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Abstract
The duality between packing and covering problems lies at the heart of fundamental combin-
atorial proofs, as well as well-known algorithmic methods such as the primal-dual method for
approximation and win/win-approach for parameterized analysis. The very essence of this du-
ality is encompassed by a well-known property called the Erdős-Pósa property, which has been
extensively studied for over five decades. Informally, we say that a class of graphs F admits the
Erdős-Pósa property if there exists f such that for any graph G, either G has k vertex-disjoint
“copies” of the graphs in F , or there is a set S ⊆ V (G) of f(k) vertices that intersects all copies
of the graphs in F . In the context of any graph class G, the most natural question that arises
in this regard is as follows – do obstructions to G have the Erdős-Pósa property? Having this
view in mind, we focus on the class of interval graphs. Structural properties of interval graphs
are intensively studied, also as they lead to the design of polynomial-time algorithms for classic
problems that are NP-hard on general graphs. Nevertheless, about one of the most basic proper-
ties of such graphs, namely, the Erdős-Pósa property, nothing is known. In this paper, we settle
this anomaly: we prove that the family of obstructions to interval graphs – namely, the family of
chordless cycles and ATs – admits the Erdős-Pósa property. Our main theorem immediately res-
ults in an algorithm to decide whether an input graph G has k vertex-disjoint ATs and chordless
cycles, or there exists a set of O(k2 log k) vertices in G that hits all ATs and chordless cycles.
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1 Introduction

Packing and covering problems are ubiquitous in both graph theory and computer science.
The duality between packing and covering problems lies at the heart of not only fundamental
combinatorial proofs, but also well-known algorithmic methods such as the primal-dual
method for approximation and win/win-approach for parameterized analysis. The very
essence of this duality is encompassed by a well-known property called the Erdős-Pósa
property. This property, being both simple and powerful, has been extensively studied for
over five decades. In the context of any graph class G, the most natural question that arises
in this regard is as follows – do obstructions to G have the Erdős-Pósa property? Having
this view in mind, we focus on the class of interval graphs. Arguably, this is the most basic
class of graphs that can be viewed as geometric inputs – indeed, an interval graph is the
intersection graph of a family of intervals on the real lines. Interval graphs are among the
most well-studied classes of graphs in the literature. In particular, the usage of interval
graphs as models is relevant to a wide variety of applications, ranging from resource allocation
in operations research and scheduling theory to assembling contiguous subsequences in DNA
mapping. From an algorithmic point of view, the structural properties of interval graphs are
also intensively studied as they allow to design polynomial-time algorithms for well-known
problems in computer science, such as Independent Set and Hamiltonian Path, that
are NP-hard on general graphs. Nevertheless, about one of the most basic properties of such
graphs, namely, the Erdős-Pósa property, nothing is known! Our main contribution settles
this anomaly: we prove that obstructions to interval graphs admit the Erdős-Pósa property.

Before we turn to consider our contribution in more detail, we present a gentle introduction
to the rich realm of studies of Erdős-Pósa properties. For this purpose, we first define
packing and covering problems. Let � be a containment relation (of a graph into another
graph), and let F be a family of graphs. For example, we can define the containment
relationship � as follows: for graphs G and H, H � G if and only if H is an induced
subgraph/subgraph/minor/topological minor of G. In this setting, (F ,�)-Packing is the
problem whose input consists of a graph G and an integer k, and the objective is to decide
if G has k vertex-disjoint subsets, S1, S2, . . . , Sk ⊆ V (G), where for each i ∈ [k], there
exists F ∈ F such that F � G[Si]. For example, if F = {F} and the relation refers to
induced subgraphs, then we simply ask whether G has k vertex-disjoint “exact copies” of F .
The (F ,�)-Covering problem has the same input, but its objective is to decide if there
is a set S ⊆ V (G) of size at most k such that there does not exist F ∈ F that satisfies
F � G−S. Some well-known examples of packing problems (and their corresponding covering
problems) are Maximum Matching (Vertex Cover), Vertex-Disjoint s-t Paths (s-t-
Separator), Cycle Packing (Feedback Vertex Set), P3-Packing (Cluster Vertex
Deletion), and Triangle Packing (Triangle Free Deletion).

Kőnig’s and Menger’s theorems are cornerstones of Graph Theory in general, and of
the study of packing and covering problems in particular, which have also found a wide
variety of applications in computer science. For example, Menger’s theorem is particularly
relevant to survivable network design (see, e.g., [5, 46]) and combinatorial optimization (see,
e.g., [43, 19]). Formally, Kőnig’s theorem states that in bipartite graphs, the maximum size
of a matching equals the minimum size of a vertex cover [30, 13]. Menger’s theorem also
exhibits an equality – it states that for a given graph G and a pair of vertices s and t, either
G has k vertex-disjoint paths between s and t or there is a set S ⊆ V (G)\{s, t} of size k such
that G− S has no path between s and t [33, 13]. Both theorems relate a packing problem to
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a covering problem1, by exhibiting equality between the size of a maximum packing and the
size of a minimum covering. However, most natural packing and covering problems are not
known to exhibit such an equality; in fact, frequently such an equality is proven not to exist.
By relaxing the notion of equality, we enter the rich realm of the Erdős-Pósa properties.

