
The Firing Squad Problem Revisited
Bernadette Charron-Bost
École polytechnique, CNRS, 91128 Palaiseau, France
charron@lix.polytechnique.fr

Shlomo Moran
Department of Computer Science, Technion, Haifa, Israel 32000
moran@cs.technion.ac.il

Abstract
In the classical firing squad problem, an unknown number of nodes represented by identical
finite state machines is arranged on a line and in each time unit each node may change its state
according to its neighbors’ states. Initially all nodes are passive, except one specific node located
at an end of the line, which issues a fire command. This command needs to be propagated to all
other nodes, so that eventually all nodes simultaneously enter some designated “firing" state.

A natural extension of the firing squad problem, introduced in this paper, allows each node
to postpone its participation in the squad for an arbitrary time, possibly forever, and firing is
allowed only after all nodes decided to participate. This variant is highly relevant in the context
of decentralized distributed computing, where processes have to coordinate for initiating various
tasks simultaneously.

The main goal of this paper is to study the above variant of the firing squad problem under the
assumptions that the nodes are infinite state machines, and that the inter-node communication
links can be changed arbitrarily in each time unit, i.e., are defined by a dynamic graph. In this
setting, we study the following fundamental question: what connectivity requirements enable a
solution to the firing squad problem?

Our main result is an exact characterization of the dynamic graphs for which the firing squad
problem can be solved. When restricted to static directed graphs, this characterization implies
that the problem can be solved if and only if the graph is strongly connected. We also discuss
how information on the number of nodes or on the diameter of the network, and the use of
randomization, can improve the solutions to the problem.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms, Theory of
computation → Dynamic graph algorithms, Theory of computation → Distributed algorithms

Keywords and phrases Synchronization, Detection, Simultaneity, Dynamic Networks

Digital Object Identifier 10.4230/LIPIcs.STACS.2018.20

1 Introduction

Many distributed algorithms assume a synchronous networked system, in which computation
is divided into synchronized rounds that are communication closed layers: any message sent
at some round can be received only at that round. In this model it is typically assumed that
each execution of an algorithm is started by all nodes simultaneously, i.e., at the same round.
For instance, most of synchronous consensus algorithms (eg., [21, 12, 23]), as well as many
distributed algorithms for dynamic networks (eg., [16, 17]) require synchronous starts.

In this paper, we justify this assumption of synchronous starts for dynamic networks
with no central control that monitors the node activities, but with sufficient connectivity
assumptions. Specifically, we study a generalization of the associated synchronization
problem, classically referred to as the firing squad problem. This generalization considers

© Bernadette Charron-Bost and Shlomo Moran;
licensed under Creative Commons License CC-BY

35th Symposium on Theoretical Aspects of Computer Science (STACS 2018).
Editors: Rolf Niedermeier and Brigitte Vallée; Article No. 20; pp. 20:1–20:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:charron@lix.polytechnique.fr
mailto:moran@cs.technion.ac.il
http://dx.doi.org/10.4230/LIPIcs.STACS.2018.20
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

20:2 The Firing Squad Problem Revisited

a communication network of unknown size, in which messages are delivered along a set of
edges which may change in each round. All nodes are initially passive, and a node becomes
active upon receiving a start signal at an unpredictable time. We stress that receiving a
message from an active node is not necessarily considered as a start signal. The goal is
then to guarantee that the nodes synchronize by firing - i.e., entering a designated state for
the first time - simultaneously if and only if all nodes are eventually active. Formally, the
following must be satisfied:
FS1 (Validity): A node fires if and only if all nodes have received start signals.
FS2 (Simultaneity): All the nodes that fire, fire at the same round.

As a basic synchronization abstraction, the fulfillment of FS1 and FS2 above can be used
in various types of situations to guarantee simultaneity: for distributed initiation (to force
nodes to begin some computation in unison), in real-time processing (where nodes have to
carry out some external actions simultaneously), or for distributed termination (to guarantee
that nodes complete their computation at the same round). Another typical scenario that
requires FS1 and FS2 is when some algorithm needs to be executed several times in a row,
and the i+ 1-st execution should be started simultaneously, after all nodes terminated the
i-th execution (see e.g., [5]).

It is easy to see that when the communication graph is permanently complete, the firing
squad problem can be solved in one round after all nodes are active. At the opposite scenario,
the problem is clearly unsolvable if some node is permanently isolated. This demonstrates a
strong correlation between the solvability and complexity of the firing squad problem, and
the connectivity of the network. The primary aim of this paper is to explore this relation.

The firing squad problem was originally studied in the context of automata theory (eg.,
[18, 19]). This model considers a finite but unknown number n of nodes which are connected
in a line (or in some other specific topologies in more recent works – see eg., [8]). Nodes are
identical finite state machines (whose number of states is independent of n), and at each
time unit each node changes its state according to the states of its neighbors on the line. A
start signal is given to a node located at one end of the line - the “general" - and then is
propagated to the rest of the nodes so that all nodes have eventually to fire simultaneously.
It should be noted that the above model assumes diffusive start signals, for which the timing
of start signals is not arbitrary: upon the receipt of a message from an active node, a passive
node becomes active, i.e., receiving such a message is considered as a start signal. The main
challenges in this model are to reduce the number of states of the finite state machine and
the time required to reach the firing state.

