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Abstract
We introduce a measure called width, quantifying the amount of nondeterminism in automata.
Width generalises the notion of good-for-games (GFG) automata, that correspond to NFAs of
width 1, and where an accepting run can be built on-the-fly on any accepted input. We describe
an incremental determinisation construction on NFAs, which can be more efficient than the full
powerset determinisation, depending on the width of the input NFA. This construction can be
generalised to infinite words, and is particularly well-suited to coBüchi automata in this context.
For coBüchi automata, this procedure can be used to compute either a deterministic automaton
or a GFG one, and it is algorithmically more efficient in this last case. We show this fact by
proving that checking whether a coBüchi automaton is determinisable by pruning is NP-complete.
On finite or infinite words, we show that computing the width of an automaton is PSPACE-hard.
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1 Introduction

Determinisation of non-deterministic automata (NFAs) is one of the cornerstone problems of
automata theory, with countless applications in verification. There is a very active field of
research for optimizing or approximating determinisation, or circumventing it in contexts
like inclusion of NFA or Church Synthesis. Indeed, determinisation is a costly operation, as
the state space blow-up is in O(2n) on finite words, O(3n) for coBüchi automata [16], and
2O(n log(n)) for Büchi automata [17].

If A and B are NFAs, the classical way of checking the inclusion L(A) ⊆ L(B) is to
determinise B, complement it, and test emptiness of L(A) ∩ L(B). To circumvent a full
determinisation, the recent algorithm from [3] proved to be very efficient, as it is likely to
explore only a part of the powerset construction. Other approaches use simulation games to
approximate inclusion at a cheaper cost, see for instance [8].

Another approach consists in replacing determinism by a weaker constraint that suffices
in some particular context. In this spirit, Good-for-Games automata (GFG for short) were
introduced in [9], as a way to solve the Church synthesis problem. This problem asks, given
a specification L, typically given by an LTL formula, over an alphabet of inputs and outputs,
whether there is a reactive system (transducer) whose behaviour is included in L. The
classical solution computes a deterministic automaton for L, and solves a game defined on
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47:2 Width of Non-Deterministic Automata

this automaton. It turns out that replacing determinism by the weaker constraint of being
GFG is sufficient in this context. Intuitively, GFG automata are non-deterministic automata
where it is possible to build an accepting run in an online way, without knowledge of the
future, provided the input word is in the language of the automaton. In [9], it is shown
that GFG automata allow an incremental algorithm for the Church synthesis problem: we
can build increasingly large games, with the possibility that the algorithm stops before the
full determinisation is needed. One of the aims of this paper is to generalise this idea to
determinisation of NFA, for use in any context and not only Church synthesis. We give an
incremental determinisation construction, where the emphasis is on space-saving, and that
allows in some cases to avoid building the full powerset construction.

The notion of width introduced in this paper generalises the GFG model, by allowing
more than one run to be built in an online way. Intuitively, width quantifies how many
states we have to keep track of simultaneously in order to build an accepting run in an
online way. The maximal width of an automaton is its number of states. The width of an
automaton corresponds to the number of steps performed by our incremental determinisation
construction before stopping. In the worst case where the width is equal to the number
of states of the automaton, we end up performing the full powerset construction (or its
generalisations for infinite words). We study here the complexity of directly computing
the width of a nondeterministic automaton, and we show that it is PSPACE-hard and in
EXPTIME.

The properties of GFG automata and links with other models (tree automata, Markov
Decision Processes) are studied in [2, 10, 11]. Colcombet introduced a generalisation of
the concept of GFG called history-determinism [5], replacing determinism for automata
with counters. It was conjectured by Colcombet [6] that GFG automata were essentially
deterministic automata with additional useless transitions. It was shown in [11] that on the
contrary there is in general an exponential state space blowup to translate GFG automata
to deterministic ones. GFG automata retain several good properties of determinism, in
particular they can be composed with trees and games, and easily checked for inclusion.

