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Abstract
We relate different approaches for proving the unsatisfiability of a system of real polynomial equa-
tions over Boolean variables. On the one hand, there are the static proof systems Sherali-Adams
and sum-of-squares (a.k.a. Lasserre), which are based on linear and semi-definite programming
relaxations. On the other hand, we consider polynomial calculus, which is a dynamic algebraic
proof system that models Gröbner basis computations.

Our first result is that sum-of-squares simulates polynomial calculus: any polynomial calculus
refutation of degree d can be transformed into a sum-of-squares refutation of degree 2d and
only polynomial increase in size. In contrast, our second result shows that this is not the case
for Sherali-Adams: there are systems of polynomial equations that have polynomial calculus
refutations of degree 3 and polynomial size, but require Sherali-Adams refutations of degree
Ω(
√

n/ log n) and exponential size.
A corollary of our first result is that the proof systems Positivstellensatz and Positivstellensatz

Calculus, which have been separated over non-Boolean polynomials, simulate each other in the
presence of Boolean axioms.
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1 Introduction

The area of proof complexity was founded in [8] and studies the complexity of proofs for co-NP
complete problems. Traditionally, one considers proof systems for proving the unsatisfiability
of (or refuting) a propositional formula in conjunctive normal form. If one faces a proof
system, there are two important questions to ask:
1. Does the system always produce proofs of polynomial size?
2. How strong is the system compared to other proof systems?

If the answer to the first question is yes, in which case the system is called p-bounded,
then NP = co-NP. Therefore, it is conjectured that no proof system is p-bounded and this
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has been proven for a number of weak proof systems. For the second question, one considers
the notion of polynomial simulation: A proof system P polynomial simulates a proof system
Q if for every Q-proof of size S there is a P-proof of size poly(S).

Nowadays, a large part of proof complexity focuses on weak proof systems, for which the
first question has already been answered negatively. One reason for this is that they often
model algorithms for solving hard problems and understanding the complexity of proofs
might shed light on the complexity of algorithmic approaches that implicitly or explicitly
search for proofs in the underlying proof system. The (semi-)algebraic proof systems we
consider in this paper also fall into this category and are used to prove the unsatisfiability of
a system F of real polynomial equations fi = 0 over n Boolean variables xj ∈ {0, 1}.1 On
the one hand, we consider polynomial calculus, which is a dynamic algebraic proof system
that allows to derive new polynomial equations that follow from F line-by-line. This proof
system was introduced in [7] to model Gröbner basis computations and proofs of degree d

(where the degree of all polynomials in the derivation is bounded by d) can be found in time
nO(d) by a bounded-degree variant of the Gröbner basis algorithm.

On the other hand, we consider the semi-algebraic proof system Sherali-Adams and
the stronger sum-of-squares proof system. They are based on the linear and semi-definite
programming hierarchies of Sherali-Adams [22] and Lasserre [15] and can be used to prove the
unsatisfiability of a system of polynomial equations and inequalities. Proofs of degree d can
be found algorithmically by solving a linear program (for Sherali-Adams) or a semi-definite
program (for sum-of-squares) of size nO(d). Contrary to polynomial calculus, both systems
are static in the sense that they provide the whole proof at once.

In order to compare these semi-algebraic proof systems with polynomial calculus, we
first remark that it is known that both systems cannot be simulated by polynomial calculus.
A simple example is the linear equation

∑n
i=1 xi = n + 1, which has a refutation of linear

size and degree 2 in Sherali-Adams and sum-of-squares, but requires polynomial calculus
refutations of degree Ω(n) and size 2Ω(n) [13]. Our first theorem states that sum-of-squares
is strictly stronger than polynomial calculus.

I Theorem 1.1. Let F be a system of polynomial equations over the reals. If F has a
polynomial calculus refutation of degree d and size S, then it has a sum-of-squares refutation
of degree 2d and size poly(S).

For the author of this paper this theorem was highly unexpected. In fact, there has been
some evidence that the contrary might be true. First, in the non-Boolean setting there are
systems of equations that are easier to refute for polynomial calculus than for sum-of-squares
[12] (see Section 2.4 for a discussion). Second, even for systems of polynomial equations over
Boolean variables, separations of polynomial calculus from its static version Nullstellensatz
were known [6].

Since sum-of-squares extends Nullstellensatz, it follows that the semi-definite lifts in
the sum-of-squares/Lasserre hierarchy are necessary for “flattening” a dynamic polynomial
calculus proof into a static one, although polynomial calculus is a purely algebraic system
without semi-definite components. Our second theorem concerns the question whether the
weaker Sherali-Adams linear programming hierarchy is already able to simulate polynomial
calculus. Here we have a negative answer (that we would have expected for sum-of-squares
as well).

1 Note that this subsumes the problem of refuting 3-CNF formulas, because a clause x ∨ y ∨ z can be
encoded as polynomial equation (1− x)y(1− z) = 0.
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I Theorem 1.2. There is a system F of polynomial equations over R[x1, . . . , xn] such that:
1. F has a polynomial calculus refutation of degree 3 and size O(n2).
2. Every Sherali-Adams refutation of F has degree Ω(

√
n/ log n) and size 2Ω(

√
n/ log n).

