placed in a single
block, and is not spread across blocks.1

If all objects have the same size, we will consider their size to be 1. In this case, a B-block
placement of O is Õ = {O1, . . . , O`} such that for each block |Oi| ≤ B.

An access sequence π is a sequence (pi1 , a1, oj1), . . . , (pim
, am, ojm

) such that pih
∈ P ,

ah ∈ {read,write} and ojh
∈ O, for every h, 1 ≤ h ≤ m.

There are two models for counting the number of remote memory references (RMRs) in
an access sequence π, the cache coherent (CC ) model and the distributed shared memory
(DSM ) model (see Figure 1). In this section, we concentrate on the CC model; the DSM
model is discussed in Section 4.

In the CC model, a remote memory reference (RMR) is incurred either on the first access
(whether it is a read or a write) to an object by a process or on the first access after a write
to the same object by another process. Formally, for an access sequence π = (pi1 , a1, oj1),
. . . , (pim

, am, ojm
)

#rmrCC(π) = |{(pih , ah, ojh ) ∈ π|(∀k, 1 ≤ k < h, (pih = pik ) =⇒ (ojh 6= ojk )) or
(∃k, 1 ≤ k < h, (ojk = ojh , ak = write, and pik 6= pih )

and (∀`, k < ` < h, (pih = pi` ) =⇒ (ojh 6= oj` )))}| .

1 Objects with size larger than B need more than one block. By placing an object in the minimal number
of blocks that can contain it (i.e., all parts of the object except perhaps one are placed in a block alone),
our results hold in this model, by ignoring the parts of the object that fill full blocks and taking into
account only the part of the object that remains and does not fill a full block.
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Figure 1 Models: Cache Coherence (left) and DSM (right).

Fix a B-block placement Õ = {O1, . . . , O`} for an access sequence π, as above. We count
the number of block accesses in π that incur a cache miss, i.e., the first access (either a read
or a write) to an object in a block, or an access after a write by another process to some
object in the same block:

#brmrCC(π, Õ) = |{(pih
, ah, ojh

) ∈ π|(ojh
∈ Ol) and

((∀k, 1 ≤ k < h, (pih
= pik

) =⇒ (ojk
/∈ Ol)) or

(∃k, 1 ≤ k < h, (ojk
∈ Ol, ak = write, and pik

6= pih
)

and (∀`, k < ` < h, (pih
= pi`

) =⇒ (oj`
/∈ Ol))))}| .

3 Block RMRs in the CC model

In the cache coherence model, all objects are in the main memory before the access sequence
is executed. Therefore, once the access sequence π is fixed, no optimization can reduce the
number of RMRs and it can be computed by a sequential pass over the access sequence π,
while tracking the last process that modified each object. Specifically, for every access, if
there was no previous access in the sequence to the same object by the process or if the
previous access was a modification by a different process, we increase the number of RMRs
by one and update the latest process to access the object.

Note that when each object is placed in a separate block, that is, in the assignment
Õ = {O1, . . . , On}, with |Oi| = 1, for every i, 1 ≤ i ≤ n, we have:

#brmrCC(π, Õ) = #rmrCC(π).

Therefore, #rmrCC(π) is an upper bound on the minimal number of block RMRs for the
sequence π.

Given a B-block placement of O, Õ = {O1, . . . , On}, let #rmrCC(oi, π) be the number
of accesses to the object oi that incur an RMR, i.e., an access to oi that caused the block
containing oi to be brought to the process’s local memory. For every access to oi that incurs
an RMR, there is a block RMR that brings oi to the accessing process, incurred by either
the access itself or a previous access to another object in the block. Therefore, the number
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18:6 Remote Memory References at Block Granularity

of block RMRs for objects in Oj is at least

max
oi∈Oj

(#rmrCC(oi, π)).

Since each block contains at most B objects, the number of block RMRs is at least

Σoi∈Oj
(#rmrCC(oi, π))

B
.

The overall number of block RMRs is the sum of block RMRs for the objects in each block
Oj and therefore, it is at least

ΣOj∈Õ

Σoi∈Oj
(#rmrCC(oi, π))

B
= #rmrCC(π)

B
.