A natural question raised at this point is then the following: considering that nodes
are no longer restricted to be finite state machines, but possess a full computational power
(equivalent to that of a Turing machine), what are the connectivity properties that are needed
to solve the firing squad problem?

It should be noted that the firing squad problem has also been studied in the context
of fault tolerant distributed computations (eg., [3, 12, 7]), and more recently in the context
of self-stabilization (eg., see [10]). This model also assumes that each node has a full
computational power, but otherwise the setting of the problem is different: Nodes are
connected by a complete graph, and thus the number of nodes n is given. At most f nodes
may be faulty, for various types of Byzantine faults. This implies a permanent complete
connectivity between the non-faulty nodes, and arbitrary connectivity of all other links.
Besides, due to the unpredictable behavior of faulty nodes, the simultaneity condition and to
a larger extent the validity condition in this model ought to be drastically weakened: eg., it
is only required that all non-faulty nodes eventually fire simultaneously. Finally, the study of
the problem is strictly limited to diffusive start signals.

B. Charron-Bost and S. Moran 20:3

Contribution. In this paper we consider a set of an unknown number n of nodes possessing
full computational power. Nodes have distinct identities which are not mutually known, but
otherwise they run identical codes (in some precise sense that is discussed later). The inter-
node communication is modeled by a dynamic graph, i.e., at each round, nodes communicate
along directed edges of an arbitrary communication graph which may change continually
and unpredictably from one round to the next. Communication is done by having each node
broadcast at each round a message along the unknown set of its outgoing edges in this round.
We examine various connectivity properties that hold, not necessary round by round, but
globally over finite periods of consecutive rounds. In particular, these properties do not imply
any stability of the links, as opposed to the failure model of at most f faulty nodes that
guarantees a stable clique of size n− f , or several models of dynamic networks in distributed
computing (eg., see [16, 1, 22]) that assume the existence of a stable spanning tree in the
network over every T consecutive rounds.

The main contribution of this paper is a characterization of the connectivity properties
that enable to solve the firing squad problem in dynamic (and hence also in static) graphs.
On the positive side, we show that if the dynamic graph is guaranteed to be connected within
each period of T consecutive rounds, where the constant T is given, then the problem is
solvable in time which is at most linear in the (unknown) network size. On the negative
side, we show that under the sole assumption that such a constant T exists but is unknown,
the problem becomes unsolvable. Moreover, the problem remains unsolvable in this case
even when the number of nodes in the network is given and even in the restricted model of
diffusive start signals. The above results imply that the firing squad problem is solved for a
static directed graph if and only if it is strongly connected.

Our solution is obtained by combining two basic procedures: the first implements local
virtual clocks whose values cannot exceed the diameter of the dynamic graph unless all nodes
are active, and the second collects the identities of all nodes in the network. The idea is
then that a node fires when the value of its virtual clock is sufficiently large compared to the
number of active nodes it has heard of so far.

We also show that if an upper bound D on the diameter of the dynamic graph is given,
then the problem is solvable in time linear in D. This solution is applicable to anonymous
networks, where nodes have no identities, and it uses much shorter messages. We conclude by
showing that when a polynomial bound on the network size is given, the use of randomization
can substantially reduce messages size while preserving a linear time complexity.

For space consideration, some proofs are omitted in this version.

2 The Model

2.1 Distributed computations in the dynamic graphs model
We consider a networked system with a fixed set of n nodes. Nodes have unique identifiers,
and the set of identifiers is denoted by V . The identities of the nodes are not mutually known,
and the network size n is unknown as well. Nodes may also ignore their own identities, in
which case the network is said to be anonymous. Furthermore, nodes run identical programs,
i.e., programs do not depend on node identities (see the discussion in Section 5).

Computation proceeds in synchronized rounds, which are communication closed in the
sense that no node receives messages in round t that are sent in a round different from t. In
round t (t = 1, 2 . . .), each node attempts to send messages to all nodes, receives messages
from some nodes, and finally goes to its next state and proceeds to round t+ 1. The round
number t is used for a reference, but is unknown to the nodes.

STACS 2018

20:4 The Firing Squad Problem Revisited

In every run of an algorithm, each node u is initially passive: it is part of the network,
but sends only heartbeats – that we call null messages – and does not change its state.
Then it either becomes active by receiving a unique start signal at the beginning of some
round su > 1, or remains passive forever – in which case we let su = +∞. A run is active if
all nodes are eventually active.

Upon the receipt of its start signal, node u sets up its local variables (with its initial
state) and starts executing its program. For any of its local variables xu, the value of xu at
the beginning of round t is denoted by xu(t). Thus xu(t) is undefined for t < su.

Communications that occur at round t are modeled by a directed graph G(t) = (V,Et)
that may change from round to round. We assume a self-loop at each node in all the graphs
G(t) since any node can communicate with itself instantaneously.

The sequence of directed graphs G = (G(t))t∈N is called a dynamic graph [4]. It can be
decided ahead of time, by an online adversary, or endogenously as in influence systems [6].
Similarly, the way start signals are generated is left totally arbitrary: a node may receive an
external start signal coming from outside, or it may receive a start signal relayed by some
active node. In particular, there may be more than one external start signal in the network,
and start signals may be not correlated to the dynamic graph.