We give here the first algorithms allowing to build GFG automata from arbitrary non-
deterministic automata on infinite words, allowing to potentially save exponential space
compared to deterministic automata. Our incremental constructions look for small GFG
automata, and aim at avoiding the worst-case complexities of determinisation constructions.
Moreover, in the case of coBüchi automata, we show that the procedure is more efficient than
its analog looking for a deterministic automaton, since checking for GFGness is polynomial
[11], while we show here that the corresponding step for determinisation, that is checking
whether a coBüchi automaton is Determinisable By Pruning (DBP) is NP-complete.

As a measure of non-determinism, width can be compared with ambiguity, where the
idea is to limit the number of possible runs of the automaton. In this context unambiguous
automata play a role analogous to GFG automata for width. Unambiguous automata are
studied in [12], degrees of ambiguity are investigated in [18, 13, 14]. In the online long version
of the paper, we give examples of automata with various width and ambiguity, showing that
these two measures are essentially orthogonal.

We start by describing the width approach on finite words, and then move to infinite
words, focusing mainly on the coBüchi acceptance condition. We end by briefly describing
the picture for Büchi automata.
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2 Definitions

We will use Σ to denote a finite alphabet. The empty word is denoted ε. If i ≤ j, the set
{i, i + 1, i + 2, . . . , j} is denoted [i, j]. If X is a set and k ∈ N, we note X≤k for

⋃k
i=0 X

i.
The complement of a set X is denoted X. If u ∈ Σ∗ is a word and L ⊆ Σ∗ is a language, the
left quotient of L by u is u−1L := {v ∈ Σ∗ | uv ∈ L}.

2.1 Automata

A non-deterministic automaton A is a tuple (Q,Σ, q0,∆, F ) where Q is the set of states, Σ
is a finite alphabet, q0 ∈ Q is the initial state, ∆ : Q× Σ → 2Q is the transition function,
and F ⊆ Q is the set of accepting states.

The transition function is naturally generalised to 2Q by setting for any (X, a) ∈ 2Q × Σ
∆(X, a) the set of a-successors of X, i.e. ∆(X, a) = {q ∈ Q | ∃p ∈ X, q ∈ ∆(p, a)}.

If for all (p, a) ∈ Q× Σ there is a unique q ∈ Q such that (p, a, q) ∈ ∆, we say that A is
deterministic.

If u = a1 . . . an is a finite word of Σ∗, a run of A on u is a sequence q0q1 . . . qn such that
for all i ∈ [1, n], we have qi ∈ ∆(qi−1, ai). The run is said to be accepting if qn ∈ F .

If u = a1a2 . . . is an infinite word of Σω, a run of A on u is a sequence q0q1q2 . . . such
that for all i > 0, we have qi ∈ ∆(qi−1, ai). A run is said to be Büchi accepting if it
contains infinitely many accepting states, and coBüchi accepting if it contains finitely many
non-accepting states. Automata on infinite words will be called Büchi and coBüchi automata,
to specify their acceptance condition.

We will note NFA (resp. DFA) for a non-deterministic (resp. deterministic) automaton
on finite words, NBW (resp. DBW) for a non-deterministic (resp. deterministic) Büchi
automaton, and NCW (resp. DCW) for a non-deterministic (resp. deterministic) coBüchi
automaton.

We also mention the parity condition on infinite words: each state q has a rank rk(q) ∈ N,
and an infinite run is accepting if the highest rank appearing infinitely often is even.

The language of an automaton A, noted L(A), is the set of words on which the automaton
A has an accepting run. Two automata are said equivalent if they recognise the same language.

An automaton A is determinisable by pruning (DBP) if an equivalent deterministic
automaton can be obtained from A by removing some transitions.

