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—— Abstract

Partially lossy queue monoids (or plg monoids) model the behavior of queues that can forget
arbitrary parts of their content. While many decision problems on recognizable subsets in the
plq monoid are decidable, most of them are undecidable if the sets are rational. In particular,

in this monoid the classes of rational and recognizable subsets do not coincide. By restricting
multiplication and iteration in the construction of rational sets and by allowing complementation
we obtain precisely the class of recognizable sets. From these special rational expressions we can
obtain an MSO logic describing the recognizable subsets. Moreover, we provide similar results
for the class of aperiodic subsets in the plq monoid.
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1 Introduction

The study of different models of automata along with their expressiveness and algorithmic
properties is one of the most important areas in automata theory. Many of these models
differ in the mechanism to store their data, e.g., there are finite memories, pushdowns, (blind)
counters, and infinite Turing tapes. Another very important mechanism is the so-called fifo
queue (or channel), where data can be written to one end and read from the other end of
its contents. If we equip these queues with a finite state automaton we obtain a Turing
complete computation model [3], which results in the undecidability of all non-trivial decision
problems on these devices. A surprising result was the decidability of some decision problems
like reachability, fair termination or control-state-maintainability if the fifo queue is allowed
to forget any part of its content at any time [8, 5, 1, 17].

To obtain some algebraic results on the behavior of these storage mechanisms we can
model them as monoid of transformations. So, a single blind counter induces (Z,+) and a
pushdown induces a polycyclic monoid [12]. Some important results on the transformation
monoid of reliable queues can be found in [11]. Furthermore, in [14] we considered the
transformation monoid of lossy queues. When studying the similarities and differences
between those two monoids in [15] we found it convenient to join both, the reliable and lossy
queues, respectively, into one model, the so-called partially lossy queues (or plgs). Those
are given by their underlying alphabet A as well as a subset U C A of letters that are
unforgettable while the letters contained in A\ U can be forgotten at any time. We denote
the corresponding transformation monoid by Q(A,U) and call it the partially lossy queue
monoid or plg monoid. Hence, with the help of plgs we can argue about reliable and lossy
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queues at the same time, which results in the unification of some proofs considering these
two models.

Another main topic in the theory of automata and formal languages is the study of
regular languages. This revealed strong relations to logic, combinatorics, and algebra. For
example, we can generalize the notion of regularity from free monoids to arbitrary monoids.
This generalization results in two notions: the rational subsets, which are a generalization of
languages that are described by regular expressions, and recognizable subsets, which are a
generalization of sets accepted by finite automata (see, e.g., [2, 22]). Kleene’s Theorem [13]
states that both notions are equivalent in the free monoid.

In Section 3 we consider some algorithmic properties of rational subsets of the plq monoid.
Such properties encountered increased attention in recent years, e.g., [16] provides a survey
on the membership problem for rational sets. Since the rational sets in the polycyclic monoid
(recall that this is the transformation monoid of a pushdown) are exactly the homomorphic
images of a special subclass of the regular languages by [24], many decision problems like
membership, intersection, universality, inclusion, and recognizability are decidable in this
monoid. In this paper we will see that the membership problem of the plq monoid is
NL-complete, but the other problems are undecidable, which we can prove by reduction from
their counterparts in the direct product of (N, +) and {a,b}* (cf. [20, 9]).

If the given subsets are recognizable, all of the considered decision problems in plq monoids
are decidable by known constructions from automata theory. Hence, the rational subsets
are not effectively recognizable. Especially, we will see that the class of rational subsets in
the plq monoid is not closed under intersection implying that the classes of rational and
recognizable subsets do not coincide. In contrast, in polycyclic monoids the class of rational
sets is closed under Boolean operations. However, the classes of rational and recognizable
subsets do not coincide in these monoids since there are only two recognizable sets (the
empty set and the monoid itself). But since there are even more recognizable sets in the plg
monoid and since each recognizable subset is rational as well due to McKnight’s Theorem
[18], it is a natural question to ask in which cases a rational subset is recognizable.

For trace monoids, Ochmaniski could prove in [21] that it suffices to restrict the usage
of the Kleene star in an appropriate way to characterize the recognizable subsets in the
trace monoid. In Section 4 of this paper we will use an approach similar to Ochmanski’s
to characterize the recognizable sets in terms of special rational sets in the plq monoid.
Concretely, we will define some special restrictions on the usage of Kleene star and the
concatenation to reach this target.

Another famous characterization of the regular languages is the definability in the monadic
second-order logic MSO which was proven by Biichi in [4]. This result gave us an even
brighter understanding than rational expressions of the formalization of the behavior of finite
automata. Similar results about trace monoids can be found in [7, Chapter 10]. Hence, this
motivates to find another MSO logic describing exactly the recognizable subsets in the plq
monoid. In this paper we will give such a description.

