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Abstract
We investigate the intersection problem for finite monoids, which asks for a given set of regular
languages, represented by recognizing morphisms to finite monoids from a variety V, whether
there exists a word contained in their intersection. Our main result is that the problem is PSPACE-
complete if V 6⊆ DS and NP-complete if 1 ( V ⊆ DO. Our NP-algorithm for the case V ⊆ DO
uses novel methods, based on compression techniques and combinatorial properties of DO. We
also show that the problem is log-space reducible to the intersection problem for deterministic
finite automata (DFA) and that a variant of the problem is log-space reducible to the membership
problem for transformation monoids. In light of these reductions, our hardness results can be
seen as a generalization of both a classical result by Kozen and a theorem by Beaudry, McKenzie
and Thérien.
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1 Introduction

In 1977, Kozen showed that deciding whether the intersection of the languages recognized by
a set of given deterministic finite automata (DFA) is non-empty is PSPACE-complete [16].
This result has since been the building block for numerous hardness results in formal language
theory and related fields; see e.g. [8, 11, 12, 15]. It is natural to ask whether the problem
becomes easier when restricting the input. Various special cases, such as bounding the
number k of automata in the input [17] or considering only automata with a fixed number of
accepting states [9], were investigated in follow-up work; see [14] for a survey.

Another very natural restriction is to only consider automata with certain structural
properties. One such property is counter-freeness: an automaton is counter-free if no word
permutes a non-trivial subset of its states. By a famous result of Schützenberger [19], a
regular language is recognized by a counter-free automaton if and only if it is star-free. These
properties are often expressed using the algebraic framework: instead of considering the
automaton itself, one considers its transition monoid. The latter is the transformation monoid
generated by the action of the letters on the set of states. Now, properties of automata
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30:2 The Intersection Problem for Finite Monoids

Table 1 Summary of complexity results ( new main result, follows from reductions.)

MonIsect(V) MonIsect1(V) Memb(V) [2, 7]
NC — V ⊆ G V ⊆ G
P — V ⊆ R1 ∨ L1 V ⊆ R1 ∨ L1

NP V ⊆ DO V ⊆ DO V ⊆ R,V ⊆ A1

NP-hard all V 6= 1 — Acom2 ⊆ V,
XR ⊆ V,XL ⊆ V

PSPACE all V all V all V
PSPACE-hard V 6⊆ DS V 6⊆ DS V 6⊆ DS

can be given by membership of the transition monoid in certain classes, so-called varieties,
of finite monoids. For example, an automaton is counter-free if and only if its transition
monoids belongs to the variety A of aperiodic monoids. The DFA intersection problem for a
variety V, denoted by DfaIsect(V), is formalized as follows.

DfaIsect(V)
Input: DFAs A1, . . . , Ak with transition monoids from V
Question: Is L(A1) ∩ · · · ∩ L(Ak) 6= ∅?

Note that DfaIsect(Mon), where Mon is the variety of all finite monoids, is the general
DFA intersection problem considered by Kozen. A careful inspection of his proof actually
reveals that DfaIsect(A) is PSPACE-complete already [11]. Additionally requiring all DFAs
to have a single accepting state, we obtain a variant of DfaIsect(V) reminiscent of another
problem investigated by Kozen, the membership problem for transformation monoids.

Memb(V)
Input: Transformations f1, . . . , fm : X → X generating a monoid T ∈ V and g : X → X

Question: Does g belong to T?

The complexity of Memb(V) was studied extensively in a series of papers [2, 4, 5, 6, 7,
13, 3]. However, for certain varieties V, obtaining the exact complexity of DfaIsect(V)
and Memb(V) is a challenging problem. To date, only partial results are known, see Table 1.
For example, it is open whether or not Memb(DA) ∈ NP, a question stated explicitly in [7]
and revisited in [20] around ten years later.

Since algebraic tools are already used to express structural properties of automata, it
seems natural to consider the fully algebraic version of the intersection problem by directly
using finite monoids as language acceptors instead of taking the detour via automata and
their transition monoids. A language L ⊆ A∗ is recognized by a morphism h : A∗ → M to
a finite monoid M if L = h−1(P ) for some subset P of M . The set P is often called the
accepting set because it resembles the accepting states in finite automata. A monoid M

recognizes a language L ⊆ A∗ if there exists a morphism h : A∗ → M recognizing L. It is
well-known that a language is recognized by a finite monoid if and only if it is regular. For a
variety of finite monoids V, the intersection problem for V is defined as follows.

MonIsect(V)
Input: Morphisms hi : A∗ →Mi ∈ V and sets Pi ⊆Mi with 1 6 i 6 k

Question: Is h−1
1 (P1) ∩ · · · ∩ h−1

k (Pk) 6= ∅?
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MonIsect1(V)

MonIsect(V)

DfaIsect(V)

Memb(V)

Figure 1 Relations between the problems considered in this work.

We assume that the monoids are given as multiplication tables, such that, assuming a
random-access machine model, multiplications can be performed in logarithmic time.

