
Lower Bounds for Subgraph Detection in the
CONGEST Model
Tzlil Gonen1 and Rotem Oshman2

1 Tel Aviv University, Tel Aviv, Israel
tzlilgon@mail.tau.ac.il

2 Tel Aviv University, Tel Aviv, Israel
roshman@mail.tau.ac.il

Abstract
In the subgraph-freeness problem, we are given a constant-sized graph H, and wish to determine
whether the network graph contains H as a subgraph or not. Until now, the only lower bounds
on subgraph-freeness known for the CONGEST model were for cycles of length greater than 3;
here we extend and generalize the cycle lower bound, and obtain polynomial lower bounds for
subgraph-freeness in the CONGEST model for two classes of subgraphs.

The first class contains any graph obtained by starting from a 2-connected graph H for which
we already know a lower bound, and replacing the vertices of H by arbitrary connected graphs.
We show that the lower bound onH carries over to the new graph. The second class is constructed
by starting from a cycle Ck of length k ≥ 4, and constructing a graph H̃ from Ck by replacing
each edge {i, (i+ 1) mod k} of the cycle with a connected graph Hi, subject to some constraints
on the graphs H0, . . . ,Hk−1. In this case we obtain a polynomial lower bound for the new graph
H̃, depending on the size of the shortest cycle in H̃ passing through the vertices of the original
k-cycle.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity, F.2.0
General

Keywords and phrases subgraph freeness, CONGEST, lower bounds

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2017.6

1 Introduction

In the subgraph-freeness problem, we are given a constant-size graph H, and the goal is to
determine whether the network graph contains a copy of H as a subgraph, or not. Subgraph-
freeness in the CONGEST network model has recently received significant attention from the
distributed computing community [4, 9, 10, 11, 12, 17], but until now, the only lower bounds
in the literature have been for cycles: in [7] it was shown that checking Ck-freeness requires
Ω̃(n) rounds for odd k and Ω̃(n2/k) rounds for even k. The lower bound for even cycles was
recently strengthened to Ω̃(

√
n) for any even k in [17]. In [1], it is shown that one-round

deterministic algorithms for triangle-detection require bandwidth Ω(∆ logn), where ∆ is the
degree of the graph, and if we restrict to one bit per round, Ω(log∗ n) rounds are required.

In this work we seek to improve our understanding of the subgraph-freeness problem by
broadening the class of graphs for which we know a polynomial lower bound, i.e., a lower
bound of the form Ω(nδ) for some δ ∈ (0, 1]. We give two classes of such graphs and prove
polynomial lower bounds for them.

The first class of graphs comprises all graphs that can be constructed by starting from
some 2-vertex-connected graph H for which we already know a polynomial lower bound

© Tzlil Gonen and Rotem Oshman;
licensed under Creative Commons License CC-BY

21st International Conference on Principles of Distributed Systems (OPODIS 2017).
Editors: James Aspnes, Alysson Bessani, Pascal Felber, and João Leitão; Article No. 6; pp. 6:1–6:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2017.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2 Lower Bounds for Subgraph Detection in the CONGEST Model

(a) Vertex replacement (b) Edge replacement

Figure 1

(regardless of how it was proven), and attaching an arbitrary graph to each vertex of H (see
Fig. 1a). The graphs attached to different vertices may not share vertices or edges. We show
that the new graph H̃ requires the same number of rounds as the graph H that we started
with, up to a polylogarithmic factor, for both deterministic and randomized algorithms.

In particular, consider any connected graph G that is not a tree. (Trees are known to be
easy: for any constant-sized tree T , the T -freeness problem can be deterministically solved
in O(1) rounds [8].) The block cut tree of G is a decomposition of G into a tree of maximal
2-connected components C1, . . . , Ck, where the pairwise intersection of any two components
Ci, Cj (for i 6= j) is either empty or comprises a single vertex (called a cut vertex) [13]. Our
first result shows that if for some i we know a lower bound of Ω(nδ) on checking Ci-freeness,
then the entire graph G is also hard and requires Ω̃(nδ) rounds.

The second class of graphs takes a different approach: instead of replacing vertices, we
replace edges (see Fig. 1b). We start with the 4-cycle1 on {0, 1, 2, 3}, and replace each edge
{i, (i+ 1) mod 4} of the cycle with an arbitrary graph connecting vertices i and (i+1) mod 4,
subject to two constraints: the resulting graph after replacing the edges must remain 2-
connected, and no graph we added can contain the other three, connected to each other, as
a subgraph (see Section 4 for a more formal definition). We show that checking subgraph-
freeness for the resulting graph requires Ω̃(nδ) rounds, where the exponent δ ∈ (0, 1/2]
depends on the graphs with which the edges of C4 were replaced. For example, the second
class of graphs includes any cycle of length at least 4 (for which our result is identical to [17]),
as well as cycles with any number of chords, provided at least one of the smaller cycles
created has length at least 4, and the smaller cycles are not too unbalanced in size.

The two classes complement each other: the graphs in the first class are obtained by
starting from a 2-connected graph and replacing its vertices with other graphs, yielding a
graph that is not 2-connected; the second class allows us to prove lower bounds on H-freeness
for new subgraphs H that are 2-connected, and these can then be used to construct more
graphs in the first class.

The reductions we use to show lower bounds for the two classes of graphs are fairly simple,
but proving their correctness is non-trivial. For the first class, we take an algorithm for
detecting the more complicated graph H̃, and transform it into an algorithm for the simpler
graph H that we started with. This allows us to carry the lower bound over in the other

1 We can also start from a larger cycle, but this gives us no additional power, because larger cycles can be
constructed out of 4-cycles using our reduction. The lower bound we obtain would also not be higher.

T. Gonen and R. Oshman 6:3

direction. The transformation works by having each node in the network graph choose some
vertex v in H, and “pretend” that it is the entire subgraph that we attached to vertex v in
H when we constructed H̃. We must show that our algorithm does not inadvertently create
copies of H̃ when the network graph does not contain a copy of H, and this is non-trivial.
For the second class of graphs we extend the reduction from the two-party communication
complexity of set disjointness used in [7] to show the hardness of C4-freeness. Again, the
difficulty lies in proving that in our reduction we do not create copies of H̃ when we do not
mean to.

1.1 Related Work
The problem of subgraph-freeness (also called excluded or forbidden subgraphs) has been
extensively studied in both the centralized and the distributed worlds. For the general
problem of detecting whether a graph H is a subgraph of G, where both H and G are part
of the input, the best known sequential algorithm is exponential [21]. When H is fixed and
only G is the input, the problem becomes solvable in polynomial time. For example, using
a technique called color coding, it is possible to detect a simple cycle of a specific size in
expected time that is the running time of matrix multiplication [2]. We use the color coding
technique in Section 3.

