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Foreword

The Symposium on Theoretical Aspects of Computer Science (STACS) conference series
is an international forum for original research on theoretical aspects of computer science.
Typical areas are:

algorithms and data structures, including: design of parallel, distributed, approximation,
parameterized and randomized algorithms; analysis of algorithms and combinatorics
of data structures; computational geometry, cryptography, algorithmic learning theory,
algorithmic game theory;
automata and formal languages, including: algebraic and categorical methods, coding
theory;
complexity and computability, including: computational and structural complexity theory,
parameterized complexity, randomness in computation;
logic in computer science, including: finite model theory, database theory, semantics,
specification verification, rewriting and deduction;
current challenges, for example: natural computing, quantum computing, mobile and net
computing, computational social choice.

STACS is held alternately in France and in Germany. This year’s conference (taking place
February 28–March 3 in Caen) is the 35th in the series. Previous meetings took place in Paris
(1984), Saarbrücken (1985), Orsay (1986), Passau (1987), Bordeaux (1988), Paderborn (1989),
Rouen (1990), Hamburg (1991), Cachan (1992), Würzburg (1993), Caen (1994), München
(1995), Grenoble (1996), Lübeck (1997), Paris (1998), Trier (1999), Lille (2000), Dresden
(2001), Antibes (2002), Berlin (2003), Montpellier (2004), Stuttgart (2005), Marseille (2006),
Aachen (2007), Bordeaux (2008), Freiburg (2009), Nancy (2010), Dortmund (2011), Paris
(2012), Kiel (2013), Lyon (2014), München (2015), Orléans (2016), Hannover (2017).

The interest in STACS has remained at a high level over the past years. The STACS
2018 call for papers led to 186 submissions with authors from 36 countries. Each paper
was assigned to three program committee members who, at their discretion, asked external
reviewers for reports. The committee selected 54 papers during a three-week electronic
meeting held in November/December. For the third time within the STACS conference
series, there was also a rebuttal period during which authors could submit remarks to the
PC concerning the reviews of their papers. As co-chairs of the program committee, we would
like to sincerely thank all its members and the many external referees for their valuable work.
In particular, there were intense and interesting discussions inside the PC committee. The
overall very high quality of the submissions made the selection a difficult task.

This year, the conference includes a tutorial. We would like to express our thanks to
the speaker Bruno Salvy for this tutorial, as well as to the three invited speakers, Meena
Mahajan, Damien Pous, Gerhard Woeginger. Special thanks go to the local organizing
committee for continuous help throughout the conference organization. In particular, we
wish to thank Nicolas Bedon, Julien Clément, and Julien Courtiel for their work in the
edition of the proceedings, and Ali Akhavi in the general organization; we also wish to thank
Virginie Desnos-Carreau and Agnès Zannier for their administrative support.

Moreover, we thank Michael Wagner from the Dagstuhl/LIPIcs team for assisting us
in the publication process and the final production of the proceedings. These proceedings
contain extended abstracts of the accepted contributions and abstracts of the invited talks
35th Symposium on Theoretical Aspects of Computer Science (STACS 2018).
Editors: Rolf Niedermeier and Brigitte Vallée

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany
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0:x Foreword

and the tutorial. The authors retain their rights and make their work available under a
Creative Commons license. The proceedings are published electronically by Schloss Dagstuhl
– Leibniz-Center for Informatics within their LIPIcs series.

STACS 2018 has received funds and help from the following various institutions, for which
we are very grateful:

CNRS (Comité National de la Recherche Scientifique)
IUF (Institut Universitaire de France)
Mathematics and Computer Science Laboratories in Normandy

GREYC (Groupe de Recherche en Informatique, Image, Automatique et Instrumenta-
tion de Caen): Université de Caen Normandie, ENSICAEN, CNRS;
LITIS (Laboratoire d’Informatique, du Traitement de l’Information et des Systèmes):
Université de Rouen, Université du Havre, Institut National des Sciences Appliquées
(INSA);
LMNO (Laboratoire de Mathématiques Nicolas Oresme): Université de Caen Norman-
die, CNRS;
NormaSTIC (Fédération Normande de Recherche en Sciences et Technologies de
l’Information et de la Communication)

Université de Caen Normandie;
Agglomération Caen-la-Mer.

Caen and Berlin, March 2018 Brigitte Vallée and Rolf Niedermeier
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Recursive Combinatorial Structures: Enumeration,
Probabilistic Analysis and Random Generation

Bruno Salvy
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Abstract
In a probabilistic context, the main data structures of computer science are viewed as random
combinatorial objects. Analytic Combinatorics, as described in the book by Flajolet & Sedgewick,
provides a set of high-level tools for their probabilistic analysis. Recursive combinatorial defini-
tions lead to generating function equations from which efficient algorithms can be designed for
enumeration, random generation and, to some extent, asymptotic analysis. With a focus on ran-
dom generation, this tutorial first covers the basics of Analytic Combinatorics and then describes
the idea of Boltzmann sampling and its realisation.

The tutorial addresses a broad TCS audience and no particular pre-knowledge on analytic
combinatorics is expected.
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1 Introduction

Combinatorial objects defined recursively by simple local rules tend to behave fairly regularly
at large sizes. For instance, binary trees are defined by having nodes that are either leaves
or binary internal nodes. From there, it turns out that all large random binary trees “look”
the same. Also, many of their asymptotic characteristic persist for other classes of trees.
The goal of analytic combinatorics is to understand and quantify those types of phenomena.
Typical questions for binary trees could be: for a binary tree drawn uniformly at random
among all binary trees with n nodes, what is the probability that the root has a leaf as one
of its children? what is the expected distance from a random node to the root? what is the
limiting distribution of this quantity?

The main applications are the probabilistic analysis of the average-case complexity of data
structures and algorithms. Besides general “universality laws” of random discrete structures,
the theory leads to very precise quantitative results. Analytic combinatorics is an active field
of research, whose central core is described in detail, with numerous interesting examples, in
the reference book Analytic Combinatorics by Flajolet and Sedgewick, published in 2009 and
freely (and legally) available on-line [6]. Many methods of this theory can be made effective;
this will be the focus of the tutorial.
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1:2 Recursive Combinatorial Structures

2 Constructible Classes

The classes of structures to which Analytic Combinatorics applies most directly are called
constructible. They form an extension of context-free languages and can be defined recursively
from a finite number of letters called atoms, of size 1 or 0, and combinatorial combinators:
cartesian product, disjoint union, sequences, cycles and sets.

For example, the class of binary trees will be defined by the equation B = 1 +Z ×B ×B,
expressing that a binary tree is either a ‘1’ (a leaf encoded as an atom of size 0) or a
triple formed by a root (Z, an atom of size 1) and two binary trees attached to it. In
terms of this class, the class of binary trees whose root has a leaf-child will be expressed
by Z × B × 1 + Z × 1×Z (except that the binary tree with only one node is counted twice,
which will not matter here). The class of non-planar rooted trees, also called Cayley trees,
will be defined by T = Z × Set(T ), expressing that a tree is a node to which an arbitrary
number of trees in an arbitrary order are attached. Series-parallel graphs will be defined by
a system {G = Z + S + P,S = Seq>0(Z + P),P = Set>0(Z + S)}, expressing that a graph
(G) is either a node (Z) or a series graph (S) or a parallel graph (P), defined recursively in
terms of each other. Such a system will be called a specification for the class. The motto of
the theory is that “if a class can be specified, it can be analyzed.”

3 Enumeration and Generating Functions

Given such a combinatorial specification for a class F , the enumeration problem is to count
the number fn of distinct objects of a given size n in F . For instance, knowing the number Cn
(the Catalan number) of binary trees of size n and the number of those whose root has a leaf
as one of its children lets one compute the probability that this event occurs.

The enumeration is simplified by the use of generating functions. The ordinary gener-
ating function of a sequence (fn) is the formal power series F (z) =

∑
n≥0 fnz

n, while the
exponential generating function is

∑
n≥0 fnz

n/n!. The use of one or the other depends on
what exactly is counted as different. For instance there is only 1 sequence (list) of n atoms of
size 1 if they are all identical, but n! such sequences if they all carry a different label from 1
to n. Thus one distinguishes two ‘universes’: in the unlabelled universe, all atoms are alike
and one uses ordinary generating functions, while in the labelled universe, an object of size n
is formed of atoms labelled from 1 to n and one uses exponential generating functions. In
both cases, there is an explicit dictionary translating the combinatorial specification into
a system of equations for generating functions. Atoms of size 1 are translated into z and
those of size 0 into 1 = z0; disjoint unions (‘+’) become additions and cartesian products
become products of series. A sequence Seq(A) is translated into 1/(1−A(z)), where A(z) is
the generating function of A. These first translation rules are identical in the labelled and
unlabelled universes. Thus, in the example of binary trees, the equation is B(z) = 1 + zB(z)2

in both cases and has for only power series solution the generating function of the Catalan
numbers Cn. Similarly, in terms of this generating function, binary trees with one leaf-child
at the root have generating function 2zB(z)− z (the term −z discards the spurious tree of
size 1), so that the probability mentioned in the introduction is 2Cn−1/Cn for n > 1. For sets
and cycles, the rules differ, but remain simple in the labelled case, where Set becomes exp and
Cycle(A) becomes log 1/(1−A(z)). For instance, in the case of Cayley trees, the exponential
generating function is thus seen to satisfy T (z) = z exp(T (z)).
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4 Newton Iteration and Fast Enumeration

These equations give a first means to compute the enumeration sequences since they are
fixed point equations over formal power series. A much more efficient algorithm is obtained
by using Newton iteration for power series. The classical numerical Newton iteration solves
an equation f(y) = 0 by approaching its root using the solution of successive linearized
equations. Each iterate yn+1 = yn − f(yn)/f ′(yn) is closer to the root when y0 has been
chosen appropriately. The extension of Newton iteration to formal power series is a standard
algorithm in computer algebra [9]. Thus, for binary trees the Newton iteration reads Bn+1 =
Bn + (1 + zB2

n −Bn)/(1− 2zBn). With the choice B0 = 0, it produces a sequence of power
series satisfying B(z)−Bn = O(z2n−1). Together with fast Fourier transform (FFT), Newton
iteration lets one enumerate all constructible classes in quasi-optimal complexity [8]1. It is
even possible to obtain a combinatorial interpretation of the coefficients of the intermediate
power series computed during the iteration: they enumerate combinatorial classes defined by
a further lifting of the Newton iteration to combinatorial equations themselves, in the context
of species theory [2, 1]. (Roughly speaking, species theory provides a sound theoretical
basis grounded in category theory for what we have called “combinatorial class” so far.)
For instance, in the case of binary trees, the combinatorial iteration then reads Bn+1 =
Bn + Seq(Z × Bn × ?+ Z × ?× Bn)× (1 + Z × Bn × Bn \ Bn), where ? denotes an atom of
size 0, which is interpreted as a ‘bud’ where trees can grow. The generating series of Bn is
exactly the power series Bn produced by Newton iteration over power series.

5 Random Generation

Producing large random objects is the basis for simulation in a discrete world. Typical
applications are the empirical evaluation of various parameters, software testing and the
refinement of combinatorial models to suit an application.

A new family of efficient random generators called Boltzmann samplers was discovered
at the beginning of the century [3, 4]. The principle is to draw each object of size n in
a class T with a probability proportional to xn for some prescribed positive real x and a
factor of proportionality chosen so that the sum of probabilities is 1. Since the sum over
all t ∈ T of xsize(t) is nothing but the evaluation of the generating function T of T at x,
the probability will be xn/T (x), provided x is at most the radius of convergence of T . The
algorithm of Boltzmann sampling itself is extremely simple and fits in about 10 lines. For
atoms, the generator returns the atom; for cartesian products, it simply calls itself recursively
on each of the components and assembles the results; for a disjoint union A+ B, a random
real number t ∈ [0, 1] is compared to u = A(x)/(A(x) + B(x)) and the generator is called
recursively on A if t < u and on B otherwise. It is a simple exercise to check that the
probabilities work out as expected. The values like A(x) are provided by a numerical Newton
iteration initialized at 0 [8]. The value of x can be adjusted to target a specific expected
size xT ′(x) of the generated object.

1 This is implemented in the NewtonGF Maple package, available at
http://perso.ens-lyon.fr/bruno.salvy/software/the-newtongf-package/.
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6 Asymptotic Analysis

Generating functions are also an entry point for the asymptotic analysis of their coefficients.
The principle is to take these generating functions defined initially as power series given
by a sequence of coefficients and view them as analytic functions in the complex plane.
If A(z) =

∑
n≥0 anz

n has a positive radius of convergence R, then by Cauchy’s theorem,
its coefficient an can be recovered by the integral an = 1

2πi
∮

(A(z)/zn+1) dz, where for the
contour of integration one can take a small circle around the origin of radius smaller than R.
Classical complex analysis deforming the contour to locations where the integral concentrates
asymptotically leads to very explicit and general results known as transfer theorems. The
most useful case is when there is a unique singularity on the circle of convergence, at a
point ρ (which will always be real), where the generating function behaves like c(1− z/ρ)α,
for α 6∈ N. Then the coefficients behave asymptotically like cρ−nn−α−1/Γ(−α). The outcome
is a general 3-step method for the asymptotic analysis of generating functions: (i). locate
the singularities of minimal modulus; (ii). compute the local behaviour of the generating
function there (which can often be found directly from the defining equations); (iii). translate
using a very simple dictionary. This process can be automated in a large part and full
asymptotic expansions computed using computer algebra systems. In the case of binary
trees, the quadratic equation satisfied by the generating function can be solved explicitly
to yield B(z) = (1 −

√
1− 4z)/(2z). From there, the explicit formula for the Catalan

numbers Cn =
(2n
n

)
/(n+ 1) can be derived and the asymptotic behaviour could be computed

by Stirling’s formula. However, such closed forms are the exception rather than the rule, and
the method applies in general. There, the dominant singularity is 1/4, the local behaviour
is 2 − 2

√
1− 4z + O(1 − 4z). The coefficients of B(z) − 2 which are Cn for n > 0 thus

behave asymptotically like −2 · 4nn−3/2/Γ(−1/2) = 4nn−3/2/
√
π. One can also deal with

the probability of a leaf-child at the root either using the formula 2Cn−1/Cn from §3 and
simplification of binomials, or by applying the general method to the generating function
2zB(z)− z. The singularity is the same as that of B(z); the local behaviour at first order is
2ρ = 1/2 times that of B(z), so that 1/2 is the limiting probability. A slighly more detailed
computation by this method yields 1/2 + 3/(4n) +O(1/n2).

These asymptotic techniques help analysis of parameters of combinatorial structures.
One then introduces multivariate generating functions of the form F (z, u) =

∑
n,k fn,ku

kzn

(and the labelled counterpart), where fn,k denotes the number of objects of size n for which
the parameter of interest takes the value k. As a concrete example, one can think of the
internal path-length in a binary tree, that is, the sum of the distances from the nodes to the
root. Equations for the generating series can often be derived by an extended dictionary [7].
In the case of path-length in binary trees, the equation reads B(z, u) = z +B2(zu, u). From
such a bivariate generating function, the expected value of the parameter on objects of size n
is obtained by dividing the coefficient of zn in ∂F/∂u|u=1 by that of zn in F . Both are
univariate generating functions to which the previous method applies. In our example, one
gets an average distance of the nodes to the roots growing like

√
πn.

The next step of Analytic Combinatorics is the study of limiting distributions of paramet-
ers, e.g., path-length in binary trees is asymptotically Gaussian after proper normalization.
This goes beyond what can be covered in this tutorial and we refer the reader to the last
part of the book by Flajolet & Sedgewick.
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7 Conclusion

The message of this tutorial is that from a combinatorial specification, Analytic Combinatorics
provides easy-to-use tools that provide counting, random generation and asymptotic analysis.
Work is under way to automate this approach fully within computer algebra. Counting and
the required parts of random generation are complete and asymptotic analysis is only partly
done, but progress is being made. The ultimate goal would be a system taking as input
a combinatorial specification and some sort of description of an algorithm and producing
automatically the asymptotic average-case behaviour of the algorithm. The approach was
tested a long time ago and works well for various grammars and parameters [5], but much
remains to be done.
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Abstract
How do we prove that a false QBF is indeed false? How big a proof is needed? The special case
when all quantifiers are existential is the well-studied setting of propositional proof complexity.
Expectedly, universal quantifiers change the game significantly. Several proof systems have been
designed in the last couple of decades to handle QBFs. Lower bound paradigms from propositional
proof complexity cannot always be extended - in most cases feasible interpolation and consequent
transfer of circuit lower bounds works, but obtaining lower bounds on size by providing lower
bounds on width fails dramatically. A new paradigm with no analogue in the propositional world
has emerged in the form of strategy extraction, allowing for transfer of circuit lower bounds, as
well as obtaining independent genuine QBF lower bounds based on a semantic cost measure.