There is a close connection to both the DFA intersection problem and the membership
problem for transformation monoids. More specifically, for every variety V, there is a
log-space reduction of MonIsect(V) to DfaIsect(V). The variant MonIsect1(V) of the
finite monoid intersection problem, where each of the accepting sets is a singleton, can be
reduced to Memb(V). Our reducibility results are depicted in Figure 1.

Not only is the algebraic version of the intersection problem a natural problem to consider,
making progress in classifying its complexity also raises hope to make progress in solving
open complexity questions regarding DfaIsect(V) and Memb(V). Using novel techniques,
we prove that MonIsect(V) is NP-complete whenever V ⊆ DO and PSPACE-complete
whenever V 6⊆ DS. In particular, since DA is a subset of DO, we obtain an NP-algorithm for
MonIsect(DA) while the problem of whether there exists such an algorithm for Memb(DA)
or DfaIsect(DA) has been open for more than 25 years. Moreover, in view of the reductions
mentioned above, our PSPACE-hardness result can be seen as a generalization of both Kozen’s
result and a result from [7], stating that every variety of aperiodic monoids not contained
within DA = DS ∩ A admits a PSPACE-complete transformation monoid membership
problem.

Our results are summarized in Table 1. Only a very small gap of varieties contained
within DS but not DO remains. Answering complexity questions in this setting is deeply
connected to understanding the languages recognized by monoids in DS which is another
problem open for over twenty years; see e.g. [1, Open Problem 14]. Obtaining a dichotomy
result for MonIsect(V) is likely to provide new major insights for both DfaIsect(V) and
the language variety corresponding to DS, and, conversely, new insights on either language
properties of DS or on DfaIsect(DS) will potentially help with obtaining such a result.

We conclude with a first complexity result on the intersection problem for finite monoids.

I Theorem 1. MonIsect(Mon) ∈ PSPACE.

Proof. Since PSPACE = NPSPACE by Savitch’s Theorem, it suffices to give a non-deter-
ministic algorithm which requires polynomial space. The algorithm proceeds by guessing a
word in the intersection, letter by letter. The word is not written down explicitly but after
each guess, the image of the current prefix under each morphism is computed and stored.
Finally, the algorithm verifies that each of the images is in the corresponding accepting
set. J

2 Preliminaries

Words and Languages. Let A be a finite alphabet. A word over A is a finite sequence of
letters a1 · · · a` with ai ∈ A for all i ∈ {1, . . . , `}. The set A∗ denotes the set of all words
over A and a language is a subset of A∗. The content (or alphabet) of a word w = a1 · · · a`
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30:4 The Intersection Problem for Finite Monoids

is the subset alph(w) = {a1, . . . , a`} of A. A word u is a factor of w if there exist p, q ∈ A∗
such that w = puq; and, when the factorization is fixed, then the position of u is called its
occurrence.

Algebra. Let M be a finite monoid. An element e ∈ M is idempotent if e2 = e. The set
of all idempotent elements of M is denoted by E(M). In a finite monoid M , the integer
ωM = |M |! plays an important role: for each m ∈M , the element mωM is idempotent. For
convenience, we often write ω instead of ωM if the reference to M is clear from the context.
For two elements m,n ∈M , we write m 6J n if the two-sided ideal of m is contained in the
two-sided ideal of n, i.e., MmM ⊆MnM . We write m J n if both m 6J n and n 6J m.

The direct product of two monoids M and N is the Cartesian product M × N with
componentwise multiplication. A monoid N is a quotient of a monoid M if there exists a
surjective morphism h : M → N . A monoid N is a divisor of a monoid M if N is a quotient
of a submonoid of M .

A variety of finite monoids is a class V of finite monoids which is closed under (finite)
direct products and divisors. The class of all finite monoids Mon is a variety. The following
other varieties play an important role in this work:

G = {M ∈Mon | ∀e ∈ E(M) : e = 1}
DS = {M ∈Mon | ∀e, f ∈ E(M) : e J f =⇒ (efe)ω = e}
DO = {M ∈Mon | ∀e, f ∈ E(M) : e J f =⇒ efe = e}

It is easy to see that G contains exactly those finite monoids which are groups. Since
direct products of groups are groups and divisors of groups are groups, G is indeed a variety.
For proofs that DS and DO are varieties, we refer to [18]. From the definitions, it follows
immediately that DO ⊆ DS. There exist several other interesting characterizations of DS.
Let B1

2 be the monoid defined on the set {1, a, b, ab, ba, 0} by the operation aba = a, bab = b

and a2 = b2 = 0 where 0 is a zero element. Then the following holds, see e.g. [1].

I Proposition 2. Let M be a finite monoid. The following properties are equivalent:
1. M ∈ DS.
2. For each e ∈ E(M) and x ∈M with e 6J x, we have (exe)ω = e.
3. For each e ∈ E(M), the elements {x ∈M | e 6J x} form a submonoid of M .
4. B1

2 is not a divisor of M ×M .