The last result in this paper regards the connection between the aperiodic subsets, star-free
subsets, and first-order logic. Recall that a set is aperiodic if it is accepted by a counter-free
finite automaton and a set is star-free if it can be generated from finite sets by application
of Boolean operations and concatenation, only. Schiitzenberger’s Theorem [25] states that
both classes coincide in the free monoid. This result gives a procedure to decide whether
a given regular language is star-free. Additionally, in [10] it was proven that these classes
also coincide in trace monoids. In contrast to these two cases this equality does not hold
in the plg monoid. But we can characterize the aperiodic subsets in Q(A,U) with the help
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of the same restrictions to star-freeness of subsets as in our result regarding the rational
subsets. Finally, we prove similar to the results from [19, 7] that the aperiodic subsets in the
plg monoid can be described by first-order formulas.

2 Preliminaries

At first, we need some basic definitions. So, let A be an alphabet. A word v € A* is a
prefix of w € A* iff w € vA*. Similarly, v is a suffix of w iff w € A*v and v is an infix of
w iff w € A*vA*. Furthermore, v is a subword of w (denoted by v < w) iff there are £ € N
and aq,...,ap € Asuch that v =ay...ay and w € A*a1A%as ... A*ayA*. Note that < is a
partial ordering on A*.

Let S C A. Then the projection wg: A* — S* to S is the homomorphism induced by
ms(a) = a for each a € S and wg(a) = € for each a € A\ S. Moreover, v is an S-prefiz of
w (denoted v <g w) if there is a prefix w’ of w such that 7g(w’) < v < w’. In other words,
we have v <g w if v is a subword of a prefix of w and contains all the letters from S in this
prefix, e.g., we have aa <y, abaab and aa £y abaab. Note that v <y w means that v is a
subword of w and v <4 w means that v is a prefix of w.

2.1 Partially Lossy Queues

The partially lossy queue monoid (or plq monoid) models the behavior of a fifo-queue whose
entries come from a finite set A. The unreliability of the queue stems from the fact that it
can forget certain letters that we collect in the set A\ U. In other words, letters from U C A
are non-forgettable and those from A\ U are forgettable.

So, let A be an alphabet of possible queue entries and let U C A be the set of non-
forgettable letters. The states of the queue are the words from A*. Furthermore, we have
some basic controllable actions on these queues: writing of a symbol a € A (denoted by a)
and reading of a € A (denoted by @). Thereby, we assume that the set A of all these reading
operations @ is a disjoint copy of A. So, X := AU A is the set of all controllable operations on
the partially lossy queue. For a word u = ay ...a, € A* we write u for the word a1 as ... a,.

Formally, the action a € A appends the letter a to the state of the queue. The action
@ € A tries to cancel the letter a from the beginning of the current state of the queue. If this
state does not start with a then the queue ends up in an error state. The lossiness of the
queue is modeled by allowing it to forget arbitrary letters from A\ U of its content at any
moment.

Since a partially lossy queue with an underlying alphabet A = {a} (independently of U)
acts like a partially blind counter, the corresponding plq monoid is the bicyclic semigroup. On
the first sight, the equality of these two transformation monoids seems to be counterintuitive.
But it might be explained by the following observation: let A be an NFA equipped with
one reliable counter. Then A accepts the same language as this NFA equipped with a lossy
counter. Hence, from now on, we may exclude this case and assume |A| > 2.

Before defining the plq monoid we want to identify sequences of operations that have
the same effect on any queue. In [15, Proposition 3.21] we proved that u,v € X* act equally
(denoted by u = v) if, and only if, they can be transformed into each other by applying the
equations from the following definition, only.
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» Definition 2.1. Let U C A be two finite sets. We define the binary relation = C (X*)?
as the least congruence on X* satisfying the following equations for a,b € A, ¢ € U, and
we A"

(a) ba=abifa#b

(b) aab = aab

(c) cwaa = cwaa

(d) awaa = awaa

Then the partially lossy queue monoid or plg monoid induced by (A, U) is the quotient
Q(A,U) := X*/=. The natural epimorphism of = is n: X* — Q(A4,U): w — [w].

To handle the equivalence classes of = we want to define a normal form on this congruence.
We do this by ordering the equations from Definition 2.1 from left to right, which results in
an infinite semi-Thue system called R.

Since the rules of R are length-preserving and move read actions to the left, it is
terminating. Moreover, it is locally confluent by [15] and hence confluent. Therefore, for any
word u € X* there is a unique, irreducible word nf (u) with u —* nf (u), the so-called normal
form of u.

» Example 2.2. Let a,b € A with a # b and ¢ = aabbab. If a ¢ U then we have
aabbab — aababb — aaabbb — aaabbb — aaabbb

and therefore a@abbb = nf (aabbab). Otherwise, i.e., if a € U, we can apply Rule ¢ to aaabbb
and hence obtain nf(aabbab) = abaabb.