An automaton A is Good-For-Games (GFG) if there exists a function σ : A∗ → Q (called
GFG strategy) that resolves the non-determinism of A depending only on the prefix of the
input word read so far: over every word u = a1a2a3 . . . (finite or infinite depending on the
type of automaton considered), the sequence of states σ(ε)σ(a1)σ(a1a2)σ(a1a2a3) . . . is a
run of A on u, and it is accepting whenever u ∈ L(A). For instance every DBP automaton
is GFG. See [2] for more introductory material and examples on GFG automata.

2.2 Games

A game G = (V0, V1, vI , E,W0) of infinite duration between two players 0 and 1 consists of:
a finite set of positions V being a disjoint union of V0 and V1; an initial position vI ∈ V ; a
set of edges E ⊆ V × V ; and a winning condition W0 ⊆ V ω.

A play is an infinite sequence of positions v0v1v2 · · · ∈ V ω such that v0 = vI and for all
n ∈ N, (vn, vn+1) ∈ E. A play π ∈ V ω is winning for Player 0 if it belongs to W0. Otherwise
π is winning for Player 1.

STACS 2018
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A strategy for Player 0 (resp. 1) is a function σ0 : V ∗× V0 → V (resp. σ1 : V ∗× V1 → V ),
describing which edge should be played given the history of the play u ∈ V ∗ and the current
position v ∈ V . A strategy has to obey the edge relation, i.e. there has to be an edge in E
from v to σP (u, v). A play π is consistent with a strategy σP of a player P if for every n
such that π(n) ∈ VP we have π(n+ 1) = σP (v0 . . . vn−1, vn).

A strategy for Player 0 (resp. Player 1) is positional if it does not use the history of the
play, i.e. it is a function V0 → V (resp. V1 → V ).

We say that a strategy σP of a player P is winning if every play consistent with σP is
winning for P . In this case, we say that P wins the game G.

A game is positionally determined if exactly one of the players has a positional winning
strategy in the game.

3 Finite words

3.1 Width of a NFA
Let A = (Q,Σ, q0,∆, F ) be a NFA, and n = |Q| be the size of A.

We want to define the width of a A as the minimum number of simultaneous states that
need to be tracked in order to be able to deterministically build an accepting run in an online
way.

In order to define this notion formally, we introduce a family of games Gw(A, k), para-
meterized by an integer k ∈ [1, n].

The game Gw(A, k) is played on Q≤k, starts in X0 = {q0}, and the round i of the game
from a position Xi ∈ Q≤k is defined as follows:

Player 1 chooses a letter ai+1 ∈ Σ.
Player 0 moves to a subset Xi+1 ⊆ ∆(Xi, ai+1) of size at most k.

A play is winning for Player 0 if for all r ∈ N, whenever a1a2 . . . ar ∈ L(A), Xr contains
an accepting state.

I Definition 1. The width of a NFA A, denoted width(A), is the least k such that Player 0
wins Gw(A, k).

Intuitively, the width measures the “amount of non-determinism” in an automaton: it
counts the number of simultaneous states we have to keep track of, in order to be sure to
find an accepting run in an online way.

I Fact 2. A NFA A is GFG if and only if width(A) = 1.

3.2 Partial powerset construction
We give here a generalisation of the powerset construction, following the intuition of the
width measure.

We define the k-subset construction of A to be the subset construction where the size of
each set is bounded by k. Formally, it is the NFA Ak = (Q≤k,Σ, {q0},∆′, F ′) where:

∆′(X, a) :=
{
{∆(X, a)} if |∆(X, a)| ≤ k
{X ′ | X ′ ⊆ ∆(X, a), |X ′| = k} otherwise

F ′ := {X ∈ Q≤k | X ∩ F 6= ∅}

I Lemma 3. Ak has less than nk

(k − 1)! + 1 states.
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Proof. The number of states of Ak is (at most) |Q≤k| =
∑k

i=0
(

n
i

)
. Using the fact that(

n
i

)
≤ ni

i! , we can bound the number of states of Ak by
∑k

i=0
ni

i! ≤
∑k

i=0
nk

k! ≤ 1+
∑k

i=1
nk

k! =
nk

(k−1)! + 1. J

The following lemma shows the link between width and the k-powerset construction.