Tiling Systems. A tiling system is a tuple T = (Λ, T, n, f, b) where Λ is a finite set of labels,
T ⊆ Λ× Λ× Λ× Λ are the so-called tiles, n ∈ N is the width and f, b ∈ Tn are the first row
and bottom row. For a tile t = (tw, te, ts, tn) ∈ T , we let λw(t) = tw, λe(t) = te, λs(t) = ts
and λn(t) = tn. These labels can be thought of as labels in west, east, south and north
direction. An m-tiling of T is a mapping τ : {1, . . . ,m} × {1, . . . , n} → T such that the
following properties hold:
1. τ(1, 1)τ(1, 2) · · · τ(1, n) = f ,
2. λe(τ(i, j)) = λw(τ(i, j + 1)) for 1 6 i 6 m and 1 6 j 6 n− 1,
3. λs(τ(i, j)) = λn(τ(i+ 1, j)) for 1 6 i 6 m− 1 and 1 6 j 6 n,
4. τ(m, 1)τ(m, 2) · · · τ(m,n) = b.

The corridor tiling problem asks for a given tiling system T whether there exists some
m ∈ N such that there is a m-tiling of T . The square tiling problem asks for a given tiling
system T of width n, whether there exists an n-tiling of T . It is well-known that the corridor
tiling problem is PSPACE-complete and that the square tiling problem is NP-complete [10].
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Straight-Line Programs. A straight-line program (SLP) is a grammar S = (V,A, P,Xs)
where V is a finite set of variables, A is a finite alphabet, P : V → (V ∪ A)∗ is a mapping
and Xs ∈ V is the so-called start variable. For a variable X ∈ V , the word P (X) is the
right-hand side of X. We require that there exists a linear order < on V such that Y < X

whenever P (X) ∈ (V ∪A)∗Y (V ∪A)∗. Starting with some word α ∈ (V ∪A)∗ and repeatedly
replacing variables X ∈ V by P (X) yields a word from A∗, the so called evaluation of α,
denoted by val(α). The word produced by S is val(S) = val(Xs). If the reference to A and V
is clear from the context, we will often use the notation h(α) instead of h(val(α)) for the
image of the evaluation of a word α ∈ (A∪ V )∗ under a morphism h : A∗ →M . Analogously,
we write h(S) instead of h(val(S)). The size of S is |S| =

∑
X∈V |P (X)|. Each variable X

of an SLP S can be viewed as an SLP itself by making X the start variable of S.
The following simple lemma illustrates how SLPs can be used for compression.

I Lemma 3. Let S = (V,A, P,Xs) be an SLP and let e ∈ N. Let w be the word produced
by S. Then there exists an SLP S′ of size |S′| 6 |S|+ 4 log(e) such that S′ produces we.

Proof. We obtain S′ by iteratively adding new variables to V as follows, starting with i = e

and repeating the process until i = 0.
If i > 0 is odd, add a new variable Xi and let P (Xi) = Xi−1Xs. Let i := i− 1.
If i > 0 is even, add a new variable Xi and let P (Xi) = Xi/2Xi/2. Let i := i/2.

Finally, add the variable X0 and let P (X0) = ε. The new start variable is Xe and by
construction, we have val(Xe) = we. J

3 Connections to Other Problems

Before investigating the complexity of MonIsect(V) itself, we establish connections to other
well-known problems defined in the introduction, starting with the DFA intersection problem.

I Proposition 4. Let V be a variety of finite monoids, let M ∈ V, let h : A∗ → M be a
morphism and let P ⊆M . Then there exists a finite deterministic automaton A with |M |
states such that L(A) = h−1(P ) and such that the transition monoid of A belongs to V.
When the monoid, the morphism and the accepting set are given as inputs, this automaton is
log-space computable.

Proof. It suffices to perform the standard conversion of monoids to finite automata. The set
of states of A is M , the initial state is the identity element 1, the transitions are defined by
δ(m, a) = mh(a) for all m ∈M and a ∈ A and the accepting states are P . A straightforward
verification shows that the transition monoid of A is isomorphic to M . Since computing
images h(a) and performing multiplications are just table lookups, each output bit can be
computed in logarithmic time on a random-access machine model. J

I Corollary 5. For each variety of finite monoids V, the problem MonIsect(V) is log-space
reducible to DfaIsect(V).

For a direct link to Memb(V), we consider the variant MonIsect1(V) of the finite
monoid intersection problem. In this variant, each of the accepting sets is a singleton.

I Proposition 6. Let V be a variety of finite monoids and let M1, . . . ,Mk ∈ V be pairwise
disjoint finite monoids. For each i ∈ {1, . . . , k}, let hi : A∗ → Mi be a morphism and let
pi ∈Mi. Then there exists a transformation monoid T ∈ V on the set M = M1 ∪ · · · ∪Mk, a
morphism h : A∗ → T and a transformation p ∈ T such that h−1(p) = h−1

1 (p1)∩· · ·∩h−1
k (pk).
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30:6 The Intersection Problem for Finite Monoids

Proof. For each a ∈ A, we define a transformation fa : M → M by fa(m) = mhi(a) for
m ∈Mi. The closure of {fa | a ∈ A} under composition is the transformation monoid T and
the morphism h : A∗ → T is given by h(a) = fa. We let p : M →M be the transformation
defined by p(m) = mpi for m ∈Mi.

