On the Positive Calculus of Relations with
Transitive Closure

Damien Pous
Univ. Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP
Damien.Pous@ens-lyon.fr

—— Abstract

Binary relations are such a basic object that they appear in many places in mathematics and
computer science. For instance, when dealing with graphs, program semantics, or termination
guarantees, binary relations are always used at some point.

In this survey, we focus on the relations themselves, and we consider algebraic and algorithmic
questions. On the algebraic side, we want to understand and characterise the laws governing the
behaviour of the following standard operations on relations: union, intersection, composition,
converse, and reflexive-transitive closure. On the algorithmic side, we look for decision procedures
for equality or inequality of relations.

After having formally defined the calculus of relations, we recall the existing results about
two well-studied fragments of particular importance: Kleene algebras and allegories. Unifying
those fragments yields a decidable theory whose axiomatisability remains an open problem.
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1 The calculus of relations

Given a set P, a relation on P is a set of pairs of elements from P. For instance, the usual
order on natural numbers is a relation. In the sequel, relations are ranged over using letters
R, S, their set is written P(PxP), and we write p R ¢ for (p,q) € R.

The set of relations is equiped with a partial order, set-theoretic inclusion (C), and three
binary operations: set-theoretic union, written R 4+ .S, set-theoretic intersection, written
RN S, and relational composition:

RS2 {(p,q)|IrecP, pRr AN rSq} .

© Damien Pous; SYMPOSIUM

37 licensed under Creative Commons License CC-BY LV r ON THEORETICAL
35th Symposium on Theoretical Aspects of Computer Science (STACS 2018). m }_ ASPECTS
Editors: Rolf Niedermeier and Brigitte Vallée; Article No. 3; pp. 3:1-3:16 4 81 S(()leEi(gEPUTER

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:Damien.Pous@ens-lyon.fr
http://dx.doi.org/10.4230/LIPIcs.STACS.2018.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

3:2

On the Positive Calculus of Relations with Transitive Closure

It also contains three specific relations: the empty relation, written 0, the full relation,
written T, and the identity relation:

12 {(p,p) |pe P} .

Lastly, one can consider three unary operations: set-theoretic complement, written R€,
converse (or transpose), R°, and reflexive-transitive closure, R*, defined as follows:

R°2{(p,q) | -pRq} ,
R°2{(p,q) | ¢ Rp} ,
R*£{(p,q) | 3o, ,Pns Po=p A Pn=gq A Vi<n, piRpis1} .
We restrict ourselves to this list of operations here, even though it is not exhaustive. These

operations make it possibles to state many properties in a concise way, without mentioning
the points related by the relations. Here are a few examples:

1CR R is reflexive: Vp € P,pRp

R-RCR R is transitive: Vpgr, pRr A\r Rq=pRq
RR*N1=0 R is acyclic: Vpg ...pn, n>0, (Vi, p; Rpit1) = po # Pn
R°-SCS-R° R and S commute: Vpgr, r RpArSq=3t, gRtApSt

» Exercise 1. To which standard notions from rewriting theory correspond the inequations
R°-R C R*-R°* and R°*-R* C R*-R°* ¢

Moreover, these operations satisfy many laws. Some of these laws are extremely simple
(for instance, composition is associative, (R-R')-R” = R-(R’'-R"); the empty relation is
absorbs composition, R0 = 0 = 0-R; reflexive-transitive closures are transitive, R*R* C R*).
Others are much more complicated and counter-intuitive.

» Exercise 2. Amongst the following equations and inequations, which ones are universally
true? In each case, give a counter-example or a detailed proof.

INRCR-RNRRR (1)
(R+5)" = R™-(S-R")" 2)
(B+5)" = ((1+R)-9)" 3)

R(SNT)=R-SNRT (4)
RSNTCR(SNR-T) (5)
R-SNTC(RNT-S°)-(SNRT) (6)

(RNS-T)T=RTNS-T (7)

Two questions arise naturally:

1. is it possible to axiomatise the set of laws that are universally true, that is, to give a
small number of elementary laws from which all valid laws follow?