From the definition of R we obtain that a word is in normal form if it starts with
some read operations followed by a special shuffle of write and read operations where each
read action @ appears directly right from a. Thereby, the infixes aa in these words are
divided by words from (A \ (U U {a}))*, only. Formally, such shuffle of u € A* and v € A
is defined by (u,7) = wia1G7wW2a203 . . . WearGrwey1, Where v = ay...ag, a1,...,a0 € A,
U= aqw; ... weapwei1, and w; € (A\ (U U {a;}))* for each 1 < ¢ < ¢. Then the set of all
normal forms is

NF = {@(v, @) | u,v,w € A*, 0 <y w} = A" (U (A\ (U U {a}))*a6>* A*

acA

From this equation we can infer that nf(u) = wy(us,uz) is characterized by three
components: The first component is the projection to the write actions 7(u) := ug = wa(u)
(note that the transitions of R preserve the relative ordering of the write operations). Similarly,
the second is the projection to the read actions T(u) := ujuz (note that we suppress the
overlines in this projection). Finally, the third component is the overlap 72(u) := ug of
u. Note that the characterization of NF from above implies that To(u) <y 7(u) holds.
Additionally, we can define 71 (u) := ug.

» Example 2.3. Recall Example 2.2. There, in case of a ¢ U we have for u = aabbab:
7(u) = aabb, T(u) = ab, T1(u) = ¢, and Ta(u) = ab. Otherwise, if a € U we have T1(u) = ab
and Ta(u) = e.

While 71 (u) is defined using the semi-Thue system R, it also has a natural meaning;:
71(u) is the shortest queue such that there is a run of the plq on execution of u that does
not end up in the error state.

By [15, Proposition 3.21] the following holds about R and nf (u):
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» Proposition 2.4. Let u,v € X*. Then we have
u=v <= nf(u) =nf(v) <= (7(v),7T(v),T2(u)) = (7(v),T(v),T2(v)). <

With this main property in mind we can also apply «, 7, 71, and 75 to equivalence classes
of = (i.e., elements from Q(A,U)) instead of words from X*.

Another question is the description of the normal form of v for any u,v € A*. We have
m(uv) = v and T(uv) = v. It remains to describe the overlap 7o (uv).

» Lemma 2.5. Let u,v € A*. Then To(uD) is the longest suffix v/ of v that satisfies
v <y u. <

Since = is a congruence we can infer u = 7 (u) 7(u) T2 (u) for each u € X* from Lemma 2.5.

2.2 Rationality, Recognizability, and Aperiodicity

Let M be a monoid. A subset L C M is called rational if it can be constructed from
the finite subsets of M using union, concatenation, and Kleene iteration. The subset L
is recognizable if there are a finite monoid F and a homomorphism ¢: M — F such that
L =¢"1(¢(L)), ie., if L is accepted by an M-automaton. It is well-known that the image of
a rational set under a homomorphism is rational again and that the homomorphic preimage
of a recognizable set also is recognizable. Furthermore, the class of recognizable subsets
of M is closed under Boolean operations. Moreover, in a finitely generated monoid each
recognizable set is rational by [18]. For example, this applies to Q(A, U) since this monoid
is finitely generated. The converse direction is not true in general, e.g., in Theorem 3.4 we
prove the existence of a rational subset of the plq monoid which is not recognizable. However,
in free monoids generated by some alphabet I" a subset L C I'* is rational if, and only if, it
is recognizable by Kleene’s Theorem [13]. In this situation, we call L regular.

A recognizable set L C M is called aperiodic if there is n € N such that for each
u,v,w € M we have wo"w € L iff uv"™tw € L. Tt follows from [19] L is aperiodic if it
is accepted by a counter-free M-automaton. It is an easy exercise to prove that the class
of aperiodic subsets is closed under Boolean operations and homomorphic preimages. By
Schiitzenberger’s Theorem [25] a language L C I'* is aperiodic iff it is star-free. Recall
that a set L C M is star-free if it can be constructed from finite subsets of M using union,
concatenation, and complementation.

2.3 Logic and Languages

In this subsection we recall the logics on words and their correspondence to languages known
from [26].
Let I' be an alphabet. By FO we denote the set of first-order formulas built up from the

atomic formulas of the form x =y, < y, and Q,(z) for a € I where x and y are variables.

To simplify notation we write Qs(z) instead of \/, g Qa(x) for any S C I'.

Now let w = ay...a, € I'*. The word model for w is the relational structure w =
(dom(w), <, (QY)aer) where dom(w) = {1,...,n} is the set of letter positions of w, <*
is the natural order on dom(w), and Q¥ = {i € dom(w)|a; = a} is the set of positions
of letters labeled with a. Then we write w = ¢[p1,...,pn] for p1,...,p, € dom(w) and a
formula ¢ € FO (i.e., ¢ is satisfied in w) if ¢ evaluates to true on interpretation of =, <, Q,

as equality, <", and @, respectively, and on interpretation of the free variables in ¢ as p;’s.

