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Abstract
In a probabilistic context, the main data structures of computer science are viewed as random
combinatorial objects. Analytic Combinatorics, as described in the book by Flajolet & Sedgewick,
provides a set of high-level tools for their probabilistic analysis. Recursive combinatorial defini-
tions lead to generating function equations from which efficient algorithms can be designed for
enumeration, random generation and, to some extent, asymptotic analysis. With a focus on ran-
dom generation, this tutorial first covers the basics of Analytic Combinatorics and then describes
the idea of Boltzmann sampling and its realisation.

The tutorial addresses a broad TCS audience and no particular pre-knowledge on analytic
combinatorics is expected.
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1 Introduction

Combinatorial objects defined recursively by simple local rules tend to behave fairly regularly
at large sizes. For instance, binary trees are defined by having nodes that are either leaves
or binary internal nodes. From there, it turns out that all large random binary trees “look”
the same. Also, many of their asymptotic characteristic persist for other classes of trees.
The goal of analytic combinatorics is to understand and quantify those types of phenomena.
Typical questions for binary trees could be: for a binary tree drawn uniformly at random
among all binary trees with n nodes, what is the probability that the root has a leaf as one
of its children? what is the expected distance from a random node to the root? what is the
limiting distribution of this quantity?

The main applications are the probabilistic analysis of the average-case complexity of data
structures and algorithms. Besides general “universality laws” of random discrete structures,
the theory leads to very precise quantitative results. Analytic combinatorics is an active field
of research, whose central core is described in detail, with numerous interesting examples, in
the reference book Analytic Combinatorics by Flajolet and Sedgewick, published in 2009 and
freely (and legally) available on-line [6]. Many methods of this theory can be made effective;
this will be the focus of the tutorial.
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2 Constructible Classes

The classes of structures to which Analytic Combinatorics applies most directly are called
constructible. They form an extension of context-free languages and can be defined recursively
from a finite number of letters called atoms, of size 1 or 0, and combinatorial combinators:
cartesian product, disjoint union, sequences, cycles and sets.

For example, the class of binary trees will be defined by the equation B = 1 +Z ×B ×B,
expressing that a binary tree is either a ‘1’ (a leaf encoded as an atom of size 0) or a
triple formed by a root (Z, an atom of size 1) and two binary trees attached to it. In
terms of this class, the class of binary trees whose root has a leaf-child will be expressed
by Z × B × 1 + Z × 1×Z (except that the binary tree with only one node is counted twice,
which will not matter here). The class of non-planar rooted trees, also called Cayley trees,
will be defined by T = Z × Set(T ), expressing that a tree is a node to which an arbitrary
number of trees in an arbitrary order are attached. Series-parallel graphs will be defined by
a system {G = Z + S + P,S = Seq>0(Z + P),P = Set>0(Z + S)}, expressing that a graph
(G) is either a node (Z) or a series graph (S) or a parallel graph (P), defined recursively in
terms of each other. Such a system will be called a specification for the class. The motto of
the theory is that “if a class can be specified, it can be analyzed.”

3 Enumeration and Generating Functions

Given such a combinatorial specification for a class F , the enumeration problem is to count
the number fn of distinct objects of a given size n in F . For instance, knowing the number Cn
(the Catalan number) of binary trees of size n and the number of those whose root has a leaf
as one of its children lets one compute the probability that this event occurs.

The enumeration is simplified by the use of generating functions. The ordinary gener-
ating function of a sequence (fn) is the formal power series F (z) =

∑
n≥0 fnz

n, while the
exponential generating function is

∑
n≥0 fnz

n/n!. The use of one or the other depends on
what exactly is counted as different. For instance there is only 1 sequence (list) of n atoms of
size 1 if they are all identical, but n! such sequences if they all carry a different label from 1
to n. Thus one distinguishes two ‘universes’: in the unlabelled universe, all atoms are alike
and one uses ordinary generating functions, while in the labelled universe, an object of size n
is formed of atoms labelled from 1 to n and one uses exponential generating functions. In
both cases, there is an explicit dictionary translating the combinatorial specification into
a system of equations for generating functions. Atoms of size 1 are translated into z and
those of size 0 into 1 = z0; disjoint unions (‘+’) become additions and cartesian products
become products of series. A sequence Seq(A) is translated into 1/(1−A(z)), where A(z) is
the generating function of A. These first translation rules are identical in the labelled and
unlabelled universes. Thus, in the example of binary trees, the equation is B(z) = 1 + zB(z)2