This talk will provide a broad overview of some of these developments.
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1 Introduction

Despite the NP-completeness of SAT, SAT solvers have proven to be highly successful in
tackling humongous instances of satisfiability arising in practical applications. This has
spurred more ambitious programs to develop practical solvers for more complex and expressive
formulas. In the last couple of decades, several solvers have been developed to decide the
truth or falsity of Quantified Boolean Formulas QBFs, a PSPACE-complete problem. As in
the case of SAT, underlying the solvers are proof systems – formal systems where the truth
or falsity of a QBF is established through a sequence of easily checkable steps. A natural
measure of efficiency is the number of steps in such a proof, since it corresponds to the
length of the run of the solver. Understanding the limitations of a solver is thus intimately
connected to understanding the limitations of a proof system; hence the quest for explicit
lower bounds in proof systems.

2 Proof systems for QBF

What does a typical proof system for QBFs look like? One could start with the standard
propositional proof systems, where one proves that a formula is not satisfiable (that is, a QBF
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with only existentially quantified variables is false), and strengthen it to handle universally
quantified variables. An obvious starting point is the well-studied resolution system Res,
that works with unsatisfiable formulas in conjunctive normal form CNF. If a set C of clauses
is simultaneously satisfiable by an assignment ã, and if C contains clauses A ∨ x, B ∨ ¬x,
then the set C′ = C ∪ {A ∨B} is also satisfied by ã. Using this resolution rule, in which we
call x the pivot variable and A ∨B the resolvent, we repeatedly enlarge the set of clauses
until it contains the empty clause �; this set of clauses is patently unsatisfiable. This allows
us to conclude that the original set of clauses must also have been unsatisfiable.

To strengthen this system to handle quantifications, it is useful to consider the evaluation
game played on QBFs. We assume that the QBF is in prenex CNF: all variables are quantified
first, and then there is a matrix of clauses. There are two players. The existential player
owns the existentially quantified variables, the universal player owns the rest. The players
step through the quantifier prefix, and as each variable is encountered, the player who owns
it declares a value for it. The existential player wins a run of the game if the constructed
assignment satisfies all clauses in the matrix; otherwise the universal player wins. A QBF
is true if and only if the existential player has a winning strategy that allows him to win
no matter how the universal player plays; it is false if and only if the universal player has a
winning strategy. Thus, a strategy for the universal player, and a proof that it is a winning
strategy, is a proof that the QBF is false.

We can now consider three different approaches to augmenting Res or other propositional
proof systems to handle QBFs; more specifically, to handle universally quantified variables.

Eliminate-by-expansion

Remove the universal variables altogether! Use the semantics ∀uF (u) ≡ F (0) ∧ F (1), but to
avoid explosion of formula size, do the expansion on-the-fly, so to say. Since, in a run of the
QBF game, values of existential variables can depend on those of the preceding universal
variables, we make appropriate copies of existential variables, annotated with assignments
to preceding universal variables. When using a clause from the matrix in the proof, the
universal variables in the clause must be set to false. Other universal variables need not be
set at this stage. That is, the annotations can be complete or partial. Now use standard
resolution, keeping in mind that a single existential variable with two different annotations
must be treated as two different variables.

The systems ∀Exp+Res (∀Expansion + Resolution), IR (Instantiation + Resolution) are
based on this idea; see [22] and [8]. The solvers CAQE [27], CEGAR [18], Ghost-Q [24],
RAReQS [21] use such expansion-based ideas.

Eliminate-via-∀-reduction

Consider an intermediate stage during a run of the game on a QBF. If the partial assignment
constructed so far results in a clause getting simplified to one with only un-assigned universal
variables, then the universal player can win by simply falsifying this clause. This gives rise
to the ∀-reduction rule that can be added on to any line-based propositional system. The
simplest such system, and indeed, one of the earliest formal proof systems for QBFs, is the
system Q-Res, see [23], where resolution can be performed on existential pivots, tautologies
must be discarded, and a clause A can be inferred from a clause A∨ u where u is a universal
literal and all variables in A appear left of u in the prefix. A natural generalisation is QU-Res,
where the pivot for resolution can also be universal, see [30]. A more informative name
for QU-Res is perhaps Res + ∀Red (Resolution + ∀Reduction). Many DPLL-based solvers
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using conflict-driven-clause-learning, eg Evaluate, [15, 16], QuBe, [20] are based on such
systems. In a similar vein, one could add a ∀ Reduction rule to Frege proof systems or to the
Polynomial Calculus system and obtain proof systems sound and complete for QBFs; see [7].

Merging complementary literals

When performing resolution, tautologies are removed because they contribute nothing to
proofs of unsatisfiability. In the case of QBFs, however, what looks like a tautology may not
really be one. If a resolution rule produces a clause containing u and ¬u for some universal
variable u, such a clause could be still be useful, because the two complementary literals come
from different sub-derivations, and a winning strategy could use this information to decide
how to set u. So instead of discarding the clause, we retain a version of it, replacing the
literals u,¬u with a single merged literal u∗. This is referred to as long-distance resolution.
To preserve soundness of the rule, some side-conditions are imposed on when such a resolution
and merging is permissible.

Augmenting Q-Res and QU-Res with long-distance resolution gives rise to the proof
systems LD-Q-Res and LQU+-Res; see [2, 3].

A similar situation can also arise in the expansion-based systems, where a variable appears
in the resolvent with annotations that differ in their assignment to universal variables. Again,
under appropriate side-conditions, a merger of the annotations is permissible. This gives rise
to the proof system IRM (Instantiation, Resolution, Merge); see [8].

Many solvers use long-distance resolution very effectively; for instance, Quaffle [31].

The relative power of some QBF proof systems

The figure below shows some of the relationships between the QBF proof systems discussed.
An arrow from A to B indicates that a proof in system B can be transformed (in polynomial
time) to a proof in system A; that is, system A p-simulates system B. A dotted line indicates
that neither p-simulates the other; they are incomparable.

Q-Res∀Exp+Res

LD-Q-Res QU-Res

LQU+-Res

IR

IRM CP+∀Red PC+∀Red

Frege+∀Red

3 Where the hardness comes from

3.1 Propositional hardness
An unsatisfiable CNF formula is a false QBF with only existential variables. A proof of its
falsity in a QBF proof system is just a proof of unsatisfiability. If this is hard to demonstrate
in the specialisation of the QBF proof system to purely existential formulas, then of course
it is a hard QBF for the QBF proof system. Thus, for instance, the pigeonhole principle
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formula, asserting that m+ 1 pigeons can be placed in m holes without collision, is known to
require exponentially long proofs in Res; trivially, it then requires exponentially long proofs
in Q-Res and ∀Exp+Res. The Clique-color formulas, asserting that there is a k-colorable
graph with a clique of size k + 1, require exponentially long proofs in Cutting Planes; hence
they require long proofs in CP+∀Red as well.

While propositional hardness is indeed a valid source of hardness for QBF proof systems,
it does not tell us anything new about the ability (or lack thereof) of a QBF solver to
handle universal variables. Thus in QBF proof complexity, such hardness is not particularly
interesting.

3.2 Adapting techniques from propositional hardness
While pure propositional hardness may not be interesting, it is reasonable to expect that
techniques used to establish such hardness could perhaps be adapted to prove non-trivial
QBF hardness.

The size-width technique fails. The central lower-bound technique in the case of resolution
is the relation between the size of proofs and their width (the maxmimum number of literals
in any clause in the proof), due to [4]. The width of proofs also yields lower bounds on the
space complexity; see [1]. Unfortunately, this technique fails completely in the case of the
simplest extension, Q-Res, as shown in [10]; there are formulas with short proofs, derivable
using very little space, but the width of any proof for these formulas must be large.

Feasible interpolation works. The technique of feasible interpolation exploits known (mono-
tone) circuit lower bounds to obtain lower bounds for proofs of formulas of a specific type.
It was used to show exponential lower bounds in the propositional proof systems Res and
Cutting Planes, see [25, 26]. The technique can be adapted to similarly obtain lower bounds
in QBF proof systems as well. The set-up is as follows: We start with a false QBF of the
form

ϕ = ∃~p Q~q Q~r · [A(~p, ~q) ∧B(~p, ~r)].

For every assignment ~a to the common variables ~p, either Q~q · A(~a, ~q) or Q~r · B(~a,~r) (or
both) must be false. From a proof π that ϕ is false, we extract a circuit C in the ~p variables
with the property that C(~a) = 0 implies Q~q ·A(~a, ~q) is false and C(~a) = 1 implies Q~r ·B(~a,~r)
is false. That is, C computes an interpolant. Furthermore, the size of C is polynomial in the
size of π. Now, if interpolants for a formula are known to require large circuits, it follows that
the formula cannot have small proofs. If the extracted circuit is monotone, then monotone
circuit hardness gives a proof size lower bound.

In [11, 12] it is shown that all the Res-based QBF proof systems (Q-Res, QU-Res, LD-Q-Res,
LQU+-Res, ∀Exp+Res, IR, IRM), as well as the proof system CP+∀Red, admit monotone
feasible interpolation. Hence the Clique-co-Clique formulas, asserting that a graph both has
and does not have a large clique, are hard to prove false in these systems.

3.3 Winning strategies hard for decision lists
The universal player has a winning strategy in the evaluation game played on a false QBF.
In general, a winning strategy may not be easy to compute. However, proofs in most proof
systems reveal strategies. Let π be a proof of falsity in some QBF proof system of the form
P + ∀Red, where P is some propositional proof system. By examining π, the player can
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figure out a way to compute a winning strategy. The computation focuses on the ∀ Reduction
steps in the proof. Let L1, L2, . . . , Lm be the lines of the proof, with the last line being
something obviously false (such as the empty clause �). Suppose it is the universal player’s
turn to play, and she has to choose a value for the variable u. All variables left of u in the
prefix have already been assigned, and she knows the partial assignment ~a. She now looks at
the lines in the proof that are obtained by a ∀ reduction applied to the variable u. Let the
indices of these lines be (1 <)i1 < . . . < ik(≤ m), and let each Lir

be obtained from some
Ljr , jr < ir, by dropping u or ¬u. Note that since dropping u was permitted, each Lir is
either true or false under ~a; there are no variables still unassigned. She steps through the
following decision list:

if Li1(~a) = 0 then set u to make Lj1(~a) = 0
elseif Li2(~a) = 0 then set u to make Lj2(~a) = 0
...
elseif Lik

(~a) = 0 then set u to make Ljk
(~a) = 0

else set u = 0.

This can be shown to be a winning strategy; see [9, 7]. Note that the kind of decisions to
be made while computing it depend on the nature of the lines allowed in the proof system
P + ∀Red.

Now, if the formula has the property that there is a unique winning strategy for some
variable, and if this winning strategy function is known to require large decision lists of the
type specified by the proof system, then it follows that the proof must have large size. What
is more, it must be large not because of the steps from the propositional part P (although
that too may be the case), but because it has many ∀Reduction steps. This may be the case
even if there are very few universal variables. A simple example is the formula QParity:
∃~x ∀z ∃~t A(~x,~t) ∧ (tn ∨ z) ∧ (¬tn ∨ ¬z), where the clauses in A express the property that
tn computes the parity of x1, . . . , xn. (for example, clauses equivalent to t2 = x1 ⊕ x2,
ti = ti−1 ⊕ xi for i > 2). The only winning strategy for the universal player is to choose z
to be the parity of x1, . . . , xn. A Q-Res or QU-Res proof with S lines would give a decision
list computing parity with at most S decision steps, where each decision involves evaluating
a clause on an assignment. If S were polynomial in n, this would give a way of computing
parity in AC0, something we know is not possible. So this formula has no short proof in
Q-Res or QU-Res ([9]). Similarly, a formula asserting that for some ~x, ~y, the inner product
modulo 2 is both 0 and 1 is hard for CP+∀Red ([12]) because the inner product function
requires exponentially long decision lists of threshold functions ([29]).

See [9, 7, 12] for more examples of such hardness. In particular, it is noteworthy that this
technique gives explicit lower bounds against proof systems AC0[p]-Frege+∀Red for any prime
p. In contrast, in the propositional world, the strongest lower bound holds for the system
AC0-Frege, while lower bounds for AC0[p]-Frege remains an outstanding open question.

The feasible interpolation technique for QBFs described earlier is essentially a special
case of strategy extraction; see [11].

3.4 Winning strategies requiring varied responses
In [14], it is shown that hardness in Frege+∀Red must stem from either propositional hardness
in the system Frege or from a circuit lower bound. (Thus any hardness proof for Frege+∀Red
would constitute a major advance, either in proof complexity or in circuit complexity.) There
are no other sources of hardness. This is not the case for weaker systems. Consider the

STACS 2018



2:6 Lower Bound Techniques for QBF Proof Systems

formula QEquality:

∃x1 · · ·xn∀u1 · · ·un∃t1 · · · tn

(
n∧

i=1
(xi ∨ ui ∨ ti) ∧ (¬xi ∨ ¬ui ∨ ti)

)
∧

(
n∨

i=1
¬ti

)

It has a unique winning strategy that is extremely simple to compute: just let ui = xi for
each i ∈ [n]. Thus the decision list approach cannot show that this formula is hard in any
system. However, it turns out to require exponentially long proofs in QU-Res. The reason is
as follows: the winning strategy has a range of size 2n; all responses are required. However,
the algorithm that extracts a winning strategy from a proof builds up responses line-by-line,
with each line contributing a limited amount to the range. In particular, in QU-Res, each
line is a clause and contributes a single response. It follows that there must be many lines.

Generalising this idea needs some work and yields the very elegant size-cost-capacity
theorem, see [6], applicable to proof systems of the form P + ∀Red. The cost of a formula is
the number of distinct responses required in any winning strategy. A caveat: it is important
here that we only count responses to universal variables in a single quantification block
(which block doesn’t matter). The capacity of a proof is an upper bound on the number of
responses that a single line in a proof can contribute. The theorem says that the cost of a
formula is bounded above by the size of a proof times the capacity of the proof.

In the case of QU-Res and CP+∀Red, the capacity of any proof is simply 1, and thus the
formula cost is itself a proof size lower bound. In the case of PC+∀Red, the capacity of a
proof is no more than its size, and so proof size is at least square root of the formula cost.

The size-cost-capacity theorem has bene used to show families of random QBFs hard in
QU-Res, CP+∀Red and PC+∀Red.

Paralleling the size-cost-capacity theorem, while dealing with expansion-based systems,
strategy size and weight provide proof size lower bounds; these results are established by
counting annotations, and are reported in [5].

A prominent example of hard QBFs are the KBKF formulas introduced in [23]. These are
known to require large proofs in Q-Res and IR [23, 9], but have short proofs in QU-Res [30]
and in LD-Q-Res [19]. The proofs of hardness are length and cumbresome, and essentially use
an ad hoc combinatorial argument. The size-cost-capacity technique provides an alternative,
and, arguably, more insightful, proof that the KBKF formulas require exponentially long
proofs in Q-Res and that a doubled variant requires exponentially long proofs in QU-Res,
CP+∀Red, PC+∀Red. Similarly, the strategy-size theorem provides a more insightful proof
that the KBKF formulas require exponentially long proofs in IR.

4 Conclusion

QBF proof complexity is a relatively young field, but it has already thrown up very interesting
insights and techniques. A good starting point to read about QBF proof complexity are the
doctoral dissertations of Leroy Chew [17] and Anil Shukla [28], although there have already
been quite a few advances after that, eg [13, 6, 5]. In this short article, I have not tried to be
exhaustive, and I apologise to the readers who find their favourite papers missing.
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Abstract
Binary relations are such a basic object that they appear in many places in mathematics and
computer science. For instance, when dealing with graphs, program semantics, or termination
guarantees, binary relations are always used at some point.