A run of a firing squad algorithm is entirely determined by the dynamic graph G =
(G(t))t∈N and by the list S = (su)u∈V of rounds at which nodes become active. We denote
by G∗(t) = (V,E∗t) the directed graph of edges in Et connecting two nodes which are active
in round t. The sets of u’s incoming neighbors (in-neighbors for short) in the directed
graphs G(t) and G∗(t) are denoted by Inu(t) and In∗u(t), respectively.

Let D be a set of dynamic graphs. We say that an algorithm A solves the firing squad
problem for D if for each G ∈ D and each scheduling of start signals S, the run of A defined
by G and S satisfies FS1 and FS2. The firing squad problem is solvable for D if there is an
algorithm that solves it for D.

2.2 Paths and broken paths in a dynamic graph

Let us first recall that the product of two directed graphs G1 = (V,E1) and G2 = (V,E2),
denoted G1 ◦G2, is the directed graph with the set of nodes V and with an edge (u, v) if
there exists w ∈ V such that (u,w) ∈ E1 and (w, v) ∈ E2.

For any dynamic graph G and any integers t′ > t > 1, we let G(t : t′) = G(t) ◦ · · · ◦G(t′).
By convention, G(t : t) = G(t), and G(t : t′) is the directed graph with only a self-loop at
each node when t′ < t. We also use the notation G(I) instead of G(t : t′) when I is the
integer interval [t, t′].

We now fix a run of a firing squad algorithm, with the dynamic graph G and the
scheduling of start signals S which, as above, determine the dynamic graph G∗. The sets
of u’s in-neighbors in G(t : t′) and in G∗(t : t′) are denoted by Inu(t : t′) and In∗u(t : t′),
respectively, or by Inu(I) and In∗u(I) for short when I = [t, t′].

Let t and t′ be two positive integers such that t′ > t; a v∼u path in the interval [t, t′] is
any sequence P = (v0 = v, v1, . . . , vm = u) with m = t′ − t+ 1 and (vk, vk+1) is an edge of
G(t + k) for each k = 0, . . . ,m − 1. Hence there exists a v∼u path in the interval [t, t′] if
and only if v ∈ Inu(t : t′). The path P is said to be broken if one of its edges (vk, vk+1) is
not in G∗(t+ k).

B. Charron-Bost and S. Moran 20:5

2.3 Delayed connectivity of a dynamic graph
Let us recall that a directed graph is strongly connected if for each pair of nodes u, v there is
a directed path from u to v. For c > 1, c strong connectivity is then defined by (see, e.g., [9]):

I Definition 1. Let G = (V,E) be a directed graph and let c < |V | be a positive integer.
We say that G is c strongly connected if G remains strongly connected whenever less than
c nodes are removed from G.

Note that a directed graph is strongly connected if and only if it is 1 strongly connected.

I Definition 2. A dynamic graph G is continuously c strongly connected if each directed
graph G(t) is c strongly connected.

Next we extend the above definition to bounded-length intervals of dynamic graphs.

I Definition 3. Let c, T be two positive integers. The dynamic graph G is c connected
with delay T if for every positive integer t, the directed graph G(t : t+ T − 1) is c strongly
connected. When c = 1, we use the abbreviation connected with delay T .

Finally, we present our weakest connectivity assumption for dynamic graphs.

I Definition 4. A dynamic graph G is said to be eventually connected if for any positive
integer t, there exists t′ > t such that G(t : t′) is strongly connected.

Using the connectivity properties of dynamic graphs defined above, we then characterize
the connectivity properties that enable solutions to the firing squad problem. For a positive
integer T , DT denotes the set of dynamic graphs which are connected with delay T . The
union DB =

⋃∞
T=1DT is the set of dynamic graphs with bounded delay connectivity and DE

denotes the set of eventually connected dynamic graphs. The relations among the above sets
of dynamic graphs are thus given by the strict inclusions

D1 ⊂ D2 ⊂ · · · ⊂ DT ⊂ DT+1 ⊂ · · · ⊂ DB ⊂ DE .

In the next sections, we show that the firing squad problem is not solvable for DB (and hence
also for DE), but for each positive integer T , it is solvable for DT .

3 Bounded Delay Connectivity is not Enough

In this section we show that the firing squad problem is not solvable for the set DB of
the dynamic graphs with bounded delay connectivity, even if the network size, n, is given.
Specifically, we show that for this set of dynamic graphs, the validity condition FS1 can be
achieved if and only if n is given, and the firing squad problem (i.e., FS1 plus FS2) cannot
be solved even if n is given.

Interestingly, these two impossibility results still hold for the original model of diffusive
start signals and when all communication graphs are bidirectional.

I Proposition 5. For the set of dynamic graphs with bounded delay connectivity DB, the
validity condition FS1 can be achieved if the network size n is given, but cannot be achieved
if it is given that the network size is either n or n+ 1.

Next we show that there is no algorithm that solves the firing squad problem for DB,
even if the number of nodes in the dynamic graph is given. This demonstrates that adding
the simultaneity condition FS2 to the validity condition FS1 makes the problem strictly
harder and that the knowledge of the size of the network does not help in the sole context of
bounded delay connectivity.

STACS 2018

20:6 The Firing Squad Problem Revisited

I Theorem 6. The firing squad problem is not solvable for the set DB of dynamic graphs
with bounded delay connectivity, even if the size of the network n is given.

Proof. By contradiction, suppose that there is an algorithm A solving the firing squad
problem in any dynamic graph with n nodes and with bounded delay connectivity, and let V
be a set of n > 1 nodes.

