
Computing the Longest Common Prefix of a
Context-free Language in Polynomial Time
Michael Luttenberger
Technische Universität München, Germany
luttenbe@in.tum.de

Raphaela Palenta
Technische Universität München, Germany
palenta@in.tum.de

Helmut Seidl
Technische Universität München, Germany
seidl@in.tum.de

Abstract
We present two structural results concerning the longest common prefixes of non-empty languages.
First, we show that the longest common prefix of the language generated by a context-free
grammar of size N equals the longest common prefix of the same grammar where the heights of
the derivation trees are bounded by 4N . Second, we show that each non-empty language L has a
representative subset of at most three elements which behaves like L w.r.t. the longest common
prefix as well as w.r.t. longest common prefixes of L after unions or concatenations with arbitrary
other languages. From that, we conclude that the longest common prefix, and thus the longest
common suffix, of a context-free language can be computed in polynomial time.

2012 ACM Subject Classification Mathematics of computing → Combinatorics on words, The-
ory of computation → Algebraic language theory, Theory of computation → Grammars and
context-free languages

Keywords and phrases Longest Common Prefix, Context-free Languages, Combinatorics on
Words

Digital Object Identifier 10.4230/LIPIcs.STACS.2018.48

Related Version An extended version of this article is available at https://arxiv.org/abs/
1702.06698, [11].

1 Introduction

Let Σ denote an alphabet. On the set Σ∗ of all words over Σ, the prefix relation provides us
with a partial ordering v defined by u v v iff uu′ = v for some u′ ∈ Σ∗. The longest common
prefix (lcp for short) of a non-empty set L ⊆ Σ∗ then is given by the greatest lower boundd
L of L w.r.t. this ordering. For two words u, v ∈ Σ∗, we also denote this greatest lower

bound as u u v. Our goal is to compute the lcp when the language L is context-free, i.e.,
generated by a context-free grammar (CFG) — we therefore assume wlog. that Σ contains
at least two letters.

The computation of the lcp (sometimes also maximum common prefix) is well studied for
finite languages, in particular in the setting of string matching based on suffix arrays (e.g.,
[6]) where the string is given explicitly. Very often, strings can be efficiently compressed
using straight-line programs (SLPs) — essentially CFGs which produce exactly one word.
Interestingly, many of the standard string operations can still be done efficiently also on

© Michael Luttenberger, Raphaela Palenta, and Helmut Seidl;
licensed under Creative Commons License CC-BY

35th Symposium on Theoretical Aspects of Computer Science (STACS 2018).
Editors: Rolf Niedermeier and Brigitte Vallée; Article No. 48; pp. 48:1–48:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:luttenbe@in.tum.de
mailto:palenta@in.tum.de
mailto:seidl@in.tum.de
http://dx.doi.org/10.4230/LIPIcs.STACS.2018.48
https://arxiv.org/abs/1702.06698
https://arxiv.org/abs/1702.06698
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

48:2 The LCP of a CFL is in P

SLP-compressed strings (see, e.g., [10]). As the union of SLPs is a (acyclic) CFG, the question
of computing the lcp of a context-free language naturally arises. CFGs also represent a
popular formalism to specify sets of well-formed words. Assume that we are given a CFG for
the legal outputs of a program. This CFG might be derived from the specification as well as
from an abstract interpretation of the program. Then the lcp of this language represents a
prefix which can be output already, before the program actually has been run. This kind
of information is crucial for the construction of normal forms, e.g., of string producing
processors such as linear tree-to-string transducers [1, 8]. For these devices, the normal forms
have further interesting applications as they allow for simple algorithms to decide equivalence
[2] and enable efficient learning [9].

Obviously, the lcp of the context-free language L is a prefix of the shortest word in L.
Since the shortest word of a context-free language can be effectively computed, the lcp of L
is also effectively computable. The shortest word generated from a context-free grammar G,
however, may be of length exponential in the size of G. Therefore, it is an intriguing question
whether or not the lcp can be efficiently computed. Here, we show that the longest common
prefix can in fact be computed in polynomial time. As the words the algorithm computes
with may be of exponential length, we have to resort to compressed representations of long
words by means of SLPs [12]. We will rely on algorithms for basic computational problems
for SLPs as presented, e.g., in [10].

Our method of computing
d
L is based on two structural results. First we show in

Section 3 that it suffices to consider the finite sublanguage of L consisting of those words, for
which there is a derivation tree of height at most 4N — with N the number of nonterminals
for a CFG of L.1 This implies that (1) in the proof of our main result we can replace the
grammar by an acyclic context-free grammar, and (2) the actual fixpoint iteration to compute
the lcp will converge within at most 4N iterations. Second we show in Section 4 that for
every non-empty language L there is a subset L′ ⊆ L of at most three elements which is
equivalent to L w.r.t. the lcp after arbitrary concatenations with other words. This means
that for every word w, the language L′w has the same lcp as Lw.

We illustrate both results by examples. For the first result, i.e. the restriction to derivation
trees of bounded height, consider the language

L := {a2b(a2b)ia2b(a2ba)ia2ba2ba3 | i ∈ N0}

generated by the context-free grammar consisting of the following rules over the alphabet
Σ = {a, b, c} and the six nonterminals {S,X,A2, A1, X2, X1}:

S → X2A2bA2bA2a A2 → aA1 A1 → a X → A2b

X2 → aX1 X1 → abX X → X2A2ba

It is easy to check that here the lcp is already determined by repeating the derivation of
X to aabXaaba at most two times, which corresponds to the sublanguage consisting of all

1 To simplify the presentation we assume that the CFG is proper, i.e. we will rule out production rules of
the form A → B and A → ε (with A,B nonterminals and ε the empty word).

M. Luttenberger, R. Palenta, and H. Seidl 48:3

words which have a derivation tree of height at most 9.
d
L = aabaabaabaabaa a (i = 0)

u aabaabaabaabaa abaabaaa (i = 1)
u aabaabaabaabaa baaabaaabaabaaa (i = 2)
u aabaabaabaabaa baabaaabaaabaaabaabaaa (i = 3)
u aabaabaabaabaa b . . . (i ≥ 4)

= aabaabaabaabaa

We remark that the bound of 4N , i.e. 24 for this example, on the height resp. the number of
iterations needed to converge is a crude overapproximation based on the pigeon-hole principle
which does not take into account the structure of the grammar. The actual computation
of the lcp may thus terminate much earlier, in particular when taking the dependency of
nonterminals into account as done in Example 18.