Therefore, for every access sequence π,

#rmrCC(π)
B

≤ min
Õ

#brmrCC(π, Õ) ≤ #rmrCC(π).

We consider the question of optimally placing objects into blocks, in order to minimize
the number of block RMRs. We prove that for B > 2, the problem is NP-hard, even if the
sequence of accesses is known in advance, by showing a polynomial-time reduction from the
graph partitioning problem [17]. But first, we prove that there is a polynomial-time algorithm
for this problem when B = 2.

3.1 A Polynomial Algorithm for 2-Block Placement
A 2-block placement can be found with an algorithm for finding a maximum weighted
matching for a graph, which can be done in O(|V |2|E|) using linear programming [21].

I Definition 1 (Maximum Weighted Matching).
Input: Undirected graph G = (V,E), weights w(e) ∈ Q for each edge e ∈ E.
Question: Which matching, i.e., a set of pairwise non-adjacent edges, has maximum

weight (the sum of the weights of the edges in the matching)?

Given an input to the 2-block placement problem, we take the complete graph G = (V,E)
with a vertex vi ∈ V for every object oi ∈ O and an edge between every pair of vertexes.

The edge weights are calculated according to the access sequence π. For each access by
process pi to an object o1 and every object o2, we determine whether the access would incur
an RMR if o1 and o2 are placed in the same block. To do this, we check if o2 was previously
accessed by pi. If there is a previous access to o2 by pi, we check whether an access by
another process in between could invalidate the block in the local memory and decrease
the weight of the edge between o1 and o2. Otherwise, we check which previous access could
save an RMR if o1 and o2 are placed in the same block and increase the weight of the edge
between o1 and o2. For example, Figure 2(left) shows the final weights for the next access
sequence on four objects A,B,C,D:

(p1,write, A)(p1,write, B)(p2,write, C)(p3,write, D)(p2,write, C)

The weight of (A,B) is 1 because placing them in the same block would save a block RMR
on the access to B. The weight of (C,D) is -1 because placing them in the same block would
incur an extra block RMR on the second access to C (which does not happen if C is placed
in a singleton block).
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Figure 2 Graph with original weights (left) and after incorrect weight adjustment (right).

After the weights are calculated, we find a maximum matching in the weighted graph.
A matching and a 2-block placement naturally correspond to each other: the endpoints of
edges in the matching represent disjoint pairs of objects, and each pair can be placed in a
single block in the memory. The remaining objects are placed in singleton blocks.

The weights are calculated according to the access sequence π (Algorithm 1). We initialize
the weight for each edge to zero. Next we go over the access sequence, and for each access to
an object, check which previous accesses to other objects could either increase or decrease
the number of RMRs if they are put in the same block as the current object. For each access
(pih

, ah, ojh
) ∈ π, let (pik

, ak, ojh
) ∈ π be the previous access to the same object in π. If no

such access exists, for example, if (pih
, ah, ojh

) is the first access to the object, we look for
previous accesses by the same process. For every object o, whose most recent access (prior
to the h-th access) is by pih

, we increase the weight of (o, ojh
) by 1, since placing them in

the same block will avoid a block RMR on the access (pih
, ah, ojh

).
Now we assume (pj , aj , oj) exists. If pj = pi, then for each object o′, if there is a process

p′ 6= pi such that there is an index k such that j < k < i and pk = p′ and ok = o′, and this is
the most recent write to o′ prior to the i-th access, we decrease the weight of the edge (o′, oi)
by 1. For example, for three processes, objects O = {A,B,C,D}, and the sequence:

(p1,write, A), (p2,write, B), (p1,write, C), (p3,write, B), (p1,write, A),

the weight of the edge (A,B) will be decreased by 1, since there is a write to B by a process
other than p1 between the two accesses to A. Intuitively, if A and B are placed in the same
block then we will incur an extra RMR for this part of the sequence, which would not be
incurred had they been placed in different blocks.

If, on the other hand, pj 6= pi, then for each object o′ such that there is an index k,
j < k < i, pk = pi and ok = o′, and this is the most recent write to o′ prior to the i-th access,
we increase the weight of the edge (o′, oi) by 1. For example, for the sequence:

(p4,write, D), (p2,write, B), (p1,write, C), (p2,write, B), (p2,write, D)

the weight of the edge (B,D) will be increased by 1, since there is a write to B by process
p2 between the two writes to D by p2. Intuitively, if D and B are placed in the same block
then we will incur one less RMR for this part of the sequence than would have been incurred
had they been placed in different blocks.