Then the language defined by the sentence ¢ is L(¢) = {w € I'* |w = ¢}. We say that a
language L C I'* is FO-definable if there is ¢ € FO with L = L(¢).
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By MSO (the monadic second-order logic) we denote the second-order extension of FO
where the second-order variables are unary. Again, we say that L C I'* is MSO-definable if
there is ¢ € MSO with L = L(¢).

Biichi’s Theorem [4] states that a language is regular iff it is MSO-definable. Moreover, a
language is star-free and hence aperiodic iff it is FO-definable by [19].

3  Algorithmic Properties of Rational Subsets

This section studies decision problems concerning the rational subsets of Q(A,U). We will
see that the classes of rational and recognizable subsets do not coincide. Especially, we prove
that we cannot decide whether a given rational subset of the plq monoid is recognizable.
Additionally, we prove that emptiness of intersection and the unique decipherability in
Q(A,U) are undecidable. Though, we will see first, that the uniform membership problem is
NL-complete.

So, let w € X*. Then one can show that the number of left-divisors of [w] in Q(A,U) is at
most |w|3. Recall that in a monoid M w is a left-divisor of w if there is v such that uv = w.
Hence, we can obtain a DFA with only |w|® many states that accepts [w]. In particular,
similar to [11, Lemma 8.1] we can prove an even stronger result by using only logarithmic
space on construction of this DFA. This implies the following theorem:

» Theorem 3.1. Let A be an at least binary alphabet and U C A. Then the following rational
subset membership problem for Q(A,U) is NL-complete: Given a word w € X* and an NFA
A over X. Is there a word v € L(A) with w = v?

Proof. Let w € X* and let A be an NFA over Y. Let B be the aforementioned DFA that
can be constructed using only logarithmic additional space.

Then there exists v € L(A) with w = v if, and only if, L(A)N[w] # @ if, and only if, L(A)N
L(B) # 0. Using an on-the-fly construction of B, this can be decided nondeterministically in
logarithmic space. Hence, the problem is in NL.

Since the free monoid A* embeds into Q(A,U) and since the rational subset membership
problem for A* is NL-hard, we also get NL-hardness for Q(A,U). <

Now we will prove some negative algorithmic results on rational subsets of the plq
monoid. In [11, Section 8] these undecidabilities for reliable queues could be inferred from an
embedding of {a,b}* x {c,d}* into Q(A, A). Unfortunately, this does not work in arbitrary
plq monoids since this direct product does not embed into Q({a, b}, ) by [15, Theorem 6.14].
Though, we can prove all the undecidability results considered in [11] for any plq monoid.

Some of these results are based on an embedding of the monoid {a}* x{¢, d}* into Q(A,U).
Unfortunately, this does not help for the following two problems since their counterparts in
{a}* x {c,d}* are decidable. Hence, we have to prove them directly.

The first considered decision problem is the unique decipherability problem in Q(A,U),
i.e., the question whether a given finite set .S freely generates S*. To this end, we will use
the undecidability of this problem in {a,b}* x {¢,d}* by encoding the elements of the given
set and adding another item.

» Theorem 3.2. Let A be an at least binary alphabet and U C A. Then, given a finite set
S C Q(A,U), it is undecidable whether S* is freely generated by S.

Proof. We prove this undecidability by reduction of this question for the monoid {a,b}* x
{¢,d}*, which is undecidable by [6, Theorem 3.1]. So, let a,b € A be distinct letters and
S ={(x1,y1),---,(xk,yx)}. Define the embeddings f: {a,b}* — A* and g: {c,d}* — A* by
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£(a) = g(c) = aa and f(5) = g(d) = ab. Set g := [BBB], qi := f (x:)g ()] for any 1 < i < k,
and T :={¢; |0 <i <k} C Q(A,U). Then we can show that S* is freely generated by S iff
T* is freely generated by T'. <

The next problem to consider is the emptiness of intersections of rational subsets in
the plq monoid. Given two recognizable sets, this problem is decidable since the class of
recognizable subsets is effectively closed under intersection. However, we will prove that this
decidability does not hold for arbitrary rational subsets. As a corollary we can infer that the
class of rational subsets is not effectively closed under intersection. Afterwards we will prove
the existence of two rational subsets whose intersection is not rational. In consequence, the
classes of rational and recognizable subsets do not coincide. Nevertheless, each recognizable
set in Q(A,U) is rational due to [18] since the plq monoid is finitely generated.

» Theorem 3.3. Let A be an at least binary alphabet and U C A. Then the emptiness of
the intersection of two rational subsets of Q(A,U) is undecidable.

Proof. We prove this by reduction of Post’s Correspondence Problem (PCP), which is
undecidable by [23]. So, let a,b € A be distinct letters and I = ((z1,41),- .-, (Tk, yr)) be an
instance of the PCP with z;,y; € A*. We define the following rational sets

Xri={p; = [a'bT3] |1 <i < k}YT[@][b]* and Y;:={q = [a'by;]|1 <i < k}T[a]b]*.