We need to verify that h−1(p) = h−1
1 (p1) ∩ · · · ∩ h−1

k (pk). For the inclusion from right to
left, let w ∈ A∗ be a word such that hi(w) = pi for each i ∈ {1, . . . , k}. Then, by definition,
h(w) is the transformation which maps an element m ∈Mi to mhi(w) = mpi, i.e., h(w) = p.
The converse inclusion is trivial.

It is easy to check that T is a divisor of the direct product M1 × · · · ×Mk and thus,
by closure of V under direct products and under division, T belongs to V as well. Since
computing images hi(a) and performing multiplications are just table lookups, each output
bit can be computed in logarithmic time on a random-access machine model. J

I Corollary 7. For each variety of finite monoids V, the problem MonIsect1(V) is log-space
reducible to Memb(V).

4 Hardness Results

The following lower bound can be viewed as a variant of classical NP-hardness results and
is based on the well-known fact that each non-trivial variety contains either the monoid
U1 = {0, 1} with integer multiplication or a finite cyclic group (however, the proof itself does
not require this case distinction).
I Theorem 8. Let V be a non-trivial variety of finite monoids. Then, the decision problem
MonIsect(V) is NP-hard.
Proof. We give a polynomial-time reduction of the square tiling problem to MonIsect(V).

Let T = (Λ, T, n, f, b) be a tiling system. Let M ∈ V be a non-trivial finite monoid and
let x ∈ M \ {1}. The alphabet A is the set T × {1, . . . , n} × {1, . . . , n}. Let f = t1 · · · tn.
For each integer j ∈ {1, . . . , n} and each direction d ∈ {w, e, s, n}, we define a morphism
fj,d : A→M by mapping (t, 1, j) to x if λd(t) = λd(tj) and mapping the remaining letters
to 1. Analogously, with b = u1 · · ·un, we let bj,d : A→M be the morphism mapping (t, n, j)
to x if λd(t) = λd(uj) and mapping other letters to 1. For each integer i ∈ {1, . . . , n}, each
j ∈ {1, . . . , n− 1} and each label µ ∈ Λ, we define a morphism hi,j,µ : A→M ×M by

hi,j,µ(t, k, `) =


(x, 1) if k = i, ` = j and λe(t) = µ

(1, x) if k = i, ` = j + 1 and λw(t) = µ

(1, 1) otherwise

and, analogously, we define morphisms vi,j,µ : A → M ×M with i ∈ {1, . . . , n− 1} and
j ∈ {1, . . . , n} and µ ∈ Λ as follows:

vi,j,µ(t, k, `) =


(x, 1) if k = i, ` = j and λs(t) = µ

(1, x) if k = i+ 1, ` = j and λn(t) = µ

(1, 1) otherwise

Finally, we define morphisms gi,j,d,µ,µ′ : A→M ×M with i, j ∈ {1, . . . , n}, d ∈ {w, e, s, n}
as well as µ, µ′ ∈ Λ and µ 6= µ′ as follows:

gi,j,d,µ,µ′(t, k, `) =


(x, 1) if k = i, ` = j and λd(t) = µ

(1, x) if k = i, ` = j and λd(t) = µ′

(1, 1) otherwise
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For each of the morphisms bj,d and fj,d, the accepting set is {x}. For each hi,j,µ and vi,j,µ, the
accepting set is {(1, 1), (x, x)}. The accepting set for each gi,j,d,µ,µ′ is {(1, 1), (1, x), (x, 1)}.

J

The next objective is to obtain a stronger result in the case that V contains some finite
monoid which is not in DS. Our proof is based on the well-known fact that direct products
of B1

2 can be used to encode computations of a Turing machine or runs of an automaton, an
idea which already appears in the proof of [7, Theorem 4.9]. To this end, we first describe
classes of languages recognizable by such direct products.

I Lemma 9. Let V be a variety of finite monoids such that V 6⊆ DS. Let A be a finite
alphabet and let B,C,D,E, F be (possibly empty) pairwise disjoint subsets of A. Then, each
of the languages E∗B(D ∪ E)∗, (D ∪ E)∗CE∗ and (E∗B(E ∪ F )∗CE∗ ∪ E∗DE∗)+ is the
preimage of an element of a monoid M ∈ V of size 6 under a morphism h : A∗ →M .

Proof. Let N be a monoid from V \DS. By Proposition 2, the monoid B1
2 is a divisor of

the direct product N ×N and since V is closed under direct products and divisors, we have
B1

2 ∈ V. We let M = B1
2 .

For E∗B(D ∪ E)∗, consider the morphism h : A∗ → M defined by h(e) = 1 for e ∈ E,
h(b) = b for b ∈ B, h(d) = ab for all d ∈ D. All other letters are mapped to the zero
element. By construction, we have h−1(b) = E∗B(D ∪ E)∗. For (D ∪ E)∗CE∗, one can use
a symmetrical construction.