I Lemma 4. width(A) ≤ k if and only if Ak is GFG.

Proof. Winning strategies in Gw(A, k) are in bijection with GFG strategies for Ak. J

3.3 GFG automata on finite words
We recall here results on GFG automata on finite words.

We start with a Lemma characterizing GFG strategies. Let A = (Q,Σ, q0,∆, F ) be a
NFA recognising a language L, and σ : Σ∗ → Q be a potential GFG strategy. If q ∈ Q, we
denote L(q) the language accepted from q in A, i.e. L(q) is the language of A with q as
initial state.

I Lemma 5. σ is a GFG strategy if and only if for all u ∈ Σ∗, L(σ(u)) = u−1L

We now go to the main result of this section. This result has first been proved in [1], and
then a more general version allowing lookahead was proved using a game-based approach in
[15].

I Theorem 6. [1, 15] A NFA A is GFG if and only if it is DBP. Moreover, it is in O(n2) to
determine whether a NFA of size n is GFG, and to compute an equivalent DFA by removing
transitions.

3.4 Incremental determinisation procedure
We can now describe an incremental determinisation procedure, aiming at saving resources
in the search of a deterministic automaton. In the process, we also compute the width of the
input NFA.

The algorithm goes as follows:

Algorithm 1:
k = 0
Repeat
k := k + 1
Construct Ak

Until Ak is GFG
Compute an equivalent DFA D from Ak by removing transitions
Return D, k

The usual determinisation procedure uses the full powerset construction, i.e. assumes
that we are in the case of maximal width. In a second step, the deterministic automaton can
be minimized easily.

Our method here is to approach this construction “from below”, and incrementally
increase the width until we find the good one. In some cases, this allows to compute directly
a smaller automaton, and avoiding using the full powerset construction of exponential state
complexity.

STACS 2018
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Figure 1 Example: 2-subset construction is enough.

For a NFA with n states and width k, the complexity of this algorithm is in O
(

n2k

(k−1)!2

)
,

by Lemma 3 and Theorem 6.

I Example 7. Here the language recognised by this automaton is L(A) = Σ∗aΣ≥k, and it
has width 2. Therefore, our determinisation procedure uses time O(n4) and directly builds a
DFA of size O(n2), while a classical determinisation via powerset construction would build
an exponential-size DFA.

But in some other cases, the powerset construction is actually more efficient than the
k-powerset construction, in terms of number of reachable states. It would therefore be
interesting to be able to either run the two methods in parallel, or guess which one is more
efficent based on the shape of the input NFA.

3.5 Complexity results on the width problem
In this section, we study the complexity of the width problem: given a NFA A and an integer
k, is it true that width(A) ≤ k ?

Being able to solve this problem efficiently would allow us to optimize the incremental
determinisation algorithm, by aiming at the optimal k matching the width right away instead
of trying the different width candidates incrementally.

I Theorem 8. The width problem is PSPACE-hard.

Proof. We prove this by reduction from the universality of NFA Problem (i.e. does an input
NFA accept all words?) which is known to be PSPACE-Complete.

Let A = (Q,Σ,∆, q0, F ) be a NFA that we want to check for universality. Let n = |Q|.
Let a be a letter in Σ and # be a new letter not in Σ.
We build a NFA B over Σ′ = Σ ∪ {#} as the union of two NFAs B1 and B2 as shown in

Figure 2.
Formally B1 = (Q1,Σ′, q0,∆1, F1), with Q1 = Q ∪ {q#}, F1 = {q#}, and

∆1(p, x) =


∆(p, x) if p ∈ Q and x 6= #
{q#} if (p, x) ∈ F × {#} or if (p, x) = (q#, a)
∅ otherwise.