The Erdős-Pósa Property. A celebrated theorem by Erdős and Pósa [14] states that for
any graph G, either there is a set of k vertex-disjoint cycles in G, or there is a set S ⊆ V (G)
of f(k) = O(k log k) vertices that intersects (covers) all cycles of G.2 Notably, Erdős and
Pósa [14] also showed that there exists a constant c and infinitely many pairs (G, k) such
that G has neither k vertex-disjoint cycles nor a set S ⊆ V (G) of ck log k vertices that
covers all cycles of G. That is, not only equality cannot be expected, but also any function
f(k) = o(k log k). We remark that later, Simonovits [45] provided concrete examples which
realize the lower bound. The result of Erdős and Pósa [14] initiated a flurry of extensive study
of the so called “Erdős-Pósa property” for various families of graphs as well as containment
relationships. Formally, a family of graphs F and a containment relation � are said to admit
the Erdős-Pósa property if there exists a function f(·) such that given a graph G and an
integer k, either there are k vertex-disjoint subsets S1, . . . Sk ⊆ V (G) so that for each i ∈ [k],
there is F ∈ F satisfying F � G[Si], or there is a set S ⊆ V (G) of size at most f(k) so that
there is no F ∈ F satisfying F � G− S. Here, the first question that comes to mind is – do
all families of graphs F and containment relationships � exhibit the Erdős-Pósa property?

The answer to this question is negative. For example, consider a fixed graph H, and let
F(H) be the family of graphs that contain H as a minor. Robertson and Seymour [42] showed
that F(H) with the containment relation referring to subgraphs admits the Erdős-Pósa
property if and only if H is a planar graph. This result generalizes the result in [14]. However,
the function f(·) given by [42] is exponential – can it be made polynomial? A few years
ago, the bound was improved to O(k logc k) by Chekuri and Chuzhoy [12] following a more
general approach which is applicable to other families as well. A well-known example of
a different flavor conerns odd cycles. Specifically, for F being the family of odd length
cycles, Reed [39] showed that F (for subgraphs and induced subgraphs) does not admit the
Erdős-Pósa property.

Since the emergence of the result of Erdős and Pósa [14], a multitude of studies on the
Erdős-Pósa property have appeared in the literature for several combinatorial objects beyond
graphs. This includes extensions to digraphs [32, 44, 40, 22, 20], rooted graphs [9, 26, 35, 24],
labeled graphs [29], signed graphs [23, 3], hypergraphs [1, 6, 7], matroids [16], helly-type
theorems [21], H-minors [41], H-immersions [17, 31], and H-butterfly directed minors [2]
(also see [38]). This list is not comprehensive but rather illustrative. We refer to surveys such
as [37] for more information. Even for subfamilies of cycles alone, there is a vast literature
devoted to the Erdős-Pósa property. Studies of the Erdős-Pósa property for subfamilies of
cycles include, for example, long cycles (subgraphs) [4, 34], directed cycles (subgraphs and
induced subgraphs) [40, 20], chordless cycles (induced subgraphs) [25] and cycles intersecting
a prescribed vertex set [27, 35]. Not all subfamiles of cycles admit the Erdős-Pósa property.
For example, recall the result stated earlier regarding the family of odd cycles [39]. For this
subfamily of cycles alone, there has been a sequence of research about finding classes of

1 For example, Kőnig’s theorem addresses the class F = {F} such that F is the graph on a single edge,
where � refers to induced subgraphs/subgraphs.

2 In the terminology of packing and covering, we address the class F of all cycles, where � refers to
induced subgraphs/subgraphs.
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graphs for which the family of odd cycles (subgraphs and induced subgraphs) admits the
Erdős-Pósa property. This includes planar graphs [15], or graphs with certain connectivity
constraints [48, 36, 28, 24]. Not only the family of odd cycles does not admit the Erdős-Pósa
property, but also subfamilies such as the family of chordless cycles of length at least 5 [25].

A large number of the results above can be viewed as the question of packing or covering
obstructions to a class of graphs. In some of these papers, this view is explicitly stated as
the motivation behind the conducted studies. For example, the classic result by Erdős and
Pósa [14] regards the question of packing and covering obstructions to forests. The results
concerning odd cycles address obstructions to bipartite graphs. The setting of the work
about packing and covering chordless cycles, as presented by [25], addresses obstructions to
chordal graphs. Furthermore, Kőnig’s theorem relates to obstructions to edgeless graphs,
and the work by Robertson and Seymour [42] relates to obstructions to subfamilies of minor
free graphs. We remark that other results can also be interpreted in this manner. Given that
the class of interval graphs is among the most basic, well-studied families of graphs, we find
it important to study the Erdős-Pósa [14] property with respect to it. Let F be the family of
chordless cycles and asteroidal triples (ATs), see Section 2. It is well known that the class of
interval graphs is precisely the class of graphs that exclude every graph in F as an induced
subgraph [18, 8]. Given this clean characterization, the following question naturally arises:

Does the family of chordless cycles and ATs – that is, obstructions to interval graphs –
admit the Erdős-Pósa property?

Our Contribution. We provide an affirmative answer to the question above. Moreover, the
dependency of the size of the covering set on k in our result is only O(k2 log k).3 Specifically,
we obtain the following theorem, where from now on, “obstructions” refer to ATs and
chordless cycles.