2. is it possible to decide whether a law is valid or not?

When considering all the operations listed above, the answer is negative in both cases.

Indeed, Monk proved that there cannot be a finite axiomatisation [16], and Tarski proved

that the theory is actually undecidable [25, 24]. In both cases, reflexive-transitive closure is

not necessary but the complement plays a crucial role. Thus we focus in the sequel on the

positive fragments, where complement is excluded.
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Now we setup the concepts and notation needed in the sequel.
Let ¥ be a set, whose elements are denoted by letters a, b. (Relational) expressions are

defined by the following grammar:
e,f,gu=e+flenfle-fle?|e|0|1]|T|a (a€eX) .

Given a set F and a function o : ¥ — P(EXFE) mapping any letter from ¥ to a relation on
E, we define inductively the extension & of o to expressions:

e+ 1) 2 () +6() 5(e%) £ 5(c)° 5(1) 21
6en f) 2 6(e) N () (e £ ole)" B(T) 2T
b 1) 2 5(e) - o(1) 5(0) 20 #(a) £ o(a)

Given two expressions e and f, an equation is valid, written F e = f, if for all set F and
for all function o : ¥ — P(EXE), we have &(e) = 6(f). Intuitively, an equation is valid if
it is universally true in relations, if it holds whatever the relations we use to interpret its
variables.

Similarly, an inequation is valid, written Fe C f, if 6(e) C 6(f) for all set E and
function o : ¥ — P(ExE). Characterising valid equations is equivalent to characterising
valid inequations, as shown in the following exercise.

» Exercise 3. Let e, f be two expressions. We have Ee= f iffEe C f and E f Ce. Show
thatEeC fiffEe+ f=fiffEenf=e.

2 The ideal fragment: Kleene algebra

In this section we remove from the syntax the operations of intersection and converse, as
well as the constant T. In other words, we restrict to regular expressions:

e, f,gu=e+fle-fle|0]1]a (a€eX) .

we shall see that with such a restriction, the validity of an equation is decidable, and more
precisely, PSPACE-complete.

2.1 Decidability

Let letter u,v range over finite words over the alphabet X, let € denote the empty word,
and wv the concatenation of two words u and v. A language is a set of words. We define
inductively a function [] associating a language to each expression:

(1>

e+ 1= [e] U] [0]
le-f] = {uv | u € [e],v € [f]} 1]

[e*] & {uy ... up | Vi,u; € [e]} [a]

€}
a}

The key result about this fragment of the calculus of relations is the following charac-
terisation: an equation is valid for relations if and only if it corresponds to an equality of

>
_,~—~— =

(1>

languages.

» Theorem 4. For all regular expressions e, f, we have

Fe=f

3:3
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We prove this theorem below. Its main consequence in practice is the decidability of the
validity of equations: [e] and [f] are regular languages which we can easily represent using
finite automata in order to compare them. This characterisation also gives us the pre-
cise complexity of the problem, as language equivalence of regular expression is PSPACE-
complete [23].

Proof of Theorem 4. First we show the implication from left to right. Suppose F e = f,
we have to find a function o from the alphabet ¥ to a space of relations P(Ex E), such that
&(e) = 6(f) entails [e] = [f]. Take E = ¥*, the set of words over X, and define o as follows:
g: % — P(SPx5)
a— {{u,ua) |u e X"}
We will show that for all expression g, we have
o(9) = {(u,uv) |u e X% v e [g]} .