In this survey, we focus on the relations themselves, and we consider algebraic and algorithmic
questions. On the algebraic side, we want to understand and characterise the laws governing the
behaviour of the following standard operations on relations: union, intersection, composition,
converse, and reflexive-transitive closure. On the algorithmic side, we look for decision procedures
for equality or inequality of relations.

After having formally defined the calculus of relations, we recall the existing results about
two well-studied fragments of particular importance: Kleene algebras and allegories. Unifying
those fragments yields a decidable theory whose axiomatisability remains an open problem.
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1 The calculus of relations

Given a set P , a relation on P is a set of pairs of elements from P . For instance, the usual
order on natural numbers is a relation. In the sequel, relations are ranged over using letters
R,S, their set is written P(P×P ), and we write p R q for 〈p, q〉 ∈ R.

The set of relations is equiped with a partial order, set-theoretic inclusion (⊆), and three
binary operations: set-theoretic union, written R + S, set-theoretic intersection, written
R ∩ S, and relational composition:

R·S , {〈p, q〉 | ∃r ∈ P, p R r ∧ r S q} .
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It also contains three specific relations: the empty relation, written 0, the full relation,
written >, and the identity relation:

1 , {〈p, p〉 | p ∈ P} .

Lastly, one can consider three unary operations: set-theoretic complement, written Rc,
converse (or transpose), R◦, and reflexive-transitive closure, R?, defined as follows:

Rc , {〈p, q〉 | ¬p R q} ,
R◦ , {〈p, q〉 | q R p} ,
R? , {〈p, q〉 | ∃p0, . . . , pn, p0 = p ∧ pn = q ∧ ∀i < n, pi R pi+1} .

We restrict ourselves to this list of operations here, even though it is not exhaustive. These
operations make it possibles to state many properties in a concise way, without mentioning
the points related by the relations. Here are a few examples:

1 ⊆ R R is reflexive: ∀p ∈ P, p R p

R·R ⊆ R R is transitive: ∀pqr, p R r ∧ r R q ⇒ p R q

R·R? ∩ 1 = 0 R is acyclic: ∀p0 . . . pn, n>0, (∀i, pi R pi+1)⇒ p0 6= pn

R◦ ·S ⊆ S ·R◦ R and S commute: ∀pqr, r R p ∧ r S q ⇒ ∃t, q R t ∧ p S t

I Exercise 1. To which standard notions from rewriting theory correspond the inequations
R◦ ·R ⊆ R? ·R◦? and R◦? ·R? ⊆ R? ·R◦? ?

Moreover, these operations satisfy many laws. Some of these laws are extremely simple
(for instance, composition is associative, (R ·R′) ·R′′ = R ·(R′ ·R′′); the empty relation is
absorbs composition, R·0 = 0 = 0·R; reflexive-transitive closures are transitive, R?·R? ⊆ R?).
Others are much more complicated and counter-intuitive.

I Exercise 2. Amongst the following equations and inequations, which ones are universally
true? In each case, give a counter-example or a detailed proof.

1 ∩R ⊆ R·R ∩ R·R·R (1)
(R+ S)? = R? ·(S ·R?)? (2)
(R+ S)? = ((1 +R)·S)? (3)

R·(S ∩ T ) = R·S ∩ R·T (4)
R·S ∩ T ⊆ R·(S ∩ R◦ ·T ) (5)
R·S ∩ T ⊆ (R ∩ T ·S◦)·(S ∩ R◦ ·T ) (6)

(R ∩ S ·>)·T = R·T ∩ S ·> (7)

Two questions arise naturally:
1. is it possible to axiomatise the set of laws that are universally true, that is, to give a

small number of elementary laws from which all valid laws follow?
2. is it possible to decide whether a law is valid or not?
When considering all the operations listed above, the answer is negative in both cases.
Indeed, Monk proved that there cannot be a finite axiomatisation [16], and Tarski proved
that the theory is actually undecidable [25, 24]. In both cases, reflexive-transitive closure is
not necessary but the complement plays a crucial role. Thus we focus in the sequel on the
positive fragments, where complement is excluded.
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Now we setup the concepts and notation needed in the sequel.
Let Σ be a set, whose elements are denoted by letters a, b. (Relational) expressions are

defined by the following grammar:

e, f, g ::= e+ f | e ∩ f | e · f | e◦ | e? | 0 | 1 | > | a (a ∈ Σ) .

Given a set E and a function σ : Σ→ P(E×E) mapping any letter from Σ to a relation on
E, we define inductively the extension σ̂ of σ to expressions:

σ̂(e+ f) , σ̂(e) + σ̂(f) σ̂(e◦) , σ̂(e)◦ σ̂(1) , 1
σ̂(e ∩ f) , σ̂(e) ∩ σ̂(f) σ̂(e?) , σ̂(e)? σ̂(>) , >
σ̂(e · f) , σ̂(e) · σ̂(f) σ̂(0) , 0 σ̂(a) , σ(a)

Given two expressions e and f , an equation is valid, written � e = f , if for all set E and
for all function σ : Σ → P(E×E), we have σ̂(e) = σ̂(f). Intuitively, an equation is valid if
it is universally true in relations, if it holds whatever the relations we use to interpret its
variables.

Similarly, an inequation is valid, written � e ⊆ f , if σ̂(e) ⊆ σ̂(f) for all set E and
function σ : Σ → P(E×E). Characterising valid equations is equivalent to characterising
valid inequations, as shown in the following exercise.

I Exercise 3. Let e, f be two expressions. We have � e = f iff � e ⊆ f and � f ⊆ e. Show
that � e ⊆ f iff � e+ f = f iff � e ∩ f = e.

2 The ideal fragment: Kleene algebra

In this section we remove from the syntax the operations of intersection and converse, as
well as the constant >. In other words, we restrict to regular expressions:

e, f, g ::= e+ f | e · f | e? | 0 | 1 | a (a ∈ Σ) .

we shall see that with such a restriction, the validity of an equation is decidable, and more
precisely, PSPACE-complete.

2.1 Decidability
Let letter u, v range over finite words over the alphabet Σ, let ε denote the empty word,
and uv the concatenation of two words u and v. A language is a set of words. We define
inductively a function [·] associating a language to each expression:

[e+ f ] , [e] ∪ [f ] [0] , ∅
[e·f ] , {uv | u ∈ [e], v ∈ [f ]} [1] , {ε}
[e?] , {u1 . . . un | ∀i, ui ∈ [e]} [a] , {a}

The key result about this fragment of the calculus of relations is the following charac-
terisation: an equation is valid for relations if and only if it corresponds to an equality of
languages.

I Theorem 4. For all regular expressions e, f , we have

� e = f iff [e] = [f ] .
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3:4 On the Positive Calculus of Relations with Transitive Closure

We prove this theorem below. Its main consequence in practice is the decidability of the
validity of equations: [e] and [f ] are regular languages which we can easily represent using
finite automata in order to compare them. This characterisation also gives us the pre-
cise complexity of the problem, as language equivalence of regular expression is PSPACE-
complete [23].

Proof of Theorem 4. First we show the implication from left to right. Suppose � e = f ,
we have to find a function σ from the alphabet Σ to a space of relations P(E×E), such that
σ̂(e) = σ̂(f) entails [e] = [f ]. Take E = Σ?, the set of words over Σ, and define σ as follows:

σ : Σ→ P(Σ?×Σ?)
a 7→ {〈u, ua〉 | u ∈ Σ?}

We will show that for all expression g, we have

σ̂(g) = {〈u, uv〉 | u ∈ Σ?, v ∈ [g]} .

In particular, we will thus have v ∈ [g] if and only if 〈ε, v〉 ∈ σ̂(g), so that σ̂(e) = σ̂(f) entails
[e] = [f ].
We proceed by induction on the expression g:

g = g′ + g′′: we have

σ̂(g) = σ̂(g′) ∪ σ̂(g′′)
= {〈u, uv〉 | u ∈ Σ?, v ∈ [g′]} ∪ {〈u, uv〉 | u ∈ Σ?, v ∈ [g′′]} (by induction)
= {〈u, uv〉 | u ∈ Σ?, v ∈ [g′] ∪ [g′′]}
= {〈u, uv〉 | u ∈ Σ?, v ∈ [g′ + g′′]}

g = g′ ·g′′: we have

σ̂(g) = σ̂(g′) · σ̂(g′′)
= {〈u, uv〉 | u ∈ Σ?, v ∈ [g′]} · {〈u′, u′w〉 | u′ ∈ Σ?, w ∈ [g′′]} (by induction)
= {〈u, uvw〉 | u ∈ Σ?, v ∈ [g′], w ∈ [g′′]}
= {〈u, uv〉 | u ∈ Σ?, v ∈ [g′ · g′′]}

g = g′?: like in the previous point, we have

σ̂(g) = σ̂(g′)?

= {〈u, uv〉 | u ∈ Σ?, v ∈ [g′]}? (by induction)
= {〈u, uv〉 | u ∈ Σ?, v ∈ [g′?]}

(for the last step, we first show the following property, by induction on k ∈ N: for all
language L ⊆ Σ?, we have {〈u, uv〉 | u ∈ Σ?, v ∈ L}k = {〈u, uv〉 | u ∈ Σ?, v ∈ Lk}).
g = 0, g = 1, g = a: by unfolding definitions.

Now consider the converse implication. Fix a set E and a function σ : Σ → P(E×E);
we have to show that [e] = [f ] entails σ̂(e) = σ̂(f). This implication follows immediately
from the following property, which we prove by induction on the expression g:

σ̂(g) =
⋃

v∈[g]

σ̂(v) .

(Note the slight abuse of notation in the term of the union: we apply the function σ̂,
expecting a regular expression, to a word v; we implicitely use the natural injection from
words to expressions.)
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g = g′ + g′′: we have

σ̂(g) = σ̂(g′) ∪ σ̂(g′′)

=
⋃

v∈[g′]

σ̂(v) ∪
⋃

v∈[g′′]

σ̂(v) (by induction)

=
⋃

v∈[g′]∪[g′′]

σ̂(v)

=
⋃

v∈[g′+g′′]

σ̂(v)

g = g′ · g′′: we have

σ̂(g) = σ̂(g′) · σ̂(g′′)

=
⋃

v∈[g′]

σ̂(v) ·
⋃

w∈[g′′]

σ̂(w) (by induction)

=
⋃

v∈[g′], w∈[g′′]

σ̂(v) · σ̂(w) (distributivity)

=
⋃

v∈[g′], w∈[g′′]

σ̂(v · w)

=
⋃

u∈[g′·g′′]

σ̂(u)

g = g′?: we have

σ̂(g) = σ̂(g′)?

= (
⋃

v∈[g′]

σ̂(v))? (by induction)

=
⋃

v1∈[g′], ..., vn∈[g′]

σ̂(v1) · · · · · σ̂(vn)

=
⋃

v1∈[g′], ..., vn∈[g′]

σ̂(v1 · · · · · vn)

=
⋃

u∈[g′?]

σ̂(u)

g = 0, g = 1, g = a: again, by unfolding definitions. J

Note that this proof leads to a similar characterisation for inequations: for all regular
expressions e and f ,

� e ⊆ f iff [e] ⊆ [f ] .

2.2 Axiomatisation
In 1956, Kleene asks for axiomatisations of the previous theory [7]: is it possible to find a
small set of axioms (i.e., equations), from which follow all valid equations between regular
expressions?

In the sixties, Salomaa gives two axiomatisations [22] which are not purely algebraic,
and Redko proves that no finite equational axiomatisation can be complete [21]. Conway
studies extensively this kind of questions in his monograph on regular algebra and finite
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e+ (f + g) = (e+ f) + g

e+ f = f + e

e+ 0 = e

e+ e = e


〈+, 0〉 is a commutative
and idempotent monoid

e·(f ·g) = (e·f)·g
e·1 = e

1·e = e

 〈·, 1〉 is a monoid

e·(f + g) = e·f + e·g
(e+ f)·g = e·g + f ·g

e·0 = 0
0·e = 0


distributivity between
the two monoids

1 + e·e? = e?

e·f ≤ f ⇒ e? ·f ≤ f
f ·e ≤ f ⇒ f ·e? ≤ f

 laws about Kleene star

Figure 1 The axioms of Kleene algebra.

automata [7], but we have to wait for the nineties for new results: Krob and Kozen inde-
pendently show that one can axiomatise this theory in a finite way, but using axioms that
are not just equations, but implications between equations. (We move from varieties to
quasi-varieties.)

Krob’s proof is long and difficult [15], but it provides a complete picture: first he gives
a purely equational axiomatisation, infinite but with more structure than Salomaa’s ax-
ioms. Then he shows that those infinitely many axioms can be derived from various finite
axiomatisations involving implications between equations.

On the contrary, Kozen goes straight to the point and focuses on a specific finite axio-
matisation (with implications). His proof is not simple either, but much shorter [13, 14].

I Theorem 5 (Kozen’91, Krob’91). For all regular expressions e, f , we have [e] = [f ] if and
only if the equality e = f is derivable from the axioms listed in Figure 1, where notation
e ≤ f is a shorthand for e+ f = f .

These axioms can be decomposed into four groups: the first three correspond to the fact
that we have an idempotent non-commutative semiring; the last group of axioms character-
ises the operation of reflexive-transitive closure, often called “Kleene star” in this context.
This group is not entirely symmetric: the law 1 + e? ·e = e? is omitted as it can be derived
from the other axioms. The last two axioms are implications; intuitively, they tell that if
an expression f is invariant under composition with another expression e, then it is also
invariant with e?. The expressive power of the axiomatisation mainly comes from those
two implications: they make it possible to reason inductively on Kleene star, in a purely
algebraic way.

One easily checks that each of these axioms is valid in the model of binary relations,
but also when interpreting the expressions e, f, g as arbitrary languages. The converse
implication from Theorem 5 follows from this remark: we prove only valid equations using
those axioms.
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The difficulty lies in the other implication: the completeness of these axioms, the fact
that any valid equation might eventually be deduced from these axioms. We do not detail
the proof here; a key step consists in showing that the set of matrices with coefficients in a
Kleene algebra forms a new Kleene algebra (a Kleene algebra being a structure satisfying
the axioms from Figure 1).

I Exercise 6. Prove the following laws by using only Kleene algebras axioms:

g + e·f ≤ f ⇒ e? ·g ≤ f
g + f ·e ≤ f ⇒ g ·e? ≤ f

1 + e? ·e = e?

e·f ≤ g ·e⇒ e·f? ≤ g? ·e
e·f = g ·e⇒ e·f? = g? ·e
e·(f ·e)? = (e·f)? ·e
(e+ f)? = e? ·(f? ·e)?

3 The strange fragment: allegories

Now consider a different fragment, where we only have composition, intersection, converse,
and constants 1 and >. For reasons to become clear in Section 4, we reuse letters u, v, w to
denote the corresponding regular expressions, which we shall call terms:

u, v, w ::= u · v | u ∩ v | u◦ | 1 | > | a (a ∈ Σ) .

Modulo the presence of the constant >, this fragment was studied by Andréka and
Bredikhin [2], and by Freyd and Scedrov [11] under the name of (representable) allegories.
We will see that one can decide the validity of inequations (and thus also equations) in this
fragment, but that again, the corresponding theory is not finitely axiomatisable in a purely
equational way.

3.1 Decidability
The key idea consists in characterising valid inequations by the existence of graph homo-
morphisms. More precisely, homomorphisms of directed and edge-labeled graphs with two
distinguished vertices.

I Definition 7 (Graph). A graph is a tuple 〈V,E, ι, o〉, where V is a set of vertices, E ⊆
V ×Σ×V is a set of labelled edges, and ι, o ∈ V are two distinguished vertices, respectively
called input and output.

We let letters G,H range over graphs and we define the following operations:
G ·H is the graph obtained by composing the two graphs in series, that is, by putting
them one after the other and by merging the output of G with the input of H;
G∩H is the graph obtained by composing the two graphs in parallel, that is, by putting
them side by side and by merging their inputs and their outputs;
G◦ is the graph obtained from G by exchanging input and output (without reversing
edges);
1 is the graph without edges and with a single vertex (〈{∗}, ∅, ∗, ∗〉);
> is the graph without edges and with two vertices, where input and output are distinct
(〈{?, •}, ∅, ?, •〉);
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G ·H , G H 1 ,

G ∩H ,
G

H
> ,

G◦ , G a ,
a

Figure 2 Operations on graphs.