For (E∗B(E ∪ F )∗CE∗ ∪ E∗DE∗)+, we define h : A∗ → M by h(b) = a for all b ∈ B,
h(c) = b for c ∈ C, h(d) = ab for d ∈ D, h(f) = ba for f ∈ F and h(e) = 1 for e ∈ E. Again,
the remaining letters are mapped to 0. The preimage of ab is the desired language. J

I Lemma 10. Let V be a variety of finite monoids such that V 6⊆ DS. Let A be a finite
alphabet, let n ∈ N and let A1, . . . , An be pairwise disjoint subsets of A. Then the language
(A1 · · ·An)+ can be written as an intersection of n languages, each of which is the preimage
of an element of a monoid M ∈ V of size 6 under a morphism h : A∗ →M .

Proof. Let B = A1∪· · ·∪An. For 1 6 i 6 n−1, we define the alphabet Di = B \ (Ai∪Ai+1)
and the language Li = (AiAi+1∪Di)+. We also let Ln = (A1D

∗
nAn)+ withDn = B\(A1∪An).

By construction, we have L1∩· · ·∩Ln = (A1 · · ·An)+ and by Lemma 9, each of the languages
Li is recognized by a monoid of size 6. J

We are now able to state the second main theorem of this section.

I Theorem 11. Let V be a variety of finite monoids such that V 6⊆ DS. Then, the decision
problem MonIsect1(V) is PSPACE-complete.

Proof. Let T = (Λ, T, n, f, b) be a tiling system. The objective is to construct a language L
which is non-empty if and only if there exists a valid m-tiling of T for some m ∈ N.

We may assume without loss of generality that λw(t) 6= λe(t) and λs(t) 6= λn(t) for all
tiles t ∈ T . If, for example, λw(t) = µ = λe(t) for a tile t ∈ T , we create a copy µ′ of the
label µ and replace every tile with λw(t) = µ by two copies. In one of the copies, we replace
the west label with µ′. We repeat this for all other directions and finally remove all tiles
with λw(t) = λe(t) ∈ {µ, µ′}.

We define an alphabet A = T × {0, 1, 2} × {1, . . . , n}. Intuitively, the letters of A
correspond to positions in a tiling. The first component describes the tile itself, the second
component specifies whether the tile is in the first row, some intermediate row or in the
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30:8 The Intersection Problem for Finite Monoids

bottom row and the third component specifies the column. For each j ∈ {1, . . . , n} and
µ ∈ Λ, let Cj = T × {0, 1, 2} × {j} and Dj = A \ Cj and

Wµ = {(t, i, j) ∈ A | λw(t) = µ, j > 1} , Nj,µ = {(t, i, j) ∈ A | λn(t) = µ, i > 0} ,
Eµ = {(t, i, j) ∈ A | λe(t) = µ, j < n} , Sj,µ = {(t, i, j) ∈ A | λs(t) = µ, i < 2} ,
Xµ = A \ (Wµ ∪ Eµ), Yj,µ = Cj \ (Nj,µ ∪ Sj,µ).

Note that by our initial assumption, Wµ ∩ Eµ = ∅ and Nj,µ ∩ Sj,µ = ∅ for each µ ∈ Λ and
for 1 6 j 6 n. Let Fj = {(tj , 0, j)} and Bj = {(uj , 2, j)} where tj and uj are the tiles
uniquely determined by f = t1 · · · tn and b = u1 · · ·un. Let F j = {(t, i, j) ∈ A | i > 0} and
Bj = {(t, i, j) ∈ A | i < 2}. We define

K =

 ⋂
16j6n

D∗jFj(F j ∪Dj)∗
 ∩

 ⋂
16j6n

(Bj ∪Dj)∗BjD∗j

 ∩
⋂
µ∈Λ

(EµWµ ∪Xµ)+



∩

 ⋂
µ∈Λ,

16j6n

(D∗jSj,µD∗jNj,µD∗j ∪D∗jYj,µD∗j )+

 .

and L = (C1 · · ·Cn)+ ∩K. By Lemma 9 and Lemma 10, the language L can be represented
by a MonIsect(V) instance with polynomially many morphisms to monoids of size 6 from
V and with singleton accepting sets. J

5 A Small Model Property for DO

The objective of this section is to prove the following result which states that, within a
non-empty intersection of languages recognized by monoids from DO, there always exists a
word with a small SLP representation.

I Theorem 12. For each i ∈ {1, . . . , k}, let Mi ∈ DO and let hi : A∗ →Mi be a morphism.
Let w ∈ A∗. Then there exists an SLP S of size at most p(N) with hi(S) = hi(w) for all
i ∈ {1, . . . , k} where p : R→ R is some polynomial and N = |M1|+ · · ·+ |Mk|.

Before diving into the proof of this result, we note that the theorem immediately yields
the following corollary:

I Corollary 13. MonIsect(DO) is NP-complete.

Proof. In view of Theorem 8, it suffices to describe an NP-algorithm. The algorithm first
non-deterministically guesses an SLP of polynomial size producing a word in the intersection
of the given languages. It remains to check that the word represented in the SLP is indeed
contained in each of the languages. To this end, we compute the image of the word represented
by the SLP under each of the morphisms. Each such computation can be performed in time
linear in the size of the SLP by computing the image of a variable X as soon as the images
of all variables appearing on the right-hand side of X are computed already, starting with
minimal variables. J

5.1 The Group Case
We first take care of a special case, namely that each of the monoids is a group. In this
case, one can use a variant of the Schreier-Sims algorithm [3, 13] to obtain a compressed
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representative. To keep the paper self-contained, we give the full algorithm alongside with a
correctness proof.