Its language is L(B1) = L(A)#a∗.
The NFA B2 = (Q2,Σ′, pI ,∆2, {p0}) has n + 2 states as described on the picture, and

recognises the language L(B2) = Σ∗#a≥n.
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Figure 2 Automaton B.

We define B = (QB,Σ′, {q0, pI},∆B, FB) as the union of B1 and B2. We allow here
multiple initial states for simplicity, but it is straigthforward to adapt the construction in
order to have a unique initial state.

The intuition here is that if A is universal, then B2 is useless in B as L(B) = L(B1) =
Σ∗#a∗, and width(B) = width(A) ≤ n. However, if A is not universal, then B is forced to
use its B2 component, inducing a width at least n+ 1. This is formalized in the following
lemma.

I Lemma 9. width(B) ≤ n ⇐⇒ L(A) = Σ∗.

Proof. (⇒) Suppose width(B) ≤ n but ∃u ∈ Σ∗ \L(A). Let Cn be the n-subset construction
of B. By Lemma 4, Cn is GFG, let σ : Σ∗ → (QB)≤n be a GFG strategy of Cn.

Consider the word w = u#an. Note that w ∈ L(B2) \ L(B1). Let X ∈ (QB)≤n be
the subset reached by σ on w, i.e. X = σ(w). Notice that since u /∈ L(A), we have
X ⊆ (Q2 \ {pI}), i.e. X ⊆ {p0, p1, . . . , pn}. Since |X| ≤ n, there is i ∈ [0, n] such that
pi /∈ X = σ(w). This means that p0 /∈ σ(wai), hence σ(wai) is not accepting. But this word
is in L(B) (as it is in L(B2)), this contradicts the fact that σ is a GFG strategy. Therefore it
must be the case that L(A) = Σ∗.

(⇐) We now assume that L(A) = Σ∗. A GFG strategy in Cn is given by following the
powerset construction in B1, and ignoring B2. This shows that width(B) ≤ n. J

This constitutes a polynomial reduction from universality to the width problem, so
the width problem is PSPACE-hard. Actually, we even showed that the particular case of
checking n-width of an automaton of size 2n+ 3 is PSPACE-hard. J

I Theorem 10. The width problem is in EXPTIME.

Proof. To show the EXPTIME upper bound, it suffices to build the game Gw(A, k) of
exponential size. Solving such a game is polynomial in the size of the game, so this algorithm
runs in exponential time. Also note that the algorithm given in section 3.4 computes the
width of a NFA in EXPTIME. J

We currently do not know if the width problem is complete for PSPACE or EXPTIME,
and we leave this problem open.

STACS 2018
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I Remark. Although the present section deals with finite words, all results are immediately
transferable to safety and reachability automata on infinite words. These automata have
special acceptance conditions, which are particular cases of both Büchi and coBüchi conditions.
Any infinite run is accepting in a safety automaton, and a run is accepting in a reachability
automaton if it contains an accepting state. These dual acceptance conditions are of particular
interest in verification, as they describe very natural properties.

4 CoBüchi Automata

We now turn to the case of coBüchi automata, and their determinisation problem. Here, since
GFG and DBP are no longer equivalent [2, 11], we will also be interested in building GFG
automata. As we will see, coBüchi automata are particularly well-suited for this approach
for several reasons.

First of all, we recall that NCW and DCW have same expressive power, i.e. the
determinisation of coBüchi automata does not need to introduce more complex acceptance
conditions.

4.1 Width of ω-automata
We define here the width of automata on infinite words in a general way, as the definition is
independent of the accepting condition.

Let A = (Q,Σ, q0,∆, α) be an automaton on infinite words with acceptance condition α,
and n = |Q| be the size of A.

As before, we want to define the width of a A as the minimum number of states that
need to be tracked in order to deterministically build an accepting run in an online way.

We will use the same family of games Gw(A, k) as in Section 3.1, they will only differ in
the winning condition.