In particular, we will thus have v € [g] if and only if (¢, v) € 6(g), so that 6(e) = 6(f) entails
[e] = [f]-
We proceed by induction on the expression g:
g=¢g +g": we have
G(g)=0a(g)Ue(g")
= {{u,w) |u e *,v e [¢']} U {{u,w) | u e X", v e [¢"]} (by induction)
= {{u,uwv) |u € X*,v e [¢']U[g"]}
{{u,uv) [u € £%,v € [¢' + "]}
: we have
=06(9')-6(9")
= {{u,w) |u e T v e [¢]} {{W, vw) | v e X welg]} (by induction)
= {{u,uvw) | u e X*,v € [¢'],w € [¢"]}
= {(u,w) [ueX*velg ¢"]}
g = ¢’*: like in the previous point, we have
(g) = 6(g")"
= {{u,w) |u € T*,v e [¢']}" (by induction)
= {{u,w) | u € ¥*,v € [¢"*]}

(for the last step, we first show the following property, by induction on k& € N: for all
language L C ¥*, we have {(u,uv) | u € ¥*,v € L}* = {{u,wv) | u € ¥*,v € L*}).
g=0, g=1, g = a: by unfolding definitions.

Now consider the converse implication. Fix a set E and a function o : ¥ — P(EXE);
we have to show that [e] = [f] entails 6(e) = &(f). This implication follows immediately
from the following property, which we prove by induction on the expression g:

6(9) = | o(v) .
vE[g]

(Note the slight abuse of notation in the term of the union: we apply the function &,
expecting a regular expression, to a word v; we implicitely use the natural injection from
words to expressions.)
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g=g +g": we have

(by induction)

(by induction)

(distributivity)

= U ow
u€lg’-g"]

/%

g = g'*: we have

N

a(9) =a(g)"

= (U o)

(by induction)

I
-

v1€lg’], .., vn€[g’]

- U

’UlE{g’], ---7”716[9,]

U o

u€lg’*]

g=0,g=1, g = a: again, by unfolding definitions. <

Note that this proof leads to a similar characterisation for inequations: for all regular
expressions e and f,

FeCf iff le] C [f] -

2.2 Axiomatisation

In 1956, Kleene asks for axiomatisations of the previous theory [7]: is it possible to find a
small set of axioms (i.e., equations), from which follow all valid equations between regular
expressions?

In the sixties, Salomaa gives two axiomatisations [22] which are not purely algebraic,
and Redko proves that no finite equational axiomatisation can be complete [21]. Conway
studies extensively this kind of questions in his monograph on regular algebra and finite
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et(f+g)=(e+[f)+g
e+t f=r+e (+,0) is a commutative
e+0=c¢ and idempotent monoid
et+te=c¢e
e(f-g)=(ef)g
el=e (+,1) is a monoid
le=e
e(f+g)=ef+ey
(et+f)g=eg+fyg distributivity between
e0=0 the two monoids
0-e=0

1+ee=e"
ef<f = e f<f p laws about Kleene star

fe<f = [fe<f
Figure 1 The axioms of Kleene algebra.

automata [7], but we have to wait for the nineties for new results: Krob and Kozen inde-
pendently show that one can axiomatise this theory in a finite way, but using axioms that
are not just equations, but implications between equations. (We move from varieties to
quasi-varieties.)

Krob’s proof is long and difficult [15], but it provides a complete picture: first he gives
a purely equational axiomatisation, infinite but with more structure than Salomaa’s ax-
ioms. Then he shows that those infinitely many axioms can be derived from various finite
axiomatisations involving implications between equations.

On the contrary, Kozen goes straight to the point and focuses on a specific finite axio-
matisation (with implications). His proof is not simple either, but much shorter [13, 14].

» Theorem 5 (Kozen'91, Krob'91). For all reqular expressions e, f, we have [e] = [f] if and
only if the equality e = f is derivable from the azxioms listed in Figure 1, where notation
e < f is a shorthand for e+ f = f.