I Theorem 1. Let G be a graph, and let k ∈ N. At least one of the following conditions
holds: (i) G has k vertex-disjoint obstructions; (ii) there exists a subset D ⊆ V (G) of size
O(k2 log k) such that G−D is an interval graph.

As a consequence of our main theorem, we also derive an algorithm to decide whether an
input graph G has k vertex-disjoint obstructions (to interval graphs), or there exists a set of
O(k2 log k) vertices in G that hits all such obstructions.

We conclude the introduction with a high-level (informal) overview of our proof. We
begin by easily “getting rid” of all chordless cycles due to the work by [25], as well as all
small ATs. Now, the heart of our proof consists of two main components. First, we exhibit
the Erdős-Pósa property of the family of ATs on graphs that have a clique caterpillar (that
is, a tree decomposition that is a caterpillar, where every bag is a clique). Second, we show
how this result can be utilized to derive our main theorem by analyzing “conflict-free sets”
(defined below) with respect to a modular tree decomposition of the graph. Let us now
elaborate on each component.

To analyze the case of a clique caterpillar, we present a procedure that at each iteration,
finds an AT O with specific properties, inserts a set S of O(k) new vertices into a set S?
initialized to be empty, and removes the vertices in S from the graph (only for the sake of
the execution of the procedure). Specifically, the set S consists of the terminals, centers and

3 In fact, all of our arguments achieve the dependency O(k2), but we gain an extra log k factor due to an
invocation of a result by Kwon and Kim [25].
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a few base vertices of O, as well as all of the vertices of a “small” separator between the
non-shallow terminals of O that we push as much as possible to the right of the caterpillar.
The procedure terminates once the graph becomes an interval graph. Hence, it is clear that
if at most O(k) iterations take place, then S? is a set of size O(k2) that intersects all ATs,
which implies that our job is done. Otherwise, we require an intricate analysis to establish
the existence of k vertex-disjoint ATs. Roughly, the two main components here are (1) from
the sequence of ATs encountered by our procedure, we can extract a sequence of the same
length (of possibly different ATs) where each AT has the property that the subpath of its
base that lies after the separator does not intersect any AT positioned after it in the sequence,
and (2) from the modified sequence, we can extract a subsequence of ATs where disjointess is
also guaranteed with respect to base vertices that lie before the separator.

Towards the proof of the second item, we first show that for every sequence “resembling”
the one encountered by our procedure, and for all ATs O and O′ in that sequence such that
O′ comes before O, we have the following property: only the leftmost terminal and base
vertex of O can belong to the base path of O′ that lies before the separator associated with
O′, and even that is only possible under certain conditions. This result then allows us to
further argue about the relation between every three ATs in the sequence with respect to the
“left sides of separators”. Having established this relation, the argument about a complete
sequence is derived. Towards the proof of the first item, we first show that for any AT O in
the sequence, we can find a path between a vertex in the separator associated with O and
the right terminal of O that avoids all ATs coming after O in the sequence. Then, by relying
on structural results by Cao and Marx [11], we argue that this path can be used to replace
part of O so that the result is yet another AT.

Let us now turn to our analysis of the general case – specifically, we explain how it is
reduced to instances of the case of a clique caterpillar. We define “problematic” nodes in the
modular tree decomposition of the input graph as the nodes associated with subgraphs that
contain at least one AT that is not present in any of the subgraphs associated with their
children. This definition also immediately gives rise to an association between nodes and ATs,
so that each AT is associated with exactly one node. We observe that maximal modules of
problematic nodes are vertex disjoint, and that each problematic node has “many” children.
It is also easily shown that the set of all problematic nodes can be partitioned into two sets
that have no “conflict” – that is, on the unique path between every two nodes of one set,
there exists a node of the other set. The point in analyzing each conflict-free set P separately
is that for each problematic node in such a set, we prove that there exist at least k vertices
in the subgraph associated with that node that do not belong to any subgraph associated
with its problematic descendants from P . In particular, this allows us to examine each
problematic node individually, and associate an instance of the clique caterpillar case with
it (the construction of the caterpillar decomposition itself partially follows from structural
results by Cao and Marx [11]). Specifically, we are able to collect the sets of ATs found in
each instance, and argue that (after some modification) all of these ATs across all the sets
are in fact vertex disjoint. This result then allows us to handle the “packing perspective” of
the proof. We remark that although we can create O(k) instances of the clique caterpillar
case, and each individual instance can create a gap of O(k2), we eventually get a gap of only
O(k2) rather than O(k3) as we argue that the sum of the contributions to the gap of all
individual instances is O(k2).

Due to lack of space, proofs of statements marked by “*” were omitted.
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2 Preliminaries

For n ∈ N, we use [n] as a shorthand for {1, 2, . . . , n}. Given a function f : A → B and a
subset A′ ⊂ A, we use f |A′ to denote the restriction of f to A′.

We refer to standard terminology from the book of Diestel [13] for graph-related terms that
are not explicitly defined here. When the graph G is clear from context, denote n = |V (G)|
and m = |E(G)|. We say that a vertex v in G is simplicial if NG(v) induces a clique. A
caterpillar is a tree T for which there exists a subpath P of T , called a central path, such
that the removal of the vertices of P from T results in an edgeless graph. Given a rooted
tree T and a vertex v ∈ V (T ), we use T |v to denote the subtree of T rooted at v. Moreover,
child(v) denotes the set of children of v in T . We do not treat a vertex as a descendant of
itself. A chordal graph is a graph with no chordless cycle on at least four vertices.