In the distributed setting, [10] and [11] very recently provided constant-round randomized
and deterministic algorithms, respectively, for detecting a fixed tree in the CONGEST model.
Both papers, as well as several others [3, 4, 12, 9] , also considered more general graphs,
but with the exception of trees, they studied the property testing relaxation of the problem,
where we only need to distinguish a graph that is H-free from a graph that is far from
H-free. (In [9] there is also a property-testing algorithm for trees.) Here we consider the
exact version.

Another recent work [15] gave randomized algorithms in the CONGEST model for triangle
detection and triangle listing, with round complexity Õ(n2/3) and Õ(n3/4), respectively, and
also established a lower bound of Ω̃(n1/3) on the round complexity of triangle listing. There
is also work on testing triangle-freeness in the congested clique model [5, 6] and in other, less
directly related distributed models.

As for lower bounds on H-freeness in the CONGEST model, the only ones in the literature
(to our knowledge) are for cycles. (In [7] there are lower bounds for other graphs, in
a broadcast variant of the CONGEST model where nodes are required to send the same
message on all their edges.) For any fixed k > 3, there is a polynomial lower bound for
detecting the k-cycle Ck in the CONGEST model: it was first presented by [7], which showed
that Ω(ex(n,Ck)/ log(n)) rounds are required, where ex(n,Ck) is the largest possible number
of edges in a Ck-free graph over n vertices (see [14] for a survey on extremal graphs with
forbidden subgraphs). In particular, for odd-length cycles, the lower bound of [7] is nearly
linear. Very recently, [17] improved the lower bound for even-length cycles to Ω(

√
n/ log(n))).

2 Preliminaries

We generally work with undirected graphs, unless indicated otherwise.
The CONGEST model is a synchronous network model, where computation proceeds

in rounds. In each round, each node of the network may send B bits on each of its edges,
and these messages are received by neighbors in the current round. As is typical in the
literature, we assume B = O(logn) here (the lower bounds generalize to other settings of B
in a straightforward manner).

OPODIS 2017

6:4 Lower Bounds for Subgraph Detection in the CONGEST Model

Notation. We let V (G), E(G) denote the vertex and edge set of graph G, respectively, and
use the following short-hand notation:

H ⊆ G for two graphs H,G stands for the subgraph relation: H ⊆ G iff V (H) ⊆ V (G)
and E(H) ⊆ E(G).
We use A ↪→ B to denote a function mapping all elements of A into B. Specifically, if G
contains a copy of H as a subgraph, we frequently let σ : H ↪→ G denote an isomorphism
mapping the nodes of H into V (G). When the isomorphism is onto, we use the usual →,
i.e., σ : H → H ′.
If σ : H ↪→ G is an isomorphism mapping H onto a copy of H in G, we let σ(H) denote
the image of H under σ. We have σ(H) ⊆ G.

I Definition 1 (Subgraph freeness). Fix a graph H of constant size. In the H-freeness
problem, the goal is to determine whether the input graph G contains a copy of H as a
subgraph or not, that is, whether there is a subgraph G′ ⊆ G which is isomorphic to H.

We say that a distributed algorithm A solves H-freeness with success probability p if
When A is executed in a graph containing a copy of H, the probability that all nodes
accept is at least p.
When A is executed in an H-free graph, the probability that at least one node rejects is
at least p.

We typically assume constant p, e.g., p = 2/3.
The graph classes we define assume some amount of vertex connectivity, defined below.

I Definition 2 (Vertex connectivity). We say that a graph G is k-connected, for k ≥ 1, if
removing any k vertices from G (along with all their incident edges) does not disconnect G.

In Section 4 we rely on a lower bound for two-party communication complexity: we
have two players, Alice and Bob, with private inputs X,Y , respectively. The players wish
to compute a joint function f(X,Y) of their inputs, and we are interested in the total
number of bits they must exchange to do so (see the textbook [18] for more background on
communication complexity).

In particular, we are interested in the set disjointness function, where the inputs X,Y
are interpreted as subsets X,Y ⊆ [n], and the goal of the players is to determine whether
X ∩ Y = ∅. The celebrated lower bound of [16, 20] shows that even for randomized
communication protocols, the players must exchange Ω(n) bits to solve set disjointness with
constant success probability.

3 Vertex-Replacement Reduction

In this section we describe a reduction that allows us to take any 2-connected graph H for
which we know a polynomial lower bound, attach arbitrary connected graphs to the vertices
of H to obtain a new graph H̃, and obtain the same lower bound on H̃ as for H, up to a
logarithmic factor.

Let us describe more formally what we mean by “attaching graphs to the vertices of H”.

I Definition 3 (Graph attachment). Fix two graphs G,H over vertex sets V (G), V (H) with
a unique intersection, V (G) ∩ V (H) = {v}. We define an attached graph, G ∪H, as follows:
V (G ∪ H) = V (G) ∪ V (H), and E(G ∪ H) = E(G) ∪ E(H). We refer to vertex v as the
attachment point of G ∪H.

The attachment operation trivially has the following property, which we rely on in the
sequel:

T. Gonen and R. Oshman 6:5

I Property 4. Let G = H1 ∪H2, with v ∈ V (H1) ∩ V (H2) the attachment point. Then for
any two vertices w1 ∈ V (H1), w2 ∈ V (H2), any path u1 = w1, u2, . . . , u` = w2 from w1 to w2
in H must include v (that is, for some 1 ≤ i ≤ ` we have ui = v).

I Definition 5 (Compatible graphs). Let G be a graph with V (G) = [s]. We say that a
sequence of graphs H0, . . . ,Hs−1 is compatible with G if
(1) For any i ∈ [s] we have V (Hi) ∩ V (G) = {i}, and
(2) For any i 6= j we have V (Hi) ∩ V (Hj) = ∅.
If H0, . . . ,Hs−1 are compatible with G, we use the short-hand notation G∪

⋃s−1
i=0 Hi to denote

the graph defined by attaching each Hi to G (the order in which we attach H0, . . . ,Hs−1
does not matter).

I Definition 6 (The class AH). Fix a graph H on vertices V (H) = [s]. The class AH
includes any graph given by H̃ = H ∪

⋃s−1
i=0 Hi for H0, . . . ,Hs−1 compatible with H.

See Figure 1a for an illustration.
Now we can state our main theorem for this section.