These axioms can be decomposed into four groups: the first three correspond to the fact
that we have an idempotent non-commutative semiring; the last group of axioms character-
ises the operation of reflexive-transitive closure, often called “Kleene star” in this context.
This group is not entirely symmetric: the law 1+ e*-e = e* is omitted as it can be derived
from the other axioms. The last two axioms are implications; intuitively, they tell that if
an expression f is invariant under composition with another expression e, then it is also
invariant with e*. The expressive power of the axiomatisation mainly comes from those
two implications: they make it possible to reason inductively on Kleene star, in a purely
algebraic way.

One easily checks that each of these axioms is valid in the model of binary relations,
but also when interpreting the expressions e, f,g as arbitrary languages. The converse
implication from Theorem 5 follows from this remark: we prove only valid equations using
those axioms.
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The difficulty lies in the other implication: the completeness of these axioms, the fact
that any valid equation might eventually be deduced from these axioms. We do not detail
the proof here; a key step consists in showing that the set of matrices with coefficients in a
Kleene algebra forms a new Kleene algebra (a Kleene algebra being a structure satisfying
the axioms from Figure 1).

» Exercise 6. Prove the following laws by using only Kleene algebras azioms:

gtef<f=e-g<f
g+fe<f=ge <f
1+e"e=¢e*
ef<ge=ef*<gte
ef=ge=efr=g"e
- (f-e)" = (e-f)"e
(e+f)=e"(f"e)

3 The strange fragment: allegories

Now consider a different fragment, where we only have composition, intersection, converse,
and constants 1 and T. For reasons to become clear in Section 4, we reuse letters u, v, w to
denote the corresponding regular expressions, which we shall call terms:

uvyv,we=uw-v|uNo|u®|1|T|a (a€eX) .

Modulo the presence of the constant T, this fragment was studied by Andréka and
Bredikhin [2], and by Freyd and Scedrov [11] under the name of (representable) allegories.
We will see that one can decide the validity of inequations (and thus also equations) in this
fragment, but that again, the corresponding theory is not finitely axiomatisable in a purely
equational way.

3.1 Decidability

The key idea consists in characterising valid inequations by the existence of graph homo-
morphisms. More precisely, homomorphisms of directed and edge-labeled graphs with two
distinguished vertices.

» Definition 7 (Graph). A graph is a tuple (V, E,¢,0), where V is a set of vertices, E C
V x X x V is a set of labelled edges, and ¢,0 € V are two distinguished vertices, respectively
called input and output.

We let letters G, H range over graphs and we define the following operations:

G - H is the graph obtained by composing the two graphs in series, that is, by putting
them one after the other and by merging the output of G with the input of H;

G N H is the graph obtained by composing the two graphs in parallel, that is, by putting
them side by side and by merging their inputs and their outputs;

G° is the graph obtained from G by exchanging input and output (without reversing
edges);

1 is the graph without edges and with a single vertex ({{x}, 0, x, *));

T is the graph without edges and with two vertices, where input and output are distinct

(({x, 03,0, %, 9));

3:7
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G-H 2 _ »O0—G—0O0—H—0O0—> 1 2 50—
G—
A Ay
GNH=— H/O—> T=—>0 Oo0—
G° L —O0—CG—+O— a2 —0—>0—

Figure 2 Operations on graphs.

b
G(bNc®): —0___20—
a b
G(a-(bNec) Nd): — c O—
d
a b
G(a-bNa-c): —>o<:g>c:o—>
G((a N b-T)-d): —>o<g\‘o—d>o—>
b
b
G(a-b N 1): —>

Figure 3 Graphs associated to some terms.

for a € 3, a is the graph with two vertices and an edge labelled a from the input to the
output ({({*, e}, {(x,a,e)}, x e)).
These operations are depicted on Figure 2; the input and the output of each graph is denoted
using unlabelled arrows. These operations make it possible to associate a graph G(u) to
every term u, by structural induction:

G(u-v) £ G(u) - G(v) G =1
Glunv) 2 Gu) NGv) GM=2T
G(u®) 2 G(u)° Gla) 2 a

The graphs of a few terms are drawn on Figure 3. These are series-parallel graphs as long
as we do not use converse and identity, that introduce loops in presence of intersection, nor
the constant T, that can disconnect some parts of the graphs.