Let u, v be two distinct nodes in V , and for x ∈ {v, u} let Gx be the graph consisting of
a complete graph over V \ {x} plus the self loop (x, x). Let further I = (V,EI) denote the
directed graph with only a self-loop at each node, i.e., EI = {(v, v) : v ∈ V }.

We consider the run of A in which all nodes are active in the first round, and with the
dynamic graph consisting of alternating sequence of directed graphsG = (Gu, Gv, Gu, Gv, . . .).
Clearly, G ∈ DB , and thus by FS1-2, all nodes fire at the same round tF .

Now assume that G(tF) = Gu (the case G(tF) = Gv is similar). From the viewpoint of u,
G is indistinguishable up to round tF from the dynamic graph G1 that is similar to G except
at round tF where G1(tF) = I. Hence u also fires at round tF with the dynamic graph G1.
Since G1 ∈ DB , all other nodes also fire at round tF with G1. Using a similar argument, we
get that from the viewpoint of v, G1 is indistinguishable up to round tF from the dynamic
graph G2 that is similar to G1 except at round tF − 1, in which G2(tF − 1) = I. Hence with
G2, all nodes fire at round tF as well.

By repeating this argument tF times, we show that all nodes fire at round tF in the
run of A with start signals all received in the first round, and the dynamic graph GtF =
(I, . . . , I, Gv, Gu, Gv, Gu, . . .). From the viewpoint of any node v 6= u, the latter run is
indistinguishable up to round tF from the run with the same dynamic graph GtF and where
all nodes are active from round one except node u which is passive forever. All nodes other
than u fire at round tF , violating FS1 - a contradiction. J

4 Firing with a Bounded Diameter

As a first step towards our main positive result, which solves the firing squad problem in
dynamic graphs that are c connected with delay T , we present a solution in the case that a
finite bound on the diameter of the dynamic graph is given. We start with some definitions.

Let G = (G(t))t∈N be a dynamic graph. The distance from node v to node w at time t,
denoted dt(v, w), is defined as the minimum positive integer δ such that there is a v∼w path
in the interval [t, t+ δ − 1]. If for any t′ > t there is no v∼w path in the interval [t, t′], then
conventionally dt(v, w) = +∞.

The diameter of the dynamic graph G is then defined as the minimum positive integer d
such that for any positive integer t, the directed graph G(t : t+ d− 1) is complete, or infinity
if there is no such integer, namely diam(G) = supt>1, v,w∈V 2 dt(v, w).

Let D be a set of dynamic graphs, and assume that a finite bound D on the diameters of
the dynamic graphs in D is given. Then a solution to the firing squad problem is enabled by
using local virtual clocks whose values may reach D only if all nodes are active. Moreover, if
some virtual clock is set to D, then all virtual clocks are set to D at the same round. The
corresponding algorithm, denoted AD, does not use identifiers, and the computation and
storage capabilities of the nodes do not grow with the network size. More precisely, its time
complexity is in O(D) and it uses only O(log(D)) bits per message.

Notation. In the pseudo-codes of all our algorithms, M∗u denotes the multiset of non-null
messages received by u in the current round. Thus M∗u at round t is the multiset of messages
sent to u by the nodes in In∗u(t). If non-null messages are vectors of some size, then M∗u (i)

denotes the multiset of the i-th entries of the messages in M∗u .

B. Charron-Bost and S. Moran 20:7

Algorithm 1: Algorithm AD, firing with diameter at most D.
Initialization:
1: ru ∈ N, initially 0

In each round t do:
2: send 〈ru〉 to all processes and receive one message from each in-neighbor
3: if at least one received message is null then
4: ru ← 0
5: else
6: ru ← 1 + minr∈M∗

u
(r)

7: end if
8: if ru > D then
9: Fire
10: end if

We begin the correctness proof of the algorithm AD by two useful lemmas about the way
the virtual clocks ru’s evolve, whatever the connectivity properties of dynamic graphs are.

I Lemma 7. Assume that t < t′ and su 6 t′. Then ru(t′) is defined and:
1. If there exists a broken path ending at u in the interval [t, t′ − 1], then ru(t′) 6 t′ − t− 1.
2. Otherwise, for every v ∈ Inu(t : t′ − 1) it holds that rv(t) is defined and ru(t′) 6

rv(t) + t′ − t.

I Lemma 8. For every node u and at every round t > smax = maxv∈V (sv) of an active run,
we have ru(t) > t− smax. Moreover, if t > smax + 1 and Inu(smax : t− 1) contains a node v
such that sv = smax, then ru(t) = t− smax.

From the two above lemmas, we can prove the correctness of the algorithm AD:

I Theorem 9. The algorithm AD solves the firing squad problem for any set of dynamic
graphs with diameters at most D. Moreover, all nodes in an active run of the algorithm fire
exactly D rounds after all nodes have become active and use messages of size O(logD).

Observe that the diameter of any connected dynamic graph with n nodes is at most n− 1.
Thus one immediate spinoff of Theorem 9 is the following corollary, which when an upper
bound N on the network size is given, provides a solution to the firing squad problem that
uses messages of size O(log(N)).

I Corollary 10. If nodes have an upper bound N of the network size, the firing squad problem
can be solved in any continuously strongly connected dynamic graph in N rounds after all
nodes have become active using only O(log(N)) bits per message.