The game Gw(A, k) is played on Q≤k, starts in X0 = {q0}, and the round i of the game
from a position Xi ∈ Q≤k is defined as follows:

Player 1 chooses a letter ai+1 ∈ Σ.
Player 0 moves to a subset Xi+1 ⊆ ∆(Xi, ai+1) of size at most k.

An infinite play is winning for Player 0 if whenever a1a2 · · · ∈ L(A), the sequence
X0X1X2 . . . contains an accepting run. That is to say there is a valid accepting run
q0q1q2 . . . of A on a1a2 . . . such that for all i ∈ N, qi ∈ Xi.

I Definition 11. The width of A, denoted width(A), is the least k such that Player 0 wins
Gw(A, k).

As before, an automaton A is GFG if and only if width(A) = 1.

4.2 GFG coBüchi automata
We recall here some results from [11] on GFG coBüchi automata.

The first result is the exponential succinctness of coBüchi GFG automata compared to
deterministic ones.

I Theorem 12 ([11]). There is a family of languages (Ln)n∈N such that for all n, Ln is
accepted by a coBüchi GFG automaton of size n, but any deterministic parity automaton for
Ln must have size in Ω

( 2n

n

)
.
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Despite this apparent complexity of GFG NCW, the next theorem shows that they can
be recognised efficiently.

I Theorem 13 ([11]). Given a NCW A, it is in PTIME to decide whether A is GFG.

The conjunction of these results make the coBüchi class particularly interesting in our
setting: the succinctness allows us to potentially save a lot of space compared to classical
determinisation, and Theorem 13 can be used to stop the incremental construction. This is
in the context where we aim at building a GFG automaton, for instance in a context where
we want to test for inclusion, or compose it with a game.

We examine later the case where GFG automata are not enough and we are aiming at
building a DCW instead.

4.3 Partial breakpoint construction
We generalize here the breakpoint construction from [16], in the same spirit as Section 3.2.

For a parameter k, we want the k-breakpoint construction to be able to keep track of at
most k states simultaneously.

Given a NCW A = (Q,Σ,∆, q0, F ), we define the k-breakpoint construction of A as the
NCW Ak = (Q′,Σ,∆′, ({q0}, {q0}), F ′), with

Q′ = {(X,Y )|X,Y ∈ Q≤k and Y ⊆ X},

∆′((X,Y ), a) :=


{(∆(X, a),∆(X, a))} if Y = ∅ and |∆(X, a)| ≤ k
{(X ′, X ′)| X ′ ⊆ ∆(X, a), |X ′| = k} if Y = ∅ and |∆(X, a)| > k

{(∆(X, a),∆(Y, a) ∩ F )} if Y 6= ∅ and |∆(X, a)| ≤ k
{(X ′, X ′ ∩ (∆(Y, a) ∩ F )) | X ′ ⊆ ∆(X, a), |X ′| = k} otherwise

F ′ := {(X,Y ) ∈ Q′ | Y 6= ∅}
That is, a run is accepting in Ak if it visits the states of the form (X, ∅) finitely many

times.

I Lemma 14. The number of states of Ak is at most
∑k

i=0
(

n
i

)
2i, which is in O

( (2n)k

k!
)
.

Proof. A state of Ak is of the form (X,Y ) with |X| ≤ k and Y ⊆ X. Therefore, there are
at most

∑k
i=0
(

n
i

)
2i such states. Since

(
n
i

)
≤ ni

i! , we can bound the number of states by∑k
i=0

nk

k! 2i ≤ nk

k! 2k+1 = O
( (2n)k

k!
)

J

I Lemma 15. L(A) = L(Ak), and width(A) ≤ k ⇐⇒ Ak is GFG.

Proof. This amounts to verifying that the automaton Ak faithfully simulates the winning
condition of Gw(A, k). The proof naturally follows from the correctness proof of the breakpoint
construction.