Some graphs are not associated to any term. The canonical counter-example is the
following one. (The labelling and the orientation of the five edges is irrelevant so that we
omit this information.)
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Figure 4 A graph homomorphism.

In fact, the graphs of terms are exactly the graphs of treewidth at most two; equivalently,
they are the graphs excluding the complete graph with four vertices (K;) as a minor? [9, 8].

One can compare graphs using homomorphisms:

» Definition 8. A homomorphism from the graph G to the graph H is a function from
vertices of G to vertices of H that preserves labelled edges, input, and output. We write
H <« G when there exists a homomorphism from G to H.

One easily checks that the relation <€ is a preorder on graphs: it is reflexive and transitive.

As an example, the graph of a-(b N ¢) N d is smaller than that of a-b N a-c, thanks to the
homomorphism depicted on Figure 4 using dotted arrows. Note that homomorphisms need
not be injective or surjective, so that the preorder is completely unrelated to the sizes of the
graphs: a graph may perfectly be smaller than another one, in the sense of the preorder,
while having more vertices or edges (and vice-versa).

The nice property of the fragment considered here is the following characterisation:
an inequation is valid for relations if and only if there exists a homorphism between the
underlying graphs:

» Theorem 9 ([2, Theorem 1], [11, page 208]). For all terms u,v, we have
FuCwo iff  Gu) 4«G(v) .

Graphs of terms being finite, one can look for a homomorphism between two such graphs in
an exhaustive way, whence the decidability of the problem.

» Exercise 10. Prove the laws (1), (5), (6), and (7) from Exercice 2, by using Theorem 9.
We need a lemma in order to prove the theorem.

» Lemma 11. Let u be a term, and let G(u) = (V, E,1,0) be its graph. Let S be a set and
o: X — P(5%S) an interpretation function. For all elements i,j € S, we have (i,j) € &(u)
iff there exists a function ¢ : V. — S such that:

(p,a,q) € E = (6(p),d(q)) € o(a) .

Proof. We proceed by induction on u:

1 In both cases, after adding a edge between the input and the output.

STACS 2018



3:10

On the Positive Calculus of Relations with Transitive Closure

u=v-w: write G) = (V,, Ey, ty,0,) and G(w) = (Viy, Ew, tw, 0). We have (i,j) €
F(u) = 6(v)-6(w) i there exists k € S such that (i,k) € 6(v) and (k,j) € 6(w). By
induction, this last property is equivalent to the existence of two functions ¢, : V,, — S et
¢y : Vy, = Ssuch that ¢, (1) = 1, ¢y (0n) =k, (p,a,q) € E, entails (¢, (p), pu(q)) € o(a),
¢U(Lv) =k, (!j)v(ov) =7, and <p7 a, q> € E, entails <¢v(p)a¢v(q)> € O'(CL). By gluing back
those two functions, we easily show the equivalence with the existence of a function from
the graph G(u) = G(v)-G(w) satisfying the property from the statement.

u = vNw: with the notations from the previous point, we have (i, j) € 6(u) = 6(v)Né(w)
iff (i,j) € 6(v) and (i,j) € é(w). By induction, this conjunction is equivalent to the
existence of two functions ¢, : V;, — S and ¢, : V,, — S such that ¢, (1) = 4, ¢ (0z) = J,
and (p,a,q) € E, entails (¢,(p), ¢(q)) € o(a), for z € {u,v}. As previously one easily
shows the equivalence with the existence of a function from the graph G(u) = G(v)NG(w)
satisfying the property from the statement.

u = 1: by definition, we have (i, j) € 6(u) = 1 iff i = j, and the existence of a function
¢ satisfying the properties of the statement for the graph 1 is also equivalent to i = j.
u = T: by definition, (i,j) € 6(u) = T is always true; and the existence of a function ¢
satisfying the properties of the statement for the graph T is always guaranteed.

u = a: 6(u) = o(a) the existence of a function ¢ satisfying the properties of the statement
for the graph a is equivalent to the membership of (i, ) to o(a). <

Proof of Theorem 9. Write G(u) = (V, E,,0) et G(v) = (V', E',//, o).