The lower bound is based on a modified version of the pebbling contradictions. The
original pebbling contradictions have already been used to separate Nullstellensatz degree from
polynomial calculus degree [6], but it turns out that they are easy to refute in Sherali-Adams.
To obtain contradictions that are hard for Sherali-Adams (and still easy for polynomial
calculus), we apply a substitution trick twice: first to show that the resulting contradiction
requires high degree in Sherali-Adams and second to obtain a size lower bound from a
degree lower bound. We believe that both techniques are also helpful for future lower bound
arguments for static proof systems.

2 Proof Systems

For this section we fix a system of real polynomial equations F = {f1 = 0, . . . , fm = 0} and
a system of polynomial inequalities H = {h1 > 0, . . . , hs > 0} over variables x1, . . . , xn. As
it is common in propositional proof complexity, we focus on the special case of polynomial
equations (and inequalities) over Boolean variables and consider the task of proving that a
system of polynomial equations (and/or inequalities) has no 0/1-solution. To enforce Boolean
variables, the axioms x2

j = xj are always included in the proof systems. In Section 2.4 we
briefly discuss non-Boolean variants.

Algebraic proof systems are used for proving the unsatisfiability of a system of multivariate
polynomial equations over some field F. As we focus on real polynomials we set F = R, unless
mentioned otherwise. Semi-algebraic proof systems are used to prove the unsatisfiability
of a system of polynomial equations and/or polynomial inequalities (in this setting the
polynomials are always real).

2.1 Algebraic Proof Systems: Nullstellensatz and Polynomial Calculus
Nullstellensatz [3] is a static algebraic proof system that is based on Hilbert’s Nullstellensatz.
A Nullstellensatz proof of f = 0 from F is a sequence of polynomials (g1, . . . , gm; q1, . . . , qn)
such that

m∑
i=1

gifi +
n∑

j=1
qj(x2

j − xj) = f. (1)

Note that the proof is sound in the sense every 0/1-assignment that satisfies F also satisfies
f = 0. The degree of the Nullstellensatz proof is max

(
{deg(gifi) : i ∈ [m]} ∪ {deg(qj) + 2 :

j ∈ [n]}
)
. The size of the derivation is the sum of the sizes of the binary encoding of the

polynomials f , gifi, qj(x2
j − xj), each represented as a sum of monomials. A Nullstellensatz

refutation of F is a proof of −1 = 0 from F , in which case F is unsatisfiable (i. e., has no
0/1-solution). The Nullstellensatz system is also complete: If F is an unsatisfiable system of
multi-linear polynomials, then it has a refutation of degree at most n.

Nullstellensatz is a static (or one-shot) proof system, as it provides the whole proof at
once. The dynamic version of Nullstellensatz is polynomial calculus (PC) [7]. It consists
of the following derivation rules for polynomial equations (fi = 0) ∈ F , polynomials f, g,
variables xj , and numbers a, b ∈ R:

fi = 0 ,
x2

j − xj = 0 ,
f = 0

xjf = 0 ,
g = 0 f = 0

ag + bf = 0 . (2)

STACS 2018
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A polynomial calculus derivation of f = 0 from F is a sequence (r1 = 0, . . . , rL = 0) of
polynomial equations that are iteratively derived using the rules (2) and lead to f = rL = 0.
The degree of a derivation is the maximum degree of the polynomials in the derivation and
the size is the sum of the sizes of the binary encoding of the polynomials in the derivation. A
polynomial calculus refutation is a derivation of −1 = 0. It is straightforward to check that
polynomial calculus simulates Nullstellensatz: If F has a Nullstellensatz refutation of degree
d and size N , then it has a polynomial calculus refutation of degree d and size polynomial in
N .

In both systems proofs of bounded degree d can be found in time nO(d): for Nullstellensatz
the coefficients of the polynomials can be computed by solving a system of linear equations
of size nO(d), and for polynomial calculus this can be done by using a bounded degree variant
of the Gröbner basis algorithm [7].

2.2 Semi-algebraic proof systems: Sherali-Adams, Sum-of-Squares,
Positivstellensatz

Sherali-Adams is a static proof system that models the Sherali-Adams lift-and-project
hierarchy of linear programming relaxations [22]. It can also be viewed as an extension of
the Nullstellensatz system. A Sherali-Adams proof of f > 0 from (F ,H) is a sequence of
polynomials (g1, . . . , gm; q1, . . . , qn; p0, . . . , ps) such that

m∑
i=1

gifi +
n∑

j=1
qj(x2

j − xj) + p0 +
s∑

`=1
p`h` = f,

and where every p` (` > 0) has the form p` =
∑

A,B a`
A,B

∏
j∈A xj

∏
j∈B(1− xj) with non-

negative coefficients a`
A,B .2 Note that the polynomials p` : Rn → R are non-negative in [0, 1]n

and hence the proof is sound in the sense every 0/1-assignment that satisfies F and H also
satisfies f > 0. The degree (sometime called rank) of a Sherali-Adams proof is the maximum
degree of the polynomials gifi, qj(x2

j − xj), p0, p`h` and the size is the sum of the sizes of
their encoding. A Sherali-Adams refutation of (F ,H) is a proof of −1 > 0 from (F ,H). Note
that every Nullstellensatz refutation of F is a Sherali-Adams refutation of (F , ∅) by choosing
p0 = 0.