We can show then that X7 NY7 # 0 if, and only if, T has a solution. <

To prove that the rational subsets are not closed under intersection and to prove the
undecidability of the next problems we use an embedding of {a}* x {b,c}* into the plq
monoid. Let a,b € A be distinct letters. Such an embedding is ¢: {a}* x {b,c}* — Q(A4,U)

with ¥(a,e) = [a], ¥(g,b) = [ab], and (e, c) = [abb] by [15, Section 6.2].

» Theorem 3.4. Let A be an at least binary alphabet and U C A. Then the set of rational
subsets of Q(A,U) is not closed under intersection. In particular, there is a rational subset

of Q(A,U) which is not recognizable.
Proof. Consider the following rational relations:
Ry ={(a™,0™c")|m,n e N} and Rs={(a™,b"c™)|m,n e N}.

Then (R;) and ¢ (Rs) are rational in Q(A, U). Suppose that ¢(R1)Ny(R2) is rational. Then
there is a regular language S C X* with ¢/(R1) N (R2) = n(S). Since v is injective we have
Y(R1)NY(R2) = Y(R1NR2) = Y({(a™,b"c™) | n € N}). Hence, 7(S) = {(ab)™(abb)™ |n € N}
would be regular since 7 is a homomorphism. But this is a contradiction to the Pumping
Lemma. <

Gibbons and Rytter proved in [9] that universality and recognizability are undecidable
in {a}* x {b,c}*. Since @ is an embedding of this monoid into the plq monoid, these
undecidabilities imply the undecidability of their counterparts in the plq monoid.

» Theorem 3.5. Let A be an at least binary alphabet and U C A. Then universality,
inclusion, equality, and recognizability of rational subsets of Q(A,U) are undecidable. <
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4 Characterizations of the Recognizable Subsets

In Section 3 we have shown many decision problems on rational subsets of the plq monoid
to be undecidable. We know that all these problems are decidable if the given subsets
are recognizable from the known constructions in automata theory. Here, we want to give
characterizations of the recognizable subsets in the manner of Kleene’s and Biichi’'s Theorem
[13, 4], i.e., we characterize the recognizable sets as certain rational sets and by logical means.
At first, we state the main theorem. Later in this section we give the definitions of g-rational
subsets and MSQOq and prove the correctness of this theorem.

» Theorem 4.1 (Main Theorem). Let A be an at least binary alphabet, U C A, and S C
Q(A,U). Then the following are equivalent:

(A) S is recognizable.

(B) S is g-rational.

(C) S is MSOq-definable.

4.1 Some Helping Characterizations

Before we prove Theorem 4.1 we state two further characterizations which turned out to be
convenient for simplification of the proof of Theorem 4.1. We know these characterizations
from [11] for the recognizable subsets in the reliable queue monoid Q(A, A) and generalize
them to plq monoids Q(A,U) with arbitrary subsets U C A. On the one hand, we prove
the correspondence of recognizability in the plq monoid to regularity in the underlying free
monoid. On the other hand, we show that each recognizable subset is a Boolean combination
of sets 71(R), 7 '(R) where R C A* is regular and some special sets Q, for any ¢ € N:

» Definition 4.2. Let g € Q(A,U). Then the overlap’s bounded width of ¢ is

w(q) == nf{[Ta(p)| : p € QA V), 7(p) = 7(q), 7(p) = T(q), [T2(q)| < [T2(P)[} -
Furthermore, for ¢ € N set Q := {q € Q(A,U) |w(q) > ¢}.

The overlap’s bounded width specifies the minimal length of the overlap of a word with
the same projections having a longer overlap. If such word does not exist then we set this
value to co.

» Example 4.3. Let A =U = {a,b} and q = ababaabbabab. Then there are two words with
the same projections and longer overlaps: q; = abaabbaabbab and g, = aabbaabbaabb. We
have |T2(q1)| = 4 and [T2(g2)| = 6. Therefore, we have w(q) = 4, w(q1) = 6, and w(gz) = co.
Hence, g € Q3 \ Q4 holds.

From [11, Observation 9.1] we know that any non-trivial property of the overlap’s width
[72(q)| is not recognizable in Q(A, A). An appropriate alternative for the generators of the
Boolean algebra of recognizable subsets was found in such kind of “overapproximation” of
the overlap’s length (note that w(q) > [T2(¢)| holds). Additionally, the following observations
provide some more motivation of this notion:

» Observation 4.4. Every q € Q(A,U) is completely described by 7(q), 7(q), and w(q). <

» Observation 4.5. Let £ € N and w € X*. Then w([w]) < £ if, and only if, there is u € AS*
with T(w) € A*u and u <y m(w) such that |T2(w)| < |ul. <

Now we can state the following equivalences which can be proven similar to [11, Theo-
rem 9.4].
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» Theorem 4.6. Let A be an at least binary alphabet, U C A, and S C Q(A,U). Then the

following are equivalent:

1. S is recognizable.

2. n”HS)NA A*A" is regular-.