J

4.4 Incremental construction of GFG NCW
Supppose we are given a NCW A, and we want to build an equivalent GFG automaton.

We can do the same as in Section 3.4: incrementally increase k and test for GFGness of
Ak, which is in PTIME by Theorem 13. However in the coBüchi setting, the GFG automaton
is not necessarily DBP, and can actually be more succinct than any deterministic automaton
for the language (Theorem 12).
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If we are in a context where we are satisfied with a GFG automaton, such as synthesis or
inclusion testing, this procedure can provide us one much more efficiently than determinisation.

Indeed, the example from [11] showing that GFG NCW are exponentially succinct
compared to deterministic automata can be easily generalized to any width. For instance
if our procedure is applied to the product of this automaton from [11] with the one from
Example 7, our construction will stop at the second step and generate a GFG automaton of
quadratic size. This shows that the incremental construction for finding an equivalent GFG
NCW can be very efficient compared to determinisation.

Directly computing the width of a NCW is PSPACE-hard and in EXPTIME, by the
same arguments as in Section 3.1.

4.5 Aiming for determinism
In cases where a GFG automaton is not enough, and we want instead to build a DCW,
we can test for DBPness instead of GFGness in the incremental algorithm. If we find the
automaton is DBP, we can remove the useless transitions, and obtain an equivalent DCW.

Notice that the number of steps in this procedure corresponds to an alternative notion of
width that can be called det-width. The det-width of an automaton A is the least k such that
Player 0 has a positional winning strategy in Gw(A, k). Det-width always matches width on
finite words by Theorem 6, but the notions diverge on infinite words.

This section studies the complexity of checking DBPness for NCW. The next theorem
shows that surprisingly, DBPness is harder to check than GFGness on NCW.

I Theorem 16. Given a NCW A, it is NP-complete to check whether it is DBP.

We first show the hardness with the following lemma.

I Lemma 17. Checking whether a NCW is DBP is NP-hard.

Proof. We prove this by reduction from the Hamiltonian Cycle problem on a directed graph,
which is known to be NP-complete.

Recall that a Hamiltonian cycle is a cycle using each vertex of the graph exactly once.
Suppose, we have a directed graph G = ([1, n], E) and we want to check whether it

contains a Hamiltonian cycle. W.l.o.g. we can assume that the graph is strongly connected,
otherwise the answer is trivially no.

We construct a NCW A = (Q,Σ,∆, q0, F ), where F is the set of accepting states, such
that A is DBP if and only if G has a Hamiltonian cycle. The components of A are defined
as follows: Q :=

⋃
i∈[1,n]{pi, qi, ri}, Σ := {a1, a2, · · · , an,#}, q0 := p1, F :=

⋃
i∈[1,n]{pi, qi},

and finally ∆ contains the following transitions, for all i ∈ [1, n]:

pi
ai−→ qi, pi

aj−→ ri for all j 6= i, qi
#−→ pi, and ri

#−→ pk if (i, k) ∈ E .

The only non-determinism in A occurs at the ri states when reading #: we then have a
choice between all the pk where (i, k) ∈ E.

We give an example for G in figure 3, where solid lines show the Hamiltonian cycle, and
the construction of A from G in figure 4, where solid lines show a determinisation by pruning
witnessing this Hamiltonian cycle.

For each i ∈ [1, n], we can think of the set of states {pi, qi, ri} as a cloud in A representing
the vertex i of the graph G.

Let Σ′ := Σ \ {#}, and L =
n⋃

i=1
(Σ′#)∗(ai#)ω. First note that, provided G is strongly

connected, we have L(A) = L. Indeed, for a run to be accepting by A, it has to visit ri
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Figure 3 An instance of G.
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Figure 4 Construction of NCW A from G of figure 3.

finitely many times for all i, i.e. after some point it has to loop between pi and qi for some
fixed i, so the input word must be in L. This shows L(A) ⊆ L. On the other hand, consider
a word w ∈ L of the form u(ai#)ω with u ∈ (Σ′#)∗. Then A will have a run on u reaching
some cloud j, and since the graph is strongly connected, the run can be extended to the
cloud i reading a word of (ai#)∗. From there, the automaton will read (ai#)ω while looping
between pi and qi. We can build an accepting run of A on any word w ∈ L, so L ⊆ L(A).