Interval Graphs. An interval graph is a graph G that does not contain any of the following
graphs, called obstructions, as an induced subgraph.

Long Claw. A graph O such that V (O) = {t`, tr, t, c, b1, b2, b3} and E(O) = {{t`, b1},
{tr, b3}, {t, b2}, {c, b1}, {c, b2}, {c, b3}}.
Whipping Top (or Umbrella). A graph O such that V (O) = {t`, tr, t, c, b1, b2, b3} and
E(O) = {{t`, b1}, {tr, b2}, {c, t}, {c, b1}, {c, b2}, {b3, t`}, {b3, b1}, {b3, c}, {b3, b2}, {b3, tr}}.
†-AW. A graph O such that V (O) = {t`, tr, t, c} ∪ {b1, b2, . . . , bz}, where t` = b0 and
tr = bz+1, E(O) = {{t, c), {t`, b1}, {tr, bz}} ∪ {{c, bi} | i ∈ [z]} ∪ {{bi, bi+1} | i ∈ [z − 1]},
and z ≥ 2. A †-AW where z = 2 is called a net.
‡-AW. A graph O such that V (O) = {t`, tr, t, c1, c2} ∪ {b1, b2, . . . , bz}, where t` = b0 and
tr = bz+1, E(O) = {{t, c1}, {t, c2}, {c1, c2}, {t`, b1}, {tr, bz}, {t`, c1}, {tr, c2}} ∪ {{c, bi} |
i ∈ [z]} ∪ {{bi, bi+1} | i ∈ [z − 1]}, and z ≥ 1. A ‡-AW where z = 1 is called a tent.
Hole. A chordless cycles on at least four vertices.

Long claws and whipping tops are also called ATs, but we shall reserve this name for
†-AWs and ‡-AWs (AW stand for Asteroidal Witness).4 An obstruction O is minimal if
there does not exist an obstruction O′ such that V (O′) ⊂ V (O). In each of the first four
obstructions, the vertices t`, tr, and t are called terminals, the vertices c, c1, and c2 are called
centers, and the other vertices are called base vertices. To simplify notation, when we consider
a †-AW, we use c1 and c2 to refer to c (this allows us to refer to a †-AW and a ‡-AW in
a unified manner). Furthermore, the vertex t is called the shallow terminal. The induced
path on the set of base vertices is called the base of the AT, and it is denoted by base(O).
Moreover, we say that the induced path on the set of base vertices, t` and tr is the extended
base of the AT, and it is denoted by P (O). Given a graph G, a vertex v is shallow in G if G
has at least one AT where v is the shallow terminal.

Tree Decomposition. For a tree decomposition (T, β) of a graph G, if T is a path, then
(T, β) is also called a path decomposition, and if T is a caterpillar then (T, β) is also called
a caterpillar decomposition. A clique path (clique caterpillar) of a graph G is a path
decomposition (resp. caterpillar decomposition) of G where every bag is a distinct maximal
clique. We remark that not every graph admits a clique caterpillar.

4 Like other papers on this topic, we abuse the standard usage of the term AT in the literature, which
refers to a triple of vertices such that each pair is joined by a path that avoids the neighborhood of the
other vertex. Our usage and the standard one are “almost equivalent” (see, e.g., [10]).
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Modules. Let G be a graph. A subset M ⊆ V (G) is a module if for all u,w ∈ M and
v ∈ V (G) \M , either both u and w are adjacent to v or both u and w are not adjacent to v.
A module is nontrivial if neither V (M) = ∅ nor V (M) = V (G).

A modular tree decomposition of a graph G = (V,E) is a linear-size representation of
all its modules. It consists of a rooted tree T , a function f : V (T )→ 2V (G) and a function
g : V (T )→ {0, 1}, which in particular satisfy the following properties:
1. M is a module of G if and only if there is a node v ∈ V (T ) for which, either M = f(v), or

both g(v) = 1 and there is a subset U of the set of children of v such thatM =
⋃
u∈U f(u).

2. Every v, u ∈ V (T ) that have the same parent in T satisfy f(v) ∩ f(u) = ∅.
3. For every v ∈ V (T ),

⋃
u∈child(v) f(u) = f(v).

4. |V (T )| ≤ 2n− 1.

Furthermore, no node in T has exactly one child. Every graph G admits a modular tree
decomposition, which can be constructed in O(n2) time and O(n) space [47].

Hitting Chordless Cycles and Small Obstructions. We first state the following corollary
of the results of Kim and Kwon [25].

I Corollary 2. Let G be a graph, and let k ∈ N. At least one of the following conditions
holds: (i) G has k vertex-disjoint obstructions; (ii) there exists a subset D ⊆ V (G) of
size O(k2 log k) such that G − D is a chordal graph that has no obstruction on at most
max{2k, 10} vertices.

3 The Case of a Clique Caterpillar

This section analyzes the Erdős-Pósa Property of ATs on graphs with a clique caterpillar.
Let us begin with a definition.

I Definition 3. Let G be a graph. A clique caterpillar (T, β) of G is nice if every shallow
vertex belongs to the bag of only one node of T and that node is a leaf.