Figure 3 shows the final weights of the graph for the sequence that is the concatenation
of the two previous sequences (all actions are writes):

(p1, A), (p2, B), (p1, C), (p3, B), (p1, A), (p4, D), (p2, B), (p1, C), (p2, B), (p2, D)
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18:8 Remote Memory References at Block Granularity

Algorithm 1 Sequential pseudocode for calculating the weights.
calc_weights(G = (V,E), w, acc)

1: init w to zeros
//latest and latest_write are arrays of size |V | representing,
//respectively, the most recent access and write to an object

2: init latest to nulls
3: init latest_write
4: for i = 1...|acc|:
5: (curr_proc, curr_act, curr_obj) = acc[i]
6: prev_acc = latest[curr_obj]
7: if (prev_acc is null):

// Find which objects were previously accessed by the
// same process, and increase the corresponding weight

8: for obj = 1...|V |:
9: if (obj 6= curr_obj and latest[obj] 6= null):
10: (proc, temp1, temp2) = acc[latest[obj]]
11: if (proc == curr_proc):
12: w((obj, curr_obj))+ = 1
13: else:
14: prev_proc = acc[prev_acc][0]
15: for obj = 1...|V |:

// Check if the obj was accessed between the previous access
// to curr_obj and the current access

16: if(obj 6= curr_obj and latest[obj] 6= null

and latest[obj] > prev_acc):
17: (proc, temp1, temp2) = acc[latest[obj]]

// Putting obj and current_obj together can save a block RMR
18: if (prev_proc 6= curr_proc

and proc = curr_proc):
19: w((obj, curr_obj))+ = 1

// Putting obj and current_obj together can incur an extra block RMR
20: else if (latest_write[obj] 6= null

and latest_write[obj] > prev_acc
and prev_proc = curr_proc
and acc[latest_write[obj]][0] 6= curr_proc):

21: w((obj, curr_obj))− = 1
// Update latest and latest_write according to the access

22: latest[curr_obj] = i

23: if curr_act is a write:
24: latest_write[curr_obj] = i

I Lemma 2. If the matching MÕ ⊆ E corresponds to a 2-block placement Õ = {O1, . . . , O`},
then #rmrCC(π)− Σe∈MÕ

w(e) = #brmrCC(π, Õ).

Proof. Consider some block Oj ∈ Õ. If Oj = {a} is a singleton block, then the number of
RMRs incurred by access to a is #rmrCC(a), since accesses to other objects do not cause it
to move to a different cache. On the other hand, if Oj is mapped to some edge eOj

∈MÕ it
contains two objects, a and b. We count the block RMRs incurred by accesses to a and b.
For every access to a (and similarly b) there are three cases:
1. The access is counted as an RMR in #rmrCC(π) and a block RMR in #brmrCC(π, Õ).
2. The access is counted as an RMR in #rmrCC(π), but not in #brmrCC(π, Õ). This

happens only if the access to a was preceded by an access to b, that brought Oj to the
accessing process’ cache. This can happen in either the first access to a or in subsequent
ones. We note that for each such occurrence we increased w(eOj

) by 1.
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Figure 3 Graph after the weights are calculated.

3. The access is counted as an RMR #brmrCC(π, Õ), but not in #rmrCC(π). This happens
only if the access to a was preceded by an access to b, which moved the block Oj from
the process’ cache. We note that for each such occurrence we decreased w(eOj ) by 1.

Therefore, the number of block RMRs incurred by a and b is exactly

#rmrCC(a) + #rmrCC(b)− w(eOj ).

Summing over all blocks, we get:

#brmrCC(π, Õ) =
ΣOj∈Õ,Oj={a}(#rmrCC(a)) + ΣOj∈Õ,Oj={a,b}(#rmrCC(a) + #rmrCC(b)− w(eOj

)).