I Theorem 7. Let H be any 2-connected graph on V (H) = [s]. If solving H-freeness requires
Ω(nδ) rounds in graphs of size n for deterministic algorithms, then for any H̃ ∈ AH , solving
H̃-freeness requires Ω(nδ/ logn) rounds for deterministic algorithms. The same relationship
holds for randomized algorithms, except that if checking H-freeness requires Ω(nδ) rounds for
randomized algorithms, then checking H̃-freeness requires Ω(nδ/ log2 n) rounds.

To prove Theorem 7, we describe a randomized reduction, which takes an algorithm for
checking H̃-freeness, and constructs a randomized algorithm for checking H-freeness. This
allows us to carry the lower bound over in the other direction, from checking H-freeness
to checking H̃-freeness. This prove Theorem 7 for randomized algorithms; to prove it for
deterministic algorithms, we derandomize our reduction.2

3.1 The Reduction

Fix an algorithm Ã for checking H̃-freeness, with running time t(n) and success probability
p. We wish to use Ã to check H-freeness. To do this, we have each node v of the network
choose a “role in H”, c(v) ∈ V (H); we call c(v) the color of v. Each node v then “imagines”
that it is attached to a copy of Hc(v), and we simulate the run of Ã in the resulting network.

In the randomized reduction, each node chooses a random color; we call a copy of H
properly colored if each node chose a color that matches the vertex it is mapped to in H.

I Definition 8 (Properly-colored copies). Fix graphs G,H, such that G contains a copy of
H. Let σ : H ↪→ G map H onto its copy in G. We say that σ(H) is properly colored by an
assignment of colors c : V (G)→ V (H) if for each v ∈ σ(H) we have c(v) = σ−1(v).

Next we formally describe the algorithm A(c) that is executed for a given color assignment
c : V (G)→ V (H), where G is the network graph.

2 It is also possible to first derandomize the reduction and then apply it to either a randomized or
deterministic algorithm. However, we must first reduce the error probability of the randomized
algorithm, so either way we lose an additional log n factor.

OPODIS 2017

6:6 Lower Bounds for Subgraph Detection in the CONGEST Model

3.1.1 Construction of A(c)
We define a “virtual graph”, G̃c, where
(1) Each vertex v ∈ V (G) is replaced by (v, c(v)); let Gc be the resulting copy of G.
(2) Each v ∈ V (G) creates a “virtual copy” G̃v of the graph Hc(v), where each vertex

i ∈ Hc(v) is replaced by (v, i).
(3) G̃c = Gc ∪

⋃
v∈V (G) G̃v, that is, G̃c is obtained by attaching the copies G̃v for each

v ∈ V (G) to Gc.

Let Ũv = V (G̃v) denote the “virtual vertices” corresponding to the copy of Hc(v) attached
to vertex v (i.e., to vertex (v, c) in G̃c).

In A(c), we simulate the execution of Ã in the virtual graph G̃c, with each vertex v ∈ G
simulating all the vertices in Ũv (including “itself”, vertex (v, c(v)). At the end of the
execution, each vertex v accepts if all virtual vertices in Ũv accepted, and otherwise it rejects.

The running time of A(c) in G is the same as the running time of Ã in G̃c. Let
a = maxi |V (Hi)| be the maximum number of vertices simulated by a vertex of G in G̃c.
Then |V (G̃c)| ≤ a|V (G)|. Thus, the worst-case running time of A in G is bounded by t̃(an).

The algorithm A itself simply has each node v choose a random color c(v) ∈ V (H), and
then runs A(c). We will show that

If the graph contains a copy of H, then A accepts with probability at least p/ss;
If the graph does not contain a copy of H, then A accepts with probability at most 1− p.

3.1.2 What Could Go Wrong?
Before proving A correct, let us illustrate why the requirement that H be 2-connected is
necessary, and in general what could go wrong if we are not careful.

Figure 2 A bad example with a subgraph H that is not 2-connected.

Consider the graph H which is the line over vertices {0, 1, 2}, in increasing order. H is of
course not 2-connected. Let H0 be the graph containing only a single edge, {0, a}, and for
each i = 1, 2, let Hi be the single vertex i. The graph H̃ we obtain by attaching H0, H1, H2
to H is the line of length 3 (i.e., 3 edges).

Now let G be a graph comprising a single edge, {a, b}, and suppose that we were unlucky
and chose the color assignment c(a) = c(b) = 0. Then G̃c is a line of length 3, i.e., it contains

T. Gonen and R. Oshman 6:7

H̃ as a subgraph. But G does not contain H as a subgraph, so our reduction would be
unsound if we applied it with this H.

Next we show that for subgraphs H that are 2-connected, our reduction is complete
and sound: the graph we construct contains a copy of H̃ iff the original graph contained a
properly-colored copy of H.

3.1.3 Completeness of A

Suppose that the original graph G contains a copy H, and let σ : H ↪→ G be an isomorphism
mapping H into G. Suppose further that σ(H) is properly colored by c. Conditioned on
this event, the new graph G̃c contains a copy of H̃, witnessed by the following isomorphism
σc: for each x ∈ H̃, if x ∈ Hj , then σc(x) = (σ(j), x). Thus, conditioned on the event that
we get a good coloring c, A(c) accepts with probability at least p. The overall acceptance
probability of A is at least p/ss.

3.1.4 Soundness of A

Now suppose that G does not contain a copy of H; we show that for any coloring c of G, the
corresponding graph G̃c does not contain a copy of H̃. Therefore A rejects with the same
probability that Ã rejects, i.e., at least p.

Suppose for the sake of contradiction that there is a coloring c of G such that G̃c does
contain a copy of H̃, and let us abuse notation by denoting G̃ = G̃c. We will show that there
is some “virtual copy” G̃v which contains infinitely many distinct copies of H, which is, of
course, impossible.

First we show that any copy of H in G̃ must be entirely contained in some G̃v.

I Observation 9. For any isomorphism σ : H ↪→ G̃, there is a vertex v ∈ V (G) such that
σ(H) ⊆ Ũv.

Proof. From our assumption, there is no copy of H in G, and therefore σ(H) 6⊆ G; that is,
σ(H) must contain some “virtual nodes”. Accordingly, there must be some “virtual part”, Ũv,
such that σ(H)∩ Ũv \ {v} 6= ∅. If σ(H) is only partially contained in Ũv (i.e., if σ(H) 6⊆ Ũv),
then removing (v, c(v)) from G̃ disconnects σ(H), because any path from vertices in Ũv to
vertices outside Ũv must pass through (v, c(v)) (Property 4). But H is 2-connected, and
therefore σ(H) must be entirely contained in Ũv. J

Now fix an isomorphism σ : H̃ ↪→ G̃, and let v be the vertex from Observation 9, such
that σ(H) ⊆ Ũv. Let i = c(v).