Sum-of-squares (SOS) is a semi-algebraic proof system that extends Nullstellensatz and
Sherali-Adams. It models the Lasserre hierarchy of semi-definite programming relaxations [15],
for which reason it is sometimes called Lasserre, and also builds on Putinar’s Positivstellensatz
[21]. The difference to Sherali-Adams is that the positive polynomials p` are now sums of
squares. Formally, a sum-of-squares proof of f > 0 from (F ,H) is a sequence of polynomials
(g1, . . . , gm; q1, . . . , qn; p0, . . . , ps) such that

m∑
i=1

gifi +
n∑

j=1
qj(x2

j − xj) + p0 +
s∑

`=1
p`h` = f, (3)

and where every p` (` > 0) has the form p` =
∑t`

c=1(p`,c)2 (and is encoded as such) for
arbitrary polynomials p`,c (in standard monomial form). Again, the degree of a proof is the
maximum degree of the polynomials gifi, qj(x2

j − xj), p0, p`h`, the size is the sum of the
sizes of their encoding. A sum-of-squares refutation is a proof of −1 > 0. It is not hard to see

2 We assume that the p` are explicitely provided in this form, whereas gi and qj are arbitrary polynomials
encoded in the standard way as a sum of monomials.
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that the positive polynomials p =
∑

A,B aA,B

∏
j∈A xj

∏
j∈B(1− xj) in the Sherali-Adams

proof system have a sum-of-squares proof (from F = H = ∅) of degree |A| + |B| + 1 and
size poly(p). It immediately follows that sum-of-squares simulates Sherali-Adams (the same
argument is also implicit in [2, 16]).
I Lemma 2.1. If (F ,H) has a Sherali-Adams refutation of degree d and size N , then it has
a sum-of-squares refutation of degree d + 1 and size poly(N).

Another semi-algebraic system that is related to sum-of-squares is Positivstellensatz. It
builds on Stengle’s Positivstellensatz (independently proven by Krivine [14] and Stengle
[23]), which has also been used to define a hierarchy of relaxations, see [20]. Our definition
of the Positivstellensatz proof system follows the one introduced in [12], a different way of
formalising Stengle’s Positivstellensatz as a proof system (without focusing on complexity)
was presented in [17]. We remark that Stengle’s Positivstellensatz and the Positivstellensatz
proof system as defined in [12] do not necessarily include the Boolean axioms x2

j − xj and
also work for polynomials over non-Boolean variables. To be precise, we will call the system
that is named “Positivstellensatz” in [12] “non-Boolean Positivstellensatz” in this paper (see
Section 2.4). To define the proof system, we consider for the system of polynomial inequalities
H = {h1 > 0, . . . , hs > 0} the system Ĥ = {

∏
`∈I h` > 0 : I ⊆ [s]}, which extends H

by taking products of polynomial inequalities. Clearly, (F ,H) is satisfiable if and only if
(F , Ĥ) is satisfiable. A Positivstellensatz proof of f > 0 from (F ,H) is a sum-of-squares
proof of f > 0 from (F , Ĥ). Note that on systems of polynomial equations (where H = ∅)
sum-of-squares and Positivstellensatz are the same.

One way of combining polynomial calculus with semi-algebraic proof systems is as follows.
Note that a Sherali-Adams, sum-of-squares, or Positivstellensatz proof of f > 0 can be
decomposed to

g + p0 +
∑

`

p`h` = f, (4)

m∑
i=1

gifi +
n∑

j=1
qj(x2

j − xj) = g, (5)

where (5) is a Nullstellensatz proof of g = 0. By replacing this Nullstellensatz proof of g = 0
with a polynomial calculus proof of g = 0, we obtain dynamic versions of the static semi-
algebraic proof systems. The dynamic version of Positivstellensatz is called Positivstellensatz
calculus and was also introduced in [12]. However, the proof of Theorem 1.1 (in particular
Lemma 3.1) implies that Positivstellensatz and Positivstellensatz calculus can simulate each
other.
I Corollary 2.2. If (F ,H) has a Positivstellensatz calculus refutation of degree d and size S,
then it has a Positivstellensatz refutation of degree 2d and size poly(S).
Proof. By definition, a Positivstellensatz calculus refutation of (F ,H) is a polynomial
calculus derivation of −1− p0 −

∑
` p`h` from F , where h` ∈ Ĥ. By Lemma 3.1, there is a

degree-2d, size poly(S) sum-of-squares proof of non-negativity of

−
(
−1− p0−

∑
` p`h`

)2 = −1− 2p0− p2
0− (2 + 2p0)

(∑
` p`h`

)
−
(∑

`

∑
`′ p`p`′h`′h`

)
, (6)

from (F , Ĥ), which in turn is a Positivstellensatz refutation of (F ,H). J

For completeness, we mention that there are also dynamic semi-algebraic proof systems
that are based on the Lovász-Schrijver lift-and-project method [18] and where one can infer
polynomial inequalities line-by-line (see [11] for an overview). These systems are, however,
much stronger and somewhat different from the proof systems considered in this paper.