And thus:

#rmrCC(π)− Σe∈MÕ
w(e) = #brmrCC(π, Õ). J

Given this lemma, it is easy to see that if Σe∈MÕ
w(e) is maximized, then our target

function #brmrCC(π, Õ) is minimized. Finding the maximum for Σe∈MÕ
w(e) is finding a

maximum weight matching in a weighted graph, which can be solved in O(|V |2 · |E|) steps [21].
Since |V | = |O| and the graph is complete, this is in O(|O|3). The total complexity of the
algorithm depends on the calculation of edge weights. Using a straightforward approach,
for every access we must go over all previous accesses and update an edge to every object,
resulting in an O(|π|2 + |π| · |O|+ |O|3) time complexity. This can be improved by using a
hash table to remember the last read and write for each object while going over the access
sequence. This alleviates the need to go over all previous accesses; instead, we go over the
objects and find which were accessed in the relevant part of the sequence. This results in
O(|π| · |O|+ |O|3) time complexity.

The algorithm does not guarantee that between two solutions with the same minimal
number of block RMRs, it chooses the one with the smallest number of blocks. This can be
done by maximizing the number of blocks containing two objects, or equivalently, maximizing
the number of edges in the matching. Therefore, we look for a maximum-weight matching
with as many edges as possible.

We note that any such solution cannot contain negative-weighted edges, since removing
them would increase the total weight. Note also that removing 0-weighted edges still leaves
a maximum-weight matching. Therefore, the maximum-weight matching with the maximal
number of edges is comprised of a maximum-weight matching with as many 0-weighted edges
added to it as possible. By adding a small positive weight to the 0-weighted edges before
running the maximum-weight matching algorithm, we can ensure that as many such edges
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18:10 Remote Memory References at Block Granularity

as possible will be added to the solution, since adding them will only increase the total
weight. This weight must be the same for all edges, since we do not prefer one 0-weighted
edge over the other. In addition, the weight must be small enough to ensure that the new
solution contains some original maximum-weight matching as a subset. For example, every
maximum-weight matching for the graph of the sequence:

(1, A)(1, B)(2, C)(3, D)(2, C)

must contain the edge (A,B), since it is the only edge with positive weight.
If the weight added to 0-weighted edges is 1, as shown in Figure 2(right), then a maximum-

weight matching on this graph is either the edges (A,D), (B,C) or (A,C), (B,D), neither of
which contain the edge (A,B). However, if we give all the 0-weighted edges a weight < 1

|E|
(for example 1

|V |2 ), the total weight of all the 0-weighted edges is smaller than 1. Since all
the positive-weighted edges weigh at least 1, any combination of originally 0-weighted edges
weighs less than the weight of those edges. Therefore, the solution found by the algorithm
must contain an original maximum-weight matching as a subset, otherwise, such a matching
will produce a higher total weight, contradicting the algorithm’s optimality in finding a
maximum-weight matching. This implies the next theorem:

I Theorem 3. In the CC model, there is a polynomial algorithm for finding a 2-block
placement, with the minimal number of block RMRs for a given access sequence, while
minimizing the total number of blocks used.

3.2 Hardness Proof for B-Block placement, B > 2
We now prove a hardness result for B-block placement with B > 2, by showing a polynomial-
time reduction from the graph partitioning problem, known to be NP-complete, even for a
fixed K ≥ 3 and even if all vertex and edge weights are 1 [17].

I Definition 4 (Graph Partitioning).
Input: Undirected graph G = (V,E), weights w(v) ∈ Z+ for each vertex v ∈ V and

l(e) ∈ Z+ for each edge e ∈ E, positive integers K and J .
Question: Is there a partition of V into disjoint sets V1, . . . , Vm, such that Σv∈Viw(v) ≤

K for 1 ≤ i ≤ m and such that if E′ ⊆ E is the set of edges that have their two endpoints in
two different sets Vi then Σe∈E′ l(e) ≤ J?

We redefine B-block placement as a decision problem.

I Definition 5 (B-Block Placement Decision).
Input: Two positive integers B and R, a set of n processes P = {p1, . . . , pn}, a set of

memory objects O, a sequence of accesses π = (p1, o1), . . . , (pm, om) such that for every i,
1 ≤ i ≤ m, pi ∈ P and oi ∈ O.