In order to compute the lcp recursively, we call two languages L1, L2 ⊆ Σ∗ equivalent
w.r.t. the lcp if for all words w ∈ Σ∗ we have that

d
(L1w) =

d
(L2w). In Section 4 we

show that every language L can be reduced to a sublanguage L′ consisting of at most
three words so that L and L′ are equivalent w.r.t. the lcp . In fact, this result can be
motivated by considering the special case of a language of the form L = {u, uv1} (with
u, v1 ∈ Σ∗) where we have

d
(Lw) = u(w u vω

1) for any w ∈ Σ∗ (see also Section 4). From
this observation one immediately obtains that for finite languages L′ = {uv1, uv2, . . . , uvk}
we have

d
(L′w) = u(w u vω

1 u vω
2 u . . . u vω

k) and that one only needs to keep those two
uvi, uvj for which vω

i u vω
j is minimal. The result then extends to arbitrary languages.

E.g., in case of the language L = a(ba)∗ we only need the sublanguage {a, aba} (with
εω u (ba)ω := (ba)ω) as the words a and aba suffice to characterize both

d
L = a and the

period ba that generates all suffices. For comparison, in case of L = abab+ aba(ba)∗ the lcp
is aba, which can only be extended to at most abab = aba(bω u (ba)ω). We therefore need
to remember {aba, abab, ababa}: the sublanguages {aba, abab} resp. {aba, ababa} preserved
L = aba but can be extended by bω resp. (ba)ω; whereas {abab, ababa} only captures the

maximal extension of
d
L, but does not preserve

d
L itself.

In order to compute the lcp of a given context-free language L we then (implicitly) unfold
the given context-free grammar into an acyclic grammar, and compute for every nonterminal
of the unfolded grammar an equivalent sublanguage of at most three words, each compressed
by means of a SLP, instead of the actual language. From this finite representation of L we
then can easily obtain its lcp. Altogether, we arrive at a polynomial time algorithm.

Missing proofs can be found in the extended version of this article available on arxiv [11].

2 Preliminaries

Σ denotes a (finite) alphabet. We assume that Σ contains at least two letters as any context-
free language over a unary alphabet is regular. Σ∗ is the set of all finite words over Σ with ε
the empty word, Σω the set of all (countably) infinite words over Σ. We use (ω-)rational
expressions to denote words and languages, e.g. w∗ = ε + w + ww + . . . =

∑
i∈N0

wi and
wω = wwwwwwwwwww

By CΣ = {(u, v) ∈ Σ∗ × Σ∗} we denote the set of all pairs of finite words over Σ. We
define a multiplication on CΣ by (x, x̄)(y, ȳ) := (xy, ȳx̄). For (x, x̄) ∈ CΣ and w ∈ Σ∗ set
(x, x̄)w = xwx̄. As in the case of words, we set (x, x̄)0 := (ε, ε), (x, x̄)k+1 := (x, x̄)(x, x̄)k

and (x, x̄)∗ :=
∑

k≥0(x, x̄)k for all x, x̄ ∈ Σ∗ and k ∈ N0.
Note that we slightly deviate from standard notation when it comes to the prefix order

(i.e. u < w) and the common prefix (i.e. u ∧ v) of two words in order to avoid the clash with

STACS 2018

https://arxiv.org/abs/1702.06698

48:4 The LCP of a CFL is in P

the notation for conjunction (∧): For u, v ∈ Σ∗ we write u v v (u @ v) to denote that u
is a (strict) prefix of v, i.e. v = uw for some w ∈ Σ∗ (w ∈ Σ+). For L ⊆ Σ∗ (with L 6= ∅)
its longest common prefix (lcp)

d
L is given by the greatest lower bound of L w.r.t. this

ordering. We simply write u u v for
d
{u, v}. Note that for any word w ∈ L there is at

least one word α ∈ L s.t.
d
L = w u α; we call any such α a witness (w.r.t. w). Note that

u is commutative and associative; concatenation distributes from the left over the lcp (i.e.
u(v u w) = uv u uw); and the lcp is monotonically decreasing on the union of languages, i.e.d

(L ∪ L′) = (
d
L) u (

d
L′). The lcp of infinite words is defined analogously.

A word p ∈ Σ∗ is called a power of a word q if p ∈ q∗; then q is called a root of p; if p 6= ε

is its own shortest root, p it is called primitive. Two words u, v are conjugates if the is a
factorization u = pq and v = qp. We recall two well-known results:

I Lemma 1 (Commutative Words, [3]). Let u, v ∈ Σ∗ be two words. If uv = vu, then u, v ∈ p∗
for some primitive p ∈ Σ∗.

I Lemma 2 (Periodicity Lemma of Fine and Wilf, [5]). Let u, v ∈ Σ+ be two non-empty words.
If |uω u vω| ≥ |u|+ |v| − gcd(|u| , |v|), then uv = vu.

Combining these two lemmata yields the following result which is a useful tool in the
proofs to follow (see also lemma 3.1 in [3] for a more general version of this result):

I Corollary 3. Let u, v ∈ Σ∗ with uv 6= vu.
Then uω u vω = uv u vu with |uv u vu| < |u|+ |v| − gcd(|u| , |v|).

Proof. Since the bound of the size of |uv u vu| follows from Lemma 2 we only have to show
that uvuvu = uωuvω. If |u| = |v|, then uv 6= vu implies u 6= v and uvuvu = uuv = uωuvω.

W.l.o.g. we assume that |u| < |v|. As uv 6= vu, we have ε 6= u. Let v u uω = uku′ @ uk+1

with v = uku′v′ and u = u′u′′. It follows that uv u vu = uuku′v′ u uku′v′u = uk(uu′v′ u
u′v′u) = uku′(u′′u′v′ u v′u′u′′).