3. S is a Boolean combination of sets of the form m~'(R) or @ Y(R) for some regular
R C A* and the sets Qp for some £ € N. <

4.2 From Recognizability to Q-Rational Subsets

In this subsection we prove that each recognizable subset in the plq monoid is g-rational. To
this end, we first need to define this notion which is a restriction to the rational expressions.
We need this restriction since we cannot translate Kleene’s Theorem [13] to plq monoids
due to Theorem 3.4. Though, we can use Ochmarniski’s approach from [21] to generate the
recognizable subsets. Concretely, we restrict the Kleene star and the concatenation of the
plq monoid in an appropriate way. We call the sets generated by those operations g¢-rational
and prove that these are exactly the recognizable subsets in the plq monoid.
At first, we prove that the class of recognizable subsets is not closed under iteration:

» Remark. Let S = {[aa]}, which is trivially recognizable. Then n~1(S*)NA*A" C £* is the
set of all words a™a™ with n € N by Rule d in Definition 2.1. This language is not regular.
Hence, n~1(S*) is also not regular and therefore S* is not recognizable.

This is a very similar situation as in trace monoids. Here, Ochmanski proved in [21] that
it suffices to restrict iteration to obtain some kind of rational expressions that are generating
all the recognizable subsets [21]. Unfortunately, the class of recognizable subsets in the plq
monoid also is not closed under product.

» Remark. Let S = {[a]}* and T = {[a]}*, which are recognizable. Then n=1(S-T)N
A" A*AT C X* is the set of all words Uruelz with uy, ug, ug € a* and u; = € or |ug| < |ug]
by Rule d in Definition 2.1. Since this language is not regular, S - T is not recognizable.

Hence, we have to restrict the use of the monoid’s product in the construction of the
so-called g¢-rational subsets. Next, we will define these subsets and afterwards we prove that
these are a suitable restriction of rationality to describe exactly the recognizable subsets. But
at first, we say that a subset of Q(A,U) is ¢" -rational if it can be obtained by the following
rules:

(1F) 7= 1(e), 7= 1(0) = 0, and 7~ !(a) for any a € A are q*-rational

(21) if S1, 82 € Q(A,U) are q*-rational then Sy U Sy, Sy - So, and ST are q-rational
Similarly, by replacing 7= by 7! in the rules above, we define the class of ¢~ -rational
subsets of Q(A,U).

» Observation 4.7. Let S C Q(A,U). Then S is q"-rational (q~ -rational) if, and only if,
there is some reqular R C A* with S = 7~ 1(R) (S =7 '(R), resp.). <

Finally, a subset of Q(A,U) is g-rational if it can be constructed from the following rules:
(1) if S; € Q(A,U) is q*- or q~ -rational it also is g-rational
(2) if 51,52 C Q(A,U) are g-rational then S; U Sy and Q(A,U) \ S; are g-rational
(3) if S1 € Q(A,U) is q*-rational and Sy C Q(A,U) is q~ -rational such that 7(S2) is finite
(i.e., Sy is obtained without usage of the *-operator) then Sy - Q(A,U) - Sy is g-rational

» Example 4.8. Let S ={qe€ Q(A,U)|n(q) € (ab)*,7(q) = b}. Then S is g-rational since
we have S = 7 1(b) N (7~ 1(a) - 71 (b))*. Note that the class of q-rational subsets also is
closed under intersection due to Rule 2, i.e., this class is a Boolean algebra.
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At first sight, the choice of Rule 3 seems to be some kind of random. But we can remove
neither the factor Q(A, U), which appears as separator in this product, nor the finiteness of
7(S2). Additionally, we cannot simply remove this rule since the set {[aa]} cannot be built
by application of the Rules 1 and 2, only.

Now we can prove the implication “A=B” in Theorem 4.1. To do this, we utilize
Theorem 4.63. Concretely, we do this by induction on the syntax tree of such kind of
expression that each recognizable subset is g-rational. The most complicated case in this
proof is to show that €y is g-rational. For this proof we need the following lemma:

> Lemma 4.9. Let L €N, g€ Q(A,U) andu =ay...a; € A*. Then we have u <y 7(q)
and 72(q) € A*u if, and only if, ¢ € 71 (Hle(A \ U)*ai) CQ(AU) -7 (u). <

Finally, we can state the following implication:
» Proposition 4.10. Let S C Q(A,U) be recognizable. Then S is g-rational.