G(b ∩ c◦):
b

c

G(a·(b ∩ c) ∩ d):

a

d

b

c

G(a·b ∩ a·c):
a

a

b

c

G((a ∩ b·>)·d):
a

b

d

G(a·b ∩ 1):

a

b

Figure 3 Graphs associated to some terms.

for a ∈ Σ, a is the graph with two vertices and an edge labelled a from the input to the
output (〈{?, •}, {〈?, a, •〉}, ?, •〉).

These operations are depicted on Figure 2; the input and the output of each graph is denoted
using unlabelled arrows. These operations make it possible to associate a graph G(u) to
every term u, by structural induction:

G(u · v) , G(u) ·G(v) G(1) , 1
G(u ∩ v) , G(u) ∩G(v) G(>) , >
G(u◦) , G(u)◦ G(a) , a

The graphs of a few terms are drawn on Figure 3. These are series-parallel graphs as long
as we do not use converse and identity, that introduce loops in presence of intersection, nor
the constant >, that can disconnect some parts of the graphs.

Some graphs are not associated to any term. The canonical counter-example is the
following one. (The labelling and the orientation of the five edges is irrelevant so that we
omit this information.)

(8)
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H :

N

a

d

b

c

G :
a

a

b

c

Figure 4 A graph homomorphism.

In fact, the graphs of terms are exactly the graphs of treewidth at most two; equivalently,
they are the graphs excluding the complete graph with four vertices (K4) as a minor1 [9, 8].

One can compare graphs using homomorphisms:

I Definition 8. A homomorphism from the graph G to the graph H is a function from
vertices of G to vertices of H that preserves labelled edges, input, and output. We write
H J G when there exists a homomorphism from G to H.

One easily checks that the relation J is a preorder on graphs: it is reflexive and transitive.
As an example, the graph of a·(b ∩ c) ∩ d is smaller than that of a·b ∩ a·c, thanks to the

homomorphism depicted on Figure 4 using dotted arrows. Note that homomorphisms need
not be injective or surjective, so that the preorder is completely unrelated to the sizes of the
graphs: a graph may perfectly be smaller than another one, in the sense of the preorder,
while having more vertices or edges (and vice-versa).

The nice property of the fragment considered here is the following characterisation:
an inequation is valid for relations if and only if there exists a homorphism between the
underlying graphs:

I Theorem 9 ([2, Theorem 1], [11, page 208]). For all terms u, v, we have

� u ⊆ v iff G(u) J G(v) .

Graphs of terms being finite, one can look for a homomorphism between two such graphs in
an exhaustive way, whence the decidability of the problem.

I Exercise 10. Prove the laws (1), (5), (6), and (7) from Exercice 2, by using Theorem 9.

We need a lemma in order to prove the theorem.

I Lemma 11. Let u be a term, and let G(u) = 〈V,E, ι, o〉 be its graph. Let S be a set and
σ : Σ→ P(S×S) an interpretation function. For all elements i, j ∈ S, we have 〈i, j〉 ∈ σ̂(u)
iff there exists a function φ : V → S such that:

φ(ι) = i ,

φ(o) = j , et
〈p, a, q〉 ∈ E ⇒ 〈φ(p), φ(q)〉 ∈ σ(a) .

Proof. We proceed by induction on u:

1 In both cases, after adding a edge between the input and the output.
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3:10 On the Positive Calculus of Relations with Transitive Closure

u = v · w: write G(v) = 〈Vv, Ev, ιv, ov〉 and G(w) = 〈Vw, Ew, ιw, ow〉. We have 〈i, j〉 ∈
σ̂(u) = σ̂(v) · σ̂(w) iff there exists k ∈ S such that 〈i, k〉 ∈ σ̂(v) and 〈k, j〉 ∈ σ̂(w). By
induction, this last property is equivalent to the existence of two functions φu : Vu → S et
φv : Vv → S such that φu(ιu) = i, φu(ou) = k, 〈p, a, q〉 ∈ Eu entails 〈φu(p), φu(q)〉 ∈ σ(a),
φv(ιv) = k, φv(ov) = j, and 〈p, a, q〉 ∈ Ev entails 〈φv(p), φv(q)〉 ∈ σ(a). By gluing back
those two functions, we easily show the equivalence with the existence of a function from
the graph G(u) = G(v)·G(w) satisfying the property from the statement.
u = v∩w: with the notations from the previous point, we have 〈i, j〉 ∈ σ̂(u) = σ̂(v)∩σ̂(w)
iff 〈i, j〉 ∈ σ̂(v) and 〈i, j〉 ∈ σ̂(w). By induction, this conjunction is equivalent to the
existence of two functions φu : Vu → S and φv : Vv → S such that φx(ιx) = i, φx(ox) = j,
and 〈p, a, q〉 ∈ Ex entails 〈φx(p), φx(q)〉 ∈ σ(a), for x ∈ {u, v}. As previously one easily
shows the equivalence with the existence of a function from the graph G(u) = G(v)∩G(w)
satisfying the property from the statement.
u = 1: by definition, we have 〈i, j〉 ∈ σ̂(u) = 1 iff i = j, and the existence of a function
φ satisfying the properties of the statement for the graph 1 is also equivalent to i = j.
u = >: by definition, 〈i, j〉 ∈ σ̂(u) = > is always true; and the existence of a function φ
satisfying the properties of the statement for the graph > is always guaranteed.
u = a: σ̂(u) = σ(a) the existence of a function φ satisfying the properties of the statement
for the graph a is equivalent to the membership of 〈i, j〉 to σ(a). J

Proof of Theorem 9. Write G(u) = 〈V,E, ι, o〉 et G(v) = 〈V ′, E′, ι′, o′〉.
Start by the right-to-left implication: assume G(u) J G(v), i.e., a homomorphism γ

from G(v) to G(u), and let us show � u ⊆ v. Let S be a set and σ : Σ → P(S×S) an
interpretation function; for all 〈i, j〉 ∈ σ̂(u) (†), we have to show 〈i, j〉 ∈ σ̂(v) (‡). Let
φ : V → S be the function given by Lemma 11 and assumption (†). By the same lemma,
to prove (‡) it suffices to find a function ψ : V ′ → S satisfying ψ(ι′) = i, ψ(o′) = j, and
〈p′, a, q′〉 ∈ E′ entails 〈ψ(p′), ψ(q′)〉 ∈ σ(a). The composed function φ ◦ γ is suitable.

Now let us show the direct implication. Suppose that � u ⊆ v, we have to find a
homomorphism from G(v) to G(u). Let σ be the following interpretation function:

σ : Σ→ P(V×V )
a 7→ {〈p, q〉 | 〈p, a, q〉 ∈ E}

By Lemma 11, using the identity function, we have 〈ι, o〉 ∈ σ̂(u). By assumption, we deduce
〈ι, o〉 ∈ σ̂(v), whence, by using Lemma 11 again, the existence of a function φ : V ′ → V

satisfying some properties. These properties precisely correspond to the fact that φ is a
homomorphism from G(v) to G(u). J

3.2 Axiomatisation
Freyd and Scedrov define allegories [11] as structures satisfying the axioms from Figure 52.
First note that composition does not distribute over intersections: composition is monotone
in its two arguments, which entails the following inequations but not their converses:

e · (f ∩ g) ⊆ e·f ∩ e·g
(f ∩ g) · e ⊆ f ·e ∩ g ·e

2 Up-to some details: they do not consider the constant >, and they work in a categorical setting, where
the various operations are typed.
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e ∩ (f ∩ g) = (e ∩ f) ∩ g
e ∩ f = f ∩ e
e ∩ > = e

e ∩ e = e


〈∩,>〉 is a commutative
and idempotent monoid

e · (f · g) = (e · f) · g
e · 1 = e

1 · e = e

 〈·, 1〉 is a monoid

e · (f ∩ g) ⊆ e · f
(f ∩ g) · e ⊆ f · e

}
composition is monotone

e◦◦ = e

(e ∩ f)◦ ⊆ e◦

(e · f)◦ ⊆ f◦ · e◦

 converse is a monotone
involution reversing composition

e·f ∩ g ⊆ (e ∩ g ·f◦) · f
}

modularity law

Figure 5 Axioms of allegories.

One can also deduce from the axioms that converse reverses composition, distributes over
intersections, and preserves constants 1 et >:

(e ∩ f)◦ = e◦ ∩ f◦ >◦ = >
(e · f)◦ = f◦ · e◦ 1◦ = 1

The last axiom in Figure 5 is uncommon. It is called modularity law, it is equivalent in
presence of the other axioms to its symmetrical counterpart:

e·f ∩ g ⊆ e · (f ∩ e◦ ·g)

It also admits as a consequence the following inequation, known as Dedekind’s inequality:

e·f ∩ g ⊆ (e ∩ g ·f◦) · (f ∩ e◦ ·g)

I Exercise 12. Prove the six laws above from the axioms of Figure 5.

Unfortunately, this finite and purely equational axiomatisation is not complete for rela-
tions: some valid equations are not consequences of the axioms. Freyd and Scedrov actually
proved that there exists no finite equational axiomatisation. We give some intuitions about
this result in the remainder of this section. Let us first check that the axiomatisation is
sound:

I Exercise 13. Prove that each axiom is valid by using Theorem 9: draw each graph and
make explicit the homomorphisms corresponding to each inequation.

When doing the above exercise, one can see that the only non-injective homomorphism is
the one corresponding to the modularity law, and that this homomorphism equates exactly
two vertices:

STACS 2018



3:12 On the Positive Calculus of Relations with Transitive Closure

G(e·f ∩ g) :

N

e

g

f

G(e · (f ∩ e◦ ·g)) :
e

e

f

g

We actually have the following result:

I Claim 14. Let u and v be two terms. If there exists a homomorphism from G(v) to G(u)
equating at most two vertices, then the inequality u ⊆ v is a consequence of the axioms from
Figure 5.

Proof. Left to the reader by Freyd and Scedrov [11]. J

The converse does not hold: many inequations provable from the axioms correspond to ho-
momorphisms equating arbitrarily many vertices (for instance, Dedekind’s inequality, where
two pairs of vertices are equated, or the inequation (1) from Exercice 2, where the five
vertices of the right-hand side are equated).

Consider nevertheless an arbitrary homomorphism from the graph of a term v to that
of a term u. This homomorphism can be decomposed in several ways into a sequence of
homomorphisms each equating at most two vertices. One could thus believe that it suffices
to use the claim 14 to obtain a sequence of provable inequations, leading to a proof of u ⊆ v
from the axioms and transitivity.

The problem is that the intermediate graphs appearing in these sequences of homomorph-
isms need not be graphs of terms (recall the graph (8)). Here is a counter-example; again,
we do not label the edges nor we give their orientation as this information is irrelevant.
Consider the following graph:

This graph corresponds to a term of the shape 1 ∩ Πi=1,2,3(ai ·bi ∩ ci ·di). If we equate
the three inner, square, blue vertices, as well as the three outer, square, green vertices, we
obtain the following graph:

This graph is associated to a term, of the shape 1 ∩ i·(e·f ∩ g·h)·j, so that the homomorphism
implicitely considered corresponds to a valid inequation between two terms.

This homomorphism equates in one step two groups of three vertices. Now let us try
to decompose it into a sequence of four morphisms equating each exactly two vertices. The
first homomorphism must equate two blue vertices, or two green vertices. In both cases, we
obtain a graph which is not the graph of any term.
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By formalising this idea more precisely, one obtains a valid inequation which cannot be
proved from the axioms, whence the incompletness of the axiomatisation. One can actually
generalise the counter-example and show that every complete equational axiomatisation
must contain axioms corresponding to homomorphisms equating arbitrarily many vertices,
whence the impossibility for this axiomatisation to be finite [11, page 210].

Hodkinson and Mikulás further showed that there cannot be a finite first-order axiomat-
isation [12], and in particular a quasi-equational one like, e.g., for Kleene algebra. In contrast,
we proved recently with Cosme-Llópez that the more restrictive theory of isomorphism (on
graphs of terms) can be finitely axiomatised in a purely equational way [8].

4 Putting all together

Let us come back to the initial problem, that of the positive calculus of relations. We have
seen that two fragments are decidable: the fragment corresponding to regular expressions
(+, ·, ·?, 0, 1), and that corresponding to allegories (∩, ·, ·◦,>, 1). What happens when we
take all operations?

First note that the function [·] associating a (regular) language to every regular expression
can be extended to the operations of allegories:

[e ∩ f ] , [e] ∩ [f ]
[e◦] , {an . . . a1 | a1 . . . an ∈ [e]}
[>] , Σ?

However, the characterisation obtained in Theorem 4 no longer works with these operations.
Indeed, we have for instance

[a ∩ b] = {a} ∩ {b} = ∅ = [0] but 6� a ∩ b = 0
[a◦] = {a} = [a] but 6� a◦ = a

[a] = {a} 6⊆ {aaa} = [a·a◦ ·a] but � a ⊆ a·a◦ ·a
[>·a·>·b·>] 6= [>·b·>·a·>] but � >·a·>·b·> = >·b·>·a·>

To obtain a characterisation, we actually have to replace words (elements of Σ?) by
graphs, and thus consider languages of graphs.

I Definition 15. The language of graphs of an expression e, written G(e), is defined as
follows, by induction on e:

G(e+ f) , G(e) ∪ G(f) G(0) , ∅
G(e ∩ f) , {G ∩H | G ∈ G(e), H ∈ G(f)} G(>) , {>}
G(e · f) , {G ·H | G ∈ G(e), H ∈ G(f)} G(1) , {1}
G(e?) , {G1 · · · · ·Gn | n ∈ N, ∀i ≤ n, ,Gi ∈ G(e)} G(a) , {a}
G(e◦) , {G◦ | G ∈ G(e)}

This definition properly generalises the usual notion of language: when the considered
expression contains no intersection, no converse, and no constant >, then the associated
graphs are isomorphic to words: these are simple threads labelled by letters in Σ.

To generalise also allegories, we have to make use of graph homomorphisms. Given a set
L of graphs, we write JL for is downward closure w.r.t. the preorder (J):

JL , {G | ∃H,G J H, H ∈ L} .
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We finally obtain the following characterisation:

I Theorem 16. For all expressions e and f , we have

� e ⊆ f iff G(e) ⊆ JG(f) .

Proof. Similar to the proof of Theorem 4, using Theorem 9 (cf. [5, Theorem 6], adding the
constant > is not problematic). J

This characterisation generalises both Theorem 4 and Theorem 9. If e and f are regular
expressions, then all graphs in G(e) and G(f) are threads, and the unique possible homo-
morphism between two such graphs is the identity; whence G(e) ⊆ JG(f) iff G(e) ⊆ G(f).
If instead e and f are terms u and v, then G(e) = {G(u)} and G(f) = {G(v)}, so that
G(e) ⊆ JG(f) is equivalent to G(u) J G(v).

Note also that for all graph languages L,K, we have L ⊆ JK iff JL ⊆ JK. Valid
equations are thus characterised as follows:

� e = f iff JG(e) = JG(f) .

To illustrate this theorem, consider expressions e , a+ ∩ 1 and f , (a·a)+ ∩ 1, where
g+ is a shorthand for g ·g?. The set of graphs G(e) is the set of non-trivial cycles labelled
with a:

a
a

...

a
a

On the other side, G(f) is the set of non-trivial cycles of even length. Thus we immediately
get G(f) ⊆ G(e) ⊆ JG(e), whence � f ⊆ e. The converse inequation is also valid: to each
cycle from G(e), possibly of odd length, one can associate the cycle of double length, in G(f);
indeed, there is a homomorphism from this cycle of double length into the shorter one:

a

a

a

a

a

a

a

a

a

I Exercise 17. Use the same technique to prove the following laws:

(a ∩ b·b)? ⊆ a? ∩ b?

((a ∩ b)·(1 ∩ b)·(a ∩ b))? ⊆ (a ∩ b·b)?

(a ∩ b·>)? ·(1 ∩ b·>) = (1 ∩ >·b◦)·(a ∩ >·b◦)?