5 Firing with T Delayed Connectivity

We now present the algorithm Bc,T that show that it solves the firing squad problem in
linear time for dynamic graphs that are c connected with delay T while no bound on the
diameter or the size of the network is given.

The algorithm Bc,T uses the same virtual clocks ru as the previous algorithm AD.
Moreover, each node u collects the identities of the active nodes which u had heard of in a
variable HOu. Then node u fires when its virtual clock ru is large enough compared to the
size of its HOu set.

STACS 2018

20:8 The Firing Squad Problem Revisited

Algorithm 2: Algorithm Bc,T , firing with T delayed connectivity.
Initialization:
1: ru ∈ N, initially 0
2: HOu ⊆ V , initially {u}

In each round t do:
3: send 〈ru, HOu〉 to all processes and receive one message from each in-neighbor
4: if at least one received message is null then
5: ru ← 0
6: else
7: ru ← 1 + minr∈M∗

u
(1) (r)

8: end if
9: HOu ← ∪HO∈M∗

u
(2)HO

10: if |HOu| 6
⌈

c
T

(ru + 2)
⌉
− 2c then

11: Fire
12: end if

A similar idea was first used in [14], and also later in early stopping consensus al-
gorithms [11, 13] and in the counting algorithm of [16], but with different virtual clocks. This
technique requires distinct node identifiers and long messages since each node u broadcasts
HOu in each round.

The following lemma is needed for the analysis of the algorithm Bc,T .

I Lemma 11. If G = (V,E) is c strongly connected, then for any non-empty subset S ⊆ V ,
the following holds:

|Γin(S) \ S| > min(c, |S|) (1)

where Γin(S) denotes the set of in-neighbors of S in G, and S = V \ S.

It can be shown that the converse of Lemma 11 also holds. Moreover, the set Γout(S) of
out-neighbors of S can be substituted for Γin(S) in Lemma 11 since any directed graph G is
c strongly connected if and only if its transpose GT is. Using this out-variant of Lemma 11
and an easy induction, we check that the diameter of a dynamic graph that is c connected
with delay T is bounded by T

⌊
1 + n−2

c

⌋
.

The correctness proof of the algorithm Bc,T then relies on the following key technical
lemma.

I Lemma 12. In each run of the algorithm Bc,T on a dynamic graph G which is c connected
with delay T , for each node u and each round t > su, it holds that ru(t) and HOu(t) are
defined and

|HOu(t)| > min
(

(1− 2c) + c

T
(ru(t) + 2) , n

)
. (2)

Proof. If t = 1, then su = 1, HOu(t) = {u}, ru(t) = 0, and the lemma holds.
So assume now that t > 2, and let a, b ∈ N satisfy t = aT + b with 1 6 b 6 T . We split

the interval [1, t− 1] into a+ 1 sub-intervals Ia, Ia−1, . . . , I1, I0 as follows:
1. if b = 1, then I0 is the empty interval, else I0 = [t− b+ 1, t− 1];
2. for 0 < i 6 a, we set Ii = [t− b− iT + 1, t− b− (i− 1)T].
We check that |I0| = b−1 < T , and |Ii| = T for i > 0. All the intervals Ii are thus non-empty,
except I0 that is empty if and only if b = 1.

Then by induction, we construct a sequence of at most a+ 2 sets of nodes S−1, S0, . . . , Sk
as follows:

B. Charron-Bost and S. Moran 20:9

1. S−1 = {u}.
2. Suppose that S−1, . . . , Si, −1 6 i 6 a, are constructed.

a. If i = a, then the construction stops.
b. Otherwise, −1 6 i 6 a− 1. We let Hi+1 = G

(
Ii+1

)
and we distinguish three cases.

i. i > 0 and Hi+1 contains no edge (w, v) such that w 6∈ Si and v ∈ Si. Then the
construction stops.

ii. Hi+1 contains an edge (w, v) such that w 6∈ Si and v ∈ Si, and there exists a w∼v
broken path in Ii+1. Then the construction stops.

iii. Otherwise, we let Si+1 = Inu(t−b−(i+1)T +1 : t−1) = Inu(Ii+1∪· · ·∪I0), which
is the union of Si and of the set of Si’s in-neighbors in the directed graph Hi+1.
In particular, if u has no proper in-neighbor in H0 = G(I0) (eg., if b = 1), then
S0 = {u}.

Let us observe that S−1 ⊆ S0, and the sequence
(
Si
)

06i6k is increasing. More precisely,
using the T delayed c connectivity of G and Lemma 11, we obtain that for every index i,
1 6 i 6 k, if Si 6= V , then |Si| − |Si−1| > c. By an easy induction, then we obtain the
following lower bound on |Sk|.

I Claim 13. If Sk 6= V , then the cardinality of Sk is at least c k + 1.

Because of the way HOu is updated (line 9 of the algorithm), we check the following
claim by induction.

I Claim 14. HOu(t) contains every set Si for −1 6 i 6 k, and in particular Sk ⊆ HOu(t).

We now distinguish the following three exhaustive cases:
Construction terminated by (a): Since clearly ru(t) 6 t− 1 = aT + b− 1, we have

(1− 2c) + c

T
(ru(t) + 2) 6 (ac+ 1) + c

T
(b+ 1− 2T) 6 ac+ 1 .