The objective of this section is to prove the following lemma.

I Lemma 4. Let k ∈ N, and let G be a graph with a nice clique caterpillar (T, β), such
that G is chordal and has no obstruction on at most ten vertices.5 Then, at least one of
the following conditions holds: (i) G has k vertex-disjoint ATs; (ii) there exists a subset
D ⊆ V (G) of size O(k2) such that G−D is an interval graph.

To simplify statements in this section, let us fix k ∈ N and a chordal graph G with a nice
clique caterpillar (T, β), which has no obstruction on at most ten vertices. Thus, whenever we
discuss an obstruction in G, that obstruction is necessarily an AT on more than ten vertices.
Moreover, let us fix a central path of T , and call it P . We denote P = p1 − p2 − · · · − pd for
d = |V (P )|. We think of P as a path oriented from p1 to pd. For a vertex v ∈ V (G), we let
first(v) be the first node p on P such that v ∈ β(p) (if such a vertex does not exist, define
first(v) = nil), and we let last(v) be the last node p on P such that v ∈ β(p) (if such a vertex
does not exist, define last(v) = nil). The notation pi < pj means that i < j (similarly, we
define ≤). Note that as non-terminal vertices of an AT have non-adjacent neighbors, we have
the following observation.

5 We remark that the existence of the clique caterpillar already implies that G is chordal [18, 8].

STACS 2018
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I Observation 5. Let O be an AT in G. For every non-terminal vertex v of O, there exists
p ∈ V (P ) such that v ∈ β(p).

Observation 5 implies that the notation presented next is well defined. In what follows,
when we consider an AT O, we index the base vertices bO1 , b

O
2 , . . . , b

O
ηO

such that first(bO1 ) ≤
first(bO

ηO
). When O is clear from context, we simplify the notation, also in the context of

terminal and center vertices.6 Note that η ≥ 5, as G does not have ATs on at most ten
vertices (we use this observation implicitly throughout, e.g. to assume that b1, b2, bη−2, bη−1
and bη are distinct vertices). We remark that clearly, for all i ∈ {2, 3, . . . , η − 1}, first(bi) ≤
last(bi−1) < first(bi+1) (also stated as Proposition 8.4 in [11]).

Our analysis relies on a notion of a special type of obstruction, defined by Cao and
Marx [11], to exploit the “almost linear nature” of a caterpillar. To this end, we have the
following notation. Given an AT O, N̂(O) denotes the set of vertices v ∈ V (G) such that v
is adjacent to every vertex in base(O). We also need to give three definitions.

I Definition 6 ([11]).
(i) An AT O in G is minimal if there does not exist an AT O′ such that last(b1) ≤ last(b′1) ≤

first(b′η′) ≤ first(bη), and last(b1) < last(b′1) or first(b′η′) < first(bη).
(ii) An AT O in G is short if P (O) is a shortest path between t` and tr in G[β(pi) ∪

β(pi+1) ∪ . . . ∪ β(pj) ∪ {t`, tr}]− N̂(base(O)), where pi = last(b1) and pj = first(bη).
(iii) An AT O in G is first if there does not exist an AT O′ such that first(b′η′) < first(bη).

We say that an AT is good if it is first, minimal and short. The following proposition
asserts that a good AT exists. In this context, recall that we implicitly assume that G is not
an arbitrary graph, but in particular it is a graph that has a nice clique caterpillar.

I Proposition 7 (Lemma 8.8 & Proof of Theorem 2.4 (Page 31) [11]). If G is not an interval
graph, then it has a good AT.

I Proposition 8 (Claim 5 [11]). Let O be a good AT. For any vertex v ∈ (β(p1) ∪ β(p2) ∪
. . . β(pi)) \ N̂(O), where pi = first(bη−2), it holds that v is not adjacent to any vertex that is
shallow in G.

Procedure SeparateProcedure. Let us consider the following procedure, which we call
SeparateProcedure. Initialize G1 = G and i = 1. Now, as long as Gi is not an interval
graph, we execute the following procedure:
1. Let Oi be a good AT in Gi, whose existence is guaranteed by Proposition 7.
2. Denote pj = first(biηi−2) and pq = last(bi1). For all δ ∈ [d], denote βi(pδ) = β(pδ) ∩ V (Gi).

Let γi = γ be the index in {q, q + 1, . . . , j − 1} such that,
there does not exist an index δ ∈ {γ+1, γ+2, . . . , j−1} such that |(βi(pδ)∩βi(pδ+1))\
N̂(Oi)| < 8k, and
|(βi(pγ) ∩ βi(pγ+1)) \ N̂(Oi)| < 8k.

If such an index γ does not exist, define γ = nil. Intuitively, γ is the largest index of a
“small” separator in Gi \ N̂(O) between bi1 and biη−2.

3. Denote Si = (βi(pγ) ∩ βi(pγ+1)) \ N̂(Oi) if γ 6= nil, and Si = ∅ otherwise.
4. Define Gi+1 = Gi − ((V (Oi) \ base(Oi)) ∪ {bi1, bi2, bi3, biη−3, b

i
η−2, b

i
η−1, b

i
ηi} ∪ Si).