Together with Paul Brunet [5], we proposed an automata model allowing us to recognise
languages of graphs associated to expressions. This automata model takes inspiration from
Petri nets [19, 17], which make it possible to explore richer structures than plain words. To
each expression e, we associate what we call a Petri automaton, whose language is precisely
JG(e). Thanks to Theorem 16, the problem of validity of equations or inequations thus
reduces to the problem of comparing Petri automata.
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We solved this algorithmic problem only for a fragment of the calculus: we have to forbid
converse and constants 1 and >, and replace reflexive-transitive closure ·? by transitive
closure ·+ (because reflexive-transitive closure implicitly contains the identity: we have
1 = 0?). The corresponding equational theory was recently studied by Andréka, Mikulás,
and Németi [1]: it coincide with that of languages over this signature. Under this restriction,
the considered graphs are always acyclic, so that the automata become simpler to compare:
we have shown that the problem of comparing these automata is EXPSPACE-complete [5].

Subsequently, Nakamura managed to prove that the problem remains in EXPSPACE
in presence of converse and identity (but without >, although his technique certainly ap-
plies) [18]. His solution consists in defining a notion of partial derivatives for graphs, similar
to Antimirov’ partial derivatives for regular expressions [3], and exploiting the fact that
graph generated from a given expression have a bounded pathwidth [9].

5 Open questions

Is it possible to axiomatise the positive calculus of relations with transitive closure? For
instance, do Kleene algebra axioms suffice when added to a complete axiomatisation of rep-
resentable allegories? What about the fragment without converse, identity, and >, studied
by Andréka, Mikulás, and Németi [1]?

Note that intersection is the difficult operation: without intersection (and associated
constant >), we obtain Kleene algebras with converse, for which Bernátsky, Bloom, Ésik
and Stefanescu have obtained decidability [4]3 and complete axiomatisability relatively to
Kleene algebras: the following five axioms suffice when added to any complete axiomatisation
of Kleene algebras (e.g., those from Figure 1) [10].

(e · f)◦ = f◦ · e◦ e◦? = e?◦ e ⊆ e · e◦ · e
(e+ f)◦ = e◦ + e◦ e◦◦ = e
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Abstract
We discuss the computational complexity, the approximability, the algorithmics and the combin-
atorics of the open shop scheduling problem. We summarize the most important results from the
literature and explain their main ideas, we sketch the most beautiful proofs, and we also list a
number of open problems.
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1 Blacksmiths and horseshoes

“There are four blacksmiths working together. One of them has specialized in putting horseshoes
on the left front leg of a horse, while the other three have specialized respectively in putting
horseshoes on the left hind leg, the right front leg, and the right hind leg. If the work on one
horseshoe takes five minutes, what is the minimum amount of time needed to put twenty-eight
horseshoes on seven horses? (Note that a horse cannot stand on two legs.)”

As each blacksmith has to handle 7 horseshoes, he needs at least 35 minutes of working
time. The following picture with horses A,B,C,D,E, F,G and blacksmiths 1, 2, 3, 4 shows a
schedule that meets this lower bound of 35 minutes. Note that each horse receives its four
horseshoes during four different time slots (so that it never has to stand on two legs), and note
that during each five minute time slot each blacksmith works for exactly five non-interrupted
minutes on a single horse.

minute minute minute minute minute minute minute
00–05 05–10 10–15 15–20 20–25 25-30 30-35

Blacksmith 1 A B C D E F G
Blacksmith 2 B C D G F E A
Blacksmith 3 C D G E A B F
Blacksmith 4 D A F B C G E

2 Problem statement and some definitions

An instance of the open shop scheduling problem consists of m machines M1, . . . ,Mm and n
jobs J1, . . . , Jn. (Throughout, machines will be indexed by i and jobs will be indexed by j.)
Each job Jj consists of m independent operations Oi,j with i = 1, . . . ,m. The operation Oi,j
of job Jj has to be processed on machine Mi, which takes pi,j uninterrupted time units. For
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every job, the order in which its operations have to be processed is not fixed in advance but
may be chosen arbitrarily by the scheduler; we stress that different jobs may receive different
processing orders.

A schedule assigns every operation Oi,j to a time interval of length pi,j , so that no job is
simultaneously processed on two different machines and so that no machine simultaneously
processes two different jobs. The makespan Cmax of a schedule is the largest job completion
time. The optimal makespan is usually denoted by C∗max. In the standard scheduling
classification scheme of Lawler, Lenstra, Rinnooy Kan & Shmoys [12], this optimization
problem is denoted by O||Cmax (if the number m of machines is given as part of the input)
and by Om||Cmax (if the number m of machines is a fixed constant number).

In the “Blacksmiths and horseshoes” puzzle, the four blacksmiths are four machines
M1,M2,M,M4. Each horse forms a job, and its four legs are the four operations of that job.
All operations Oi,j have length pi,j = 5.

Here are some more notations. The length of the longest operation in an instance is denoted
omax = maxi,j pi,j . The overall processing time of job Jj will be denoted pj =

∑m
i=1 pi,j .

The overall processing time assigned to machine Mi is called the load Li =
∑n
j=1 pi,j of the

machine. The maximum job processing time is denoted pmax = maxj pj and the maximum
machine load is denoted Lmax = maxi Lj . As no job can be simultaneously processed on two
different machines the makespan of any schedule satisfies Cmax ≥ pmax, and as no machine
can simultaneously processes two different jobs the makespan satisfies Cmax ≥ Lmax. This
yields the following lower bound, which will be important throughout the paper:

C∗max ≥ β∗ := max {Lmax, pmax} (1)

We mention in passing that there are two other important shop scheduling problems
that are closely related to the open shop problem: In a flow shop, every job must pass the
machines in the same ordering M1, . . . ,Mm. In a job shop, the ordering of the operations
is fixed a priori for every job, and different jobs may have different orderings of operations.
These variants will not be further discussed in the rest of this paper.

3 Computational complexity

Gonzalez & Sahni [10] prove that the open shop on m = 2 machines allows a very simple
polynomial time solution: There always exists a schedule whose makespan equals the lower
bound β∗ in (1), and this schedule can be found in linear time.

I Theorem 1 (Gonzalez & Sahni [10]). Problem O2||Cmax is solvable in polynomial time.

The algorithm in Theorem 1 is not hard to find (there are many possible approaches), and we
leave it as a puzzle for the reader. A more general problem variant considers the completion
time C1 of the last operation on machineM1 and the completion time C2 of the last operation
on M2, and asks for a schedule that minimizes some objective function f(C1, C2) of the two
machine completion times. Based on extensive case distinctions, Shaklevich & Strusevich [21]
develop linear time algorithms for this variant, if the function f(·, ·) is non-decreasing in both
arguments. Van den Akker, Hoogeveen & Woeginger [23] provide a simpler proof of the same
result. Sahni & Cho [14] prove strong NP-hardness of the no-wait problem O2|no-wait|Cmax
in which the processing of the second operation of each job must start immediately after the
completion of its first operation.

Now let us turn to the cases of Om||Cmax with m ≥ 3 machines. As usual, the complexity
jumps from easy to hard when we move from parameter 2 to parameter 3:
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YX

Figure 1 Illustration of the NP-hardness argument in Theorem 2.

I Theorem 2 (Gonzalez & Sahni [10]). For every fixed m ≥ 3, problem Om||Cmax is NP-hard.

Proof. We only show hardness for m = 3. The proof is a polynomial time reduction from the
NP-hard PARTITION problem [9]: “Given k positive integers q1, . . . , qk with

∑k
i=1 qi = 2Q,

does there exist an index set I ⊆ {1, . . . , k} with
∑
i∈I qi = Q?”

For j = 1, . . . , k we create a job Jj with p1,j = p2,j = p3,j = qj . Furthermore, there is
a job Jk+1 with p1,k+1 = p2,k+1 = p3,k+1 = Q. We claim that the PARTITION instance
has answer YES, if and only if the constructed instance of O3||Cmax has a schedule with
makespan at most 3Q. The (only if part) is straightforward. For the (if part), consider the
three operations of job Jk+1 in a schedule with makespan 3Q. By symmetry, we may assume
that Jk+1 is first processed on machine M1, then on M2, and finally on M3. Then the second
operation generates two time intervals X and Y of length Q on machine M2; see Figure 1
for an illustration. The operations O2,j of the other jobs must be packed into intervals X
and Y , and thereby yield a solution for the PARTITION instance. J

As the PARTITION problem is NP-hard in the weak sense, the argument in Theorem 2
only yields NP-hardness in the weak sense for Om||Cmax. The precise complexity (strong
NP-hardness versus pseudo-polynomial time solvability) of problem Om||Cmax is unknown.
This complexity question has been open since the 1970s, and it forms the biggest and most
important gap in our understanding of open shop scheduling.

I Open problem 3. Prove that for every fixed number m ≥ 3 of machines, problem Om||Cmax
is solvable in pseudo-polynomial time.

Finally, let us discuss the complexity of problem O||Cmax where the number of machines
is specified as part of the input. An unpublished result of Lenstra [13] from the 1970s
establishes strong NP-hardness of O||Cmax. Strong NP-hardness of O||Cmax can also easily
be deduced from a published result by Williamson & al. [24], who prove that O||Cmax is
NP-hard, even if all operations are of length 0, 1, 2 and if the question is to decide whether
there is a schedule with makespan 4.

4 A theorem on vector rearrangements

This section introduces an auxiliary problem and an auxiliary result that will be pivotal for
the next section. Let B ⊂ Rd be the unit ball of a norm ‖ · ‖ on Rd, that is, a d-dimensional
closed convex body that is centrally symmetric about the origin. Suppose we are given n
vectors v1, . . . , vn ∈ Rd that satisfy

n∑
i=1

vi = 0 and ‖vi‖ ≤ 1 for 1 ≤ i ≤ n. (2)
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The goal is to find a permutation vπ(1), . . . , vπ(n) of these vectors, so that for every k with
1 ≤ k ≤ n the norm ‖vπ(1) + vπ(2) + · · · + vπ(k)‖ of the partial sum is small. Steinitz [22]
proved in 1913 that the norms of these partial sums can be bounded by a constant that
only depends on the unit ball B (and Steinitz showed that the concrete constant 2d always
works). The smallest such constant is called the Steinitz constant c(B) of the norm.

I Theorem 4 (Grinberg & Sevastianov [11]). For any norm with unit ball B ⊂ Rd, the
Steinitz constant satisfies c(B) ≤ d.

The proof of Theorem 4 in [11] is an optimized and streamlined version of an earlier proof by
Sevastianov [15]. It is extremely elegant, and we will sketch it now. Hence, let us consider
vectors v1, . . . , vn ∈ Rd that satisfy (2). In a first step, we prove that there exists a system
of subsets Vd, Vd+1, . . . , Vn of {v1, . . . , vn} that satisfies the following properties.

Vd ⊆ Vd+1 ⊆ · · · ⊆ Vn = {v1, . . . , vn}
|Vk| = k for 1 ≤ k ≤ n
There exist real numbers λk(v) ∈ [0, 1] for d ≤ k ≤ n and v ∈ Vk with
(A)

∑
v∈Vk

λk(v) = k − d for d ≤ k ≤ n, and
(B)

∑
v∈Vk

λk(v) · v = 0 for d ≤ k ≤ n.
In other words, the coefficients λk(v) constitute a linear dependency on Vk where all coefficients
add up to k − d. The subsets Vk and the real numbers λk(v) are constructed by a backward
induction. For k = n, we have Vn = {v1, . . . , vn} and we define λn(v) ≡ (n− d)/n for all v.
These values satisfy condition (A) by definition, while condition (B) follows from (2).

Now assume that the sets Vk+1, . . . , Vn have already been defined together with the
corresponding coefficients λk+1(v), . . . , λn(v). We consider the following system of linear
constraints on k + 1 real variables x(v) for v ∈ Vk+1.∑

v∈Vk+1

x(v) = k − d (3)

∑
v∈Vk+1

x(v) · v = 0 (4)

0 ≤ x(v) ≤ 1 for v ∈ Vk+1 (5)

Note that the system (3)–(5) is solvable, as can be seen for instance by setting

x(v) = k − d
k + 1− d λk+1(v) for v ∈ Vk+1.

Hence the underlying (k + 1)-dimensional polytope is non-empty. Any extreme point x∗ of
this polytope must satisfy k + 1 of the linear constraints with equality. As constraint (3)
yields one such equality and as constraint (4) yields d such equalities (one per dimension), in
an extreme point at least k + 1 − (d + 1) = k − d of the inequalities in (5) must be tight.
Because of (3), this implies that in an extreme point x∗ at least one of the variables x∗(v)
will be equal to zero. We construct the set Vk by dropping the corresponding vector v from
Vk+1 and by setting λk(v) = x∗(v). This completes the construction of the subset system.

In the second step, we transform the subset system into the desired permutation. The
first d vectors vπ(1), . . . , vπ(d) are an arbitrary ordering of the vectors in set Vd. For k ≥ d+ 1,
we choose vector vπ(k) as the unique element of Vk − Vk−1. We claim that in the resulting
permutation, the norm of every partial sum

∑k
i=1 vπ(i) is at most d. Indeed, for k ≤ d the

triangle inequality together with ‖vi‖ ≤ 1 implies ‖
∑k
i=1 vπ(i)‖ ≤

∑k
i=1 ‖vπ(i)‖ ≤ d. For
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d+ 1 ≤ k ≤ n, the claim follows from the following chain of equations and inequalities, which
is based on properties (A) and (B) and on the triangle inequality.

‖
k∑
i=1

vπ(i)‖ = ‖
∑
v∈Vk

v‖ = ‖
∑
v∈Vk

v −
∑
v∈Vk

λk(v) · v‖

≤
∑
v∈Vk

(1− λk(v)) · ‖v‖ ≤
∑
v∈Vk

(1− λk(v))

= |Vk| −
∑
v∈Vk

λk(v) = k − (k − d) = d

This completes the proof of Theorem 4. Note that the constructed permutation does not
depend on the underlying norm. Note furthermore that the entire construction can easily be
implemented in polynomial time.

Banaszczyk [2] slightly strengthened the bound in Theorem 4 on the Steinitz constants
for norms in d-dimensional space to c(B) ≤ d − 1 + 1/d. Bergström [5] showed that the
Steinitz constant of the Euclidean plane (2-dimensional space with Euclidean norm) equals√

5/2 ≈ 1.118. It is known (and easy to see) that the Steinitz constant of the d-dimensional
Euclidean space is at least

√
d+ 3/2, and this might well be the correct value of the d-

dimensional Euclidean Steinitz constant. However, at the current moment not even a
sub-linear upper bound is known and the problem is wide open (even for d = 3).

5 A tractable special case

Recall that omax denotes the length of the longest operation, that pmax denotes the length of
the longest job, and that Lmax denotes the maximum machine load. Throughout this section
we will assume that

L1 = L2 = L3 = · · · = Lm = Lmax and omax = 1. (6)

The equality of all machine loads in (6) can be reached by adding dummy jobs, and omax = 1
can be reached by scaling. We will apply the machinery for vector rearrangements (as
described in the preceding section) to the open shop scheduling problem Om||Cmax. We
introduce a unit ball B∗ for a norm ‖ · ‖∗ in (m− 1)-dimensional space, defined by

B∗ =
{

(x1, . . . , xm−1) ∈ Rm−1 : |xk| ≤ 1 and |xk − x`| ≤ 1 for all k and `
}
. (7)

Every job Jj with processing times pi,j is translated into an (m− 1)-dimensional vector

vj = (p1,j − pm,j , p2,j − pm,j , . . . , pm−1,j − pm,j) . (8)

Because of (6) we have
∑n
j=1 vj = 0 and ‖vj‖∗ ≤ 1 for 1 ≤ j ≤ n, so that the conditions

(2) for the vector rearrangement Theorem 4 are satisfied. Consequently there exists a
permutation vπ(1), . . . , vπ(n) of these vectors, so that

‖vπ(1) + vπ(2) + · · ·+ vπ(k)‖∗ ≤ m− 1 for k = 1, . . . , n. (9)

We construct an infeasible schedule that on each machine processes the jobs without
idle time in the ordering Jπ(1), . . . , Jπ(n); see Figure 2 for an illustration. This schedule is
extremely infeasible, as it schedules all operations of every job into a short time interval; this
is a consequence of (9) and the definition of norm ‖ · ‖∗. The positive effect of this type of
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π(1)

π(1)

π(1)

π(2)

π(2)

π(2)

π(3)

π(3)

π(3)

Figure 2 The infeasible schedule that results from the vector rearrangement.

infeasibility is that we have a good understanding of the global structure of this schedule.
The completion time of operation Oi,j in the infeasible schedule is denoted by Ci,j . Then for
k ≥ 2 we have

C1,π(k) − C2,π(k−1) =
k∑
j=1

p1,π(j) −
k−1∑
j=1

p2,π(j)

=
k−1∑
j=1

(p1,π(j) − p2,π(j)) + p1,π(k) ≤ (d− 1) + 1 = d.