Proof. We use Theorem 4.63 to prove the claim by induction. At first, if S = 7=*(R) or
S =7 !(R) where R C A* is regular, then S is g-rational by Observation 4.7.
Next, let £ € N and S = €. Then by Observation 4.5 and Lemma 4.9 we have

Q= ﬂ (QA,U)\ (W A" ) 7w~ (A ) Un ™ (Wy,) - Q(A,U) -7 1 (u),

u€ A=<t

where W,, = Hle(A \ U)*a; with u = ay...ax. Since the sets 7~ 1(W,A%), 7 '(A*u),
7Y (W,), and T !(u) are g-rational by Observation 4.7, € is q-rational as well.
Finally, the class of g-rational subsets is closed under Boolean operations. |

4.3 From Q-Rational Subsets to Logic

The second implication from Theorem 4.1 states that each g-rational subset is definable
in a special monadic second-order logic which we call MSO,. Here, we try to exhibit the
knowledge from the preceding subsection such that this logic defines exactly the recognizable
subsets. In fact, we have to add some modifications to Biichi’s MSO-logic from [4]. At first,
we should understand p <" ¢ as follows: the letter a on position p in w cannot be moved to
the right of the letter b on position ¢ without violating any of the rules from Definition 2.1
(recall that R only swaps letters). In other words, for any v € [w] the letter a appears left
from b in v. Additionally, we have to restrict comparisons of write and read operations:

» Remark. It is not possible to compare arbitrary letters in w without any restrictions. For
example, let

¢=3z,y: (Qa(x) AVz: (Qa(2) = 2 < 2) NQz(y) AVz: (Qx(2) =y < 2) A~ < y),

i.e., w satisfies ¢ iff the first read action can be moved to the right of the last write action.
Then we have L(¢) Na*a*a* = {@a‘@™ |k = 0 or m > £}. Since this language is not regular,
the subset of Q(A,U) of the elements satisfying ¢ is not recognizable either.

By FOq we denote the set of all first-order formulas build up from the atomic formulas of
the form x =y, © <; y, © <_ y, Py(z) for £ € Ny, and Q,(z) for a € A where z and y are
variables. Additionally, by MSO4 we denote the monadic second-order extension of FOg.

Now let w = aq...a, € X*. The plg model for w is the relational structure w :=
(dom(w), <%, <™, (P;")een, » (QY)aex) where dom(w) = {1,...,n}, QY = {i|a; = a}, <Y
and <" are the natural orderings on Q% = J,c 4 @ and Q%, respectively, and

P ={ie€ Q% |Vvi,v2 € X*: (w=vva Am(v1) =7(ay...a;)) = |[T(v2)| < £},
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i.e., we have i € P}’ iff a; € A and the (th last read action in w is left from a; and cannot
be moved to the right of a;. This is conform to the approaches known from [4, 7] since the
relations <Y, <¥, and P;* specify which letter have to appear to the left of another one in
any word equivalent to w. Hence, we can infer that @ identifies the equivalence class [w]:

» Lemma 4.11. Let v,w € X*. Then we have v = w if, and only if, v = w. <

e

Therefore, we can define the plg model q := nf(q) for ¢ € Q(A,U).

Now let ¢ € MSOg. The set defined by ¢ is S(¢) = {q € Q(A,U) | ¢ |= ¢}. We say that
S C Q(A,U) is MSOqy-definable (FOq-definable) if there is ¢ € MSOq (¢ € FOq, respectively)
with S = S(¢).

» Remark. The sets P;" also are conform to the special product in the definition of g-rational
subsets into logics. In particular, we have S(3z: ~Py(z)) = 7~ 1(A") - Q(A,U) -7 1 (A").

Now we prove that each g-rational subset is MSOq-definable. In the proof of implication
“B=C” in Theorem 4.1 we need the following notion: Let ¢,£(z) € MSO. Then there is a
formula ¢|¢ € MSO which restricts the quantifiers in ¢ to values satisfying &(x). Thereby, we
have ¢|¢ € FO iff ¢,£ € FO.

Finally, we can state:

» Proposition 4.12. Let S C Q(A,U) be g-rational. Then S is MSOq-definable.

Proof. If S is qT-rational then we have S = 7~!(R) for some regular R C A*. By [4] there
is an MSO-formula ¢ with L(¢) = R. Then by replacing of all occurrences of < in ¢ by <,
we obtain an MSOg-formula ¢" with S(¢'|g () = 7~ H(L(9)) = S.

Similarly, we can prove that S is MSOq-definable if S is g~ -rational (here, we replace <
by <_ and restrict to Q).

IfS=5USyorS=Q(AU)\ S, where 51,5, are g-rational there are ¢, 2 € MSOq

with S(¢1) = S1 and S(¢2) = Sa. Then we have S = S(¢1 V) and S = S(—¢1), respectively.
Finally, let S = 7~1(R) - Q(A,U) -7 ' (F) where R C A* is regular and F' C A* is finite.