Question: Is there a partition of the objects in O into disjoint sets Õ = {O1, . . . , Ok}
such that |Oi| ≤ B and #brmrCC(π, Õ) < R?

Given that it is easy to calculate the number of RMRs, and it is an upper bound on the
number of block RMRs, a polynomial time algorithm for the decision problem can be used in
conjunction with a binary search to solve the optimization problem.2 Therefore, if we prove
that the decision problem is NP-hard, the minimization problem is also NP-hard.

2 That is, what is the minimal number of block RMRs for the sequence π. An optimal placement of
objects to blocks is not found in this way.
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We will use the input graph for which partitioning must be found as the underlying
data structure that two processes access simultaneously. Each process performs a traversal
and accesses the edges in DFS order. Processes access the edges in round-robin order, each
accessing the endpoints of an edge one after the other, before control is passed to the next
process. This access pattern ensures that putting the two endpoints of an edge in the same
block results in fewer block RMRs than if they are in different blocks. Therefore, given a
placement with fewer block RMRs, the partition into blocks induces a partition of the graph
into disjoint sets of vertexes, which gives a good solution to the graph partitioning problem.
Conversely, we prove that if there is no such placement, then there is no valid solution to the
graph partitioning problem.

In more detail, the input is an undirected graph G = (V,E), in which all edge and vertex
weights are 1, and positive integers K ≥ 3 and J .

We take two processes p1 and p2 and an object o for each vertex v ∈ V . For each edge
e ∈ E, e = (vi, vj) and process p, we define a subsequence

π(p,e) = (p, read, oi)(p,write, oi), (p, read, oj)(p,write, oj).

Let πe = π(p1,e), π(p2,e). Consider the following traversal in DFS order of the edges of the
graph: The traversal starts at an arbitrary vertex. When the traversal reaches a node, it
either immediately retreats through the same edge, if the node was already visited, or it
continues to visit the node’s neighbors, and then retreats through the same edge. Therefore,
each edge is visited twice during the traversal, and neighboring vertexes are accessed one
after the other. Let ei1 , . . . , ei2|E| be the sequence of edges in this traversal. We define
π = �1≤j≤2|E|πeij

. For each process p, the sequence of accesses is �1≤j≤2|E|π(p,eij
), which

is a traversal due to the choice of the order of the edges. The length of the access sequence π
is in O(|E)|, since it is a concatenation of 2|E| constant size sequences, and therefore, the
reduction is polynomial in the size of the input. Let B = K and R = 4(|E|+ J).

I Lemma 6. There is a B-block placement of O for sequence π with R or fewer block RMRs
if and only if there is a partitioning of the graph G under the K and J weight sum constraints.

Proof. Given a graph and a partition V1, . . . , Vm of the vertexes such that Σv∈Vi
w(v) ≤ K,

we define a B-block placement for B = K where Oi contains all the objects that correspond
to the vertexes in Vi. Since all weights are 1, the number of vertexes in Vi is at most K, and
so is the number of objects in Oi. Similarly, a B-block placement of the objects induces a
partition of the corresponding vertexes that satisfies the K = B constraint on the graph.

Let E′ be the set of edges with endpoints in different sets Vi. We argue that the number
of block RMRs for the sequence π is 4(|E|+ |E′|). After each subsequence πe, each block is
either still in the main memory or in the cache of process p2, since p2 modifies each block after
p1 modifies it. Therefore, if e = (vi, vj) and oi and oj , the corresponding objects, are in the
same block, then the number of block RMRs for πe is exactly 2, since each process must bring
the block into its cache (including the first process) in order to access oi, and then proceed to
access oj . Otherwise, if oi and oj are in different blocks, the number of block RMRs for πe is
exactly 4, since each process must access both blocks in turn. Therefore, since every edge is
traversed twice, the total number of block RMRs is 4|E\E′|+ 2 · 4|E′| = 4(|E|+ |E′|).

It remains to show that a solution to the B-block placement problem implies a solution to
the graph partitioning problem. If there is no B-block placement for B = K and the sequence
π with R = 4(|E|+ J) or fewer block RMRs, then for every placement and corresponding
graph partitioning, the number of block RMRs is 4(|E|+ |E′|) > R = 4(|E|+J) and therefore,
|E′| > J . Hence, there is no graph partitioning such that the size of every group is K or less
and the number of edges between different groups is J or less.
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Table 1 Remote memory references in variants of the DSM model.