STACS 2018
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2.3 Twin variables

In all the proof systems mentioned above, it might be useful to introduce twin variables: for
every variable xj one has available the formal variable x¬j that expresses its “negation” 1−xj .
To ensure that they are complementary, the additional polynomial equality xj + x¬j = 1 is
always present in F . Except for Sherali-Adams this does not change the definition of the
proof systems, as it only affects the input encoding. For Sherali-Adams with twin variables,
it is additionally assumed that every p` has now the form p` =

∑
A,B a`

A,B

∏
j∈A xj

∏
j∈B x¬j

[9].
Note that inclusion of twin variables does not affect the degree of a refutation, but it

might affect the size, as for example the polynomial
∏

j∈[n](1−xj), which has size 2Θ(n), can
be more succinctly expressed as

∏
j∈[n] x¬j , which is of size Θ(n). We are, however, not aware

of any formal separation of (semi-)algebraic proof systems with and without twin variables
with respect to proof size.

Twin variables are particularly useful when encoding CNF formulas into polynomial
equations. It is known that polynomial calculus with twin variables, which is called polynomial
calculus resolution (PCR) [1], can polynomially simulate the resolution calculus [7, 1]. The
same is true for Sherali-Adams [9] and hence sum-of-squares (by Lemma 2.1), but not for
Nullstellensatz3.

I Remark. Theorem 1.1 and Theorem 1.2 remain true in the presence of twin variables.

2.4 The non-Boolean case

It is also conceivable to consider (semi-)algebraic proof systems over non-Boolean variables.
In this case the additional Boolean axioms x2

j−xj = 0 are omitted in the definitions (formally,
we require that qj = 0 in the above definitions). Note that there is no meaningful non-Boolean
variant of the Sherali-Adams proof system, as its correctness (specifically, the non-negativity
of the polynomials p`) crucially depends on the fact that all variables are between 0 and 1.
However, non-Boolean variants of Nullstellensatz, polynomial calculus, sum-of-squares, and
Positivstellensatz are still sound proof systems. It follows from Stengle’s Positivstellensatz
[23], that Positivstellensatz is also refutational complete in this setting. For sum-of-squares
this does only hold if we put additional requirements on F ∪ H (being Archimedian [21]).
Non-Boolean Nullstellensatz and polynomial calculus are only complete over algebraically
closed fields (such as the complex numbers).

We remark that in these systems it is no longer the case that every unsatisfiable multi-linear
system of equations over n variables has a refutation of degree n: for example, the so-called
telescopic system F ts

n := {yx1 = 1, x2
1 = x2, x2

2 = x3, . . . , x2
n−1 = xn, xn = 0} requires

exponential refutation degree in Nullstellensatz [5] and sum-of-squares [12]. Moreover,
the same example shows that the simulation of polynomial calculus by sum-of-squares
(Theorem 1.1) does not hold in the non-Boolean case:

I Theorem 2.3 ([12]). Let F ts
n be the telescopic system as defined above.

1. F ts
n has a non-Boolean Nullstellensatz (hence sum-of-squares) refutation of degree 2O(n).

2. F ts
n has a non-Boolean polynomial calculus refutation of degree O(n).

3. Every non-Boolean sum-of-squares refutation of F ts
n has degree 2Ω(n).

3 This essentially follows from the degree lower bounds in [6] and Lemma 4.8.
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3 Sum-of-Squares Simulates Polynomial Calculus

This section is dedicated to the proof of Theorem 1.1. Let us fix an unsatisfiable system of
polynomial equations F = {f1 = 0, . . . , fm = 0}. Let (r1 = 0, . . . , rL = 0) be a polynomial
calculus derivation of rL = 0 from F of degree d and size S. Let a be the minimal integer
such that every non-zero coefficient c in the proof satisfies a−1 6 4c2 6 a. Hence, the largest
encoding size of a coefficient is Θ(log a). Theorem 1.1 follows immediately from the following
inductive lemma.

I Lemma 3.1. There are polynomials q1, . . . , qL and p1, . . . , pL of size at most poly(S) such
that for every L̂ 6 L there are nonnegative coefficients ai, b`, c` that are either zero or between
a−L̂ and aL̂, such that

m∑
i=1

(−aifi)fi +
L̂∑

`=1
b`q`(x2

j`
− xj`

) +
L̂∑

`=1
c`p

2
` = −(r

L̂
)2 (7)

is a sum-of-squares proof of −(r
L̂

)2 > 0 of degree 2d.