If v′ 6= ε, we have u′′u′v′uv′u′u′′ = u′′uv′ = ε, and thus uvuvu = uku′ = vuuω = vωuuω.
So assume v′ = ε, i.e. v @ uω with k > 0 as |u| < |v|. As uv = uku′u′′u′ 6= uku′u′u′′ = vu,

also u′u′′ 6= u′′u′. Hence uv u vu = uku′(u′′u′ u u′u′′) = uk+1u u vv = uω u vω, which
concludes the proof. J

Here is a short example for the last corollary:

I Example 4. Let u = aab, v = aaba = ua. Then uvuvu = aabaabauaabaaab = aabaa = va

and uω uvω = aabaabaabuω uaabaaabavω = aabaa with |aabaa| = |u|+ |v|−gcd(|u| , |v|)−1.
I.e. the bound is sharp. Note that this example also shows, that even if uv 6= vu and
ε 6= u @ v, we still can have v @ uv u vu.

We briefly discuss properties of the lcp for very simple regular languages. These will be used
several times in the proofs of Section 3 in order to bound the height of the derivation trees
we need to consider:

I Lemma 5. Let y 6= ε, then w u yw = w u yiw =
d
y∗w = w u yω for all i > 0.

Proof. Let w u yω = yky′ @ yk+1 with w = yky′w′. Then for any i > 0 we have w u yiw =
wuyk+iy′w′ = wuyω where the last equality holds as i > 0 and wuyk+1 = wuyω @ yk+1. J

I Lemma 6. If w 6v yw, then
d
y∗w = w u yiw @ w for all i > 0.

Proof. Since w 6v yw, we have w 6= ε and y 6= ε. By Lemma 5 we thus have
d
y∗w = wuyiw

for any i > 0, in particular for i = 1. Define w = yky′w′ as in Lemma 5. As w 6v yw, we
have w′ 6= ε and thus w u yw = yky′ @ w. J

M. Luttenberger, R. Palenta, and H. Seidl 48:5

We assume that the reader is familiar with context-free grammars (CFGs). We briefly
introduce the notation we use for CFGs in the following. A context-free grammar G is given
by a tuple G = (Σ, V, P, S) where Σ is the alphabet of terminals, V is the set of nonterminals
(also: variables), P ⊆ V × (V ∪Σ)∗ is the set of production rules where a rule p = (A, γ) ∈ P
is also written as A → γ, and S the axiom. The language generated by G is denoted by
L(G). G is proper if A→ ε 6∈ P and A→ B 6∈ P for all A,B ∈ V ; G is in Chomsky normal
form (CNF) if all rules are of the form A→ a ∈ V × Σ or A→ BC ∈ V → V V . For every
CFG G a proper CFG resp. a CFG in CNF G′ can be constructed in time polynomial in the
size of G such that L(G) \ {ε} = L(G′) [7]. As ε

?
∈ L(G) is decidable in time polynomial in

the size of G, and trivially
d
L = ε if ε ∈ L, we will assume that ε 6∈ L(G) and that G is

proper from here on. For some proofs we assume in fact that G is in CNF but only in order
to simplify notation.

3 LCP of a context-free language

Our main result in this section, Theorem 10, is that for every context-free language L = L(G)
generated by the given CFG G its lcp

d
L is equal to the lcp of its finite sublanguage L′

which contains only the words w ∈ L which possess a derivation tree w.r.t. G whose height
(considering only nonterminals) is at most four times the number of nonterminals of G. For
the main result we require the following technical theorem (see the following example).
I Theorem 7. Let L = (x, x̄)[(y1, ȳ1) + . . .+ (yl, ȳl)]∗w for (x, x̄), (y1, ȳ1), . . . , (yl, ȳl) ∈ CΣ
and w ∈ Σ∗. Then:

l
L =

l
(x, x̄)[(y1, ȳ1)≤2 + . . .+ (yk, ȳl)≤2]w

Furthermore, if
d
L = xwx̄uxy2wȳ2x̄ @ xwx̄uxywȳx̄ for some (y, ȳ) ∈ {(y1, ȳ1), . . . , (yl, ȳl)},

then w.r.t. this y there exists some primitive q ∈ Σ∗ and some k > 0 such that

yw = wqk ∧ qȳ 6= ȳq ∧
l
L = xwx̄ u xywqȳx̄ ∧ xwqk(ȳ u qω) v

l
L @ xwqk+1(ȳ u qω)

The proof of the main theorem of this section, Theorem 10, crucially depends on the
observation that in the case

d
L @ xwx̄ u xywȳx̄, all the words yi are powers of the same

primitive word p with pw = wq and all that is needed to obtain a witness is one additional
power of p resp. its conjugate q (with pw = wq) to which Theorem 7 refers to. We give an
example in order to clarify the statement of Theorem 7 in the case of l = 2 ∧ y1y2 = y2y1
which is central to Theorem 10:
I Example 8. We write (y, ȳ) for (y1, ȳ1) and (z, z̄) for (y2, ȳ2), respectively. Let (x, x̄) =
(ε, ababaaa) = (ε, qqaaa), (y, ȳ) = (ab, abaab) = (q, qaab), (z, z̄) = (ab, abaac) = (q, qaac),
and w = ε with q = ab = y = z. We then have:

xwx̄ = ababaaa

xywȳx̄ = ababaabababaaa

xzwz̄x̄ = ababaacababaaa

xyywȳȳȳx̄ = abababaababaabababaaa

xyzwz̄ȳx̄ = abababaacabaabababaaa

xzywȳz̄x̄ = abababaababaacababaaa

xzzwz̄z̄x̄ = abababaacabaacababaaa

x(y + z)≥3 . . . = ababab . . .

xywqȳx̄ = abababaabababaaa

xzwqz̄x̄ = abababaacababaaad
L = ababa

STACS 2018

48:6 The LCP of a CFL is in P

So in this example, any word except for xywȳx̄ and xzwz̄x̄ is a witness for the lcp w.r.t.
xwx̄. W.r.t. the proof of Theorem 10 it is important that also in general we can pick a
witness which either is derived using only (y, ȳ) or (z, z̄) but not both, and that we need to
use (y, ȳ) resp. (z, z̄) at most twice in order to get one additional copy of the conjugate q of
the primitive root of both y and z.

To give an impression of the proof of Theorem 7 we show the case l = 1. The complete proof
of Theorem 7 can be found in the appendix of [11].

I Lemma 9. Let L = (x, x̄)(y, ȳ)∗w. Then:
d
L =

d
(x, x̄)(y, ȳ)≤2w.