Now we shall prove that A is DBP if and only if G has a Hamiltonian cycle.
(⇒) Suppose A is DBP, and let D be an equivalent DCW obtained from A by removing

transitions. Notice that this corresponds to choosing one out-edge for each vertex of G.
This means it induces a set of disjoint cycles in G. We show that it actually is a unique
Hamiltonian cycle. Indeed, assume that some vertex of i is not reachable from 1 in G.
Equivalently, it means that some cloud i is not reachable from p1 in D. This implies that
(ai#)ω /∈ L(D), which contradicts L(D) = L(A) = L. Therefore, D is strongly connected,
and describes a Hamiltonian cycle in G.

(⇐) Conversely, if G has an Hamiltonian cycle π , we can build the automaton D
accordingly, by setting for all i ∈ [1, n], ∆D(ri, ]) = {pj} where j is the successor of i in π.
Since D is strongly connected, it still recognises L, and since it is deterministic it is a witness
that A is DBP.

STACS 2018
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This completes the proof of the fact that A is DBP if and only if G has a Hamiltonian
cycle. Since this is a polynomial time reduction from Hamiltonian Cycle to DBPness of
NCW, we showed that checking DBPness of a NCW is NP-hard.

Note that we used n+ 1 letters here, but it is straightfoward to re-encode this reduction
using only two letters. Therefore, the problem is NP-hard even on a two-letters alphabet. It
is trivially in PTIME on a one-letter alphabet, as there is a unique infinite word. J

The second part of Theorem 16 is given by the following lemma.

I Lemma 18. Checking whether a NCW is DBP is in NP.

Proof. Suppose a NCW A is given. We want to check whether it is DBP. We do this via the
following NP algorithm.

Nondeterministically prune transitions of A to get a deterministic automaton D.
Check whether L(A) ⊆ L(D). For that, we check if L(A) ∩ L(D) = ∅

The second step of the algorithm can be done polynomially, since it amounts to finding an
accepting lasso in A×D, where D is a Büchi automaton obtained by dualizing the acceptance
condition of D. Finding such a lasso is actually in NL.

Therefore, the above algorithm is in NP, and its correctness follows from the fact that
L(D) ⊆ L(A) is always true, as any run of D is in particular a run of A.

J

4.6 Towards Büchi automata
NBW corresponds to the general case of non-deterministic ω-automata, as they allow to
recognise any regular language, and are easily computable from non-deterministic automata
with stronger accepting conditions.

We will briefly describe the generalisation of previous constructions here, and explain what
is the main open problem remaining to solve in order to obtain a satisfying generalisation. We
take Safra’s construction [17] as the canonical determinisation for Büchi automata. Safra’s
construction outputs a Rabin automaton.

The idea behind the previous partial determinisation construction can be naturally
adapted to Safra: it suffices to restrict the image of the Safra tree labellings to sets of states
of size at most k. The bottleneck of the incremental determinisation is then to test for
GFGness (or DBPness) of Rabin automata. For DBPness, the same proof as Theorem 16
shows that it is NP-complete. However for GFGness, the complexity is widely open. The
only known hardness result is the complexity of solving the games with same acceptance
condition [11], known to be in QuasiP for parity [4] and NP-complete for Rabin [7]. In both
cases, it is in P if the acceptance condition is fixed. On the other hand, the best known
upper bound for GFGness is EXPTIME [11], even for fixed condition, say parity with 3
ranks. Finding an efficient algorithm for GFGness of Rabin (or Parity) automata would be
of great interest for this incremental procedure, and would allow to efficiently build GFG
automata from NBW.
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