Our setting is as follows: the input are groups G1, . . . , Gk which are, without loss of
generality, assumed to be pairwise disjoint, and morphisms hi : A∗ → Gi with i ∈ {1, . . . , k}.
We let G = G1 ∪ · · · ∪Gk and N = |G|. Note that G is considered as a set; it does not form
a group unless k = 1. However, for each g ∈ G, we interpret powers gi in the corresponding
group Gi with g ∈ Gi. We let ω = N ! so that, for each g ∈ G, the element gω is the identity.1

Algorithm 1 The sift procedure.
procedure sift(α)

R0 ← ε

for i ∈ {1, . . . , k} do
Si ← Rω−1

i−1 α

if T [hi(Si)] = ε then T [hi(Si)]← Si end if
Ri ← Ri−1T [hi(Si)]

end for
return Rk

end procedure

The algorithm maintains a table T : G→ (A ∪ V )∗ as an internal data structure, where
the set of variables V is extended as needed and the table entries T [g] can be considered
variables themselves. The sift procedure expects a parameter α ∈ (V ∪ A)∗ and tries to
find a short representation of val(α), using only entries from the table unless it comes across
an empty table entry, in which case it uses α to fill the missing table entry itself. When
a table entry is assigned a word with a factor of the form Xω−1, this factor is stored in a
compressed form by using the technique from Lemma 3 and adding new variables as needed.
Thus, a factor Xω−1 only requires 4 log(ω − 1) 6 4 log(N !) 6 4N log(N) additional space.

Algorithm 2 Initialization of the compression algorithm for groups.
procedure init

for all g ∈ G do T [g]← ε end for
c← 0
repeat

cp ← c

for all g1 ∈ G1, . . . gk ∈ Gk, a ∈ A do
sift(T [g1] · · ·T [gk]a)

end for
c← |{g ∈ G | T [g] 6= ε}|

until c = cp
end procedure

Before the sift procedure is used for compression, the table needs to be initialized. To
this end, the init routine fills the table with short representatives such that future sift
invocations never run into empty table entries again. Let us first prove several invariants of
the sift procedure.

1 One could also choose ω = lcm {|G1| , . . . , |Gk|} but for the analysis, it does not matter, since N ! is
sufficiently small.
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I Lemma 14. For each i ∈ {1, . . . , k} and g ∈ Gi, we have T [g] = ε or hi(T [g]) = g.

Proof. Suppose that T [g] 6= ε. Then, in some round of the sift procedure, we have
hi(Si) = g and T [hi(Si)] is assigned the SLP Si (and never modified again). Therefore,
hi(T [g]) = hi(T [hi(Si)]) = hi(Si) = g. J

I Lemma 15. After round i of the sift procedure, we have hi(Ri) = hi(α).

Proof. By the definition of Ri, we have hi(Ri) = hi(Ri−1T [hi(Si)]) which is the same as
hi(Ri−1Si) by Lemma 14. Plugging in the definition of Si yields hi(Ri−1R

ω−1
i−1 α) = hi(α)

where the latter equality holds since Gi is a group. J

I Lemma 16. For 1 6 i < j 6 k and for all g ∈ Gj, we have hi(T [g]) = 1.

Proof. Consider the invocation of the sift procedure where T [g] is defined. In round j of
this invocation, the entry T [g] is assigned some SLP Sj with hj(Sj) = g.

Therefore, hi(T [g]) = hi(Sj) = hi(Rω−1
j−1 α). Expanding Rj−1 yields

hi(Rj−1) = hi
((j−1∏

r=1
T [hr(Sr)]

))
= hi

(( i∏
r=1

T [hr(Sr)]
))

= hi(Ri)

where the second equality follows by induction. Therefore, hi(T [g]) = hi(Rω−1
i α) which is

the same as hi(αω−1α) = 1 by Lemma 15. J

I Lemma 17. After round j, we have hi(Rk) = hi(α) for all i ∈ {1, . . . , j}.

Proof. Using the expansion of Rk and Lemma 16, we obtain the sequence of equalities

hi(Rk) = hi
(( k∏

r=1
T [hr(Sr)]

))
= hi

(( i∏
r=1

T [hr(Sr)]
))

= hi(Ri).

The statement now follows immediately from Lemma 15. J

I Theorem 18. For each i ∈ {1, . . . , k}, let Gi be a finite group and let hi : A∗ → Gi be a
morphism. Let w ∈ A∗. Then there exists an SLP S of size at most p(N) with hi(S) = hi(w)
for all i ∈ {1, . . . , k} where p : R→ R is some polynomial and N = |G1|+ · · ·+ |Gk|.

Proof. We claim that the SLP S constructed when calling init, followed by sift with
parameter w satisfies the properties above. By Lemma 17, we have hi(S) = hi(w) for all
i ∈ {1, . . . , k}. Moreover, when the initialization routine returns, the table entries contain
SLP of polynomially bounded size. We now claim that any subsequent executions of the
sift procedure will not define any new table entries, no matter which SLP is passed as a
parameter. In particular, running sift(w) yields an SLP that only uses already existing
table entries.