If
d
L @ xwx̄ u xywȳx̄, then there is some primitive q and some k > 0 s.t.

yw = wqk ∧ qȳ 6= ȳq ∧
l
L = xwx̄ u xywqȳx̄ ∧ xwqk(ȳ u qω) v

l
L @ xwqk+1(ȳ u qω)

Proof. Recall that for any z ∈ L there is some witness z′ ∈ L s.t.
d
L = zuz′. Our main goal

is to show that w.r.t. xwx̄ we find a witness within {xyiwȳix̄ | i = 0, 1, 2}. What makes the
proof technically more involved is that for Theorem 10 we need a stronger characterization
of the case when xyywȳȳx̄ is the only witness in this set.

If y = ε ∨ ȳ = ε, then L is actually regular and Lemma 5 already tells us that xywȳx̄
is a witness (w.r.t. xwx̄). So wlog. y 6= ε 6= ȳ. If w 6v yw, then

d
y∗w = w u yw @ w by

Lemma 6 and thus
d
L = x(w u yw), i.e. xywȳx̄ is again a witness.

From now on we assume that w v yw. Then there is some conjugate µ of y defined by
wµ = yw, and xw is a prefix of

d
L as xyiwȳix̄ = xwµiȳix̄. Wlog. we therefore assume

xw = ε from now on so that L becomes {yiȳix̄ | i ∈ N0}.
Let q be the primitive root of y s.t. y = qk for a suitable k > 0 (as y 6= ε). By choosing

j > |x̄| / |y| we obtain
d
L v x̄u yj ȳj x̄ = x̄u qkj @ qω, i.e.

d
L @ qω. We therefore factorize

x̄ and ȳ w.r.t. qω: Let x̄ = qnq′x̄′ with x̄ u qω = qnq′ @ qn+1; and let ȳ = qk′
q̂ȳ′ with

ȳ u qω = qk′
q̂ @ qk′+1. The words of L have thus the form yiȳix̄ = qik

(
qk′
q̂ȳ′
)i

qnq′x̄′.
If q (resp. y) and ȳ commute, then ȳ = qk′ by Lemma 1 (as q is primitive) for some

suitable k′ ∈ N. Then L = (yȳ)∗x̄ = (qk+k′)∗qnq′x̄′ with
d
L = qnq′, and yȳx̄ is again a

witness w.r.t. x̄. We thus also assume qȳ 6= ȳq from here on.
If qnq′ v qk+k′

q̂, then
d
L v qnq′ and qyȳx̄ is a witness w.r.t. x̄: by choice of n we

have x̄ u qω = x̄ u qn+1, by qnq′ v qk+k′
q̂ we also have qn+1 v qk+k′+1; from this we obtain

x̄ u qyȳx̄ = x̄ u qk+k′+1q̂x̄ = x̄ u qn+1 = qnq′. Thus, also yyȳȳx̄ is a witness w.r.t x̄. Assume
now that qk+k′

q̂ @ qnq′ and thus qk+k′
q̂ v

d
L. If

d
L = qk+k′

q̂, then x̄ u yȳx̄ = qk+k′
q̂

has to hold, i.e. yȳx̄ has to be a witness. Thus assume qk+k′
q̂ @

d
L. If ȳ′ 6= ε, then, as

qk+k′
q̂ @ qnq′, we have that qnq′ u qk+k′

q̂ȳ′ = qk+k′
q̂ so that yȳx̄ is again a witness. Hence

assume ȳ′ = ε resp. ȳ = qk′
q̂ for the remaining. As q and ȳ do not commute, also q and q̂ do

not commute implying qq̂ @ q̂ q @ qq̂. Thus

qk+k′
q̂ @

d
L v yȳx̄ u yyȳȳx̄ = qk+k′(q̂qnq′x̄′ u qkq̂ȳx̄)

n≥k>0∧q̂@q= qk+k′(q̂q u qq̂) @ qk+k′
qq̂

That is either yȳx̄ or yyȳȳx̄ has to be a witness w.r.t. x̄ as
d
L @ qω and as we can extend

qk+k′
q̂ by at most |q| − 1 symbols, i.e. we need at most one additional copy of q which is

again given by yywȳȳx̄ as k > 0. In particular, we have again that, if yyȳȳx̄ is a witness,
then so is qyȳx̄. J

Using Theorem 7, we now can show that we only need to consider a finite sublanguage of
L instead of L itself:

M. Luttenberger, R. Palenta, and H. Seidl 48:7

A

A

A

A

x y1 y2 y3 w ȳ3 ȳ2 ȳ1 x̄

bπ α′

Figure 1 Factorization of a witness α = (x, x̄)(y1, ȳ1)(y2, ȳ2)(y3, ȳ3)w = πbα′ w.r.t. a nonterminal
A occurring at least four times a long the dashed path in a derivation tree of α leading to a letter
either within the lcp π =

d
L or to the lcp-defining letter b (the leaf of the dotted path).

I Theorem 10. Let L = L(G) be given by a proper CFG G = (Σ, V, P, S). Let L̂ ⊆ L be the
finite language of all words of L for which there is a derivation tree w.r.t. G of height2 at
most 4N with N = |V |. Then:

d
L =

d
L̂.

Proof. Let N be the number of nonterminals of G. Let σ ∈ L be a shortest word, and α ∈ L
a shortest word with

d
L = σ u α. Set π :=

d
L.

We claim that there is at least one such α (for any fixed σ) that has an derivation tree
w.r.t. G of height less than 4N .If σ = α, we are done as σ has a derivation tree of height less
than N . So assume σ 6= α s.t. σ = πaσ′ and α = πbα′ with a 6= b and a, b ∈ Σ. Then fix any
derivation tree t of α w.r.t. G.

In fact, we will show the stronger claim that any path from the root of t to any letter of
πb has length at most 3N (i.e. all the paths leading to the separating letter b or a letter left
of it, see Figure 1); note that any path that leads to a letter right of b (i.e. into α′) has to
enter a subtree of height less than N as soon as it leaves the path leading to b because of the
minimality of α. Hence, if all the paths leading to b or a letter left of b have length less than
3N , the longest path in the derivation tree must have length at most 4N .