in both cases and has for only power series solution the generating function of the Catalan
numbers Cn. Similarly, in terms of this generating function, binary trees with one leaf-child
at the root have generating function 2zB(z)− z (the term −z discards the spurious tree of
size 1), so that the probability mentioned in the introduction is 2Cn−1/Cn for n > 1. For sets
and cycles, the rules differ, but remain simple in the labelled case, where Set becomes exp and
Cycle(A) becomes log 1/(1−A(z)). For instance, in the case of Cayley trees, the exponential
generating function is thus seen to satisfy T (z) = z exp(T (z)).
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4 Newton Iteration and Fast Enumeration

These equations give a first means to compute the enumeration sequences since they are
fixed point equations over formal power series. A much more efficient algorithm is obtained
by using Newton iteration for power series. The classical numerical Newton iteration solves
an equation f(y) = 0 by approaching its root using the solution of successive linearized
equations. Each iterate yn+1 = yn − f(yn)/f ′(yn) is closer to the root when y0 has been
chosen appropriately. The extension of Newton iteration to formal power series is a standard
algorithm in computer algebra [9]. Thus, for binary trees the Newton iteration reads Bn+1 =
Bn + (1 + zB2

n −Bn)/(1− 2zBn). With the choice B0 = 0, it produces a sequence of power
series satisfying B(z)−Bn = O(z2n−1). Together with fast Fourier transform (FFT), Newton
iteration lets one enumerate all constructible classes in quasi-optimal complexity [8]1. It is
even possible to obtain a combinatorial interpretation of the coefficients of the intermediate
power series computed during the iteration: they enumerate combinatorial classes defined by
a further lifting of the Newton iteration to combinatorial equations themselves, in the context
of species theory [2, 1]. (Roughly speaking, species theory provides a sound theoretical
basis grounded in category theory for what we have called “combinatorial class” so far.)
For instance, in the case of binary trees, the combinatorial iteration then reads Bn+1 =
Bn + Seq(Z × Bn × ?+ Z × ?× Bn)× (1 + Z × Bn × Bn \ Bn), where ? denotes an atom of
size 0, which is interpreted as a ‘bud’ where trees can grow. The generating series of Bn is
exactly the power series Bn produced by Newton iteration over power series.

5 Random Generation

Producing large random objects is the basis for simulation in a discrete world. Typical
applications are the empirical evaluation of various parameters, software testing and the
refinement of combinatorial models to suit an application.

A new family of efficient random generators called Boltzmann samplers was discovered
at the beginning of the century [3, 4]. The principle is to draw each object of size n in
a class T with a probability proportional to xn for some prescribed positive real x and a
factor of proportionality chosen so that the sum of probabilities is 1. Since the sum over
all t ∈ T of xsize(t) is nothing but the evaluation of the generating function T of T at x,
the probability will be xn/T (x), provided x is at most the radius of convergence of T . The
algorithm of Boltzmann sampling itself is extremely simple and fits in about 10 lines. For
atoms, the generator returns the atom; for cartesian products, it simply calls itself recursively
on each of the components and assembles the results; for a disjoint union A+ B, a random
real number t ∈ [0, 1] is compared to u = A(x)/(A(x) + B(x)) and the generator is called
recursively on A if t < u and on B otherwise. It is a simple exercise to check that the
probabilities work out as expected. The values like A(x) are provided by a numerical Newton
iteration initialized at 0 [8]. The value of x can be adjusted to target a specific expected
size xT ′(x) of the generated object.

1 This is implemented in the NewtonGF Maple package, available at
http://perso.ens-lyon.fr/bruno.salvy/software/the-newtongf-package/.