In the inequality, we use (9) and p1,π(k) ≤ omax = 1 from (6). By applying analogous
arguments, we derive

∆1 := max
k≥2

Cm,π(k) − C1,π(k−1) ≤ m

∆2 := max
k≥2

C1,π(k) − C2,π(k−1) ≤ m

∆3 := max
k≥2

C2,π(k) − C3,π(k−1) ≤ m

· · · · · · · · ·

∆m := max
k≥2

Cm−1,π(k) − Cm,π(k−1) ≤ m

This means that we can turn the infeasible schedule into a feasible schedule, by simply
shifting all operations on every machine Mi by (i − 1)m time units into the future. The
makespan of the resulting schedule will be bounded by Lmax + (m− 1)omax, which yields
a reasonable approximation result. We will describe next how to get an even better result.
We wrap the infeasible schedule around a cylinder with circumference Lmax. Each of the
individual machine schedules forms a ring around the cylinder that may be rotated. We
freeze the ring for machine M1, and we mark the starting time of job Jπ(1) as the zero-point.

We rotate the ring for machine M2 by ∆2 time units and thereby shift the starting time
of each operation by ∆2 into the future. By doing this, we resolve all collisions between
operations on M1 and operations on M2: Every job has now disjoint processing intervals on
M1 and M2. Then we rotate the ring for machine M2 by ε2 ≤ omax additional time units, so
that one of the operations on M2 is started at the marked zero-point. Next, we do a similar
rotation of the ring for machine M3 by ∆2 + ∆3 + ε2 + ε3 time units, so that all collisions
between M2 and M3 are resolved and so that one of the operations on M3 is started at the
marked zero-point. And so on. The ring for machine Mi is rotated by

∑i
k=2 ∆k + εk time

units, so that all collisions are resolved and so that some operation starts at the zero-point.
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In the end, we cut the rings open at the marked zero-point and flatten them into a
schedule for the considered open shop instance. If Lmax −∆1 is larger than the total length
of all shifts, the resulting schedule will be feasible: Before the shifting, all operations of
job Jj were scheduled very close to each other in time. The first shift puts O1,j and O2,j
into disjoint processing intervals, and each of the later shifts puts another operation into a
disjoint processing interval. As Lmax is sufficiently large, the later operations of job Jj will
not be shifted all the way around the cylinder and hence cannot cause collisions with the
first operation O1,j of that job. Since ∆i ≤ m and since εi ≤ omax ≤ 1, the total length of
all shifts is at most (m− 1)(m+ 1), and this should be at most Lmax −∆1 ≥ Lmax −m.

I Theorem 5 (Fiala [8]). If an instance of Om||Cmax satisfies Lmax ≥ (m2 +m− 1)omax,
then the optimal makespan is Lmax. Furthermore, an optimal schedule can be computed in
polynomial time.

One consequence of Theorem 5 is that open shop problems in the real world are often
easy to solve: If all jobs are drawn from the same distribution and if there is a sufficiently
large number of jobs, then the condition Lmax ≥ (m2 +m− 1)omax in Theorem 5 will hold
true and the instances become easy to solve.

Belov & Stolin [4] were the first to apply vector rearrangement methods in the area
of scheduling (and they applied them to the flow shop problem). Fiala [8] discovered the
nice connection to the open shop problem; he actually proved a much stronger version of
Theorem 5 where the factor m2 +m− 1 is replaced by 8m′ log2(m′) + 5m′ where m′ is the
smallest power of 2 greater or equal to m. Bárány & Fiala [3] improved Fiala’s bound by a
factor of 2, and Sevastianov [16] improved it down to roughly (16/3)m log2 m. Sevastianov
[17] surveys and summarizes the history of vector rearrangement methods in the area of
scheduling.

In the light of the above results, it is natural to ask for the smallest value η(m), so that
every instance of Om||Cmax with Lmax ≥ η(m)omax automatically satisfies C∗max = Lmax.

I Open problem 6. Derive good upper and lower bounds on η(m) for m ≥ 3.

Sevastianov [18] establishes the upper bound η(m) ≤ m2 − 1 + 1/(m− 1), which is useful for
small values of m. [18] also establishes the lower bound η(m) ≥ 2m − 2. Here is the bad
instance for m = 3 machines that demonstrates η(3) ≥ 4: There is one job with processing
time 1 on each machine. Furthermore, for each machine Mi (i = 1, 2, 3) there are three jobs
with processing time 1− ε on Mi and processing time 0 on the other two machines. Then
Lmax = 4− 3ε and C∗max = 4− ε.

Sevastianov [18] also shows that Om||Cmax remains NP-hard, if it is restricted to instances
with Lmax/omax = ρ where 1 < ρ < 2m− 3. It is not clear, what is going on for instances
with 2m− 3 ≤ ρ < η(m). Perhaps, the instances with ρ < η(m) are all NP-hard; in that case
η(m) would be a threshold at which the complexity jumps from NP-hard to trivial.

I Open problem 7. Determine the computational complexity of the restriction of Om||Cmax
to instances with Lmax/omax = 2m− 2.

6 Approximation for an arbitrary number of machines

Here is a simple greedy algorithm for O||Cmax: Start at time t = 0, and whenever some
machine becomes idle and there is some job available that still needs processing on that
machine then assign that job to that machine. Ties are broken arbitrarily. This greedy
algorithm was formulated by Bárány & Fiala [3] who attribute it to private communication
with Anna Racsmány.
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Figure 3 A lower bound instance for the greedy algorithm on m = 6 machines. The dummy
jobs are shown in light-gray, while the operations of job J+ are in dark-gray and marked by +.

I Theorem 8 (Bárány & Fiala [3]). The greedy algorithm is a polynomial time approximation
algorithm for O||Cmax with worst case ratio at most 2.

Proof. Consider a greedy schedule, and let Oi,j be an operation that completes last. Then
on machine Mi, the greedy schedule has busy time intervals and idle time intervals. The
total length of the busy time intervals is Li ≤ Lmax. Whenever Mi is idle, it is not processing
job Jj and the only possible reason for this is that job Jj is being processed on one of the
other machines. Therefore the total length of the idle time intervals is at most pj ≤ pmax.
This implies that the greedy makespan is at most Lmax + pmax, which according to (1) is
bounded by 2β∗ ≤ 2C∗max. J

The result in Theorem 8 can also be derived as a corollary to a more general result by
Aksjonov [1]. How good is the worst case analysis in this theorem? Consider the following
instance with m machines and m2 −m+ 1 jobs. For i = 1, . . . ,m there are m− 1 dummy
jobs that each need one unit of processing time on machine Mi and zero processing time on
all other machines. Furthermore, there is a job J+ that needs one unit of processing time on
every machine. There is a greedy schedule with makespan 2m− 1 for this instance, in which
from time 0 to time m− 1 all machines are busy with processing the dummy jobs, and from
time m− 1 to time 2m− 1 they process job J+. As the optimal makespan is C∗max = m, the
worst case ratio of the greedy algorithm is at least 2− 1/m; see Figure 3 for an illustration.
Chen & Strusevich [6] have settled the cases m = 2 and m = 3 of the following open problem
by a tedious case analysis, and Chen & Yu [7] have settled the case m = 4.

I Open problem 9. Prove that the greedy algorithm for Om||Cmax has worst case ratio at
most 2− 1/m.

A difficult open problem in this area asks whether there is a polynomial time approximation
algorithm for O||Cmax with worst case ratio strictly better than 2. One possible approach
would work with the lower bound β∗ defined in (1). Sevastianov & Tchernykh [19] have
proved C∗max ≤ 4β∗/3 for problem O3||Cmax. Their proof is based on heavy case analysis
and on case enumeration with the help of a computer program. As the computer program
described in [19] takes more than 200 hours of computation time, this approach does not
seem to be applicable to m ≥ 4 machines.

I Open problem 10. Prove that any instance of Om||Cmax satisfies C∗max ≤ 3β∗/2.

Here is an instance that demonstrates that the factor 3/2 in this open problem would in fact
be best possible. The instance uses m machines and m+ 1 jobs. For j = 1, . . . ,m the job Jj
consists of the operation Ojj with processing time pjj = m− 1 on machine Mj , and with
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processing times 0 on the other m− 1 machines. The final job Jm+1 has m operations all
with processing time 1. Then β∗ = m and C∗max = dm/2e+m− 1. As m becomes large, the
ratio between C∗max and β∗ tends to 3/2.

Now let us turn to negative results on the worst case ratio of polynomial time approx-
imation algorithms for O||Cmax. Williamson & al. [24] prove that it is NP-hard to decide
whether an O||Cmax instance with integer processing times has optimal makespan at most 4.
Since the optimal makespan of a NO-instance is at least 5, a polynomial time approximation
algorithm with worst case ratio 5/4 − ε would allow us to distinguish the YES-instances
from the NO-instances in polynomial time.

I Theorem 11 (Williamson & al. [24]). Unless P=NP, problem O||Cmax does not allow a
polynomial time approximation algorithm with worst case ratio strictly better than 5/4.

It might be possible to lift the hardness proof in [24] to get stronger inapproximability
results.

I Open problem 12. Analyze the computational complexity of the (a, b)-versions of O||Cmax
instances with integer processing times: Decide whether the optimal makespan does satisfy
C∗max ≤ a or whether it does satisfy C∗max ≥ b.

If this (a, b)-version turns out to be NP-hard for fixed integers a and b, then O||Cmax cannot
have a polynomial time approximation algorithm with worst case ratio strictly better than
b/a unless P = NP . The result in [24] yields NP-hardness of the (4, 5)-version, and [24] also
shows that the (3, 4)-version is solvable in polynomial time. Hence the smallest interesting
open cases would concern the (5, 7)-version and the (6, 8)-version.

7 Approximation for a fixed number of machines

For an arbitrary number of machines, polynomial time approximation algorithms cannot
have worst case ratios very close to 1; see Theorem 11. For a fixed number of machines, the
situation is much better and there is a polynomial time approximation scheme (PTAS).

I Theorem 13 (Sevastianov & Woeginger [20]). For every fixed m ≥ 3, problem Om||Cmax
has a PTAS.

We now show a proof of Theorem 13 for the special case m = 3. (The general case is based
on exactly the same ideas, while some of the details become a bit messier.) So let us consider
some instance of O3||Cmax, and let ε with 0 < ε < 1 be some small real number that indicates
the desired precision of approximation. The running time of our algorithm will be polynomial
in the instance size, but exponential in 1/ε. The resulting makespan will come arbitrarily
close to C∗max, if we let ε tend to 0.

As often in approximation schemes for scheduling problems, the jobs are classified into
big and into small jobs. We call a job big, if one of its operations has length pi,j ≥ εβ∗,
where β∗ is the lower bound defined in (1). All other jobs are small jobs, and we want to
assume for the moment that (***) all operations of all small jobs have length pi,j ≤ ε2β∗; we
will show later how to work around this assumption. Since the total processing time of all
jobs is at most 3Lmax ≤ 3β∗ and as every big job has processing time at least εβ∗, there are
at most 3/ε big jobs. The algorithm now works in two phases.

In the first phase, we determine an optimal schedule for the big jobs. This can be done
in O(1) time, as the running time does only depend on 1/ε and does not depend on the
instance size. In the resulting schedule, every machine processes at most 3/ε operations
with at most 3/ε gaps of idle time between the operations; see Figure 4 for an illustration.
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Figure 4 An optimal schedule for the big jobs in the proof of Theorem 13.

In the second phase, we pack the operations of the small jobs into the idle gaps. This
is done greedily (as in Theorem 8). Start at time t = 0, and whenever some machine
becomes idle at some time t, try to process an unprocessed small operation on that
machine. There are two possible scenarios under which an unprocessed small operation
Oi,j cannot be started at time t: First another operation Okj of the same job might
currently be processed on some other machine. Secondly, the remaining part of the
current gap might be too small to accommodate Oi,j . If one of these scenarios occurs, we
try to schedule some other small operation. If no operation can be scheduled, then the
machine is left idle for the moment.

Now let us analyze the makespan CAmax of the resulting approximating schedule. Let Oi,j
be an operation that completes last. In the first case assume that Oi,j belongs to a big job.
Then CAmax coincides with the optimal makespan for the big jobs, and we actually have found
an optimal schedule. In the second case assume that Oi,j belongs to a small job. Then we
consider the busy time intervals and the idle time intervals on machine Mi. The total length
of all busy time intervals is the load Li ≤ β∗. Whenever machine Mi was idle, it could not
process operation Oi,j . This means that either (i) job Jj was being processed on one of the
other machines, or that (ii) the remaining gap was too small to accommodate Oi,j . The total
idle time of type (i) is bounded by the length of the small job Jj , which is at most 3ε2β∗.
The total idle time of type (ii) is bounded by the number of gaps multiplied by the length
of operation Oi,j , which is at most (3/ε) · (ε2β∗) = 3εβ∗. Altogether, this implies that the
approximating makespan can be bounded as

CAmax = Busy + Idle(i) + Idle(ii) ≤ β∗ + 3ε2β∗ + 3εβ∗ ≤ (1 + 3ε2 + 3ε)C∗max. (10)

As ε tends to 0, the error factor 1 + 3ε2 + 3ε tends to 1. This yields the desired PTAS modulo
the assumption (***).

It remains to discuss what to do with assumption (***), which essentially postulates an
empty no man’s land between big operations (of length at least εβ∗) and small operations
(of length at most ε2β∗). In other words, under assumption (***) non-big jobs must not
contain operations of intermediate length ε2β∗ < pi,j < εβ∗. This assumption will be totally
wrong for most instances, but we can come very close to it by playing around with the value
of ε. This is done as follows.

For a real number δ with 0 < δ < 1, we say that a job is δ-big, if one of its operations has
length pi,j ≥ δβ∗ and otherwise it is δ-small. An operation Oi,j is δ-nasty, if it belongs to
a δ-small job and satisfies the inequality δ2β∗ < pi,j < δβ∗. By N(δ) we denote the total
length of all δ-nasty operations. Now consider the real numbers δk = ε2k for k ≥ 0. Then
every operation Oi,j is δk-nasty for at most one choice of index k. We search for an index k
that satisfies the inequality

N(δk) ≤ εβ∗. (11)
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If some δk violates (11), then the corresponding δk-nasty operations consume at least εβ∗
of the total processing time of all operations (which is at most 3β∗). Hence some k ≤ 3/ε
will indeed satisfy (11). From now on we work with that particular index k and with that
particular value δk.

The final approximation scheme works as follows. First we remove from the instance all
the δk-small jobs that contain some δk-nasty operation. To the surviving jobs we apply the
original approximation algorithm as described above with ε := δk, and thereby find a schedule
with makespan at most (1 + 3δ2

k + 3δk)C∗max according to (10). In the end, we greedily add
the previously removed jobs with δk-nasty operations to this schedule. Since the overall
processing time of all removed jobs is at most 3εβ∗, this increases the makespan by at most
3εβ∗. Since δk ≤ ε, this altogether yields a schedule of makespan at most (1 + 3ε2 + 6ε)C∗max.
This completes the proof of Theorem 13 for the special case m = 3.

An FPTAS (fully polynomial time approximation scheme) is a PTAS whose time com-
plexity is also polynomially bounded in 1/ε. The following open problem is closely linked to
the existence of pseudo-polynomial time exact algorithms for Om||Cmax.

I Open problem 14. Prove that problem Om||Cmax has an FPTAS for every fixed m ≥ 3.
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5:2 Approximating Airports and Railways

1 Introduction

This paper studies the airport and railway problem, which combines facility location and
network design, and has been introduced Adamaszek et al. [1]. In the airport and railway
problem the input consists of a complete n-vertex graph G with vertex costs a : V (G)→ R≥0
and edge costs len : E(G)→ R≥0, and a parameter k. The vertices represent cities, vertex
cost represents the cost of opening an airport in the corresponding city, and edge cost
models the cost of building a railway connecting the corresponding pair of cities. Finally,
the parameter k represents a maximum capacity of an airport. The goal is to compute a
minimum cost network of airports A ⊆ V (G) and railways R ⊆ E(G) which satisfies the
following properties: (i) each v ∈ V (G) is connected with some vertex from A via a path
of edges from R (i.e., all cities are connected by the network), and (ii) each connected
component of the network contains at most k vertices (i.e., each airport serves at most k
cities). The cost of the network equals a(A) + len(R) =

∑
v∈A a(v) +

∑
e∈R len(e). As the

cost functions a and len are non-negative, an optimal solution to AR is a forest, with the
cheapest airport opened in each connected component.