I Observation 10. σ(Hi) 6⊆ G̃v.

Proof. Recall that Ũv is the vertex set of G̃v, which is a copy of Hi; thus, |Ũv| = |V (Hi)|,
and we can only have σ(Hi) ⊆ Ũv if σ(Hi) = Ũv. But Ũv contains at least one vertex which
is not in σ(Hi): take any vertex j ∈ V (H) \ {i} (which exists because |V (H)| > 1), and since
σ(H) ⊆ Ũv and V (H)∩ V (Hi) = {i}, we have σ(j) ∈ Ũv \ σ(Hi). Therefore σ(Hi) 6= Ũv and
σ(Hi) 6⊆ Ũv. J

I Observation 11. We have (v, i) ∈ σ(Hi).

Proof. From Observation 10, there is some u ∈ Hi such that σ(u) 6∈ Ũv. In Hi, there is a
path π from u to i, because u, i ∈ Hi and Hi was assumed connected; the isomorphism σ

maps π onto a path σ(π) in G̃ from σ(u) 6∈ Ũv to σ(i) ∈ σ(H) ⊆ Ũv. By Property 4, the
path σ(π) must include (v, i), and therefore (v, i) ∈ σ(Hi). J

OPODIS 2017

6:8 Lower Bounds for Subgraph Detection in the CONGEST Model

For a vertex (v, x) ∈ G̃v, let σ′ be the isomorphism between G̃v and Hi given by
σ′(v, x) = σ(x). Note that σ′(G̃v) ⊆ σ(Hi) ⊆ G̃v.

We now construct a sequence of isomorphisms σ1, σ2, . . . : H → G̃v as follows:
σ0 = σ,
σj+1(x) = σ′(σj(x)) for any j ≥ 0, x ∈ H.

Note that a-priori, this sequence is not necessarily well-defined, because σ′ can map nodes of
G̃v to nodes outside G̃v. We will show that this does not happen to nodes of H, so that we
get infinitely many copies of H inside G̃v.

For any j > 0, let

dj = distG̃v
((v, i), σj(i)).

Also, let πj be a path of length dj between (v, i) and σj(i) in G̃v. (These definitions assume
that the sequence σ1, . . . , σj is well-defined up to index j, and accordingly we will only use
them under this assumption.)

I Observation 12. Let π ⊆ G̃v be a simple path between two vertices (v, x), (v, y) ∈ G̃v, such
that σ′(v, x), σ′(v, y) ∈ G̃v as well. Then σ′(π) ⊆ G̃v.

Proof. Assume for contradiction that σ′(π) 6⊆ G̃v, and let (v, w) ∈ π be some vertex such
that σ′(v, w) 6∈ G̃v. Split π into two sub-paths, π1 and π2, where π1 connects (v, x) to (v, w),
and π2 connects (v, w) to (v, y). The isomorphism σ′ maps π1, π2 into two simple paths
σ′(π1), σ′(π2) connecting σ′(v, x) to σ′(v, w) and σ′(v, w) to σ′(v, y), respectively. Since
σ′(v, w) 6∈ G̃v and σ′(v, x), σ′(v, y) ∈ G̃v, Property 4 asserts that σ(π1) and σ(π2) both
include node (v, i). But this means that σ(π) = σ(π1)σ(π2) is not a simple path, which is a
contradiction, as π is simple and σ′ is bijective. J

For convenience, let us denote σ0(i) = (v, i).

I Claim 13. Fix k > 0, and assume that σj(H) ⊆ G̃v for each j < k. Then for any 0 ≤ j < k

and 0 < ` < k with j + ` < k, there is a simple path π ⊆ G̃v of length d` connecting σj(i)
and σj+`(i).

Proof. By induction on j.
For j = 0, this is immediate from the definition of d` as the distance in G̃v between

σ0(i) = (v, i) and σ`(i).
For the induction step, suppose that the claim holds for j: there is a simple path π ⊆ G̃v

of length d` connecting σj(i) and σj+`(i). Assume that j + 1 + ` < k, and recall that we
assumed σr(H) ⊆ G̃v for each 0 ≤ r < k. Then in particular, σj+1(i) = σ′(σj(i)) ∈ G̃v and
σj+`+1(i) = σ′(σj+`(i)) ∈ G̃v. Thus we can apply Observation 12 to get that σ′(π) ⊆ G̃v.
This proves the claim, because σ′(π) connects σj+1(i) and σj+`+1(i) and has length d`. J

I Corollary 14. Fix k > 0, and assume that σj(i) ∈ G̃v for each j < k. Then for any
0 ≤ j < k and 0 < ` < k with j + `+ 1 ≤ k, there is a simple path of length d` connecting
σj(i) and σj+`(i).

Proof. If j + `+ 1 < k, this is Claim 13. If j = 0, this follows from the definition of dj , as in
the base case of Claim 13. Finally, if j + `+ 1 = k, then Claim 13 shows that there is a path
of length d` between σj−1(i) ∈ G̃v and σj+`−1(i) ∈ G̃v, and applying σ′ once more yields a
path of length d` between σ′(σj−1(i)) = σj(i) and σ′(σj+`−1(i)) = σj+`(i). J

I Claim 15. For each k ≥ 0 we have σk(H) ⊆ G̃v.

T. Gonen and R. Oshman 6:9

Proof. By induction on k. The base case, k = 0, is by choice of v, i.
For the induction step, let k ≥ 1, and assume that σj(H) ⊆ G̃v for each j < k.
It suffices to find some j < k such that there is a path of length at most dj between

σj(i) and σk(i): since dj is the distance from σj(i) to (v, i), any path of length at most dj
starting at σj(i) ends inside G̃v. We therefore get that σk(i) ∈ G̃v, and since any copy of H
is entirely contained in some G̃w for w ∈ V (G) (Observation 9), σk(H) ⊆ G̃v.

Let us write k = 2j + b for j > 0 and b ∈ {0, 1}. By Corollary 14, there is a path π ⊆ G̃v
of length dj connecting σj+b(i) and σ2j+b(i) = σk(i). If k is even, i.e., b = 0, then we are
done, as there is a path of length dj between σj(i) and σk(i).