STACS 2018

http://perso.ens-lyon.fr/bruno.salvy/software/the-newtongf-package/


1:4 Recursive Combinatorial Structures

6 Asymptotic Analysis

Generating functions are also an entry point for the asymptotic analysis of their coefficients.
The principle is to take these generating functions defined initially as power series given
by a sequence of coefficients and view them as analytic functions in the complex plane.
If A(z) =

∑
n≥0 anz

n has a positive radius of convergence R, then by Cauchy’s theorem,
its coefficient an can be recovered by the integral an = 1

2πi
∮

(A(z)/zn+1) dz, where for the
contour of integration one can take a small circle around the origin of radius smaller than R.
Classical complex analysis deforming the contour to locations where the integral concentrates
asymptotically leads to very explicit and general results known as transfer theorems. The
most useful case is when there is a unique singularity on the circle of convergence, at a
point ρ (which will always be real), where the generating function behaves like c(1− z/ρ)α,
for α 6∈ N. Then the coefficients behave asymptotically like cρ−nn−α−1/Γ(−α). The outcome
is a general 3-step method for the asymptotic analysis of generating functions: (i). locate
the singularities of minimal modulus; (ii). compute the local behaviour of the generating
function there (which can often be found directly from the defining equations); (iii). translate
using a very simple dictionary. This process can be automated in a large part and full
asymptotic expansions computed using computer algebra systems. In the case of binary
trees, the quadratic equation satisfied by the generating function can be solved explicitly
to yield B(z) = (1 −

√
1− 4z)/(2z). From there, the explicit formula for the Catalan

numbers Cn =
(2n
n

)
/(n+ 1) can be derived and the asymptotic behaviour could be computed

by Stirling’s formula. However, such closed forms are the exception rather than the rule, and
the method applies in general. There, the dominant singularity is 1/4, the local behaviour
is 2 − 2

√
1− 4z + O(1 − 4z). The coefficients of B(z) − 2 which are Cn for n > 0 thus

behave asymptotically like −2 · 4nn−3/2/Γ(−1/2) = 4nn−3/2/
√
π. One can also deal with

the probability of a leaf-child at the root either using the formula 2Cn−1/Cn from §3 and
simplification of binomials, or by applying the general method to the generating function
2zB(z)− z. The singularity is the same as that of B(z); the local behaviour at first order is
2ρ = 1/2 times that of B(z), so that 1/2 is the limiting probability. A slighly more detailed
computation by this method yields 1/2 + 3/(4n) +O(1/n2).

These asymptotic techniques help analysis of parameters of combinatorial structures.
One then introduces multivariate generating functions of the form F (z, u) =

∑
n,k fn,ku

kzn

(and the labelled counterpart), where fn,k denotes the number of objects of size n for which
the parameter of interest takes the value k. As a concrete example, one can think of the
internal path-length in a binary tree, that is, the sum of the distances from the nodes to the
root. Equations for the generating series can often be derived by an extended dictionary [7].
In the case of path-length in binary trees, the equation reads B(z, u) = z +B2(zu, u). From
such a bivariate generating function, the expected value of the parameter on objects of size n
is obtained by dividing the coefficient of zn in ∂F/∂u|u=1 by that of zn in F . Both are
univariate generating functions to which the previous method applies. In our example, one
gets an average distance of the nodes to the roots growing like

√
πn.

The next step of Analytic Combinatorics is the study of limiting distributions of paramet-
ers, e.g., path-length in binary trees is asymptotically Gaussian after proper normalization.
This goes beyond what can be covered in this tutorial and we refer the reader to the last
part of the book by Flajolet & Sedgewick.
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7 Conclusion

The message of this tutorial is that from a combinatorial specification, Analytic Combinatorics
provides easy-to-use tools that provide counting, random generation and asymptotic analysis.
Work is under way to automate this approach fully within computer algebra. Counting and
the required parts of random generation are complete and asymptotic analysis is only partly
done, but progress is being made. The ultimate goal would be a system taking as input
a combinatorial specification and some sort of description of an algorithm and producing
automatically the asymptotic average-case behaviour of the algorithm. The approach was
tested a long time ago and works well for various grammars and parameters [5], but much
remains to be done.
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