Start by the right-to-left implication: assume G(u) <€ G(v), i.e., a homomorphism ~
from G(v) to G(u), and let us show F v C v. Let S be a set and ¢ : ¥ — P(S%S) an
interpretation function; for all (i,j) € 6(u) (), we have to show (i,j) € &(v) (). Let
¢ : V. — S be the function given by Lemma 11 and assumption (f). By the same lemma,
to prove (1) it suffices to find a function ¢ : V! — S satisfying ¢ (¢/) = i, ¥(0') = j, and
(v, a,q'y € E' entails (¢(p'),¥(q")) € o(a). The composed function ¢ oy is suitable.

Now let us show the direct implication. Suppose that F v C v, we have to find a
homomorphism from G(v) to G(u). Let o be the following interpretation function:

0: X = P(VXV)
a—{(p.q) | {p,a,q) € E}
By Lemma 11, using the identity function, we have (¢, 0) € 6(u). By assumption, we deduce
(t,0) € 6(v), whence, by using Lemma 11 again, the existence of a function ¢ : V' — V

satisfying some properties. These properties precisely correspond to the fact that ¢ is a
homomorphism from G(v) to G(u). <

3.2 Axiomatisation

Freyd and Scedrov define allegories [11] as structures satisfying the axioms from Figure 52.
First note that composition does not distribute over intersections: composition is monotone
in its two arguments, which entails the following inequations but not their converses:

e-(fng)Ce-fNey
(fng)-eC feng-e

2 Up-to some details: they do not consider the constant T, and they work in a categorical setting, where
the various operations are typed.
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N(fng) =(Enf)n
enNf=rfne ) is a commutative
eNT =e and idempotent monoid
eNe=c¢e
e (f-9)=
e-l=e ) is a monoid
l-e=e
e-(fng)Ce-f
composition is monotone
(f Ng)-eCf-e
eOO
converse is a monotone
(enf)°c
. involution reversing composition
(e-f)° <
eefNngCengf°)f } modularity law

Figure 5 Axioms of allegories.

One can also deduce from the axioms that converse reverses composition, distributes over
intersections, and preserves constants 1 et T:

(enf)y=e°nfe T°=T
(e-f)7=f°-¢ 1°=1

The last axiom in Figure 5 is uncommon. It is called modularity law, it is equivalent in
presence of the other axioms to its symmetrical counterpart:

efNgCe-(fneg)

It also admits as a consequence the following inequation, known as Dedekind’s inequality:
efNgClengf)-(fneyg)

» Exercise 12. Prove the six laws above from the axioms of Figure 5.

Unfortunately, this finite and purely equational axiomatisation is not complete for rela-
tions: some valid equations are not consequences of the axioms. Freyd and Scedrov actually
proved that there exists no finite equational axiomatisation. We give some intuitions about
this result in the remainder of this section. Let us first check that the axiomatisation is
sound:

» Exercise 13. Prove that each axiom is valid by using Theorem 9: draw each graph and
make explicit the homomorphisms corresponding to each inequation.

When doing the above exercise, one can see that the only non-injective homomorphism is
the one corresponding to the modularity law, and that this homomorphism equates exactly
two vertices:

3:11
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Gle-(fNneg)): _>

We actually have the following result:

» Claim 14. Let u and v be two terms. If there exists a homomorphism from G(v) to G(u)
equating at most two vertices, then the inequality uw C v is a consequence of the axioms from
Figure 5.