To prove the claim, assume, for the sake of contradiction, that there exists some word v
such that some new table entry T [g] is defined during sift(v). We choose v such that it is a
word of minimal length satisfying this condition. This means that we can factorize v = v′a

with a ∈ A such that all table entries are defined when calling sift(v′). Let T [g1] · · ·T [gk]
be the return value of sift(v′). Then sift(T [g1] · · ·T [gk]a) is called during the initialization
process and because hi(T [g1] · · ·T [gk]a) = hi(v) for all 1 6 i 6 k, the sequence of Si during
the execution of sift(T [g1] · · ·T [gk]a) is the same as in sift(v) which means that all table
entries accessed during sift(v) are defined. J
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5.2 The General Case
For the general case, where each of the monoids is in DO but not necessarily a group, we use
combinatorial properties of languages recognized by monoids from DO to reduce the problem
to the group case. The following lemmas are an essential ingredient of this reduction.

I Lemma 19. Let h : A∗ → M be a morphism to a finite monoid M ∈ DS. Let u, v ∈ A∗
such that h(v) ∈ E(M) and alph(u) ⊆ alph(v). Then h(v) 6J h(u).

Proof. Let u = a1 · · · a` with ai ∈ A for 1 6 i 6 `. Since ai ∈ alph(v) for each i ∈ {1, . . . , `},
we have h(v) 6J h(ai). By Proposition 2, the set {x ∈M | h(v) 6J x} is a submonoid of
M which means that h(v) 6J h(a1) · · ·h(a`) = h(u), thereby proving the claim. J

I Lemma 20. Let M ∈ DO and let e, f, g ∈ E(M) with e J f 6J g. Then egf = ef .

Proof. First note that (fg)ω J (fgf)ω J (gf)ω. Since M ∈ DS, we have (fgf)ω = f

and since M ∈ DO, we have (fg)ω = (fg)ω(gf)ω(fg)ω = (fg)ω−1. Together, this yields,
fgf = (fgf)ωgf = (fg)ωfgf = (fg)ω−1fgf = (fg)ωf = (fgf)ω = f , thus gf ∈ E(M). By
Proposition 2, we obtain gf J e. Therefore, egf = eg(fef) = (egf e)f = ef . J

I Lemma 21. Let M ∈ DO, let e, f, g ∈ E(M) and let x, y ∈M such that e J f 6J g, x, y.
Then exgyf = exyf .

Proof. Since M ∈ DS, we have ex = (exe)ωx = ex(ex)ω and yf = y(fyf)ω = (yf)ωyf .
Note that (ex)ω J e J f J (yf)ω by Proposition 2 and thus, Lemma 20 yields (ex)ωg(yf)ω =
(ex)ω(yf)ω. Finally, combining all the equalities, we obtain the desired statement exgyf =
ex(ex)ωg(yf)ωyf = ex(ex)ω(yf)ωyf = exyf . J

For the remainder of this section, let M1, . . . , Mk ∈ DO be finite monoids and let
hi : A∗ →Mi be morphisms. We let N = |M1|+ · · ·+ |Mk|. The occurrence of a word u in
puq is called isolated if for each i ∈ {1, . . . , k}, there exist words vi, wi ∈ A∗ such that

alph(vi) = alph(wi) ⊇ alph(u), hi(pvi) = hi(p) and hi(wiq) = hi(q).

Let w = a1u1a2 · · ·u`−1a` be a factorization of w with aj ∈ A and uj ∈ A∗ for all
j ∈ {1, . . . , `}. Let pj = a1u1a2 · · ·uj−1aj and qj = aj+1uj+1 · · · a`−1u`−1a`. The factoriza-
tion w = a1u1a2 · · ·u`−1a` is called piecewise isolating if, for each j ∈ {1, . . . , `− 1}, the
occurrence of uj in w = pjujqj is isolated. The value ` is the length of this factorization.

I Lemma 22. Every word w ∈ A∗ admits a piecewise isolating factorization of length at
most N2.

Proof. Let w = b1 · · · bm where br ∈ A for 1 6 r 6 m. To each position r ∈ {1, . . . ,m},
we assign a set Cr = {(hi(b1 · · · bs), hi(bs+1 · · · bm)) | 1 6 i 6 k, 1 6 s 6 r}. Note that by
definition, we have Cr ⊆ Cr+1. Let r1, . . . , r` ∈ N such that r1 = 1, r` = m and Crj−1 =
Crj−1 ( Crj

for all j ∈ {2, . . . , `}. Let aj = brj
and let uj = brj+1 · · · brj+1−1 for all

j ∈ {1, . . . , `}.
Now, for j ∈ {1, . . . , `} and i ∈ {1, . . . , k}, let t(j, i) be the smallest index g such that