Reads Writes Invalidation
DSM - With Coher-
ence

Free as long as data in local
memory is valid. Incurs an
RMR, otherwise.

Free if data in local memory
is valid, and incurs an RMR,
otherwise. Causes invalidation
of object copies in other local
memories.

Negligible

DSM - No Coher-
ence

Reads by object creator are
free. Other reads incur an
RMR.

Writes to an object by a non
creator process incur an RMR.
Writes by the owner are free.

Not supported

Conversely, if there is a B-block placement for B = K and the sequence π, with fewer
than R = 4(|E|+ J) RMRs, then 4(|E|+ |E′|) ≤ R = 4(|E|+ J), and |E′| ≤ J . Therefore,
the corresponding partitioning of G satisfies the constraints on K and J . J

This proves the next theorem:

I Theorem 7. In the CC model, the B-block placement decision problem, for B ≥ 3, is
NP-hard.

4 Block RMRs in the DSM Model

In the DSM model, an access to another process’ local memory incurs an RMR, depending on
the specific characteristics of the implementation. Some DSM systems incorporate some form
of cache coherence, i.e., a mechanism that ensures processes only read or write valid data,
and not data that was already overwritten by another process. We consider two variants
of the DSM model, depending on whether invalidating an object in a remote memory is
possible, and what is the cost of doing so (see Table 1).3

Each object o is created at a creator process, denoted creator(o), which is the owner of
the local memory in which o originally resides. The creator(o) process is chosen before the
first access to o. An object is valid when created, and therefore, accesses to the object are
free as long as they are just by the creator process. In all variants of the DSM model, we
may choose creator(o) according to whatever information we have on the access sequence.

If coherence is supported and invalidation cost is negligible (for example, see [19]), then
each read or write to an object not in the local memory causes the object to be copied
to the local memory, incurring an RMR. If the action is a write then other copies of the
object are invalidated, and the cost of doing so is negligible. Given an access sequence
π = (pi1 , a1, oj1), . . . , (pim

, am, ojm
), we formally define:

#rmrDSM−CC(π) = |{(pih , ah, ojh ) ∈ π|((pih 6= creator(ojh ))
and (∀k, 1 ≤ k < h, (pih = pik ) =⇒ (ojh 6= ojk )))

or (∃k, 1 ≤ k < h, (ojk = ojh , ak = write, and pik 6= pih )
and (∀`, k < ` < i, (pih = pi` ) =⇒ (ojh 6= oj` )))}| .

If coherence and invalidation are not supported, then every access, whether a write or a
read, to an object by a process other than its creator, incurs an RMR. Accesses to an object

3 In the full version of the paper we also consider a third variant, in which invalidation is supported, but
its cost is similar to an RMR.
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Table 2 Block remote memory references in variants of the DSM model.

Reads Writes Invalidation
DSM - With Coher-
ence

Free as long as data in local
memory is valid. Incurs an
RMR, otherwise.

Free if data in local memory
is valid, and incurs an RMR,
otherwise. Causes invalidation
of other copies in other local
memories.

Negligible

DSM - No Coher-
ence

Reads by the object’s creator
process are free. Other reads
incur an RMR.

Writes by owner process are
free. Other writes incur an
RMR.

Not supported

by its creator are free. That is:

#rmrDSM−No−CC(π) = |{(pih
, ah, ojh

) ∈ π|pih
6= creator(ojh

)}| .

To define block RMRs in these variants of the DSM model, consider a B-block placement
Õ = {O1, . . . , O`}. Each block Oi is associated with a creator process creator(Oi), which
creates all objects in Oi. The RMRs incurred for reads and writes is shown in Table 2, and
defined next.

If coherence is supported with negligible invalidation cost, then each access to an object
not in the local memory incurs an RMR; it causes a copy of the accessed block to appear in
the local memory. If the access is a write then all other copies of the block are invalidated.
Accesses to objects whose blocks are in the local memory are free. Formally:

#brmrDSM−CC(π, Õ) = |{(pih , ah, ojh ) ∈ π|(ojh ∈ Ol) and
(((pih 6= creator(Ol)) and

(∀k, 1 ≤ k < h, (pih = pik ) =⇒ (ojk /∈ Ol))) or
(∃k, 1 ≤ k < h, (ojk ∈ Ol, ak = write, and pik 6= pih )
and (∀`, k < ` < h, (pih = pi` ) =⇒ (oj` /∈ Ol))))}| .