W.lo.g. we can assume that F' = {w} holds. Then there are MSOq4-formulas ¢r and ¢p
defining 771 (R) and 7 (F), respectively. Set

¢ = 3w1,22: PRle< ay N OF|es<_o A 2Py (21) -

Then we have S = S(¢). <

4.4 From Logic to Recognizability

Finally, we have to prove that each MSOg-definable subset is recognizable. To do this, we
utilize Theorem 4.62. In other words, given ¢ € MSOq we construct a formula ¢ € MSO
such that 7~ 1(S(¢)) N A A*A" = L(y) N A A*A" holds. Since the right-hand side of this
equation is regular by [4], we can infer that S(¢) is recognizable.

The translation of formula P;(x) is the most complicated case in our construction since
write and read actions commute in certain contexts given in Definition 2.1. Concretely, we
will translate =Py (x) since it seems to be easier to understand. Hence, we start with this
case. At first, we prove that there is an FO-formula describing the words in which the last ¢
read actions are U-prefixes of the write actions:

» Lemma 4.13. Let £ € N. There is a sentence overlap, € FO such that w € L(overlap,) if,
and only if, there is u € A* with u <y 7(w) and T (w) € A*u for any w € X*.

45:11
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Proof. There is an NFA A which guesses the last ¢ read actions, verifies afterwards whether
these are a U-prefix of the write actions, and checks whether each of the last ¢ read actions
appear after their corresponding write action. This NFA can be constructed without usage
of any counters. Hence, its accepted language is aperiodic. By [19] there is a formula
overlap, € FO with L(overlap,) = L(A). <

Now let w e A" A*A" and p € dom(w). Then we express p ¢ P;’ as follows:

If we have p € Q% we are ready. So, assume p € Q' from now on. At first, we choose the
last ¢ read actions from w. Let ¢, ..., g, be their positions.

If p < ¢1 then we are ready. So, assume ¢; < p from now on. Then there are two words
u,v € X* such that w = uv, u ends with the letter on position p in w, and v starts with the

letter on position ¢; in w. Since = is a congruence we can assume that v = 71 (v)7(v)T2(v)
holds. Let 7(v) = by ...b;. Then b; can be moved to the left-hand side of the letter on
position p in w if, and only if, uv does not satisfy overlap, ;.

Finally, there may be some letters b; from 7;(v) that can be moved to the right in w.
This is possible if, and only if, one of the following two cases hold: on the one hand, this
is possible if b; ... by €y w(w). On the other hand, if b; ...b; <y m(w) and the write action
corresponding to b; appears right from position p in w.

All of the above mentioned requirements can be expressed in MSO-formulas. Hence, we
can construct co-Py(x) € MSO such that w = co-P[p] if, and only if, p ¢ P;”. Therefore, we
can state the following:

» Proposition 4.14. Let S C Q(A,U) be MSOq-definable. Then S is recognizable.

Proof. Let S C Q(A,U) be MSOq-definable. Then there is ¢ € MSOq with S = S(¢). We
construct ¢’ € MSO by the following modifications of ¢:

replace “z <4 y” by “e <y AQa(x) NQal(y)”

replace “z <_ y” by “z <y A Qz(x) A Qz(y)”

replace “Py(x)” by “—~co-Py[z]”
Then we can prove that @ = ¢ if, and only if, w = ¢’ for any w € A" A*A". Hence, by Biichi’s
Theorem [4] n~(S) N A A*A" is regular, i.c., S is recognizable due to Theorem 4.6. <

5 Characterizations of the Aperiodic Subsets

In the previous section we have seen a Kleene- and Biichi-type characterization of the
recognizable subsets in the plq monoid. Another more involved task is to describe the
aperiodic subsets in the plq monoid. Schiitzenberger has proven in [25] that the aperiodic
subsets in the free monoid are exactly the star-free languages. This result gives us a decision
procedure to decide whether a given regular language is star-free. Another similar result for
trace monoids can be found in [10]. These two results cannot be translated to plq monoids
since the class of aperiodic subsets is not closed under product. Though, we will see that
we can restrict the use of the product to describe exactly the aperiodic subsets of the plq
monoid.

Another characterization of the aperiodic languages was proven by [19]: similar to
Biichi’s Theorem [4] McNaughton and Papert proved that these are exactly the FO-definable
languages. Here, we will see that analogously the aperiodic subsets in the plq monoid are
the FOq4-definable subsets.

Before we give these characterizations we have to define the restriction of star-freeness.
We say that a subset of Q(A,U) is g-star-free if it can be constructed by the Rules 1-3 in
which we replace “S = S7” by “S = Q(A,U)\ S1” in the rules 2 and (27).
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Similarly, to Theorem 4.1 we can state and prove the following result:

» Theorem 5.1. Let A be an at least binary alphabet, U C A, and S C Q(A,U). Then the
following are equivalent:

(A) S is aperiodic.

(B) L is g-star-free.

(C) L is FOq-definable. <
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