Moreover by Claims 13 and 14, it holds that |HOu(t)| > |Sk| > ac+ 1. Hence

|HOu(t)| > (1− 2c) + c

T
(ru(t) + 2) ,

which shows the lemma in this case.
Construction terminated by (b.i): In this case, 0 6 k 6 a − 1 and so the interval Ik+1 is

defined and is of length T . Since G is connected with delay T , this implies that Sk = V .
It follows that HOu(t) = V and the lemma trivially follows.

Construction terminated by (b.ii): We first observe that Sk 6= V . Thus by Claims 13 and 14,
|HOu(t)| > |Sk| > ck + 1. Also, observe that the assumed w∼v broken path in Ik+1 can
be extended to a w∼u broken path in the interval Ik+1∪· · ·∪I0 = [t−b−(k+1)T+1, t−1].
Since b 6 T , this implies by Lemma 7.1 that ru(t) 6 (k + 2)T − 2 or equivalently that
k > ru(t)+2

T − 2. Thus we get

|HOu(t)| > ck + 1 > c

(
ru(t) + 2

T
− 2
)

+ 1 = (1− 2c) + c

T
(ru(t) + 2) ,

which proves the lemma in this case. J

I Theorem 15. The algorithm Bc,T solves the firing squad problem for every set of dynamic
graphs that are c connected with delay T . Moreover, in any active run all nodes fire in less
than

⌈
T
c (n− 1)

⌉
+ T rounds after all nodes have become active and they use messages of

size O(n logn).

STACS 2018

20:10 The Firing Squad Problem Revisited

Proof. Let us first consider a run of the algorithm in which there is a node v that is never
active. Then no node ever receives a non-null message from v, and so for any node u
that is active at round t, we have |HOu(t)| 6 n − 1. This implies by Lemma 12 that
|HOu(t)| >

⌈
c
T (ru(t) + 2)

⌉
− 2c , and hence u does not fire at round t. We conclude that no

node ever fires in this run.

Let us now consider an active run of the algorithm. First, observe that by the first claim
in Lemma 8 and the fact that the cardinality of each set HOu is at most n, the condition in
line 10 eventually holds at each node u.

Moreover, because of the initialization and update rules for the HO variables (lines 2
and 9), a node v 6= u is in HOu(t+ 1) if and only if there exists a v∼u non-broken path in
some non-empty interval [s, t]. Since u ∈ In∗u(su), this shows that

HOu(t+ 1) ⊆
⋃
s>su

In∗u(s : t) . (3)

Let t0 be the first round at which the condition in line 10 holds at some node, and let u
denote one such node, i.e.,

|HOu(t0 + 1)| 6
⌈ c
T

(ru(t0 + 1) + 2)
⌉
− 2c . (4)

From Lemma 12, we deduce that HOu(t0 + 1) = V . In particular, HOu(t0 + 1) contains
the latest activated nodes. Let v denote one such node, i.e., sv = smax. By (3), there is a
v∼u non-broken path in some interval [s, t0] with s > su. It follows that s > sv. Thereby
t0 > smax and v ∈ In∗u(smax : t0). This implies, by Lemma 8, that

ru(t0 + 1) = rv(t0 + 1) = t0 + 1− smax = min
w∈V

rw(t0 + 1) .

Using Lemma 12 again, we get that for every node w ∈ V , HOw(t0 + 1) = V . Therefore the
inequality (4) holds for all nodes in round t0 + 1, and by the definition of t0 this is the first
round in which this inequality holds for all nodes. Hence all nodes fire simultaneously at the
end of round t0. J

The only operations in the algorithm Bc,T that involve the node identities are performing
the union and extracting the cardinalities of the sets HOu. Since the decisions made by the
algorithm are determined only by the cardinalities of the sets HOu and not by the actual
values of the identities in these sets, it is clear that the sequences of operations performed by
each node in a specific run are independent of these values.

A close examination of the proof of Theorem 15, shows that each node actually computes
the set V , and so its cardinality. As a byproduct, the algorithm Bc,T thus solves the
problem of counting the network size despite asynchronous starts in any model of dynamic
graphs that are c connected with delay T , and in particular in the model of continuously
strongly connected dynamic graphs. This should be compared with the impossibility result
by Wattenhofer [24] which states that if passive nodes do not transmit any signal, then
counting is impossible with asynchronous starts.

6 Bound on the Network Size and Randomization

In this section we show that if a polynomial bound N on the network size n is given, then
randomization may reduce the message size in our firing squad algorithm Bc,T without
degrading its linear time complexity. Similarly to Bc,T , our randomized algorithm for the

B. Charron-Bost and S. Moran 20:11

firing squad problem actually estimates the size of the network, and thus as a byproduct,
provides a solution to the approximate counting problem for the case of asynchronous starts.
In this sense, it generalizes the randomized approximate counting algorithm of [16], which
assumes that all nodes start simultaneously.

First observe that by Corollary 10, if we use N as an upper bound on the diameter of the
network, then the AN algorithm in Section 4 solves the firing squad problem within O(N)
rounds using messages of size O(log(N)). When N is significantly larger than the network
size n, this solution is thus not satisfactory regarding its time complexity.

For the sake of simplicity, we present our randomized firing squad algorithm in the case
c = T = 1 , i.e., for dynamic graphs that are continuously strongly connected, but the
generalization to the case of c connectivity with delay T is straightforward. The algorithm,
denoted RN,η, depends on two parameters N and η, where N is a positive integer and η
is any real number in [0, 1/2). For this algorithm, it is assumed that the dynamic graph,
and the start signals sv, are managed by an oblivious adversary, which has no access to the
outcomes of the random choices made by the algorithm.