Proof. Left to the reader by Freyd and Scedrov [11]. <

The converse does not hold: many inequations provable from the axioms correspond to ho-
momorphisms equating arbitrarily many vertices (for instance, Dedekind’s inequality, where
two pairs of vertices are equated, or the inequation (1) from Exercice 2, where the five
vertices of the right-hand side are equated).

Consider nevertheless an arbitrary homomorphism from the graph of a term v to that
of a term u. This homomorphism can be decomposed in several ways into a sequence of
homomorphisms each equating at most two vertices. One could thus believe that it suffices
to use the claim 14 to obtain a sequence of provable inequations, leading to a proof of u C v
from the axioms and transitivity.

The problem is that the intermediate graphs appearing in these sequences of homomorph-
isms need not be graphs of terms (recall the graph (8)). Here is a counter-example; again,
we do not label the edges nor we give their orientation as this information is irrelevant.
Consider the following graph:

N

This graph corresponds to a term of the shape 1 N II;—1 23(a;-b; N ¢ -d;). If we equate
the three inner, square, blue vertices, as well as the three outer, square, green vertices, we
obtain the following graph:

N

This graph is associated to a term, of the shape 1 N é-(e:f N g-h)-j, so that the homomorphism
implicitely considered corresponds to a valid inequation between two terms.

This homomorphism equates in one step two groups of three vertices. Now let us try
to decompose it into a sequence of four morphisms equating each exactly two vertices. The
first homomorphism must equate two blue vertices, or two green vertices. In both cases, we
obtain a graph which is not the graph of any term.
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By formalising this idea more precisely, one obtains a valid inequation which cannot be
proved from the axioms, whence the incompletness of the axiomatisation. One can actually
generalise the counter-example and show that every complete equational axiomatisation
must contain axioms corresponding to homomorphisms equating arbitrarily many vertices,
whence the impossibility for this axiomatisation to be finite [11, page 210].

Hodkinson and Mikulas further showed that there cannot be a finite first-order axiomat-
isation [12], and in particular a quasi-equational one like, e.g., for Kleene algebra. In contrast,
we proved recently with Cosme-Ll6pez that the more restrictive theory of isomorphism (on
graphs of terms) can be finitely axiomatised in a purely equational way [8].

4 Putting all together

Let us come back to the initial problem, that of the positive calculus of relations. We have
seen that two fragments are decidable: the fragment corresponding to regular expressions
(+,-,-*,0,1), and that corresponding to allegories (N,-,-°, T,1). What happens when we
take all operations?

First note that the function [-] associating a (regular) language to every regular expression
can be extended to the operations of allegories:

[en f1= [e]N[f]
[€°] £ {an...a1|a1...a, €[e]}
)& s

However, the characterisation obtained in Theorem 4 no longer works with these operations.
Indeed, we have for instance

[anb] = {a} N {b} =0 = [0]

[a ]—{a} [a] but #a®=a
[a] = {a} € {aaa} = [a-a®-a] but FaCa-a’-a
[T-a-Tb-T]#[T:b-T-a-T] but ET-a-T-b-T=T:b-T-a-T

but Fanb=0

To obtain a characterisation, we actually have to replace words (elements of ¥*) by
graphs, and thus consider languages of graphs.

» Definition 15. The language of graphs of an expression e, written G(e), is defined as
follows, by induction on e:

Gle+ f) = G(e) UG(f) G)=90

Glenf)={GNH|GeGle), HeG(f)} g(T) = {1}
Gle-f)2{G-H|GeGle), HeG(f)} g(1) = {1}
G2 {Gy----- Gn|lneN, Vi<n, G;€G(e)} G(a) £ {a}

G(e*) £{G° |G € G(e)}

This definition properly generalises the usual notion of language: when the considered
expression contains no intersection, no converse, and no constant T, then the associated
graphs are isomorphic to words: these are simple threads labelled by letters in .