Suppose now that k is odd, i.e., b = 1. Then we just showed that there is a path of length
dj connecting σj+1(i) and σk(i). If dj ≤ dj+1, then we are done. Otherwise, dj > dj+1. By
Corollary 14, there is a path of length dj+1 < dj between σj(i) and σ2j+1(i) = σk(i), so
again we are done. J

Next we show that the copies σ1(H), σ2(H), . . . cannot overlap completely.
I Claim 16. For each 1 ≤ j < k we have σj(H) 6= σk(H).
Proof. By induction on j.

For the base case, observe that for any k > 1 we have σ(H) 6= σk(H): since H ∩Hi = {i},
we know that σ(H) ∩ σ(Hi) = {σ(i)}, but for all k > 1 we have σk(H) ⊆ σ(Hi). Therefore
σ(H) ∩ σk(H) ⊆ {σ(i)}, and since |H| > 1 we get that σ(H) 6= σk(H).

Now suppose the claim holds for j, and suppose for the sake of contradiction that
σj+1(H) = σk(H) for some k > j+1. Since σj+1(H) = σ′(σj(H)) and σk(H) = σ′(σk−1(H)),
and σ′ is bijective, we get that σj(H) = σk−1(H), which contradicts the induction hypothesis
(as k > j − 1). J

We have reached a contradiction: we have an infinite sequence of copies σ1(H), σ2(H), . . .
all contained in G̃v but no two are identical. This is impossible, because G̃v is finite.

3.2 Lower Bound for Randomized Algorithms
We can now use the reduction described above to prove Theorem 7 for randomized algorithms.

Proof of Theorem 7 for randomized algorithms. Fix an algorithm Ã for solving H̃-freeness,
with success probability p > 1/2 and running time t(n).

Our first step is to construct from Ã an algorithm Ã′, such that in graphs of size s ·n, the
success probability of Ã′ in solving H̃-freeness is at least p′ ≥ p such that 1− p′ < p′/ss, that
is, p′ > 1/(1 + 1/ss). To do this, we execute Ã sequentially C · logn times for some constant
C, and have each vertex accept iff the majority of iterations of Ã accepted. If the graph is
not H̃-free, the expected number of executions that accept is at least Cp logn, and if the
graph is H̃-free, the expected number of iterations that accept is at most C(1− p) logn. We
choose C a sufficiently large constant so that by Chernoff, if the graph contains a copy of H̃,
then a given vertex rejects with probability at most p′/(sn), and if the graph is H̃-free, then
the probability that all vertices accept is at most p′. A union bound then gives the desired
success probability for Ã′.

Next, we use the transformation described above to obtain an algorithm A for solving
H-freeness with running time (Ct(sn) log(n)) in graphs of size sn. In graphs that contain a
copy of H, the probability that A accepts is at least p′/ss, and in graphs that are H-free the
probability that A accepts is at most 1− p′. Since we chose p′ so that 1− p′ < p′/ss, we can
again use C ′ · logn iterations of A for some constant C ′ to increase the success probability
to 2/3. The resulting running time is C · C ′ · t(sn) log2 n, and we know that Ω(nδ) rounds
are required for solving H-freeness; therefore, t(N) = Ω(Nδ/ log2 N). J

OPODIS 2017

6:10 Lower Bounds for Subgraph Detection in the CONGEST Model

3.3 Derandomizing the Reduction
To obtain a deterministic reduction, we use a trick often used in the context of graph coloring.
We fix a set of L color assignments c1, . . . , cL : [n]→ [s] with the following property:3

I Property 17. Take any graph G on n vertices containing a copy of H, and let σ : H ↪→ G

map H onto its copy in G. Then σ(H) is properly colored by at least one color assignment ci
for i ∈ [L].

I Lemma 18. There is a list c1, . . . , cL with L = O(logn) satisfying Property 17.

Proof. We choose L random color assignments, and show that for L = O(logn), the
probability that the list we sampled satisfies Property 17 is greater than zero.

Let s = |V (H)|, and let L = α logn, where α ≥ 1 is a constant we will fix later. Consider
a specific copy σ(H) of H, identified by the vertices v1, . . . , vs ∈ [n]. The probability that a
random assignment c : V (G)→ V (H) colors σ(H) properly is 1/ss. The probability that c
fails to color σ(H) properly is 1− 1/ss, and the probability that L random assignments all
fail to color σ(H) properly is(

1− 1
ss

)L
≤
(
e−1/ss

)L
= e−L/s

s

=
(

1
n

)α/ss

.

By union bound, the probability that a list of L random color assignments is bad for any
copy of H is bounded by ns · (1/n)α/ss , and choosing α a sufficiently large constant, this
probability is strictly smaller than one. J

I Corollary 19. If solving H-freeness requires Ω(nδ) rounds in graphs of size n for determ-
inistic algorithms, then solving H̃-freeness also requires Ω(nδ/ logn) rounds for deterministic
algorithms.

Proof. Fix c1, . . . , cL : V (G)→ V (H) satisfying Property 17, with L = O(logn).
Given a deterministic algorithm Ã for testing H̃-freeness, we construct a deterministic

algorithm A for testing H-freeness, by repeating the simulation from the proof of Theorem 7
with each ci for i ∈ [L]. If at least one iteration of Ã accepts, then A accepts.

If Ã requires t(n) rounds in graphs of size n, then A requires t(sn) logn rounds.
When we run A in a graph that does not contain a copy of H, we showed that no color

assignment produces a copy of H̃, and therefore Ã rejects in all of its iterations. Therefore,
A rejects as well.

When we run A in a graph that contains a copy of H, there is some i such that ci colors
the copy of H properly, and in this case we showed that the virtual graph G̃ contains a copy
of H̃. In iteration i, Ã accepts, and therefore so does A. J

4 Edge-Replacement Reduction

In this section we describe another reduction, which replaces the edges of a graph with other
graphs. We choose to work with the 4-cycle C4 as our starting graph whose edges we replace.
(Any larger cycle would do just as well but would not give us any additional results, as larger
cycles can be constructed from C4 by replacing a single edge with a line comprising several
edges.)

3 Here we assume that the nodes of the graph in which our algorithm is executed have IDs {1, . . . , n},
but this assumption is not necessary. The IDs can be drawn from a polynomially-large namespace; the
proof of Lemma 18 still goes through, with a larger constant.

T. Gonen and R. Oshman 6:11

I Definition 20 (The class B). A graph H on vertices V = {0, . . . , k − 1} is in B if it satisfies
the following conditions:
(1) H is 2-connected, and
(2) There are four subsets V0, . . . , V3 ⊆ V such that

(a) Vi ∩ V(i+1) mod 4 = {(i+ 1) mod 4} for each i ∈ {0, . . . , 3},
(b) Vi ∩ Vj = ∅ for each i, j ∈ {0, . . . , 3} where j 6= (i+ 1) mod 4,
(c) The subgraph Hi induced by H on Vi is connected,
(d) For each i ∈ [3], the graph Hi does not contain a copy of the other three attached to

each other,
⋃
j 6=iHj .