5. Increment i by 1.

6 For example, if we consider an AT denoted by O, O′ and Oi, then we use b1 (bη), b′
1 (b′

η′), bi1 (biηi) to
refer to the first (last) base vertex of O, O′ and Oi, respectively.
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Let i? denote the last index i considered by SeparateProcedure. In particular, Gi? is an
interval graph. Let us denote S? = V (G) \ V (Gi?). Then, G − S? is an interval graph.
Furthermore, note that |S?| = O(i? · k).

I Observation 9. If i? ≤ 2k, then S? ⊆ V (G) is a set of size O(k2) such that G− S? is an
interval graph.

Thus, to prove Lemma 4, it is sufficient to prove the following claim.

I Lemma 10. If i? > 2k, then G has k vertex-disjoint obstructions.

In what follows, we suppose that i? > 2k. To prove this lemma, we first need to introduce
the following definitions.

I Definition 11. Let i ∈ [2k]. We say that an AT O in G is i-relevant if it is an AT in Gi,
t = ti, t` = ti`, tr = tir, c1 = ci1, c2 = ci2, b1 = bi1, b2 = bi2, bη−2 = biηi−2, bη−1 = biηi−1 and
bη = biηi .7 If in addition b3 = bi3 and bη−3 = biη−3, then we say that O is highly i-relevant.

I Definition 12. A tuple (Ô1, Ô2, . . . , Ô2k) is relevant if for all i ∈ [2k], Ôi is i-relevant.

We further need the following notation. For every i ∈ [2k], before(i) = β(p1) ∪ β(p2) ∪
. . . ∪ β(pγi) if γi 6= nil and before(i) = ∅ otherwise. The heart of the proof of Lemma 10 is
given by two statements. Towards the first one, let us first prove the following claim.

I Lemma 13 (*). For all i, i′ ∈ [2k] where i > i′, i-relevant AT O and i′-relevant AT O′, it
holds that, (1) V (O) ∩ V (O′) ∩ before(i′) ⊆ {t`, b1}; (2) |V (O) ∩ V (O′) ∩ before(i′)| ≤ 1; and
(3) if b1 ∈ V (O) ∩ V (O′) ∩ before(i′) then t` /∈ (

⋃
i∈[d] β(pi)).

We now present the first statement that lies at the heart of the proof.

I Lemma 14 (*). For all i, i′, î ∈ [2k] such that i > i′ > î, i-relevant AT O, i′-relevant
AT O′ and î-relevant AT Ô, for at least one index j ∈ {i′, î}, the following condition holds:
V (O) ∩ V (Oj) ∩ before(j) = ∅.

I Corollary 15 (*). Let (Ô1, Ô2, . . . , Ô2k) be a relevant tuple. There exist k indices, i1 <
i2 < . . . < ik, so that for every two indices x, y ∈ {i1, i2, . . . , ik} where x < y, V (Ôy) ∩
V (Ôx) ∩ before(x) = ∅.

Towards the statement of the second lemma that lies at the heart of our proof, let us
first state an immediate observation and one additional lemma.

I Observation 16. An AT in G can contain at most four vertices of a clique in G.

I Lemma 17 (*). Let (Ô1, Ô2, . . . , Ô2k) be a relevant tuple. For all i ∈ [2k− 1], there exists
a path in Gi − N̂(Oi) from a vertex in Si ∪ {bi1} to biη−2 that does not contain any of the
vertices of the ATs Ôi+1, Ôi+2, . . . , Ô2k.

We are now ready to prove the second statement central to the proof of Lemma 10.

I Lemma 18 (*). Let (Ô1, Ô2, . . . , Ô2k) be a relevant tuple. For all i ∈ [2k− 1] such that Oi
is a highly i-relevant good AT in Gi, there exists an i-relevant AT O′ such that the following
condition holds: the base path of O′ has a subpath Q from a vertex in Si ∪ {bi1} to biη that
does not contain any of the vertices of the ATs Ôi+1, Ôi+2, . . . , Ô2k.

7 That is, O and the AT Oi considered in the i-th iteration of SeparateProcedure have the same terminals,
centers and two first and three last base vertices.
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I Corollary 19 (*). There exists a relevant tuple (Ô1, Ô2, . . . , Ô2k) such that for all i ∈ [2k],
the following condition holds: the base path of Ôi has a subpath Q from a vertex in Si ∪ {bi1}
to biη that does not contain any of the vertices of the ATs Ôi+1, Ôi+2, . . . , Ô2k.

We are now ready to prove Lemma 10.

Proof of Lemma 10. By Corollary 19, there exists a relevant tuple (Ô1, Ô2, . . . , Ô2k) such
that for all i ∈ [2k], the following condition holds: the base path of Ôi has a subpath
Q from a vertex in Si ∪ {bi1} to biη that does not contain any of the vertices of the ATs
Ôi+1, Ôi+2, . . . , Ô2k. By Corollary 15, there exist k indices, i1 < i2 < . . . < ik, such that
for every two indices x, y ∈ {i1, i2, . . . , ik} where x < y, V (Ôy) ∩ V (Ôx) ∩ before(x) = ∅.
Without loss of generality, suppose that i1 = 1, i2 = 2, . . . , ik = k (the arguments to follow
hold for any i1 < i2 < . . . < ik).