(hi(a1u1 · · · ajuj), hi(aj+1uj+1 · · · a`−1u`−1a`)) ∈ Crg , i.e., the prefix of length rt(j,i) of w is
the shortest prefix p such that w = pq for some q ∈ A∗ and the image of p under hi is
hi(a1u1 · · · ajuj) and the image of q is hi(aj+1uj+1 · · · a`−1u`−1a`). Note that t(j, i) 6 j and,
by choice of t(j, i), we have

hi(a1u1 · · · ajuj) = hi(a1u1a2 · · ·ut(j,i)−1at(j,i)) and (1)
hi(aj+1uj+1 · · · a`−1u`−1a`) = hi(ut(j,i)at(j,i)+1 · · ·u`−1a`). (2)

STACS 2018



30:12 The Intersection Problem for Finite Monoids

Let wji = ut(j,i)at(j,i)+1 · · ·uj−1ajuj and let vji = ujut(j,i)at(j,i)+1 · · ·uj−1aj . In the special
case t(j, i) = j, we obtain wji = vji = uj .

For pj = a1u1a2 · · ·uj−1aj and qj = aj+1uj+1 · · · a`−1u`−1a`, equation (1) implies

hi(pjvji) = hi(a1u1 · · · ajuj) · hi(ut(j,i)at(j,i)+1 · · ·uj−1aj)
= hi(a1u1a2 · · ·ut(j,i)−1at(j,i)) · hi(ut(j,i)at(j,i)+1 · · ·uj−1aj) = hi(pj)

and, similarly, equation (2) yields hi(wjiqj) = hi(qj). Since uj is a suffix of wji and since vji
can be obtained by rotating wji cyclically, we have alph(vji) = alph(wji) ⊇ alph(uj). The
bound on ` follows from the fact that Cr1 ( · · · ( Cr`

⊆
⋃k
i=1Mi ×Mi. J

The lemma above suggests that it is sufficient to construct SLPs for isolated occurrences.
Thus, let now u ∈ A∗ be an isolated occurrence of w = puq, and let B = alph(u). For each
i ∈ {1, . . . , k}, we define an equivalence relation ≡i on the submonoid Ti = hi(B∗) of Mi by
m ≡i n if and only if hi(p)xmyhi(q) = hi(p)xnyhi(q) for all x, y ∈ Ti. It is easy to check
that this relation is a congruence. Moreover, for all u, v ∈ B∗ with hi(u) ≡i hi(v), we have
hi(puq) = hi(pvq). Another fundamental property of ≡i is captured in the following lemma.

I Lemma 23. For each i ∈ {1, . . . , k}, the quotient Ti/≡i is a group.

Proof. Let ω = N ! and let m ∈ Ti be an arbitrary element. It suffices to show that mω ≡i 1,
i.e., for all x, y ∈ Ti, we have hi(p)xmωyhi(q) = hi(p)xyhi(q).

Let vi, wi ∈ A∗ as in the definition of isolated occurrences and let e = h(vωi ) and
f = h(wωi ). Note that hi(pvi) = hi(p) implies hi(p)e = hi(p). Analogously, we have
fhi(q) = hi(q). Since B is contained in alph(vi) = alph(wi) and since m,x, y ∈ Ti = hi(B∗),
we have e J f 6J mω, x, y by Lemma 19. Therefore,

hi(p)xmωyhj(q) = hi(p)exmωyfhi(q) = hi(p)exyfhi(q) = hi(p)xyhi(q)

where the second equality uses Lemma 21. J

We now return to the proof of the main theorem of this section.

Proof of Theorem 12. By considering a piecewise isolating factorization of w, it suffices to
show that if u is an isolated occurrence in w = puq, then there exists an SLP S of polynomial
size with hi(pSq) = hi(puq) for all i ∈ {1, . . . , k}. Combining the letters ai and the SLPs for
the isolated occurrences in the piecewise isolating factorization, we obtain the SLP for w.

Let again B = alph(u). To obtain a polynomial-size SLP S with hi(pSq) = hi(puq) for
all i ∈ {1, . . . , k}, we consider the morphisms ψi : B∗ → Ti/≡i defined by ψi(v) = [hi(v)]≡i

,
i.e., each word v is mapped to the equivalence class of hi(v) with respect to ≡i. Note that
|Ti/≡i| 6 |Ti| 6 |Mi| for 1 6 i 6 k and by Lemma 23, each of the monoids Ti/≡i is a
group. By Theorem 18, there exists a polynomial-size SLP S with ψi(S) = ψi(u) for all
i ∈ {1, . . . , k} and, by the definition of ≡i, we obtain hi(pSq) = hi(puq), as desired. J

6 Summary and Outlook

We investigated the complexity of the intersection problem for finite monoids, showing
that the problem is NP-complete for varieties contained in DO and PSPACE-complete for
varieties not contained within DS. To obtain a dichotomy result, one needs to investigate
the complexity of the problem when monoids from DS \DO are part of the input. Using
techniques similar to those in Section 5, we were able to show that for a subset of this class,
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the problem remains NP-complete and thus, we conjecture that the problem is NP-complete
whenever V ⊆ DS. The fact that DS \DO have not been studied and understood well
enough from a language-theoretic perspective makes the problem of classifying the complexity
of these monoids challenging but, at the same time, an interesting object for further research.
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