Proof. First note that (7) is indeed a sum-of-squares proof of the form (3) since

L̂∑
`=1

b`q`(x2
j`
− xj`

) =
n∑

j=1

( ∑
` : j`=j

b`q`

)
(x2

j − xj)

and c`p
2
` = (√c`p`)2 (as we require c` > 0). Although we shall first provide the polynomials

q` and p`, we just assume that we have already done so and postpone their definition for
ease of exposition. The proof is now by induction on L̂ and we do a case analysis on the
four types of derivation rules (2). First suppose that r

L̂
= fi is an axiom from F . Then we

can easily derive −(r
L̂

)2 in sum-of-squares by defining p
L̂

= q
L̂

:= 0, setting ai to 1 and all
other coefficients to 0. The case of a Boolean axiom r

L̂
= x2

j − xj is also simple. We define
q

L̂
:= −(x2

j − xj) as well as p
L̂

:= 0, set b
L̂
to 1 and all other coefficients to 0 in order to

derive −(r
L̂

)2.
Now suppose that r

L̂
= xj′rL′ is obtained by multiplying a previously derived polynomial

rL′ (for some L′ < L) by a variable xj′ . By induction assumption we have a sum-of-squares
proof of −(rL′)2 > 0 of degree 2d:

m∑
i=1

(−aifi)fi +
L′∑

`=1
b`q`(x2

j`
− xj`

) +
L′∑

`=1
c`p

2
` = −(rL′)2. (8)

Now we want to turn this proof into a proof of −(xj′rL′)2 > 0. Of course, we could do
this by just multiplying everything by x2

j′ . However, this would increase the degree of the
refutation to 2d + 2! Instead, we use the sum of squares polynomials in order to simulate
the multiplication rule in polynomial calculus without increasing the degree. We define
p

L̂
:= rL′ − xj′rL′ as well as q

L̂
:= −2(rL′)2 and observe that

(p
L̂

)2 + q
L̂
· (x2

j′ − xj′) = (rL′)2 − 2xj′(rL′)2 + x2
j (rL′)2 − 2x2

j′(rL′)2 + 2xj′(rL′)2 (9)

= (rL′)2 − (xj′rL′)2. (10)

By adding them to (8) we derive −(xj′rL′)2 > 0 without increasing the degree. Formally, we
define j

L̂
:= j′, set b

L̂
= c

L̂
= 1 and obtain

m∑
i=1

(−aifi)fi +
L̂∑

`=1
b`q`(x2

j`
− xj`

) +
L̂∑

`=1
c`p

2
` = −(xj′rL′)2 = −(r

L̂
)2.

STACS 2018
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The remaining case is the derivation of r
L̂

= a ·rL′ +b ·rL′′ for a, b ∈ R as a linear combination
of two previously derived polynomials rL′ and rL′′ . By induction assumption we have

m∑
i=1

(−a′ifi)fi +
L′∑

`=1
b′`q`(x2

j`
− xj`

) +
L′∑

`=1
c′`p

2
` = −(rL′)2 and (11)

m∑
i=1

(−a′′i fi)fi +
L′′∑
`=1

b′′` q`(x2
j`
− xj`

) +
L′′∑
`=1

c′′` p2
` = −(rL′′)2. (12)

Our goal is to devise a sum-of-squares proof of −(r
L̂

)2 = −a2(rL′)2 − 2ab · rL′rL′′ − b2(rL′′)2.
For this we define p

L̂
:= a · rL′ − b · rL′′ and q

L̂
:= 0. To derive −(r

L̂
)2, we multiply the

sum-of-squares proof (11) by 2a2, multiply (12) by 2b2, and then add both proofs together
with (p

L̂
)2. More precisely, we set ai = 2a2a′i + 2b2a′′i for all i ∈ [m]; b` = 2a2b′` + 2b2b′′` ,

c` = 2a2c′` + 2b2c′′` for all ` 6 max(L′, L′′); c
L̂

= 1 and set the remaining coefficients to 0.
Then we obtain

m∑
i=1

(−aifi)fi +
L̂∑

`=1
b`q`(x2

j`
− xj`

) +
L̂∑

`=1
c`p

2
` = −2a2(rL′)2 − 2b2(rL′′)2 + (p

L̂
)2 (13)

= −a2(rL′)2 − b2(rL′′)2 − 2ab · rL′rL′′ (14)
= −(r

L̂
)2 (15)

By the definition of a, the factors 2a2 and 2b2 are bounded by 2a−1 and 1
2a from below and

above. Since by induction assumption we have a−L̂+1 6 a′i, b′`, c′`, a′′i , b′′` , c′′` 6 aL̂−1, it follows
that a−L̂ 6 ai, b`, c` 6 aL̂. This concludes the proof of Lemma 3.1. J

Proof of Theorem 1.1. The theorem follows immediately from Lemma 3.1, since every
degree-d polynomial calculus derivation of −1 = 0 can be transformed into a degree-2d

sum-of-squares proof of non-negativity of −(−1)2 = −1. By the requirements in the Lemma
the size of the sum-of-squares proof is poly(S). J

4 Sherali-Adams does not Simulate Polynomial Calculus

The system of polynomial equations that separates Sherali-Adams from polynomial calculus
(Theorem 1.2) is a variant of the pebbling contradictions, which are unsatisfiable propositional
formulas that are based on the black pebble game. These formulas and their variants have
found several applications in propositional proof complexity. For an in-depth treatment of
the history and some of the applications of pebbling in proof complexity we refer the reader
to the survey [19].