So assume for the sake of contradiction that there is a path leading to a letter within πb
that has at least length 3N i.e. consists of at least 3N + 1 nonterminals. Then there is one
nonterminal A that occurs at least four times leading to a factorization

α = (x, x̄)(y1, ȳ1)(y2, ȳ2)(y3, ȳ3)w

Note that xx̄ 6= ε, yiȳi 6= ε (i = 1, 2, 3), and w 6= ε as G is proper. As this path ends at b
or left of it, we have xy1y2y3 v π. With (x, x̄)(yi, ȳi)(yj , ȳj)w ∈ L for any i, j ∈ {1, 2, 3} we
thus obtain that xyiyj v π and xyjyi v π and thus yiyj = yjyi for all i, j ∈ {1, 2, 3}. So
yi = pki for the same primitive p using Lemma 1.

Let L′ = (x, x̄)[(y1, ȳ1) + (y2, ȳ2) + (y3, ȳ3)]∗w so that {xwx̄, α} ⊆ L′. By construction
L′ ⊆ L and thus

d
L v

d
L′ v xwx̄ u α. As xwx̄ is shorter than α, it cannot be a witness,

so πa v xwx̄ and π = xwx̄ u α. Hence
l
L = σ u α = π = xwx̄ u α w

l
L′ w

l
L i.e.

l
L =

l
L′

2 We measure the height of a derivation tree only w.r.t. nonterminals along a path from the root to a leaf.

STACS 2018

48:8 The LCP of a CFL is in P

It therefore suffices to consider L′ in the following; in particular, α has to be a witness
w.r.t. xwx̄ of minimal length, too. (From here on, witness will always be w.r.t. xwx̄.) By
virtue of Theorem 7 we have

d
L′ =

d
(x, x̄)[(y1, ȳ1)≤2 + (y2, ȳ2)≤2 + (y3, ȳ3)≤2]w. Note thatd

L′ @ xwx̄ u xyiwȳix̄ for any i = 1, 2, 3 as |xyiwȳix̄| < |α| and thus xyiwȳix̄ cannot be a
witness by minimality of α. So for some I ∈ {1, 2, 3}

l
L′ = xwx̄ u xyIyIwȳI ȳI x̄ v α

i.e. xyIyIwȳI ȳI x̄ has to be also a witness. Set (y, ȳ) := (yI , ȳI) and L′′ = (x, x̄)(y, ȳ)∗w so
that L′′ ⊆ L′ ⊆ L and

d
L =

d
L′ =

d
L′′ as

xwx̄ u xyywȳȳx̄ =
l
L v

l
L′ v

l
L′′ v xwx̄ u xyywȳȳx̄ @ xywȳx̄

As xywȳx̄ is not a witness, Theorem 7 tells us that there is some q satisfying

yw = wqk∧qȳ 6= ȳq∧
l
L =

l
L′′ = xwx̄uxywqȳx̄∧xwqk(ȳuqω) v

l
L @ xwqk+1(ȳuqω)

From this, we obtain: 1. As we already know that yi = pki (as they commute), it follows
that p and q are conjugates with pw = qw s.t. yiw = wqki . 2. As xwqk v

d
L @ xwqω, we

find some m ≥ 0 and q̇ @ q s.t. π =
d
L = xwqkqmq̇ and, thus, πa = xwqkqmq̇a v xwx̄

and πb = xwqkqmq̇b v xyywȳȳx̄. (Here, b might change, yet it cannot become a as
xyywȳȳx̄ is a witness.) Additionally, from π = xwx̄u xyywȳȳx̄ @ xwqk+1(ȳ u qω) we obtain
πc v xwqk+1(ȳu qω), i.e. qmq̇c v qȳu qω @ qω and thus q̇c v q. Hence, any word with prefix
xwqk+1(ȳ u qω) is a witness.

If there was at least one j ∈ {1, 2, 3} \ {I} with kj > 0 s.t. yj = pkj 6= ε, then
(x, x̄)(yj , ȳj)(y, ȳ)w would be a witness shorter than α as yj would give us at least one copy
of q:

(x, x̄)(yj , ȳj)(y, ȳ)w = xyjywȳȳj x̄

w xwqk+kj ȳ (as yw = wqk and yjw = wqkj)
w xwqk+kj (ȳ u qω)
w xwqk+1(ȳ u qω) (as kj > 0 and qk+1(ȳ u qω) @ qω)

So for all remaining j ∈ {1, 2, 3} \ {I} we have yj = ε and thus ȳj 6= ε as G is proper and
thus yj ȳj 6= ε. By Lemma 5

d
xwȳ∗j x̄ = xwx̄u xwȳj x̄, hence πa v xwȳ∗j x̄, i.e. qk+mq̇a v ȳω

j .
If qmq̇b v ȳj for some j ∈ {1, 2, 3} \ {I} (recall q̇b v q), then as a 6= b

xwx̄ u (x, x̄)(y, ȳ)(yj , ȳj)w
(as yj = ε)

= xw(x̄ u qkȳj ȳx̄) = xw(qk+mq̇a u qk+mq̇b) = π

i.e. xyyjwȳj ȳx̄ would be a shorter witness than α. Hence ȳj v qmq̇ @ qk+mq̇a for both
j ∈ {1, 2, 3} \ {I}. Thus:∣∣qω u ȳω

j

∣∣ ≥ ∣∣qk+mq̇
∣∣ ≥ |q|+ |qmq̇| > |q|+ |ȳj | − gcd(|q| , |ȳj |)

By the periodicity lemma of Fine and Wilf (Lemma 2) this implies ȳj = qk′
j for some k′j > 0

(as q primitive), and, subsequently as the final contradiction, that xyIyjwȳj ȳI x̄ would be a
shorter witness. J

4 Small Equivalent Subsets of Languages

In this section we formally introduce a notion of equivalence of languages w.r.t. longest
common prefixes. The first main result of this section is that every non-empty language has

M. Luttenberger, R. Palenta, and H. Seidl 48:9

an equivalent subset consisting of at most three elements. In case of acyclic context-free
languages, such a subset can be computed in polynomial time. In combination with Theorem
10, we can lift the restriction on acyclicity. This enables us to ultimately conclude that the
longest common prefix of a context-free language can be computed in polynomial time.

I Definition 11. Two languages L,L′ are equivalent w.r.t the lcp (short: L ≡ L′) iffd
(Lw) =

d
(L′w) for all words w ∈ Σ∗.