The algorithm works as follows: upon becoming active, each node u generates ` inde-
pendent random numbers Y (1)

u , . . . , Y
(`)
u , where ` depends on N and η, and the distribution

of each Y (i)
u is exponential with rate 1. At each round, any active node u first broadcasts the

smallest value of the Y (i)
v ’s it has heard of for each index i ∈ {1, . . . , `}, and then computes

from the minimum values it received so far an estimation nu of the number of nodes it heard
of. Node u fires when the value of its clock ru is sufficiently large compared to nu.

Using Cramér-Chernoff’s bounds [2], we show that with high probability, the value of nu
at the end of round t provides a good approximation of the number of active nodes that u has
heard of so far. This implies, via Lemma 12, that if nu < 2ru/3 then with high probability
node u has heard of all other nodes (yielding the condition nu < 2ru/3 for node u to fire in
line 14). As for the algorithm Bc,T , we conclude that with high probability, no node ever fires
in a non-active run, and all nodes fire at the same round of any active run. More precisely,
we choose ` =

⌈
243 · (ln 4N2 − ln η)

⌉
to guarantee a final probability of at least 1 − η for

these successful active and non-active runs.
The size of the messages used by the algorithm can be limited, at the price of higher

storage capacity at the nodes, by using a rounded and range-restricted calculations as in [20].
Specifically, we round down each Y (i)

u to the next smaller integer power of 13/12, denoted Y (i)
u .

Then the resulted approximate value nu of nu satisfies nu 6 nu 6 13
12nu, which guarantees

that with high probability, nu is also a good approximation of the number of active nodes
that u has heard of so far.

By the definition of the exponential distribution, it is not hard to see that the random
variables Y (i)

u are all within the range [η/(4`N), ln(4`N/η)] with high probability, namely

Pr
[
∀u ∈ V, ∀i, Y (i)

u ∈ [η/(4`N), ln(4`N/η)]
]
> 1− η/2 , (5)

which allows us to ignore runs in which the randomized variables Y (i)
u are not in the above

range. The number of distinct variables Y (i)
u in that range is O(log(Nη−1)), hence each such

variable can be represented using O (log log(N/η)) bits. This leads to messages length in
O (log(N/η) · log log(N/η)) bits.

We note, however, that the implied calculations require exponentially higher storage
capacities: computing nu (line 14 of algorithm RN,η) must be done with the ` exact values of
the variables Y (i)

u , and exact representation of numbers occurring in the implied calculations
may require Ω(`Nη−1) bits.

STACS 2018

20:12 The Firing Squad Problem Revisited

Algorithm 3: The randomized algorithm RN,η, firing with continuous strong connectivity.
Initialization:
1: ru ∈ N, initially 0
2: Y u =

(
Y

(1)
u , . . . , Y

(`)
u

)
∈ R` with ` =

⌈
243 · (ln 4N2 − ln η)

⌉
, initially rounded and range-

restricted approximation of independent random numbers with exponential distribution of rate 1.
3: nu ∈ N, initially 0

In each round t do:
4: send 〈ru, Y u〉 to all processes and receive one message from each in-neighbor
5: if at least one received message is null then
6: ru ← 0
7: else
8: ru ← 1 + minr∈M∗

u
(1) (r)

9: end if
10: for i = 1, . . . , ` do
11: Y

(i)
u ← min

Y
(i)∈M∗

u
(i+1)

(
Y

(i)
)

12: end for
13: nu ← `/

∑`

i=1 Y
(i)
u

14: if nu < 2 ru/3 then
15: fire
16: end if

The correctness proof of the algorithm with the approximate random variables Y (i)
u is

valid for all runs in which the exact random variables are in the range (5), and this range
restriction is violated with probability of at most η/2.

I Theorem 16. In any dynamic graph that is continuously strongly connected and with at
most N nodes, the algorithm RN,η solves the firing squad problem with probability at least
1−η. Moreover, in any active run, with probability at least 1−η, all nodes fire simultaneously
in less than 2n rounds after the last nodes have become active.

7 Conclusion and Further Research

In this paper we studied the firing squad problem in a network of an unknown number of
nodes with full computational power, thus extending the original model which assumes that
nodes are finite state machines. We focused on a natural extension of the problem in which
start signals are left arbitrary, i.e., are no more supposed to be propagated by the nodes in
the network.

We modeled the inter-node communication by a dynamic graph, and presented a tight
relation between the solvability of the firing squad problem and the connectivity of the
dynamic graph. Specifically, we introduced the notion of delayed connectivity, and showed
that the firing squad problem is solvable if and only if the dynamic graph is connected with
delay T , for some given constant T . Our solution uses messages of super-linear size, and
we showed that additional information on the diameter or on the size of the network can
substantially reduce the message size.

Combining our positive and negative results, we get that when nodes are infinite state
machines, the firing squad problem is solvable for arbitrary timing of start signals if and only
if it is solvable when restricted to diffusive start signals. An interesting question is whether
this equivalence in terms of solvability is still valid in the original model of the firing squad
problem, where nodes are finite state machines. It can be shown that this is the case when
the topology is a line or a circuit, but it is not clear whether this holds for other topologies.