Let us fix some notation. In a directed graph G = (V, E) we let N−(v) = {u : (u, v) ∈ E}
be the set of incoming and N+(v) = {w : (v, w) ∈ E} be the set of outgoing neighbours of
a vertex v ∈ V . The vertex sets S = {v : N−(v) = ∅} and T = {v : N+(v) = ∅} are called
the sources and the sinks of G. A circuit is a directed acyclic graph G with a unique sink t

and where every non-source vertex v ∈ V \ S has two incoming neighbours.
The (black) pebble game is a one-player game played on a circuit G = (V, E). The player

has available a pool of P pebbles and the game proceeds by placing and removing pebbles
on the vertices of G. In each round the player can do one of the following moves:
1. place a pebble on a source vertex s ∈ S,
2. place a pebble on w ∈ V \ S if there are pebbles on both vertices in N−(w), or
3. remove an arbitrary pebble.
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The player wins the game when he places a pebble on the sink node t. It is obvious,
that the player can always win the game with |V | pebbles and the (black) pebbling price
Peb(G) 6 |V | is the minimal number P such that the player wins the black pebble game on
G with P pebbles. For our lower bounds we consider circuits G with high pebbling price.

I Theorem 4.1 ([10]). For every n there is a circuit G with n vertices and pebbling price
Peb(G) = Ω(n/ log n).

The pebbling contradiction FG for a circuit G = (V, E) is the system of polynomial
equations over Boolean variables {xv : v ∈ V } that contains the following equations:

xs = 1, for all s ∈ S, (16)
xuxv = xuxvxw, for all w ∈ V \ S and N−(w) = {u, v}, and (17)

xt = 0, for the sink t. (18)

It is easy to see that this system is unsatisfiable. Moreover, we remark that FG is the standard
encoding of the CNF pebbling contradiction, which contains clauses xs, xu ∨ xv ∨ xw, and xt.
As this CNF can be easily refuted in resolution using unit propagation, it follows that this
system is easy to refute in any proof system that simulates resolution, such as polynomial
calculus, Sherali-Adams, and sum-of-squares. For later reference, the next lemma formulates
this claim for polynomial calculus. The proof is deferred to the full version of the paper [4].

I Lemma 4.2. FG has a polynomial calculus refutation of degree 3 and size O(n) for any
n-vertex circuit G.

In [6] it was shown that every Nullstellensatz refutation of FG requires degree Peb(G)
and hence this system separates Nullstellensatz degree from polynomial calculus degree.
However, it is not hard to construct a Nullstellensatz refutation of FG that has size poly(n).
Therefore, this example does not separate both systems with respect to proof size. Moreover,
as mentioned before, this system is also easy for Sherali-Adams (with respect to size and
degree). To prove our separation theorem between Sherali-Adams and polynomial calculus,
we modify the formula a bit in order to make it hard for Sherali-Adams, while at the same
time it remains easy for polynomial calculus. We do this by substituting for every variable
xv the sum of fresh variables according to the following definition.

I Definition 4.3. Let F be a set of polynomial equations over variables x1, . . . , xn and
k > 1. The system F [+k] is obtained from F be replacing every variable xi in every f ∈ F by
the sum xi,1 + · · ·+ xi,k of k new variables and including the additional polynomial equations
xi,`xi,`′ = 0 for all i ∈ [n] and 1 6 ` < `′ 6 k.

The following lemma shows that after substitution the system remains easy to refute in
polynomial calculus.

I Lemma 4.4. Let F be a set of polynomial equations and suppose there is a polynomial
calculus refutation of F of degree d and size S. Then F [+k] has a polynomial calculus
refutation of degree d and size O(kdS).