We observe that L is equivalent to L′ w.r.t. the lcp also after union or concatenation
from the left or right with arbitrary other languages. Formally, this amounts to the following
properties:

I Lemma 12. For all non-empty languages L,L′, L̂ with L ≡ L′ we have:
1.

d
(LL̂) =

d
(L′L̂)

2.
d

(L̂L) =
d

(L̂L′)
3.

d
(L ∪ L̂) =

d
(L′ ∪ L̂)

Proof. The argument is as follows:
1.

d
(LL̂) =

d
w∈L̂(

d
(Lw)) =

d
w∈L̂(

d
(L′w)) =

d
(L′L̂);

2.
d

(L̂L) =
d

(L̂(
d
L)) =

d
(L̂(

d
L′)) =

d
(L̂L′);

3.
d

(L ∪ L̂) =
d
L u

d
L̂ =

d
L′ u

d
L̂ =

d
(L′ ∪ L̂). J

The next lemma gives us an explicit formula for
d

(Lw) for the special case of the
two-element language L = {u, uv}.

I Lemma 13. Assume that u, v ∈ Σ∗ with v 6= ε. For all words w ∈ Σ∗,
d

({u, uv}w) =
u(w u vω) holds.

Proof.
d

({u, uv}w) = uw u uvw. If w and v are incomparable or w is a prefix of v,
w u vw = w u v = w u vω, and the claim follows. Thus, it remains to consider the case
that v v w. Then w = viw′ for some i so that v is no longer a prefix of w′. Thend

({u, uv}w) =
d

({u, uv}viw′) = uvi(w′ u vw′) = uvi(w′ u vω) = u(w u vω). J

The explicit formula from Lemma 13 can be used to identify small equivalent sublanguages.

I Theorem 14. For every non-empty language L ⊆ Σ∗ there is a language L′ ⊆ L consisting
of at most three words such that L ≡ L′.

Proof. If L is a singleton language, we choose L′ = L. So assume that L contains at least
two words with lcp u. If the lcp u of L is not contained in L then we choose L′ as consisting
of the two minimal words w1, w2 so that u = w1 u w2. It remains to consider the case where
the lcp u of L is contained in L. Then we have for each word w ∈ Σ∗,

d
(Lw) =

d
({uv | uv ∈ L}w)

=
d
{
d

({u, uv}w) | uv ∈ L, v 6= ε}
=

d
{u(w u vω) | uv ∈ L, v 6= ε} (Lemma 13)

= u(w u
d
{vω | uv ∈ L, v 6= ε})

(1)

If L is ultimately periodic, then all words in L are of the form uvi
0 for some v0 ∈ Σ+ and

i ≥ 0, and (vi
0)ω = vω

0 . Thus,
d

(Lw) = u(w u vω) for any uv ∈ L with v 6= ε. Hence,
L ≡ L′ = {u, uv} for any such v.

STACS 2018

48:10 The LCP of a CFL is in P

If L is not ultimately periodic, then we choose words uv1, uv2 ∈ L so that the lcp of vω
1

and vω
2 has minimal length. Then

d
({u, uv1, uv2}w) = u(w u vω

1 u vω
2)

= u(w u
d
{vω | uv ∈ L, v 6= ε})

by the minimality of vω
1 u v2ω. Therefore, L ≡ L′ = {u, uv1, uv2}. J

Since for any non-empty words w1, w2 given by SLPs, an SLP for wω
1 uwω

2 = w1w2uw2w1
(if w1 6= w2) can be computed in polynomial time3, we have:

I Corollary 15. For every non-empty finite L ⊆ Σ∗ consisting of words each of which is
represented by an SLP, a subset L′ ⊆ L consisting of at most three words can be calculated
in polynomial time such that L ≡ L′.

Proof. The proof distinguishes the same cases as in the proof of Theorem 14 and relies
on polynomial algorithms on SLPs [10]. If L contains at most three words we are done.
Since the words in L are given as SLPs, we can calculate (a SLP for) the lcp u of the words
in L. Next, we determine whether u is in L. This can again be checked in polynomial
time. If this is not the case, then we can select two words w1, w2 ∈ L so that u = w1 u w2
giving us L′ = {w1, w2} in polynomial time. So, now assume that u is in L. Next, we
check whether or not L is ultimately periodic, i.e., whether for any non-empty words v1, v2
with uv1, uv2 ∈ L, vω

1 = vω
2 . By Lemma 2 this is the case iff v1v2 = v2v1. The latter can

be checked in polynomial time as concatenation and equality of SLPs can be calculated in
polynomial time. If this is the case, then we obtain L′ = {u, uv} for some uv ∈ L with v 6= ε

in polynomial time.
It remains to consider the case where the lcp u is contained in L and L is not ultimately

periodic. Then we need to determine words uv1 and uv2 in L with v1 6= ε 6= v2 such that
vω

1 u vω
2 has minimal length. Since vω

1 u vω
2 = v1v2 u v2v1 (see Corollary 3), such a pair can

be computed in polynomial time as well. Therefore, L′ = {u, uv1, uv2} can be computed in
polynomial time. J

The following lemma explains that equivalence of two non-empty languages of cardinalities
at most 3 can be decided in polynomial time.

I Lemma 16. Let L1, L2 ⊆ Σ∗ denote non-empty languages consisting of at most three
words each, which are all given by SLPs. Then L1

?≡ L2 can be decided in polynomial time.

Proof. If one of the two languages contains just a single word, then L1 ≡ L2 iff L1 = L2 —
which can be decided in polynomial time. Otherwise, we first compute

d
L1 and

d
L2. If

these differ, then by definition L1 cannot be equivalent to L2. Therefore assume now that
u =

d
L1 =

d
L2 is the common lcp .

Obviously, Li and Li ∪ {u} are equivalent w.r.t. the lcp (i = 1, 2). Thus, for testing
equality, we may add u to L1 resp. L2, if it is missing, and reduce L1 resp. L2 subsequently
to languages of at most three words.

3 Lohrey [10] gives an overview over the classical algorithms for SLPs. The fully compressed pattern
matching problem for SLPs is in PTIME [10, Theorem 12], i.e. we can test whether one SLP is a factor
of another SLP. Especially we can test whether one SLP is a prefix of another SLP. As we can build an
SLP for any prefix of an SLP in polynomial time we can use a binary search to compute the lcp of two
SLPs in polynomial time.