For an illustration, see Figure 1b. We believe the last requirement is not necessary for the
reduction, but our current proof of soundness requires it.

Our approach for proving a lower bound for graphs in the class B is to modify the
reduction from [7], which was originally used to show a lower bound of Ω̃(

√
n) for checking

C4-freeness. As in [7], we require dense graphs that are free of cycles up to some length. We
use the construction of [19], as stated in [14], Theorem 4.47:

I Theorem 21 ([19]). For any n, g ≥ 1 there is a bipartite graph on n vertices, with girth at
least 2g + 2, and Ω(n1+ε(g)) edges, where

ε(g) =
{

2/(3g − 3), if g is odd,
2/(3g − 3 + 1), if g is even.

Now we can state our result:

I Theorem 22. For each H ∈ B there is some δ ∈ (0, 1/2] such that testing H-freeness
requires Ω(nδ) rounds for randomized algorithms.

The proof is a reduction from two-party communication complexity: we show that if
there is a fast algorithm for H-freeness for some H ∈ B, then we can construct from this
algorithm a communication-efficient protocol for set disjointness. Because we know that set
disjointness requires Ω(n) bits of communication, we obtain a lower bound on the number of
rounds required for H-freeness for H ∈ B.

Proof of Theorem 22. For each i = 0, . . . , 3, let ki be the distance between i and (i +
1) mod 4 in Hi, and let k =

∑3
i=0 ki. Assume w.l.o.g. that k0 + k2 ≥ k1 + k3 and k2 ≥ k0.

Observe that H contains the cycle Ck, passing through nodes 0, 1, 2, 3 in this order.
Fix a bipartite graph F with girth greater than bk/k0c and with m edges, {e1, . . . , em}.

Direct the edges from one side to the other, and let us denote (u, v)−1 = (v, u).
We reduce from set disjointness on m elements as follows.
Given inputs X,Y ⊆ [m], Alice and Bob jointly construct a graph GX,Y , which consists

of many copies of H0, . . . ,H3, where
Alice decides which copies of H0 to include in GX,Y , depending on her input X;
Bob decides which copies of H1 to include in GX,Y , depending on his input Y ;
The set of copies of H1, H3 that are included in GX,Y is fixed and does not depend on
the input.

The various copies of H0, . . . ,H3 are connected to each other at vertices 0, . . . , 3 in such a
way that a copy of H appears iff X ∩ Y 6= ∅.

Each of the copies of Hi is associated with a directed edge e ∈ [n]2, and accordingly, we
name each copy He

i , where i is the index of the graph Hi of which He
i is a copy, and e ∈ [n]2

is the edge with which it is associated.
We now describe the construction formally.

OPODIS 2017

6:12 Lower Bounds for Subgraph Detection in the CONGEST Model

Step 1: Creating copies of H0, . . . , H3

For an edge e = (u, v) ∈ [n]2 and a graph Hi where i ∈ [3], we create a copy of Hi denoted
H

(u,v)
i , over the vertices

V
(
H

(u,v)
i

)
= {(i, u), ((i+ 1) mod 4, v)} ∪ {(x, i, (u, v)) | x ∈ V (Hi) \ {i, (i+ 1) mod 4}} .

The original Hi is mapped onto its copy H(u,v)
i by the isomorphism σ

(u,v)
i , defined as follows:

The vertices i and (i+ 1) mod 4 of Hi are mapped by σ(u,v)
i to (i, u), ((i+ 1) mod 4, v) in

H
(u,v)
i , respectively. Vertices y are called the endpoints of H(u,v)

i . Note that these vertices
can be shared between different copies He1

i and He2
j ; we elaborate below, in Property 23.

Any other vertex, x ∈ V (Hi) \ {i, (i+ 1) mod 4}, is mapped by σ(u,v)
i to a “fresh vertex”

denoted (x, i, (u, v)), which is not shared with any other copy.

As we said, some of the copies share vertices; the following property characterizes the
copies that do and do not share vertices, and which vertices are shared.

I Property 23. For any (i, ui, vi) 6= (j, uj , vj),
If j = (i+ 1) mod 4 and vi = uj, then V (H(ui,vi)

i) ∩ V (H(uj ,vj)
j) = {((i+ 1) mod 4, vi)};

If i = (j + 1) mod 4 and vj = ui, then V (H(ui,vi)
i) ∩ V (H(uj ,vj)

j) = {((j + 1) mod 4, vj)};
If neither condition above holds, then V (H(ui,vi)

i) ∩ V (H(uj ,vj)
j) = ∅.

Selecting copies for GX,Y

Not all the copies He
i described above actually appear in the graph GX,Y constructed by the

players; as we said, the players choose which copies to include based on their inputs.
Recall that F is a bipartite graph with girth greater than bk/k0c and with m edges,

{e1, . . . , em}, which we directed from one side to the other. Recall also that X,Y ⊆ [m], so
Alice and Bob can view their inputs as sets of edges from F . The graph GX,Y is constructed
by attaching together four sets of copies:

GX,Y =
3⋃
i=0

{
He
i | e ∈ E

X,Y
i

}
,

where the edge set EX,Yi is given by:
For i ∈ {1, 3} we define EX,Yi = {(u, u) | u ∈ [n]},
For i = 0 we define EX,Y0 = {ex | x ∈ X}, and
For i = 2 we define EX,Y2 =

{
e−1
y | y ∈ Y

}
.

The Simulation

We describe how Alice and Bob simulate the execution of a distributed algorithm for testing
H-freeness in the graph GX,Y . Let GA be the subgraph of GX,Y induced by all the nodes
participating in copies He

0 for some e ∈ F , and let GB be the subgraph of GX,Y induced by
all the nodes participating in copies He−1

2 for some e ∈ F . Alice simulates all the nodes in
GA, and Bob simulates the nodes in GB ; the remaining nodes are simulated by both players,
using public randomness to agree on their random choices. Note that by construction, each
player knows all internal edges on their side of the graph (GA, GB respectively), and both
players know the structure of the shared part of the graph.

T. Gonen and R. Oshman 6:13

In each round, Alice sends Bob the messages sent on each edge adjacent to nodes (0, u),
(1, u) for each u ∈ [n], and Bob sends Alice the messages sent on each edge adjacent to
nodes (2, u), (3, u) for each u ∈ [n]. The players then feed these messages to the nodes they
simulate, and also compute the messages sent on internal edges in GA (for Alice) or GB (for
Bob), and feed them in as well.