B. Charron-Bost and S. Moran 20:13

Possible extensions of this work involve other variations of the model of computation.
For instance, it is interesting to determine under what conditions the firing squad problem
is solvable in an anonymous network where nodes have limited storage capabilities and
communicate through finite bandwith channels as in [15]. Our randomized algorithm provides
an efficient Monte Carlo solution for this problem, in the case of a continuously strongly
connected network and a polynomial upper bound on the size of the network. Another open
question concerns the role of leaders in a dynamic network: does the existence of a leader
could be useful for achieving or improving solutions to the firing squad problem?

References
1 Sebastian Abshoff, Markus Benter, Andreas Cord-Landwehr, Manuel Malatyali, and Fried-

helm Meyer auf der Heide. Token dissemination in geometric dynamic networks. In Pro-
ceedings of the 9th International Symposium on Algorithms and Experiments for Sensor
Systems, Wireless Networks and Distributed Robotics, ALGOSENSORS, pages 22–34, 2013.

2 Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities. A
nonasymptotic theory of independence. Oxford University Press, Oxford, 2013.

3 James E. Burns and Nancy Lynch. The byzantine firing squad problem. Advances in
Computing Research, 4:147–161, 1987.

4 Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-
varying graphs and dynamic networks. In Hannes Frey, Xu Li, and Stefan Rührup, edit-
ors, ADHOC-NOW, volume 6811 of Lecture Notes in Computer Science, pages 346–359.
Springer, 2011.

5 Bernadette Charron-Bost and André Schiper. The Heard-Of model: computing in distrib-
uted systems with benign faults. Distributed Computing, 22(1):49–71, 2009.

6 Bernard Chazelle. Natural algorithms and influence systems. Communications of the ACM,
55(12):101–110, 2012.

7 Brian A. Coan, Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. The distributed
firing squad problem. In ACM Symposium on Theory of Computing Conference, STOC’85,
pages 335–345, 1985.

8 Thiago Correa, Breno Gustavo, Lucas Lemos, and Amber Settle. An overview of recent
solutions to and lower bounds for the firing synchronization problem. arXiv preprint
arXiv:1701.01045, 2017.

9 Reinhard Diestel. Graph Theory. Springer-Verlag Berlin Heidelberg, 2017.
10 Danny Dolev, Ezra N. Hoch, and Yoram Moses. An optimal self-stabilizing firing squad.

SIAM Journal on Computing, 41(2):415–435, 2012.
11 Danny Dolev, Rüdiger Reischuk, and H. Raymond Strong. Early stopping in Byzantine

agreement. jacm, 37(4):720–741, 1990.
12 Danny Dolev and H. Raymond Strong. Authenticated algorithms for Byzantine agreement.

12(4):656–666, 1983.
13 Cynthia Dwork and Yoram Moses. Knowledge and common knowledge in a Byzantine

environment: Crash failures. Information and Computation, 88(2):156–186, oct 1990.
14 Steven Finn. Resynch procedures and a fail-safe network protocol. IEEE Transactions on

Communications, 27(6):840–845, 1979.
15 Julien M. Hendrickx, Alexander Olshevsky, and John N. Tsitsiklis. Distributed anonymous

discrete function computation. IEEE Trans. Automat. Contr., 56(10):2276–2289, 2011.
doi:10.1109/TAC.2011.2163874.

16 Fabian Kuhn, Nancy A. Lynch, and Rotem Oshman. Distributed computation in dynamic
networks. In Leonard J. Schulman, editor, Proceedings of the 42nd ACM Symposium on

STACS 2018

http://dx.doi.org/10.1109/TAC.2011.2163874

20:14 The Firing Squad Problem Revisited

Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages
513–522. ACM, 2010. doi:10.1145/1806689.1806760.

17 Fabian Kuhn, Yoram Moses, and Rotem Oshman. Coordinated consensus in dynamic net-
works. In Proceedings of the 30th ACM Symposium on Principles of Distributed Computing
(PODC), pages 1–10. ACM, 2011.

18 Edward F. Moore. The firing squad synchronization problem. Sequential Machines, Selected
papers, pages 213–214, 1964.

19 F. R. Moore and G. G. Langdon. A generalized firing squad problem. Information and
Control, 12(3):212–220, 1968.

20 Rotem Oshman. Distributed Computation in Wireless and Dynamic Networks. PhD thesis,
Massachusetts Institute of Technology, 2012.

21 Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the presence
of faults. 27(2):228–234, 1980.

22 Nicola Santoro. Time to change: On distributed computing in dynamic networks (keynote).
In 19th International Conference on Principles of Distributed Systems, OPODIS 2015,
December 14-17, 2015, Rennes, France, pages 3:1–3:14, 2015.

23 T. K. Srikanth and Sam Toueg. Simulating authenticated broadcasts to derive simple
fault-tolerant algorithms. Distributed Computing, 2(2):80–94, 1987.

24 Roger Wattenhofer. Principles of distributed computing. Unpublished, 2014.

http://dx.doi.org/10.1145/1806689.1806760

	Introduction
	 The Model
	Distributed computations in the dynamic graphs model
	Paths and broken paths in a dynamic graph
	Delayed connectivity of a dynamic graph

	 Bounded Delay Connectivity is not Enough
	Firing with a Bounded Diameter
	Firing with T Delayed Connectivity
	Bound on the Network Size and Randomization
	Conclusion and Further Research