M. Luttenberger, R. Palenta, and H. Seidl 48:11

From Equation 1 follows that L1 ≡ L2 if
d
{vω

1 | uv1 ∈ L1, v1 6= ε} =
d
{vω

2 | uv2 ∈
L2, v2 6= ε}. This is the case if either vω

1 = vω
2 for all uv1 ∈ L1 and uv2 ∈ L2 or for

uvi, uv
′
i ∈ Li, vi 6= ε 6= v′i with wi = vω

i u v′
ω
i is minimal for Li (i = 1, 2), w1 = w2 holds.

In the first case vω
1 = vω

2 for all uv1 ∈ L1 and uv2 ∈ L2 can be checked in polynomial
time according to the periodicity lemma of Fine and Wilf (cf. Corollary 3). In the second
case w1, w2 can be computed and compared in polynomial time as all words are given as
SLPs. Thus, we ultimately arrive at a polynomial time decision procedure. J

I Remark. Note that in light of the equivalence test, we can choose distinct letters a, b ∈ Σ, and
equivalently replace the language L1 = {uv1, uv2} with L′1 = {ua, ub} whenever v1 6= ε 6= v2
and v1 u v2 = ε, and the language L2 = {u, uv1, uv2} by the language L′2 = {u, uwa, uwb}
whenever w = v1v2 u v2v1 6= v1v2 holds. This reduced representation allows for an easier
computation.

Now we have all pre-requisites to prove the main theorem of our paper.

I Theorem 17. Assume that G is a proper context-free grammar with L = L(G) non-empty.
Then the longest common prefix of L can be calculated in polynomial time.

Proof. Assume w.l.o.g. that G is a CFG in Chomsky normal form as this simplifies the
notation. For the actual fixed-point iteration this is not required. Then we calculate

d
L(G)

as follows. We build (implicitly, see the following remark) an acyclic CFG Ĝ in polynomial
time such that L(Ĝ) consists of all words of L(G) for which there is a derivation tree of
height at most 4N where N is the number of nonterminals in G. To this end, we tag the
variables with a counter that bounds the height of the derivation trees. In more detail,
for every rewriting rule A → BC of G and every i ∈ {1, . . . , 4N} we add to Ĝ the rule
A(i) → B(i−1)C(i−1), and for every rule A→ a of G and every i ∈ {0, 1, . . . , 4N} we add the
rule A(i) → a to Ĝ. In a derivation tree w.r.t. Ĝ every path starting at some node labeled by
A(i) has thus length at most i as i has strictly decreases when moving down to towards the
leaves, hence, a node labeled by A(i) can only be the root of a (sub-)tree of height at most i.
Further, every derivation tree of Ĝ becomes a derivation tree of G by simply replacing A(i)

by A. As every rule of G is copied at most 4N + 1 times with N the number of nonterminals
of G, the size of Ĝ grows at most quadratically with the size of G. In particular, Ĝ is still
proper and in CNF. For more details, see e.g. section 3 in [4].

By Theorem 10, we know that
d
L(G) =

d
L(Ĝ). By construction, Ĝ is also in Chomsky

normal form. For i from 0 to (at most) 4N (with N still the number of variables of the
original grammar G – as Ĝ is acyclic we only need to compute [A(i)] once when proceeding
bottom-up), we then compute in every iteration for every nonterminal A(i) (for the currently
value of i) first the language

[A(i)]′ := {a ∈ Σ∗ | A(0) → a ∈ P} ∪
⋃

A→BC∈G

[B(i−1)] · [C(i−1)]

By induction on i, we may assume that the languages [B(i−1)], [C(i−1)] (a) have already been
computed, (b) consist of at most three words, and (c) every word is given as an SLP. Note
that the cardinality of every language [A(i)]′ is polynomial in the size of G. By virtue of
Corollary 15, we therefore can reduce [A(i)]′ in polynomial time to a language [A(i)] ⊆ [A(i)]′
with [A(i)] ≡ [A(i)]′ and

∣∣[A(i)]
∣∣ ≤ 3. By construction, we then have

[A(i)] ≡ {w ∈ Σ∗ | A(i) ⇒∗ w}

Since Ĝ has polynomially many nonterminals only, the overall algorithm runs in polynomial
time. J

STACS 2018

48:12 The LCP of a CFL is in P

I Remark. Note that we can drop the assumption that the grammars G and likewise Ĝ are
in Chomsky normal form if the right-hand sides of all rules have bounded lengths. Then the
cardinality of the languages [A(i)]′ are still polynomial. Further, instead of spelling out the
grammar Ĝ explicitly, we may perform a round robin fixpoint iteration where in every round
we first compute

[A]′ :=
⋃

A→w1B1w2B2...wkBkwk+1

{w1} · [B1] · {w2} · [B2] · · · {wk} · [Bk] · {wk+1}

with initially [A] := {w ∈ Σ∗ | A → w ∈ G}, then updating [A] so that [A] ⊆ [A]′ with
[A] ≡ [A]′ and |[A]| ≤ 3. Theorem 10 guarantees that the lcp is attained after at most 4N
iterations. Using standard approaches like work lists, we only need to recompute [A] if there
is some rule A → γBδ in G and [B] has changed since the last recomputation of [A]. As
shown in Lemma 16 we can easily check if [B] 6≡ [B]′ in every round and accordingly insert
A into the work list.

We demonstrate this simplified version of the algorithm described in Theorem 17 by an
example.

I Example 18. Consider the following grammar G with the following rules:

S → Aababaac | ababaac A→ abAabaab | abAabaac | ababaab | ababaac

The round robin fixpoint iteration would proceed by iteratively evaluating the equations

[A]′ := {abwabaab, abwabaac, ababaab, ababaac | w ∈ [A]}
[S]′ := {wababaac, ababaac | w ∈ [A]}

and recomputing the languages [A] and [S] so that [A] ≡ [A]′ and [S] ≡ [S]′ and both [A]
and [S] consist of at most three words where we further reduce the words of [A] and [S]
as described in the remark following Lemma 16. As [A] does not depend on [S], we can
postpone the computation of [S] until after [A] has converged. In the first round, we have:

[A]′ = {ababaab, ababaac}

and thus update [A] to [A] := {(ab)2aab, (ab)2aac}. For the second round, we obtain

[A]′ = ab{(ab)2aab, (ab)2aac}abaab ∪ ab{(ab)2aab, (ab)2aac}abaac ∪ {(ab)2aab, (ab)2aac}
≡ {(ab)3a(ab)2aab, (ab)2aab} ≡ {(ab)3, (ab)2aa} =: [A]

which is already the fixpoint as an additional iteration would show. Therefore we obtain

[S]′ = {(ab)3, (ab)2aa}(ab)2aac ∪ {(ab)2aac}
≡ {(ab)3(ab)2aac, (ab)2aac} ≡ {(ab)3, (ab)2aa} =: [S]

So
d
L = (ab)3 u (ab)2aa = (ab)2a.