Proof. We obtain the new proof by substituting all variables xi by xi,1 + · · · + xi,k and
expand the polynomials to monomial form (this increases the size by a factor of kd). It
remains to check that the substituted equations form a polynomial calculus refutation of
F [+k]. It is clear that a former derivation of an axiom f ∈ F is now a derivation of an
substituted axiom from F [+k]. A derivation of a Boolean axiom x2

i = xi translates to

STACS 2018
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(
∑

`∈[k] xi,`)2 =
∑

`∈[k] xi,`, which can be derived using the Boolean axioms x2
i,` = xi,` and

the additional equations xi,`xi,`′ = 0 (see Definition 4.3). The substituted variant of a linear
combination of two previously derived polynomials f , g is just the linear combination of
the substituted versions of f and g. Multiplication by a variable xj to a polynomial in the
original proof translates to multiplying by

∑
`∈[k] xj,`, which can be simulated by k separate

multiplications of xj,1, . . . , xj,k and subsequent addition steps. J

To obtain a system of equations that is hard for Sherali-Adams and easy for polynomial
calculus we apply two substitution steps to the formula FG for circuits from Theorem 4.1.
First, we prove that every refutation of FG [+n] in Sherali-Adams requires degree d = Peb(G).
In the second step we show that a degree d lower bound for an arbitrary instance F translates
to a 2Ω(d) size lower bound for F [+2]. Together we obtain that FG [+n][+2] requires high
degree and size in Sherali-Adams. We will use a common approach for proving lower bounds
in static proof systems and define a solution for the “dual” system.

I Definition 4.5. A mapping D : R[x1, . . . , xn] → R is a d-evaluation if it satisfies the
following conditions.
(D1) D is linear: D(af + bg) = aD(f) + bD(g) for all f, g ∈ R[x1, . . . , xn] and D(1) = 1
(D2) D is multi-linear: D(

∏
j x

dj

j ) = D(
∏

j xj)
(D3) D(f · fi) = 0 for every axiom fi ∈ F and f ∈ R[x1, . . . , xn] with deg(f) 6 d− deg(fi)
(D4) D

(∏
j∈A xj

∏
j∈B(1− xj)

)
> 0 for all A, B ⊆ [n] with |A ∪B| 6 d.

It is not hard to verify that the existence of a d-evaluation implies that there is no
Sherali-Adams refutation of degree d: suppose for contradiction that there is a Sherali-Adams
refutation of degree d of the form

m∑
i=1

gifi +
n∑

j=1
qj(x2

j − xj) + p0 = −1, (19)

with p0 =
∑

A,B a0
A,B

∏
j∈A xj

∏
j∈B(1− xj). Now we apply D to both sides of the equation.

From (D3) it follows that D(gifi) = 0, from (D2) we obtain D(qj(x2
j − xj)) = 0, and from

(D4) it follows that D(p0) > 0. By linearity (D1) the left hand side is evaluated to something
non-negative, whereas on the right-hand side we have D(−1) = −1.

Due to the multi-linearity (D2) the lower bound technique actually proves something
stronger. The ml-degree of a polynomial is the degree of its multi-linearisation, i. e., the
maximum number of distinct variables in a monomial. We immediately get the following
lemma.

I Lemma 4.6. If a system of multi-linear equations F has a d-evaluation D, then there is
no Sherali-Adams refutation of F that has ml-degree 6 d.

The next lemma is proven by constructing a d-evaluation.

I Lemma 4.7. Let G be a circuit with n vertices. Every Sherali-Adams refutation of FG [+k]
requires ml-degree at least min(Peb(G), k/2).

Proof. Let d < min(Peb(G), k/2) and suppose for contradiction that there is a Sherali-Adams
refutation of ml-degree d. By Lemma 4.6 it suffices to define an operator D that satisfies (D1)–
(D4). We start by defining D on multi-linear terms. We call a multi-linear term inconsistent,
if it contains two distinct variables xv,` and xv,`′ for some v ∈ V . If g =

∏
(v,`)∈I xv,` is

an inconsistent term, we define D(g) := 0. Otherwise, g =
∏

(v,`)∈I xv,` =
∏

u∈U xu,`u
and

the value of D(g) := D̃(U) will only depend on the set U ⊆ V . To define the mapping
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D̃ : 2V → R, we say that U ⊆ V is reachable, if the player has a strategy in the black pebble
game with d pebbles to reach a position where exactly the vertices in U are pebbled. The
mapping is now defined as follows.

D̃(U) :=
{( 1

k

)|U |, if U is reachable,
0, otherwise.

(20)

We extend the definition of D to all polynomials by (multi-)linearity. Note that this completes
the definition of D and immediately satisfies (D1), (D2), as well as (D3) for the axioms
xi,`xi,`′ = 0 introduced by Definition 4.3. To verify (D4), we have to show that D(p) > 0 for
every polynomial p =

∏
(v,`)∈I xv,`

∏
(v,`)∈J(1− xv,`) of degree at most d. First note that if

I ∩J 6= ∅, then D(p) = 0 since the mapping D satisfies (D2). Therefore, we may assume that
p is multi-linear when multiplied out to monomial form. If

∏
(v,`)∈I xv,` is either inconsistent

or it is consistent and defines a non-reachable position, then D(p) = 0 and we are done.
Otherwise, D(

∏
(v,`)∈I xv,`) = k−|I| and we get

D(p) =
(

1
k

)|I|
+

∑
∅6=K⊆J

(−1)|K|D

 ∏
(v,`)∈K∪I

xv,`

 >

(
1
k

)|I|1−
|J|∑

z=1

(
|J |
z

)(
1
k

)z
 .