If ∆ is the total degree of nodes 0, 1, 2, 3 in H, then the total number of bits required for
each round of the simulation is ∆n logn = O(n logn).

Correctness of the Reduction

First, suppose x ∈ X ∩ Y , and let ex = (u, v). Then Alice and Bob both add copies
H

(u,v)
0 , H

(v,u)
2 , with H(u,v)

0 connecting nodes (0, u) and (1, v), and H(v,u)
2 connecting nodes

(2, v) and (3, u). Because in GX,Y there is always a copy H(v,v)
1 of H1 connecting (1, v) to

(2, v), and there is always a copy H(u,u)
3 of H3 connecting (3, u) to (0, u), we get a complete

copy of H.
Now suppose that X∩Y = ∅, and assume for the sake of contradiction that GX,Y contains

a copy of H.

I Observation 24. In GX,Y there is no copy of H which intersects at most one copy H(u,v)
i

for each i ∈ [3].

Proof. Suppose there is such a copy. Because |V (H)| =
∑3
i=0 |Vi|, this copy of H must also

intersect at least one copy H(ui,vi)
i for each i ∈ [3], and since H is connected, these four

subgraphs must share vertices (as there are no edges between the non-shared vertices of
two distinct copies). By Property 23, we must have vi = u(i+1) mod 4 for each i ∈ [3]. In
particular, v0 = u1 = v1 = u2, and v2 = u3 = v3 = u0. But such copies would only be added
to the graph if there exist edges ex = (u0, v0) ∈ E(F) with x ∈ X, and ey = (v2, u2) ∈ E(F)
with y ∈ Y . Since v2 = u0 and u2 = v0, we get that x = y and hence X ∩ Y 6= ∅, contrary to
our assumption. J

I Claim 25. In GX,Y , any cycle Cd with d ≤ k is entirely contained in some copy He
i for

i ∈ [3] and e ∈ [n]2.

Proof. Consider a cycle Cd in GX,Y which is not entirely contained in any copy Hx
i . Let

(i1, e1), . . . , (ia, ea) be the sequence of copies of Hej

ij
through which Cd passes. Then C ′ =

e1, . . . , ea is a cycle: the various copies connect to each other only at their endpoints, and if
Cd enters some copy through one endpoint it must exit at the other (it is a simple cycle, so
it cannot exit through the vertex where it entered).

Recall that F is a bipartite graph with girth greater than bk/k0c.
Consider first a cycle Cd completely contained in Alice’s side of the graph, GA. Then

each edge ej of C ′ corresponds to a passage through copy Hej

0 and adds at least k0 edges, as
this is the distance between vertices 0 and 1 inside H0. However, the girth of F is greater
than bk/k0c, so |C ′| > bk/k0c, that is, Cd must pass through at least bk/k0c+1 copies before
the cycle can close. This yields a total length of at least (bk/k0c+ 1) · k0 > k ≥ d.

Next, suppose that Cd is entirely contained in GB . The same argument holds, except that
each passage through a copy of H2 adds k2 edges instead of k0. Since k2 ≥ k0 by assumption,
we still get a total length of at least (bk/k0c+ 1) · k2 ≥ (bk/k0c+ 1) · k0 > k ≥ d.

Finally, suppose Cd is not entirely contained in GA or in GB. Because the copies{
H

(u,u)
1 , H

(u,u)
3

}
u∈[n]

are not connected to each other, and Cd is not contained in any single

OPODIS 2017

6:14 Lower Bounds for Subgraph Detection in the CONGEST Model

copy, it must go through some copies of H0 and H2 as well. We know from Observation 24
that Cd cannot use only one copy of Hi for each i ∈ [3].

Since F is bipartite, Cd must use at least two copies of H0 from Alice’s side, two copies
of H2 from Bob’s side, and either two copies of H1 or two copies of H3. Therefore the length
of the cycle is at least 2(k0 + k2 + min(k1, k3)) ≥ k + 2 min(k1, k3) > k ≥ d. J

I Corollary 26. There exist i ∈ [3] and u, v ∈ [n] such that for each j 6= i, j ∈ [3] we have
σ(Hj) ⊆ H(u,v)

i .

Proof. From the definition of the class B, the graph H contains a cycle Ck passing through
vertices 0, 1, 2, 3, and from Observation 25, σ maps this cycle into some copy, that is,
σ(Ck) ⊆ H(u,v)

i for some i ∈ [3] and u, v ∈ [n].
Recall that H(u,v)

i is connected to the rest of GX,Y only at its own endpoints (i, u)
and ((i + 1) mod 4, v), and that in H, each subgraph Hj connects to the next subgraph
H(j+1) mod 4 at the endpoint (j + 1) mod 4. This means that there is at most one j ∈ [3]
such that σ(Hj) 6⊆ H(u,v)

i : all paths from σ(0), . . . , σ(3) to vertices outside H(u,v)
i must pass

through an endpoint of H(u,v)
i , either (i, u) or ((i + 1) mod 4, v). Thus, if there is some

x ∈ Hj such that σ(x) 6∈ H(u,v)
i , then any path from σ(x) to σ(j) must pass through (i, u)

or through ((i+ 1) mod 4, v). In fact, because H is 2-connected, there must be two paths
from σ(x) to σ(j), one using (i, u) and one using ((i+ 1) mod 4, v), otherwise removing one
endpoint would disconnect H. But this implies that (i, u), ((i+ 1) mod 4, v) ∈ σ(Hj), and
hence for any j′ 6= j there is no path inside σ(Hj′) from σ(j′) to any node outside H(u,v)

i

Because Hj′ is connected, we get that σ(Hj′) ⊆ H(u,v)
i .

We have now shown that there is at most one j ∈ [3] such that σ(Hj) 6⊆ H
(u,v)
i . Note

in addition that we cannot have σ(Hi) ⊆ H
(u,v)
i , as H(u,v)

i is isomorphic to Hi, and in
addition at least two nodes in H(u,v)

i are not in the σ-image of Hi (nodes (i+ 2) mod 4 and
(i+ 3) mod 4). It follows that if some Hj “escapes” H(u,v)

i , i.e., if σ(Hj) 6⊆ H(u,v)
i , then j = i.

In other words, for each j 6= i we have σ(Hj) ⊆ H(u,v)
i . J

From the corollary we get that there is some i ∈ [3] which contains a copy of
⋃
j 6=iHj ,

contradicting condition (d) of the class B. This concludes the proof of soundness for the
reduction.