When coherence is not supported, each access to a block by a process other than its
creator incurs an RMR; accesses by the creator are free. Formally:

#brmrDSM−no−CC(π) = |{(pih
, ah, ojh

) ∈ π|ojh
∈ O` and pih

6= creator(O`)}| .

The DSM model with coherence is similar to the CC model, except for the first access to
every block: If the first access to an object o is done by process p 6= creator(o), then the step
incurs an RMR; otherwise, no RMR is incurred. Therefore the number of RMRs depends on
the choice of creator(o) for these accesses, while other accesses are not affected.

We explain how the results for the CC model can be extended to this model. The
polynomial algorithm for blocks with B = 2 is adapted by changing the edge weights to
account for the objects being created in the process’ local memory instead of the main
memory. The NP-hardness result with B > 2 can also be adapted by a slight change in the
access sequence and the way edge weights are calculated (see Section B).

In the DSM model without coherence, the number of RMRs is minimized when each
object is created at the process that accesses it the most. Furthermore, it can be shown that
the minimal number of RMRs does not depend on the partitioning into blocks, just on the
choice of creator processes. This means that a simple greedy algorithm can be used to pick
the creator process for each object.
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5 Conclusions and Future Research Directions

This paper introduces a framework for studying the cost of accessing remote memory (whether
shared memory or data stored at another process), which takes into account the fact that
shared objects can be placed and moved together in larger blocks. We introduce a formal
complexity measure, called block RMRs, for both the CC and the DSM models. Our main
result shows that it is NP-hard to place objects into blocks in a way that minimizes the
number of block RMRs, even for a fixed access sequence. The result holds for both the CC
model and the DSM model with coherence and negligible invalidation cost, when a block can
contain three objects or more.

In the common situation, however, the access sequence is not known in advance. Instead,
we know it is from a family of sequences, typically, those generated by a particular concurrent
algorithm, for example, interleavings of (partial) traversals or searches by a subset of the
processes. It would be interesting to find block placement methodologies for such families, in
a way that exploits the benefits of moving several objects together. Taking this a step further,
it is interesting to look at probabilistic models where the access sequences are chosen from a
family of sequences with a known distribution. The goal is to choose a B-block placement
such that the expected number of block RMRs is minimized. In the DSM model without
coherence, these problems may have simple solutions in the form of choosing the object’s
creator to be the process that is expected to access it the most.

It would also be interesting to study the effects of bounding the local memory size, so it
can hold a bounded number of blocks, and limiting the cache associativity. It is likely that
in general, the problem is NP-hard due to our results as well as [20, 18].

Acknowledgements. We would like to thank Youla Fatourou, Danny Hendler, Erez Petrank
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A B-Block Placement for Objects with Varying Sizes

We prove that if objects have varying sizes, then the B-block placement problem is NP-hard
even for a simple traversal on a tree. Assume that each object oi has a size ai ∈ Z+, ai ≤ B,
and each object is placed in a single block (and not across more than one block). A B-block
placement is a partition of the objects in O into disjoint sets Õ = {O1, . . . , On} such that,
for every 1 ≤ j < n, Σoi∈Ojai ≤ B.

For both the CC and the DSM models, there is a reduction from the bin packing problem,
a well-known NP-complete problem [15].

I Definition 8 (Bin Packing).
Input: An integer R (the bin size), and ` items with sizes a1, . . . , a`.
Question: What is the minimum number M such that there is a partition of the ` items

into disjoint sets S1, . . . , SM such that Σi∈Sj
ai ≤ R for every j, 1 ≤ j ≤M?

Fix R to be the block size B, the number of objects to be ` and the size of an object
oi be ai. We define a tree T = (V,E) whose vertexes are vi for each object oi, and whose
edges are E = {(vi, vi+1)|1 ≤ i < `}. For processes p1, p2 ∈ P , consider the access sequence
π = (p1,write, o1), . . . , (p1,write, o`), (p2,write, o1), . . . , (p2,write, o`), in which p1 and p2
write to each object once.