Because we have have |J | 6 d < k/2 it follows that

|J|∑
z=1

(
|J |
z

)(
1
k

)z

<

|J|∑
z=1

(
k

2

)z (1
k

)z

<

∞∑
z=1

2−z = 1.

Hence, D(p) > 0 and property (D4) is proven. It remains to verify (D3) for all three types of
substituted axioms. For every multi-linear term g we need to check:

D
(

g ·
(∑k

`=1 xs,`

))
= D(g) , (21)

D
(

g ·
(∑k

`=1 xu,`

)(∑k
`=1 xv,`

))
= D

(
g ·
(∑k

`=1 xu,`

)(∑k
`=1 xv,`

)(∑k
`=1 xw,`

))
, (22)

D
(

g ·
(∑k

`=1 xt,`

))
= 0, (23)

where s ∈ S is a source, w ∈ V \ S with N−(w) = {u, v}, and t is the sink. First suppose
that g is either inconsistent or defines a position U that is not reachable. In both cases
everything above evaluates to 0. Hence, let g =

∏
u∈U xu,`u

for a reachable vertex set U .
In the case of (21), we have |U | 6 d− 1. If s ∈ U , then D(xs,`s

g) = D(g), since we satisfy
(D2). Since the other summands xs,`g are inconsistent for ` 6= `s, they evaluate to 0 and
the equality (21) holds. Now assume that s /∈ U . We have that U ∪ {s} is reachable as well,
since the player has at least one pebble remaining and can place it on the source s. It follows
that D

(
g ·
(∑k

`=1 xs,`

))
= k · ( 1

k )|U |+1 = ( 1
k )|U | = D(g).

Checking (22) for non-source vertices w with N−(w) = {u, v} is similar. Here we have
|U | 6 d− 3 and by the rules of the game we know that U ∪ {u, v} is reachable if and only
if U ∪ {u, v, w} is reachable. Hence, if U ∪ {u, v} is not reachable, both sides evaluate to 0.
Otherwise, by a case analysis on the shape of U ∩ {u, v, w}, one can easily verify that both
sides evaluate to ( 1

k )|U |.
For the sink vertex t, note that since d < Peb(G), no position that contains t is reachable.

Hence, D(gxt,`) = 0 for all ` ∈ [k] and the equality (23) holds. This concludes the proof of
the lemma. J
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Nullstellensatz

sum-of-squares

polynomial calculus Sherali-Adams

Figure 1 Relation between the proof systems. An arrow P→ Q indicates that a proof in system
P of degree d and size S can be converted into a proof in system Q of degree O(d) and size poly(S).
Whenever there is no irreflexive arrow, it is known that the simulation does not hold.

Lemma 4.7 (together with Theorem 4.1 and Lemma 4.2) already provides a separation
between degree in Sherali-Adams and polynomial calculus. To separate the proof size we
need the following lifting lemma. The proof is deferred to the full version of the paper [4].

I Lemma 4.8. Let F be a system of multi-linear polynomial equations and let P be one of
the proof systems Nullstellensatz, Sherali-Adams, or sum-of-squares. If every P-refutation
of F has ml-degree at least d, then every P-refutation of F [+2] has ml-degree at least d and
size Ω(2d).

By combining Lemma 4.7 and Lemma 4.8 we can now prove Theorem 1.2

Proof of Theorem 1.2. Let G be a circuit from Theorem 4.1 on k vertices. By Lemma 4.7
we obtain that FG [+k] requires Sherali-Adams refutations of ml-degree Ω(k/ log k). By
Lemma 4.8 it follows that every Sherali-Adams refutation of FG [+k][+2] requires ml-degree
(and hence degree) Ω(k/ log k) and size 2Ω(k/ log k). On the other hand, Lemma 4.2 combined
with Lemma 4.4 shows that FG [+k][+2] has a polynomial calculus refutation of degree 3 and
size O(k4). Since FG [+k][+2] has n = 2k2 variables, the theorem follows. J

5 Conclusions

We compared the static semi-algebraic proof systems Sherali-Adams and sum-of-squares
with polynomial calculus, a dynamic algebraic proof system. The main results show that
sum-of-squares simulates polynomial calculus (Theorem 1.1), while Sherali-Adams is not able
to do so (Theorem 1.2). The relations between the proof systems considered in this paper
are described in Figure 1.

One open question concerns the separation between polynomial calculus and Sherali-
Adams. Note that the pebbling contradiction FG that separates polynomial calculus degree
from Nullstellensatz degree is a system of polynomial equations that encodes a CNF formula.
This is no longer the case for the substituted formula FG [+k][+2] that separates polynomial
calculus from Sherali-Adams, and encoding FG [+k][+2] as a CNF blows up its size exponen-
tially. It would therefore be nice to know whether there is a separating CNF. Note that such
a CNF would have to be hard for resolution as well, which is not the case for the substituted
variants of the pebbling contradictions (that are in conjunctive normal form) considered in
the literature (see [19]).
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