We claim that Ô1, Ô2, . . . , Ôk are vertex disjoint, which would complete the proof. To
prove this claim, we arbitrarily choose i, j ∈ [k] such that i < j. First note that as Ôi and Ôj
are i-relevant and j-relevant, we have that the terminals and centers of Ôi do not belong to
Ôj . Moreover, the base path of Ôi has a subpath Q from a vertex v? in Si ∪ {bi1} to biηi that
has no vertex of Ôj . Let W denote the subpath of the base path of Ôi from bi1 to v?. Hence,
to conclude that Ôi and Ôj are vertex disjoint, it remains to show that no vertex of W
belongs to Ôj . Notice that V (W ) ⊆ V (Ôi) ∩ before(i). By our choice of (Ô1, Ô2, . . . , Ôk), it
holds that V (Ôi)∩before(i) does not have any vertex of Ôj . Thus, the proof is complete. J

4 Decomposition of Modules

Let us begin with the following simple observation, on which we rely implicitly in our
arguments, and which follows immediately from the definition of a modular tree decomposition.
For simplicity, we use the abbreviations f |v = f |V (T |v) and g|v = g|V (T |v).

I Observation 20. Let G be a graph with a modular tree decomposition (T, f, g), and let
v ∈ V (T ). Then, (T |v, f |v, g|v) is a modular tree decomposition of G[f(v)].

We proceed by introducing the definition of a problematic set and a problematic node.

I Definition 21. Let G be a graph with a modular tree decomposition (T, f, g). The set
of problematic obstructions of a node v ∈ V (T ), denoted by probG(v), is the set of all
obstructions O in G[f(v)] such that for every child u of v in T , O is not an obstruction in
G[f(u)], that is, V (O) \ f(u) 6= ∅. When G is clear from context, it is omitted.

I Definition 22. Let G be a graph with a modular tree decomposition (T, f, g). A node
v ∈ V (T ) is problematic if prob(v) 6= ∅. The set of problematic nodes is denoted by probG(T ).
When G is clear from context, it is omitted.

I Observation 23. Let G be a graph with a modular tree decomposition (T, f, g). The
sets prob(v), v ∈ prob(T ), define a partition of the set of obstructions of G. That is,
for all u, v ∈ V (T ), prob(u) ∩ prob(v) = ∅, and the set of obstructions of G is precisely⋃
v∈prob(T ) prob(v).

We argue that nodes assigned 1 by g are non-problematic. And further, a problematic
node should have “many” children.

I Lemma 24 (*). G be a graph that has no obstruction on at most max{2k, 10} vertices.
Let (T, f, g) be a modular tree decomposition of G, and let v ∈ V (T ) such that g(v) = 1.
Then, v is not a problematic node.
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I Lemma 25 (*). Let G be a graph that has no obstruction on at most max{2k, 10} vertices.
Let (T, f, g) be a modular tree decomposition of G, and let v ∈ V (T ) be a problematic node.
Then, v has at least max{2k, 10}+ 1 children in T .

In order to proceed, we need the following definition and notation.

I Definition 26. Let G be a graph with a modular tree decomposition (T, f, g). A subset
P ⊆ prob(T ) has a conflict if there exist u, v ∈ P such that v is a descendant of u in T and
on the (unique) path between u and v in T no vertex belongs to prob(T ) \ P .

I Definition 27. Let G be a graph with a modular tree decomposition (T, f, g). For a node
v ∈ V (T ), packG(v) is the maximum number of vertex-disjoint obstructions in prob(v). When
G is clear from context, it is omitted.

Note that a problematic node is precisely a node such that pack(v) ≥ 1.

I Lemma 28 (*). Let G be a graph that has no obstruction on at most max{2k, 10} vertices,
and which does not have k vertex-disjoint obstructions. Let (T, f, g) be a modular tree
decomposition of G. Let P ⊆ prob(T ) with no conflicts. Then, for each v ∈ P and each child
u of v in T such that u has a problematic descendant, there exist at least k vertices in f(u)
that do not belong to

⋃
w f(w) where w ranges over all nodes in P that are descendants of u

in T .

I Lemma 29 (*). Let G be a graph that has no obstruction on at most max{2k, 10} vertices.
Let (T, f, g) be a modular tree decomposition of G. Let P ⊆ prob(T ) with no conflicts. Then,
G has min{k,

∑
v∈P pack(v)} vertex-disjoint obstructions.

We also show that prob(T ) can be divided into two sets with no conflicts.

I Lemma 30 (*). Let G be a graph with a modular tree decomposition (T, f, g). There exists
a partition (P1, P2) of prob(T ) such that neither P1 has a conflict nor P2 has a conflict.

Specific classes of graphs, called reduced graphs and nice interval graphs, were defined by
Cao and Marx as follows.

I Definition 31 ([11]). A graph G is reduced if it satisfies the following properties: (i) Every
non-trivial module of G is a clique, and (ii) G does not have any obstruction on at most ten
vertices.

I Definition 32 ([11]). A graph G is nice if it satisfies the following properties: (i) G is
chordal; (ii) G does not have any obstruction on at most ten vertices; and (iii) every vertex
in G that is a shallow terminal of at least one obstruction is simplicial.

These definitions were in particular used to derive the following results.

I Proposition 33 (Theorem 2.1 [11]). Let G be a reduced graph. Every vertex in G that is a
shallow terminal of at least one obstruction is simplicial.

I Proposition 34 (Proposition 8.3 [11]). Any nice graph has a nice clique caterpillar (T, β).