Putting Everything Together

Let g = bk/k0c. By Theorem 21, there is a bipartite graph with girth greater than g and
m = Ω(n1+ε) edges, where ε = Θ(1/g). Set F to be such a graph.

The size of the graph GX,Y is bounded by m · (|V0|+ |V 2|) + n · (|V1|+ |V3|) ≤ n1+ε · s,
where s = |V (H)|. We know that to solve disjointness over m elements we require a total of
Ω(m) bits, and our simulation requires O(n logn) bits per round, so the number of rounds of
any randomized algorithm testing H-freeness in GX,Y is Ω(m/(n logn)) = Ω(nε/ logn) in
the worst case.

Now let us express this result in terms of the size of the graph GX,Y : set N = |V (GX,Y)| ≤
n1+εs, where s is the size of H (a constant). Then n = Θ(N1/(1+ε)), and the running time
we get is Ω(N ε/(1+ε)/ logN) rounds. J

T. Gonen and R. Oshman 6:15

5 Conclusion

In this paper we made a step towards understanding which subgraphs are hard to detect in
the distributed setting: we showed that if H is a 2-connected graph that is hard to detect,
then any graph obtained from H by replacing its vertices with other graphs will also be
hard; and that if we take a cycle and replace its edges with other graphs, then under some
conditions, then resulting graph will still be hard.

In our view, the main open question raised by our work is the following: is there a
2-connected graph H such that H-freeness can be solved in sub-polynomial time? Or are all
2-connected graphs hard?

As we pointed out in Section 1, if indeed all 2-connected graphs are polynomially hard,
then our first reduction implies that any graph that is not a tree is polynomially hard, yielding
a strong dichotomy between trees, which only require O(1) rounds to detect [8], and any
other connected graph.

References
1 Amir Abboud, Keren Censor-Hillel, Seri Khoury, and Christoph Lenzen. Fooling views:

A new lower bound technique for distributed computations under congestion. CoRR,
abs/1711.01623, 2017.

2 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.
3 Zvika Brakerski and Boaz Patt-Shamir. Distributed discovery of large near-cliques. Dis-

tributed Computing, 24(2):79–89, 2011.
4 Keren Censor-Hillel, Eldar Fischer, Gregory Schwartzman, and Yadu Vasudev. Fast Dis-

tributed Algorithms for Testing Graph Properties, pages 43–56. Springer, Berlin, Heidelberg,
2016. doi:10.1007/978-3-662-53426-7_4.

5 Keren Censor-Hillel, Petteri Kaski, Janne H. Korhonen, Christoph Lenzen, Ami Paz, and
Jukka Suomela. Algebraic methods in the congested clique. In Proceedings of the 2015
ACM Symposium on Principles of Distributed Computing, PODC 2015, pages 143–152,
2015.

6 Danny Dolev, Christoph Lenzen, and Shir Peled. “Tri, Tri Again”: Finding Triangles and
Small Subgraphs in a Distributed Setting, pages 195–209. Springer, Berlin, Heidelberg, 2012.
doi:10.1007/978-3-642-33651-5_14.

7 Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the power of the congested clique
model. In Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing,
PODC ’14, pages 367–376, 2014.

8 Guy Even, Orr Fischer, Pierre Fraigniaud, Tzlil Gonen, Reut Levi, Moti Medina, Pedro
Montealegre, Dennis Olivetti, Rotem Oshman, Ivan Rapaport, and Ioan Todinca. Three
Notes on Distributed Property Testing. In 31st International Symposium on Distributed
Computing (DISC 2017), volume 91 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 15:1–15:30, 2017.

9 Guy Even, Reut Levi, and Moti Medina. Faster and simpler distributed algorithms for
testing and correcting graph properties in the congest-model. CoRR, abs/1705.04898, 2017.

10 Orr Fischer, Tzlil Gonen, and Rotem Oshman. Distributed property testing for subgraph-
freeness revisited. CoRR, abs/1705.04033, 2017.

11 Pierre Fraigniaud, Pedro Montealegre, Dennis Olivetti, Ivan Rapaport, and Ioan Todinca.
Distributed subgraph detection. CoRR, abs/1706.03996, 2017.

12 Pierre Fraigniaud, Ivan Rapaport, Ville Salo, and Ioan Todinca. Distributed Testing of
Excluded Subgraphs, pages 342–356. Springer, Berlin, Heidelberg, 2016. doi:10.1007/
978-3-662-53426-7_25.

OPODIS 2017

http://dx.doi.org/10.1007/978-3-662-53426-7_4
http://dx.doi.org/10.1007/978-3-642-33651-5_14
http://dx.doi.org/10.1007/978-3-662-53426-7_25
http://dx.doi.org/10.1007/978-3-662-53426-7_25

6:16 Lower Bounds for Subgraph Detection in the CONGEST Model

13 Eugene C. Freuder. A sufficient condition for backtrack-bounded search. J. ACM, 32(4):755–
761, 1985.

14 Zoltán Füredi and Miklós Simonovits. The History of Degenerate (Bipartite) Extremal
Graph Problems, pages 169–264. Springer, Berlin, Heidelberg, 2013.

15 Taisuke Izumi and François Le Gall. Triangle finding and listing in congest networks. In
Proceedings of the ACM Symposium on Principles of Distributed Computing, PODC ’17,
pages 381–389, 2017.

16 Bala Kalyanasundaram and Georg Schnitger. The probabilistic communication complexity
of set intersection. SIAM J. Discrete Math., 5(4):545–557, 1992.

17 Janne H. Korhonen and Joel Rybicki. Deterministic subgraph detection in broadcast CON-
GEST. CoRR, abs/1705.10195, 2017.

18 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University
Press, 1997.

19 Felix Lazebnik, Vasiliy A. Ustimenko, and Andrew J. Woldar. A new series of dense graphs
of high girth. Bull. Amer. Math. Soc., 32(1):73–39, 1995.

20 Alexander A. Razborov. On the distributional complexity of disjointness. Theor. Comput.
Sci., 106(2):385–390, 1992.

21 J. R. Ullmann. An algorithm for subgraph isomorphism. J. ACM, 23(1):31–42, 1976.

	Introduction
	Related Work

	Preliminaries
	Vertex-Replacement Reduction
	The Reduction
	Construction of A(c)
	What Could Go Wrong?
	Completeness of A
	Soundness of A

	Lower Bound for Randomized Algorithms
	Derandomizing the Reduction

	Edge-Replacement Reduction
	Conclusion