We consider both the case where (V (G), len) is a general metric space, and the case where
it is the Euclidean plane, i.e., the set of vertices V (G) is represented by a set of points in the
Euclidean plane, and the edge cost len is the Euclidean distance between the corresponding
points. The goal in both cases is to find a minimum cost network spanning all vertices
V (G) and consisting of components, such that each component spans at most k vertices and
contains an open airport. Furthermore, for the Euclidean metric case, we assume that each
point in the Euclidean plane can be used as a Steiner vertex within the components. Note
that in the Euclidean plane we allow edges corresponding to different components to cross,
without a Steiner vertex at the intersection.

We also consider AR with resource augmentation, denoted by ARα for a constant α > 1,
where we are allowed to assign α · k cities to an airport of capacity k. We then compare the
cost of the obtained solution against an optimal solution without resource augmentation.

Related work. The airport and railway problem AR is the most general problem within
the framework introduced by Adamaszek et al. [1]. Several interesting novel problems can be
defined within this framework by starting with AR and imposing additional constraints to the
underlying network. It was shown in [1] that two-dimensional Euclidean AR is NP-hard, even
when all the vertex costs are uniform. This uniform-vertex-cost case admits a polynomial
time approximation scheme. Furthermore, when the airport capacity k is unbounded, AR
can be solved exactly in polynomial time, even with both arbitrary vertex costs and arbitrary
edge costs. Additionally, [1] considered the related ARP problem. In ARP , each component
of the network is required to be a path, with airports at both of its endpoints. This problem
is of particular interest because it models the Capacitated Vehicle Routing Problem (CVRP).
Two-dimensional Euclidean ARP is shown to be NP-hard even with uniform airport costs
and unbounded parameter k. For the setting where either the airport costs are uniform or
the parameter k is unbounded, a PTAS for ARP has been presented.

Since AR combines the classical capacitated facility location (CFL) problem and network
design (ND), we shortly describe these problems.

Capacitated Facility Location (CFL): We are given a complete graphG with V (G) :=
{v1, . . . , vn}, edge costs d : E(G) → R≥0 and vertex costs c : V (G) → R≥0, along with
a capacity parameter k. Intuitively, d(vi, vj) denotes the distance between vertices vi
and vj , and c(vi) denotes the cost of opening a facility at vi. A feasible solution to CFL
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consists of a set of open facilities F ⊆ V (G), and an assignment of each vertex vi to some
open facility f(vi) ∈ F so that each facility has at most k vertices assigned. The cost of a
solution is given by the sum of the cost for opening the facilities and the cost of connecting
all vertices to the assigned facilities by direct links, i.e.,

∑
v∈F c(v) +

∑
v∈V (G) d(v, f(v)).

The goal is to find a minimum cost feasible solution. For CFL, the currently best results
are a 1.488-approximation algorithm [8] and an LP based constant factor algorithm [4].
Network Design (ND): In the framework of network design we are given a graph G
with weights on the edges, and in some cases also on the vertices. Furthermore, we are
given a set of constraints, e.g., connectivity constraints. The goal is to find a set of edges
of minimum cost that satisfy the constraints.

Another problem closely related to AR is the capacitated minimum spanning tree problem
(CMST). In CMST, the goal is to construct a minimum cost collection of trees covering all
the input vertices, each tree spanning at most k vertices, connected to a single pre-specified
root. Jothi and Raghavachari [7] give a 3.15-approximation algorithm for Euclidean CMST
and a 2 + γ approximation for metric CMST, where γ ≤ 2 is the ratio between the cost of a
Steiner tree and a minimum spanning tree. Both results allow demands on the vertices. We
note that the AR problem can be modelled as CMST with an arbitrary (i.e., non-metric)
cost function1. However, to the best of our knowledge, such version of CMST has not been
studied before.

Ravi and Sinha [10] consider a related capacitated-cable facility location problem (CCFL)
obtaining a constant factor approximation algorithm. The problem is based on the unca-
pacitated facility location (UFL) problem, i.e., there is a set of facilities with unbounded
capacities and non-negative opening costs. But instead of connecting clients to facilities
by direct links, they are connected by a network of capacitated cables (i.e., each edge of
the constructed network can accommodate at most u units of flow from the clients to the
facilities, where u is a parameter). When the cable capacity u is 1, the problem is equivalent
to UFL. When the cable capacity u =∞, CCFL is equivalent to AR with k =∞. In general,
the problem differs considerably from AR, as in CCFL, once a facility has been opened, it
can receive an unbounded amount of flow. CCFL resembles AR, when instead of a bound on
the airport capacity we have a bound on the railroad capacity.

Another problem related to AR and CCFL is capacitated geometric network design
(CGND), where the goal is to create a network of capacitated links which allows sending flow
from all the vertices to a single, pre-specified sink. In CGND the optimal network can be
more complicated than a tree. Adamaszek et al. [2] provide a PTAS for the two-dimensional
Euclidean CGND for link capacities k ≤ 2O(

√
logn), where the network can use Steiner

vertices anywhere in the plane.
Maßberg and Vygen [9] obtained a 4.1-approximation for another problem related to AR

with uniform airport costs, called the sink clustering problem. They construct a network
consisting of components, where instead of a capacity constraint for each component, they
have a different constraint which incorporates both the capacity and the length of the edges
of the component.

1 To model an instance (G, a, r, k) of AR as a CMST problem, we proceed as follows. We extend the
graph G to G′ by adding a new vertex v and connecting it with all other vertices of G′. We extend the
edge cost function r to a function r′ as follows. Each edge {u, v} for u ∈ V (G) has cost equal to a(u)
in G′. Then (G′, r′, v, k) is an instance of CMST, with a pre-specified root v and parameter k. The
corresponding instances of AR and CMST have corresponding solutions of the same costs, where adding
an edge {u, v} to a solution for CMST corresponding to opening an airport at u in AR.
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Our results. We initiate the study of AR for general metric spaces from the perspective
of bicriteria approximation, where we allow resource augmentation for the airport capacity
parameter k. We prove the following theorem, which is the first result for the airport and
railway problem on general metric spaces.
I Theorem 1. There is a 4-approximation algorithm for metric AR2. More general, for any
0 < p ≤ 1 such that p · k is integer, there is a 4

3 (2 + 1
p )-approximation algorithm for metric

AR1+p.
The algorithm starts with computing an infeasible solution to the problem, returned by

an algorithm for uncapacitated AR (i.e., assuming k =∞). Then, this infeasible solution
is transformed into a feasible one in a sequence of (technically involved) steps. First, the
connected components of the uncapacitated solution are partitioned into paths, where each
path contains k · p cities, plus one shorter path per component of the uncapacitated solution.
These shorter paths get connected to the airports open by the uncapacitated solution, and
they are the reason for the required resource augmentation. Then, the paths containing
k · p cities each are assigned to airports using min-cost max-flow computation in a specially
constructed graph, where each airport gets connected to at most 1/p paths. This requires
the solution to open additional airports, and the solution has to be modified again so that
each component contains one airport.

We then turn our attention to AR in the Euclidean plane, providing the first approximation
algorithm for this setting. Note that this algorithm, in contrast to the algorithm from
Theorem 1, does not use resource augmentation.
I Theorem 2. For any fixed ε > 0 there is a (2 + k

k−1 + ε)-approximation algorithm for AR
with the airport capacity k ≥ 2 in the Euclidean plane.

Note that for k = 1 the AR problem becomes trivial (as the solution requires opening
airports in all the cities). For k ≥ 2, the approximation factor of the algorithm from Theorem
2 is at most 4 + ε.

In order to obtain Theorem 2, we define a relaxed version AR′ of the AR problem, where
each component can contain multiple airports and multiple copies of the same edge, each
component allows routing flow from all its cities to the airports, each airport serves at most k
cities, and each copy of an edge can be used by at most k cities. Note that in this version of the
problem the cities belonging to different airports can share the edges of the network. Building
upon Arora’s PTAS for the Euclidean TSP [5] we develop (1 + ε)-approximation algorithm
for AR′ for any fixed ε > 0. By applying a carefully-designed sequence of transformations on
the solution returned by the algorithm for AR′, we transform it to a feasible solution for AR.
These steps resemble the steps of the algorithm from Theorem 1. However, we have to be
more careful to avoid resource augmentation.

Finally, we provide a QPTAS for AR1+µ for any fixed µ > 0, matching the corresponding
result for capacitated facility location [6].
I Theorem 3. For arbitrary ε, µ > 0 there is a (1 + ε)-approximation algorithm for two-
dimensional Euclidean AR1+µ running in quasipolynomial time.

In Section 2 we study metric AR and prove Theorem 1. In Section 3 we study AR in the
Euclidean plane. We prove Theorem 3 in Section 3.1 and Theorem 2 in Section 3.3.

2 The Metric Case

In this section we will assume that the edge cost len is metric, i.e., it satisfies the triangle
inequality (len({u, v}) + len({v, w}) ≥ len({u,w}) for each triple of vertices u, v, w ∈ V (G)).
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Figure 1 An infeasible solution S0 for an instance I of AR for k = 2. The solution consists of the
set of trees {T ?

1 , T ?
2 }, and airports open at vertices v1 and v7. The airports are denoted by squares.

The dashed blue lines show an Eulerian tour needed in Step 1.

Fix a parameter 0 < p ≤ 1 to determine the amount of resource augmentation. We
assume that p is a multiple of 1/k, so that p · k is an integer.

Consider an instance I of AR, and let OPT be an optimal solution for I. Our algorithm
consists of several steps, which we describe below.

Step 0: Preprocessing. Infeasible solution S0. We create a new problem instance I0 by
taking I and setting the airport capacity k =∞. I0 is an instance of AR∞F , a relaxation of
AR defined in [1], where we assume that the airport capacity is unbounded. By Theorem 4
in [1], there is a polynomial time algorithm for AR∞F . The algorithm is an extension of an
algorithm finding a minimum spanning tree, and it always outputs a spanning forest.

Let S0 be an optimal solution for I0 output by the algorithm from [1]. Note that S0 may
contain components with more than k cities, and therefore it is not necessarily a feasible
solution for AR. See an example in Figure 1. In the following lemma we prove various
properties of S0.

I Lemma 4. The solution S0 has the properties that (i) it is a forest, (ii) each connected
component of S0 contains exactly one airport, and (iii) cost(S0) ≤ opt.

I Observation 1. If for some instance I, the solution S0 returned by the AR∞F algorithm
only contains components of size at most k, then by Lemma 4 S0 is already optimal for AR
on I. However, in general S0 may contain components with more than k vertices – in which
case it is not a feasible solution for AR.

Step 1: Splitting each component of S0 into paths. Infeasible solution S1. We will
split each connected component of S0 into paths. Each path, except exactly one shorter
path, will contain exactly p · k cities (vertices from V (G)). We proceed as follows.

By Lemma 4, the edges of S0 form a forest {T ?1 , . . . , T ?` } in G, where each tree T ?i of S0
contains one airport. For each tree T ?i of S0, denote by vi the vertex of T ?i with an airport, and
consider T ?i as a rooted tree with a root at vi. Observe that cost(S0) =

∑
i=1,...,` cost(T ?i ),

where cost(T ?i ) = a(vi) +
∑
e∈E(G)∩T?

i
len(e) denotes the total cost of the tree T ?i .

First, in the solution S1 we open the airport at vi for each tree T ?i . Recall that S0
also opens (and therefore pays for) these airports. The next step is transforming the forest
{T ?1 , . . . , T ?` } into a collection of paths.

For each tree T ?i we construct a path P ?i starting in the vertex vi, visiting all cities of
T ?i , and such that the cost of edges of P ?i is at most twice the cost of the edges of T ?i . We
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Figure 2 An infeasible solution S1 for the instance I of AR from Figure 1 (green) is pictured in
red (dashed). Here k = 2 and p = 1, i.e., each subpath Q?

i,j contains 2 cities, and each subpath Q?
i,+

contains either 0 or 1 cities. Q?
1,+ is empty, incident with the vertex v1, and the airport v1 does not

serve any city. Q?
2,+ consists of a city v7, and the airport v7 serves this city.

do that by doubling all edges of T ?i , constructing an Eulerian tour of T ?i (note that after
doubling the edges each vertex has even degree), shortcutting the tour so that each vertex is
visited only once, and removing from the obtained tour one edge incident with vi.

We break each of the paths P ?i into subpaths Q?i,j , each containing exactly p · k cities,
and exactly one shorter subpath Q?i,+ whose number of cities lies in the range [0, p · k − 1].
We do this so that the subpath Q?i,+ is the one closest to the root vi. In particular, if Q?i,+
contains at least one city, then it contains the city vi. If Q?i,+ is an empty path, we think of
it as a path consisting of a single vertex vi, but not containing the city at vi. We add all the
edges of all the paths Q?i,j and Q?i,+ to S1. See Figure 2 for an example of this construction.

For each airport vi, we assign the subpath Q?i,+ to vi. This means that every city in the
(possibly empty) subpath Q?i,+ is served by the airport vi. Note that this can be done, as by
the construction of S1 all vertices of Q?i,+ are in the same connected component of S1 as vi. 2

In the subsequent step, we will initially ignore the already assigned cities from the
subpaths Q?i,+, and concentrate on assigning the subpaths Q?i,j to airports. The already
assigned cities from the subpaths Q?i,+ will later be added, and they will induce a resource
augmentation of the airport capacities.

I Lemma 5. The solution S1 satisfies that (i) each airport serves at most k ·p−1 cities3, (ii)
each city from a subpath Q?i,+ is served by an airport, and (iii) cost(S1) ≤ 2·cost(S0) ≤ 2·opt.

I Observation 2. If for some instance I every component of S1 has an airport that serves
all cities of the component (including itself), then S1 is a feasible, 2-approximate solution
for I. Such a solution does not use resource augmentation, and each airport is only used
up to a capacity of pk − 1. However, in general S1 may have components of size exactly
k · p whose cities are not served by any airport, and it is therefore in general not a feasible
solution for AR.

2 Note that in case when Q?
i,+ is an empty path, the connected component of S1 containing vi consists of

some path Q?
i,j . However, we do not assign the subpath Q?

i,j to the vertex vi, i.e., for now we treat the
cities of Q?

i,j as not served by any airport. Later the solution will be modified, and the cities from Q?
i,j

will be served by some airport (possibly different from vi).
3 Recall that in the case when Q?

i,+ is empty, the airport vi does not serve any city, and the connected
component of S1 containing vi contains k · p unserved cities.
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Figure 3 Example of an instance of the min-cost max-flow problem, corresponding to the AR
instance from Figures 1 and 2. The goal is to send flow from vs to vt. Here Q = {q1,1, q1,2, q1,3, q2,1}
and L = {l1, . . . , l9}. An label x|y denotes an edge with cost x and capacity y. The airport l7 has
already been opened in S1 (and therefore the edge {l7, vt} has cost 0), while the airport l3 has not
been opened in S1 (and the edge {l3, vt} has non-zero cost). Note that for the clarity of presentation
not all edges of EQL have been drawn. The blue dashed edges denote a potential solution, i.e., a
potential assignment of subpaths to airports.

Step 2: Assigning the subpaths Q?
i,j to airports using network flows. Infeasible solution

S2. In this step we will make sure that every connected component is assigned to a
neighboring airport, and therefore all the cities are served. For that, we will choose a set of
additional airports to be opened. We will assign (and connect by choosing the appropriate
edges of G) at most 1/p many subpaths Q?i,j to each airport, considering both the newly
opened airports and the airports opened in Step 1. Note that if 1/p subpaths get assigned
in this step to an airport that has been opened in Step 1 (and therefore might already be
serving some cities), the capacity of the airport can become violated. Therefore, the solution
S2 constructed in this step requires resource augmentation. For now, we allow assigning
subpaths Q?i,j to airports from different components. We will fix that in the subsequent step.

To decide which additional airports should be opened, and how we should assign (and
connect) the subpaths Q?i,j to the airports, we use min-cost max-flow computation. In this
computation we ignore the subpaths Q?i,+ containing less than k · p cities each, as they have
already been assigned (and connected) to the airports.