5 Conclusion

We have shown that the longest common prefix of a non-empty context-free language can be
computed in polynomial time. This result was based on two structural results, namely, that
it suffices to consider words with derivation trees of bounded height, and second that each
non-empty language is equivalent to a sublanguage consisting of at most three elements. For
the actual algorithm, we relied on succinct representations of long words by means of SLPs.
It remains as an intriguing open question whether the presented method can be generalized
to more expressive grammar formalisms.

M. Luttenberger, R. Palenta, and H. Seidl 48:13

References
1 Adrien Boiret. Normal form on linear tree-to-word transducers. In Adrian-Horia Dediu, Jan

Janousek, Carlos Martín-Vide, and Bianca Truthe, editors, Language and Automata Theory
and Applications - 10th International Conference, LATA 2016, Prague, Czech Republic,
March 14-18, 2016, Proceedings, volume 9618 of Lecture Notes in Computer Science, pages
439–451. Springer, 2016. doi:10.1007/978-3-319-30000-9_34.

2 Adrien Boiret and Raphaela Palenta. Deciding equivalence of linear tree-to-word trans-
ducers in polynomial time. In Srecko Brlek and Christophe Reutenauer, editors, Develop-
ments in Language Theory - 20th International Conference, DLT 2016, Montréal, Canada,
July 25-28, 2016, Proceedings, volume 9840 of Lecture Notes in Computer Science, pages
355–367. Springer, 2016. doi:10.1007/978-3-662-53132-7_29.

3 Christian Choffrut and Juhani Karhumäki. Combinatorics of Words, pages 329–438.
Springer Berlin Heidelberg, 1997. doi:10.1007/978-3-642-59136-5_6.

4 Javier Esparza and Michael Luttenberger. Solving fixed-point equations by derivation tree
analysis. In Andrea Corradini, Bartek Klin, and Corina Cîrstea, editors, Algebra and
Coalgebra in Computer Science - 4th International Conference, CALCO 2011, Winchester,
UK, August 30 - September 2, 2011. Proceedings, volume 6859 of Lecture Notes in Computer
Science, pages 19–35. Springer, 2011. doi:10.1007/978-3-642-22944-2_2.

5 N. J. Fine and H. S. Wilf. Uniqueness theorems for periodic functions. Proceedings of
the American Mathematical Society, 16(1):109–114, 1965. URL: http://www.jstor.org/
stable/2034009.

6 Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park. Linear-time
longest-common-prefix computation in suffix arrays and its applications. In Combinatorial
Pattern Matching, 12th Annual Symposium, CPM 2001 Jerusalem, Israel, July 1-4, 2001
Proceedings, pages 181–192, 2001.

7 Martin Lange and Hans Leiß. To CNF or not to cnf? an efficient yet presentable
version of the CYK algorithm. Informatica Didactica, 8, 2009. URL: http://www.
informatica-didactica.de/cmsmadesimple/index.php?page=LangeLeiss2009.

8 Grégoire Laurence, Aurélien Lemay, Joachim Niehren, Slawek Staworko, and Marc Tom-
masi. Normalization of sequential top-down tree-to-word transducers. In Adrian-Horia
Dediu, Shunsuke Inenaga, and Carlos Martín-Vide, editors, Language and Automata The-
ory and Applications - 5th International Conference, LATA 2011, Tarragona, Spain, May
26-31, 2011. Proceedings, volume 6638 of Lecture Notes in Computer Science, pages 354–
365. Springer, 2011. doi:10.1007/978-3-642-21254-3_28.

9 Grégoire Laurence, Aurélien Lemay, Joachim Niehren, Slawek Staworko, and Marc Tom-
masi. Learning sequential tree-to-word transducers. In Adrian-Horia Dediu, Carlos Martín-
Vide, José Luis Sierra-Rodríguez, and Bianca Truthe, editors, Language and Automata The-
ory and Applications - 8th International Conference, LATA 2014, Madrid, Spain, March
10-14, 2014. Proceedings, volume 8370 of Lecture Notes in Computer Science, pages 490–
502. Springer, 2014. doi:10.1007/978-3-319-04921-2_40.

10 Markus Lohrey. Algorithmics on slp-compressed strings: A survey. Groups Complexity
Cryptology, 4(2):241–299, 2012. doi:10.1515/gcc-2012-0016.

11 Michael Luttenberger, Raphaela Palenta, and Helmut Seidl. Computing the longest com-
mon prefix of a context-free language in polynomial time. CoRR, abs/1702.06698, 2017.
arXiv:1702.06698.

12 Wojciech Plandowski. Testing equivalence of morphisms on context-free languages. In Jan
van Leeuwen, editor, Algorithms - ESA ’94, Second Annual European Symposium, Utrecht,
The Netherlands, September 26-28, 1994, Proceedings, volume 855 of Lecture Notes in
Computer Science, pages 460–470. Springer, 1994. doi:10.1007/BFb0049431.

STACS 2018

http://dx.doi.org/10.1007/978-3-319-30000-9_34
http://dx.doi.org/10.1007/978-3-662-53132-7_29
http://dx.doi.org/10.1007/978-3-642-59136-5_6
http://dx.doi.org/10.1007/978-3-642-22944-2_2
http://www.jstor.org/stable/2034009
http://www.jstor.org/stable/2034009
http://www.informatica-didactica.de/cmsmadesimple/index.php?page=LangeLeiss2009
http://www.informatica-didactica.de/cmsmadesimple/index.php?page=LangeLeiss2009
http://dx.doi.org/10.1007/978-3-642-21254-3_28
http://dx.doi.org/10.1007/978-3-319-04921-2_40
http://dx.doi.org/10.1515/gcc-2012-0016
http://arxiv.org/abs/1702.06698
http://dx.doi.org/10.1007/BFb0049431

	Introduction
	Preliminaries
	LCP of a context-free language
	Small Equivalent Subsets of Languages
	Conclusion