I Corollary 35. Any chordal reduced graph has a nice clique caterpillar (T, β).

Let us derive a consequence of Corollary 35 with respect to a modular tree decomposition.

I Lemma 36 (*). Let G be a chordal graph that has no obstruction on at most max{2k, 10}
vertices. Let (T, f, g) be a modular tree decomposition of G, and let v ∈ V (T ) be a problematic
node such that for every child u of v in T , G[f(u)] is a clique. Then, G[f(v)] has a nice
clique caterpillar.
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Towards the proof of the main result of this section, we need one additional notation.

I Definition 37. Let G be a graph with a modular tree decomposition (T, f, g), and
let v ∈ V (T ). Then, clique(G, v) denotes the graph obtained from G by turning each
G[f(u)], u ∈ child(v), into a clique. That is, V (clique(G, v)) = V (G) and E(clique(G, v)) =
E(G) ∪ (

⋃
u∈child(v){{x, y} : x, y ∈ f(u)}).

I Lemma 38 (*). Let G be a graph that has no obstruction on at most max{2k, 10} vertices.
Let (T, f, g) be a modular tree decomposition of G, and let v ∈ V (T ). Then, the set of
obstructions in clique(G, v)[f(v)] is precisely probG(v).

I Lemma 39 (*). Let k ∈ N, and let G be a chordal graph that has no obstruction on at most
max{2k, 10} vertices. Let (T, f, g) be a modular tree decomposition of G, and let v ∈ V (T ).
Then, at least one of the following conditions holds: (i) pack(v) ≥ k; (ii) there exists a subset
D ⊆ V (G) of size O(k2) that intersects the vertex set of every obstruction in prob(v).

We are now ready to prove the main result of this section.

I Lemma 40. Let k ∈ N, and let G be a chordal graph that has no obstruction on at most
max{2k, 10} vertices. Then, at least one of the following conditions holds: (i) G has k
vertex-disjoint obstructions; (ii) there exists a subset D ⊆ V (G) of size O(k2) such that
G−D is an interval graph.

Proof. Suppose that G does not have k vertex-disjoint obstructions, else we are done. By
Lemma 30, there exists a partition (P1, P2) of prob(T ) such that neither P1 has a conflict
nor P2 has a conflict. By Lemma 29, for each i ∈ [2], G has

∑
v∈Pi

pack(v) vertex-disjoint
obstructions. Thus, by Observation 23, for each i ∈ [2], |

∑
v∈Pi

pack(v)| < k. This means
that

∑
v∈prob(T ) pack(v) < 2k.

By Lemma 39, for all v ∈ prob(T ), there exists a subsetDv ⊆ V (G) of sizeO((pack(v)+1)2)
that intersects the vertex set of every obstruction in prob(v). Denote D =

⋃
v∈prob(T ) Dv.

Then, |D| = O(
∑
v∈prob(T )(pack(v) + 1)2). By Observation 23, we have that G−D is an

interval graph. Thus, to conclude the proof, it remains to show that
∑
v∈prob(T )(pack(v) +

1)2 = O(k2). Since for all v ∈ prob(T ), pack(v) ≥ 1, it is sufficient to show that∑
v∈prob(T )(pack(v))2 = O(k2). Recall that

∑
v∈prob(T ) pack(v) < 2k. Thus,

∑
v∈prob(T )

(pack(v))2 ≤ (
∑
v∈prob(T ) pack(v)) · (

∑
v∈prob(T ) pack(v)) < 2k · 2k = O(k2). This completes

the proof. J

5 Putting It All Together

Finally, we are ready to prove our main theorem.

Proof of Theorem 1. By Corollary 2, at least one of the following conditions hold: (i) G
has k vertex-disjoint obstructions; (ii) there exists a subset D′ ⊆ V (G) of size O(k2 log k)
such that G−D′ is a chordal graph that has no obstruction on at most max{2k, 10} vertices.
In the first case, our proof is complete, and thus we next suppose that the second case
applies. Then, by Lemma 40, at least one of the following conditions hold: (i) G−D′ has
k vertex-disjoint obstructions; (ii) there exists a subset D̂ ⊆ V (G) of size O(k2) such that
(G −D′) − D̂ is an interval graph. In the first case, our proof is complete. In the second
case, we have that D = D′ ∪ D̂ is a set of size O(k2 log k) such that G −D is an interval
graph, which again completes the proof. J

Before we turn to prove a corollary of our main theorem, we need one more proposition.
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I Proposition 41 ([10]). There exists an O(nm)-time algorithm that, given a graph G,
outputs an integer d′ such that the following conditions hold: (i) there exists a subset
D′ ⊆ V (G) of size at most d′ such that G − D′ is an interval graph; (ii) d′ ≤ 8d for the
integer d that is the minimum size of a subset D ⊆ V (G) such that G −D is an interval
graph.

As a consequence of Theorem 1 and Proposition 41, we derive the following corollary.

I Corollary 42 (*). There exist a constant c ∈ N and an O(nm)-time algorithm that, given
a graph G and an integer k ∈ N, correctly concludes which one of the following conditions
holds:8 (i) G has k vertex-disjoint obstructions; (ii) there exists a subset D ⊆ V (G) of size
ck2 log k such that G−D is an interval graph.
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