An optimal algorithm for B-block placement packs the objects into the smallest number
of blocks possible: Since the size of the local memory is unlimited, any block read into the
local memory remains there until it is required by a different process in the CC and DSM
with coherence models.

Therefore, the number of block RMRs is equal to twice the number of blocks in which
the objects reside in the CC model and DSM with coherence models.

Thus, an algorithm that finds the optimal solution to the B-block placement problem also
finds a partitioning of objects of sizes a1, . . . , a` into blocks of size B = R, which minimizes
the number of blocks used. This yields an optimal solution to the bin packing problem. Since
bin packing is NP-complete [15], so is B-blocking for objects of varying sizes.

B NP-Hardness for DSM with Coherence and B > 2

We explain how to adapt the NP-hardness result for B ≥ 3. Given the parameters to the
graph partitioning problem, the parameters to the B-Block mapping are very similar: The
input is an undirected graph G = (V,E), weights w(v) ∈ Z+ for each vertex v ∈ V and
l(e) ∈ Z+ for each edge e ∈ E, and positive integers K and J . We assume that all weights
are 1, and K ≥ 3.

The access sequence is somewhat different: We take two processes p1 and p2, and an
object o for each vertex v ∈ V . For each edge e ∈ E, e = (vi, vj) and process p, we define a
subsequence

π(p,e) = (p, read, oi)(p,write, oi), (p, read, oj)(p,write, oj)).

Let πe = (π(p1,e), π(p2,e))|E|. We define π = �e∈Eπe. The length of π is O(|E|2) and therefore,
the reduction is in polynomial time. Let B = K and R = 4|E|(|E|+ J)− |V |.

Given the part of the access sequence corresponding to an edge e = (vi, vj),

πe = ((p1,write, oi), (p1,write, oj)), (p2,write, oi), (p2,write, oj)|E|,

the number of block RMRs is as follows: If both endpoints of e are in the same block, then
every access by p1, except perhaps the first one, incurs a block RMR. This is because at
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the end of π(p2,e) = (p2,write, oi), (p2,write, oj), the block is in p2’s local memory. The total
number of block RMRs is 2|E|, from which we reduce 1 if this is the first access to the block
containing oi and oj .

On the other hand, if the endpoints of e are in different blocks, then every access by
either p1 or p2 must move a block into its local memory, except perhaps the first two accesses
of p1. The total number of block RMRs is 4|E|, minus 1 or 2, depending on whether or not
this sequence accessed blocks for the first time.

Since at the end of each subsequence πe all blocks that were already accessed are in the
local memory of process p2, if |E′| is the number of edges with endpoints in different blocks,
the total number of RMRs is at most

2|E| · 2|E\E′|+ 4|E| · 2|E′| = 4|E|(|E|+ |E′|)

and at least

2|E| · 2|E\E′|+ 4|E| · 2|E′| − |V | = 4|E|(|E|+ |E′|)− |V |,

where |V | is the maximum possible number of blocks.
If there is no B-block ent for B = K and the sequence π with R = 4|E|(|E|+ J)− |V | or

fewer block RMRs exists, then for every placement and corresponding graph partitioning the
number of block RMRs is at least

4|E|(|E|+ |E′|)− |V | > R = 4|E|(|E|+ J)− |V |

and therefore |E′| > J . Hence, there is no graph partitioning such that the size of every
group is K or less and the number of edges between different groups is J or less.

Conversely, if there is a B-block placement for B = K with S blocks, and the sequence π,
induces fewer than R = 4|E|(|E|+ J) block RMRs, then

4|E|(|E|+ |E′|)− S ≤ R = 4|E|(|E|+ J)− |V |,

and therefore

4|E| · |E′| ≤ 4|E| · J − (|V | − S).

Since |V | − S > 0, we have |E′| ≤ J . Therefore, the corresponding partitioning of G holds
under the constraints on K and J .

This proves the following theorem:

I Theorem 9. In the DSM model with cache coherence and negligible invalidation, the
B-block placement decision problem is NP-hard, for B ≥ 3.
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