To generalise also allegories, we have to make use of graph homomorphisms. Given a set
L of graphs, we write *L for is downward closure w.r.t. the preorder («0):

“L2{G|3H,G<H HeL} .
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We finally obtain the following characterisation:

» Theorem 16. For all expressions e and f, we have
FeCf iff  Gle)CYG(f) .

Proof. Similar to the proof of Theorem 4, using Theorem 9 (cf. [5, Theorem 6], adding the
constant T is not problematic). |

This characterisation generalises both Theorem 4 and Theorem 9. If e and f are regular
expressions, then all graphs in G(e) and G(f) are threads, and the unique possible homo-
morphism between two such graphs is the identity; whence G(e) € *G(f) iff G(e) C G(f).
If instead e and f are terms u and v, then G(e) = {G(u)} and G(f) = {G(v)}, so that
G(e) C G(f) is equivalent to G(u) € G(v).

Note also that for all graph languages L, K, we have L C “K iff L C *K. Valid
equations are thus characterised as follows:

Fe=f iff “Gle) =G(f) .

To illustrate this theorem, consider expressions e £ a* N 1 and f £ (a-a)* N 1, where
gt is a shorthand for g-g*. The set of graphs G(e) is the set of non-trivial cycles labelled
with a:

On the other side, G(f) is the set of non-trivial cycles of even length. Thus we immediately
get G(f) € G(e) € “G(e), whence E f C e. The converse inequation is also valid: to each
cycle from G(e), possibly of odd length, one can associate the cycle of double length, in G(f);
indeed, there is a homomorphism from this cycle of double length into the shorter one:

» Exercise 17. Use the same technique to prove the following laws:

(aNbb)*Ca*Nb*
((anbd)-(1Nb)(and) C(anbb)*
(andoT)*ANbT)=1NTD%)(a N T-H°)*

Together with Paul Brunet [5], we proposed an automata model allowing us to recognise
languages of graphs associated to expressions. This automata model takes inspiration from
Petri nets [19, 17], which make it possible to explore richer structures than plain words. To
each expression e, we associate what we call a Petri automaton, whose language is precisely
“G(e). Thanks to Theorem 16, the problem of validity of equations or inequations thus
reduces to the problem of comparing Petri automata.



D. Pous

We solved this algorithmic problem only for a fragment of the calculus: we have to forbid
converse and constants 1 and T, and replace reflexive-transitive closure -* by transitive
closure -* (because reflexive-transitive closure implicitly contains the identity: we have
1 = 0*). The corresponding equational theory was recently studied by Andréka, Mikulds,
and Németi [1]: it coincide with that of languages over this signature. Under this restriction,
the considered graphs are always acyclic, so that the automata become simpler to compare:
we have shown that the problem of comparing these automata is EXPSPACE-complete [5].

Subsequently, Nakamura managed to prove that the problem remains in EXPSPACE
in presence of converse and identity (but without T, although his technique certainly ap-
plies) [18]. His solution consists in defining a notion of partial derivatives for graphs, similar
to Antimirov’ partial derivatives for regular expressions [3], and exploiting the fact that
graph generated from a given expression have a bounded pathwidth [9].

5 Open questions

Is it possible to axiomatise the positive calculus of relations with transitive closure? For
instance, do Kleene algebra axioms suffice when added to a complete axiomatisation of rep-
resentable allegories? What about the fragment without converse, identity, and T, studied
by Andréka, Mikulds, and Németi [1]?

Note that intersection is the difficult operation: without intersection (and associated
constant T), we obtain Kleene algebras with converse, for which Berndtsky, Bloom, Esik
and Stefanescu have obtained decidability [4]* and complete axiomatisability relatively to
Kleene algebras: the following five axioms suffice when added to any complete axiomatisation
of Kleene algebras (e.g., those from Figure 1) [10].

(e-f)e=f°-e° e =e*° eCe-e-e
(e4+ f)°=e+e¢° %% = ¢
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