We construct a directed graph G′, with capacities and a cost function d on the edges, as
follows (see Figure 3). We introduce a vertex qi,j corresponding to each subpath Q?i,j (but
not for the subpaths Q?i,+), and we denote this set of vertices by Q. We also introduce a
vertex lv for each vertex v ∈ V (G) of the original instance, and we denote this set of vertices
by L. For each pair of vertices (qi,j , lv) ∈ Q× L we introduce an edge with capacity 1 and
cost d(qi,j , lv) := minu∈V (Q?

i,j
) len({u, v}), directed from qi,j to lv. Note that d(qi,j , lv) equals

the minimum distance between a vertex of the subpath Q?i,j represented by qi,j , and the
vertex v corresponding to lv. We denote this set of edges by EQL. Intuitively, sending flow 1
through an edge {qi,j , lv} ∈ EQL means connecting the subpath Q?i,j to an airport at the
vertex v.

We then introduce a source vertex vs and directed edges from vs to all vertices in Q, each
edge {vs, qi,j} with capacity 1 and cost d(vs, qi,j) = 0. Finally, we introduce a sink vertex
vt and directed edges from each vertex lv ∈ L to vt. We denote these sets of edges by EQ
and EL, respectively. The cost d(lv, vt) of an edge {lv, vt} is zero if an airport at v has been
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5:8 Approximating Airports and Railways

opened in S1 (i.e., in Step 1 of the algorithm), and a(v) otherwise. Each edge of EL has a
capacity of 1/p, which enforces that no more than 1/p subpaths (and therefore no more than
(k · p) · (1/p) = k vertices) are assigned to each airport at this step of the algorithm.

The graph G′, together with the edge capacities and edge costs, yields an instance of the
min-cost max-flow problem, where we want to send flow from the source vertex vs to the
sink vertex vt. Clearly, the instance admits a solution where the amount of flow is |Q|. We
can send one unit of flow from vs to each of the vertices qi,j , then also one unit of flow from
each qi,j ∈ Q to some vertex lv ∈ L so that v ∈ Q?i,j , and as each vertex from L gets at most
one unit of flow, it can be sent to the sink vertex vt. We note that this is the maximum
amount of flow that can be sent, since the total capacity of the outgoing edges from vs is |Q|.

It is well known that one can find an optimal, integral solution for the min-cost max-flow
problem in time polynomial in the number of vertices and edges of the input instance (cf. [3],
Chapters 9 and 10 or [11]). Let S′ be this optimal, integral min-cost max-flow problem
solution for G′. We denote the cost of S′ by cost(S′).

I Lemma 6. The following inequality holds: cost(S′) ≤ opt/p.

Proof. We will show how we can translate OPT into a solution OPT′ to the min-cost
max-flow problem, with cost of at most opt/p. By the optimality of S′, the cost of S′ is not
greater than the cost of OPT′, and therefore it is at most opt/p.

Consider an optimal solution OPT for the instance of AR. We construct a (fractional)
flow in G′ of capacity |Q| corresponding to OPT in the following way. We send a flow of 1
along each edge {vs, qi,j} leaving the source. At each vertex qi,j ∈ Q, this flow of 1 is split
into k · p equal parts, one for each vertex; recall that each Q?i,j has exactly k · p vertices. For
each vertex u ∈ Q?i,j , we send the amount of 1/(k · p) flow along the edge {qi,j , lv}, where v
is the airport serving u in the solution OPT. Finally, for every vertex lv ∈ L we forward all
the received flow (which by feasibility of OPT cannot be greater than 1

k·p · k = 1/p) along
the outgoing edge {lv, vt} to the sink vt.

The constructed flow OPT′ has capacity |Q| and is feasible, as the only edges where the
amount of flow might be greater than 1 are the edges of EL, and in the reasoning above we
have shown an upper bound of 1/p on the flow on these edges.

We will now upper bound the cost of OPT′ with respect to the cost of OPT. Let opt =
coste(OPT) + costa(OPT), where coste(OPT) is the edge cost of OPT and costa(OPT)
is the airport cost of OPT. For any v ∈ V (G), let b(v) denote the airport serving v in OPT.
As each airport serves at most k cities, we have coste(OPT) ≥ 1

k

∑
v∈V (G) len(v, b(v)).

For any lv ∈ L, OPT′ sends some flow along the edge {lv, vt} only when OPT opens an
airport at v. As the capacity of each edge of EL in G′ is 1/p, the cost of OPT′ on the edges
of EL is therefore at most costa(OPT)/p. We will now upper bound the cost of OPT′ on
the edges of EQL. By the construction of OPT′, this cost equals

∑
qi,j∈Q

∑
u∈Q?

i,j

d(qi,j , b(u))
k · p

≤
∑
qi,j∈Q

∑
u∈Q?

i,j

len(u, b(u))
k · p

≤
∑

u∈V (G)

len(u, b(u))
k · p

≤ coste(OPT)
p

.

The edges of G′ which are in EQ have cost 0, so they do not contribute towards the
cost. Therefore cost(OPT′) ≤ opt/p. As S′ is an optimal solution for the min-cost max-flow
instance, we get cost(S′) ≤ cost(OPT′) ≤ opt/p. J

From the integral min-cost max-flow solution S′ we construct S2 as follows. We start
by taking S2 = S1. Then, we open the airports u ∈ V (G) which have not been opened by
S1, and for which S′ has flow at least 1 on the corresponding edge {lu, vt}. Then, for each
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Figure 4 An infeasible solution S2 for the instance I of AR from Figure 1 is pictured in red
(dashed) and blue (solid). The new airports (blue squares) have been opened at vertices v4 and v9.
The blue edges connect the subpaths Q?

i,j with the assigned airports (the assignment is pictured by
the dashed arrows). The solution is infeasible, as the airports serving Q?

1,2 and Q?
1,3 are in different

components than the corresponding subpaths. (In the drawing, the components corresponding to
the airports v1, v4 and v7 got connected.) Note also, that the airport v7 now serves three cities
(v2, v4 and v7), and therefore requires resource augmentation.

subpath Q?i,j we find the unique vertex u ∈ V (G), such that S′ uses the edge {qi,j , lu}. Note
that in this case S2 must have an airport at u. Let vi,j be the vertex of Q?i,j minimizing the
distance len(vi,j , u). We add to S2 the edge {vi,j , u}, and we assign Q?i,j to the airport u
(i.e., the cities from Q?i,j will be served by u). See Figure 4 for an example.

Note that in this construction each subpath Q?i,j is assigned to an airport of S2, and
therefore all cities from Q?i,j are served. As the capacity of the edges {lu, vt} is 1/p, at most
1/p subpaths get connected to one airport. We can show the following.

I Lemma 7. The solution S2 has the following properties: (i) cost(S2) ≤ (2 + 1/p)opt, and
(ii) each city is served by some airport, and each airport serves strictly less than (1 + p) · k
many cities.

I Observation 3. The solution S2 is still not feasible. For any vertex u ∈ V (G) it may
happen that the city u is served by an airport at some vertex v ∈ V (G) with v 6= u, and
at the same time the airport at u has been opened and serves some other component. In
particular, a single component might contain a large number of airports, each of them serving
a different component. (Then, when considering the edges of S2, such components create
a single connected component of S2.) This is not consistent with the definition of the AR
problem, where the airport serving a component must belong to this component.

Step 3: Making the solution feasible. Solution S3. In this final step we show how we
can transform the solution S2 to a feasible solution S3, with only a small increase in cost
and while increasing the size of each component by at most one vertex.

We consider the components of S2 one by one. For each component T`, we consider the
cities which belong to T`, as well as the airport u ∈ V (G) serving the cities from T`. If the city
u belongs to T` (i.e., it is served by the airport at u), we do not make any changes. Otherwise,
we re-assign the city u to T`. We do that by removing u from its current component, and by
adding it to T`. We denote the resulting solution by S3.

I Lemma 8. The re-assignment can be performed so that the solution S3 has the following
properties. (i) Each airport in S3 serves at most (1 + p) ·k cities, (ii) cost(S3) ≤ 4

3 cost(S2),
and (iii) S3 is a feasible solution for AR1+p.

Theorem 1 follows from Lemmas 7 and 8.
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3 The Euclidean Case

In this section we focus on AR in the two-dimensional Euclidean space. We first show in
Section 3.1 that if we allow a small resource augmentation of the airport capacities, we
are able to obtain a quasi-polynomial-time approximation scheme (QPTAS). We then, in
Section 3.2, present a polynomial time (1 + ε)-approximation algorithm for a relaxed version
of the problem that allows components to have size larger than k, but where each component
must have enough airports in order to serve all clients. This approximation algorithm is
then used in Section 3.3 in order to give a constant factor approximation algorithm for the
general AR in two-dimensional Euclidean space, which is our main result for the section.

3.1 A QPTAS with a Small Resource Augmentation

In this section we give a sketch of the proof of Theorem 3, i.e., a QPTAS for two-dimensional
Euclidean AR(1+µ) for any fixed µ > 0. Our algorithm is based on Arora’s scheme [5].

First, using standard techniques, we partition the problem instance into independent
subinstances and perform perturbation. This step reduces the original problem instance into
a collection of independent subinstances, where each instance has all input points at points
with integer coordinates, allows Steiner vertices only at points with integer coordinates, and
is bounded by a polynomially sized bounding box. That increases the cost of the obtained
solution only by a negligible factor.

Next, as in Arora’s scheme [5], we introduce a shifted quadtree, which recursively
decomposes the input box into smaller and smaller subsquares (called dissection squares),
ending with leaf squares which contain only one point with integer coordinates each. Then,
at the boundary of each dissection square we introduce a logarithmic number of equidistant
portals. We then show that, by increasing the cost of the obtained solution only by a negligible
factor, we can consider solutions where edges cross the boundary of the dissection squares
only at the portals. By losing another negligible factor, we further restrict the solutions so
that every component is O(1)-light, i.e., it crosses the boundary of each dissection square at
at most O(1) portals.

For each dissection square C, with each component T of the solution, we associate the
type of T , which specifies the O(1) portals used by T , a partition of these portals into sets
such that each set corresponds to a connected component of T ∩C, information whether there
is an open airport in T within C, and the number of points from V (G) in T ∩ C rounded
down to the nearest threshold, where the number of thresholds is polylogarithmic. That gives
a polylogarithmic number of types of components.

This allows us to use a dynamic program that finds a near-optimal solution for AR(1+µ)
for any constant µ > 0. In the dynamic program, we have a set of possible configurations
for each dissection cell C, where each configuration specifies the number of components of
each of the polylogarithmic number of types. Therefore, the number of configurations is
quasi-polynomial. For leaf dissection squares, we can find an optimal solution satisfying
each configuration. Then, the DP proceeds bottom-up, computing solutions for all the
configurations for larger dissection squares, based on the solutions for the subsquares. We can
show that, by choosing the number of thresholds appropriately, the resource augmentation
required for the DP solution can be upper-bounded by 1 + µ.
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3.2 Relaxed AR: Allowing components with multiple airports
In this section we define a relaxed version of AR, which we denote by AR′. The difference
between AR and AR′ is that each component of AR′ can contain multiple airports and
multiple copies of the same edges. Moreover, each component allows routing all customers to
the airports, where each airport serves at most k customers, and each copy of an edge can
be used by at most k customers. As in the case for AR, AR′ can also use Steiner vertices.

Intuitively, AR′ is a relaxation of AR where cities assigned to different airports can share
the same edges. We now define the problem formally.

I Definition 9. In the problem AR′ we are given a set of points V (G) on the Euclidean
plane, together with a cost a(v) for each point v ∈ V (G), and an integral capacity parameter
k. A feasible solution is a subset of vertices A ⊆ V (G) and a network consisting of edges
E(G) that allows routing the flow of one unit from each point in V (G) to the points in A,
such that (i) each edge in the network has capacity k, and (ii) each point from A can receive
at most k units of flow. The network can use each point on the Euclidean plane as Steiner
vertices, and parallel edges are allowed.

The goal is to find a feasible solution minimizing the total cost of the network, i.e., the
value of

∑
v∈A a(v) +

∑
e∈E(G) len(E(G)).

We obtain a polynomial time algorithm that for every input instance I of AR finds a
solution to instance I of AR′ with cost of at most (1 + ε)optAR, where optAR is the cost
of an optimal solution to I for AR. The algorithm is based on a dynamic programming
formulation, and builds on Arora’s PTAS for the Euclidean TSP [5].

With each solution for an instance I of AR′ we can associate a network flow f that defines
an assignment of cities to the airports within each component of the solution. Such flow can
be computed efficiently.

3.3 A Constant-Factor Approximation Algorithm
In this section we use the algorithm from Section 3.2 as a building-block of a constant-factor
approximation algorithm for the original AR problem in the two-dimensional Euclidean
space. Note that this algorithm does not require resource augmentation.

We proceed similarly as in Steps 1 and 2 from Section 2, cutting the initial solution into
pieces, and matching the pieces to the airports.

Step 0: Obtaining solution S0. Given an instance I of AR, we run the algorithm from
Section 3.2 on I, obtaining a solution S0. Although S0 is not feasible in general, as it may
contain components with more than k cities and more than one airport, it is a good starting
point, as we can upper bound its cost by opt.

I Lemma 10. Consider the solution S0 for an instance I of two-dimensional Euclidean
AR. Let {C1, C2, . . . Cz} be the set of connected components of S0, where each component
Ci contains hi airports. The following holds: (i) cost(S0) ≤ (1 + ε)opt, and (ii) for each
component Ci, the number of points of Ci which are in V (G) satisfies: |Ci| ≤ k · hi.

We now show how to transform S0 into a feasible solution for AR. For each connected
component Ci of S0 with hi > 1, we proceed in two further steps that slightly resemble steps
from Section 2. However, we have to be more careful in order to avoid resource augmentation.
In the first step we will “cut” each such component Ci into singleton components containing
the airports of S0, and paths containing at most k − 1 cities (with no airports) each. In the
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5:12 Approximating Airports and Railways

second step, then we will develop an algorithm that matches these paths to airports without
increasing the cost by more than a constant factor.

Before we start, we perform the following operations. First, we compute a flow f in S0,
and we modify f into a flow f ′, so that each airport vi serves the city at vi. We will modify
the instance I0 into an instance I ′0, and the solution S0 into S′0, so that each airport serves
exactly k cities. We do that by introducing for each airport vi additional cities, coincident
with the airport vi and being served by vi, so that vi serves exactly k cities. The cost of
S′0 is then the same as the cost of S0 (as the additional cities are served for free). We will
transform S′0 into a feasible solution for the instance I ′ of AR, while increasing its cost only
by a constant factor, and then by dropping the additional cities we will obtain a solution for
the instance I.

Step 1: Cutting each component Ci. Solution S1. Consider a connected component Ci
of S′0 (and therefore also of S0), which contains |Ci| cities. We first transform Ci into a path
Pi that visits all vertices of Ci that do not contain an open airport. We do this by first
doubling all edges of Ci, obtaining an Eulerian tour on it, shortcutting the resulting tour so
that it only visits cities that do not have an airport4, and then removing a single edge from
the tour. We have

z∑
i=1

cost(Pi) ≤ 2 · coste(S0), (1)

where coste(S0) refers to the edge cost of the solution S0.
We now break each path Pi into a collection of hi subpaths {Qi,1, Qi,2, . . . Qi,hi

}, such
that each subpath Qi,j contains exactly k − 1 cities of I ′. Note that we can do this, as in S′0
the component Ci contains exactly k · hi cities (including the additional cities), and after
removing the airports the path Pi contains (k − 1) · hi cities.

Let S1 be a solution consisting of the airports open by S0 (and therefore also by S′0) that
form a singleton components {vi} and serve the cities at vi, and of the paths Qi,j that do
not contain open airports and contain exactly k − 1 cities of I ′ each.5 We now upper bound
the cost of S1.

I Lemma 11. cost(S1) ≤ 2 · cost(S0).

Step 2: Matching the subpaths Qi,j to the airports within each component Ci. Solution
S2. In order to assign the subpaths Qi,j to the airports of component Ci, we develop an
instance of of minimum cost perfect matching in a bipartite graph. This can be seen as
a simplified version of our network flow construction in Section 2. We do this for each
component Ci separately.

Consider a component Ci of S′0 (and therefore also of S0). We construct a bipartite graph
G′i as follows. For each subpath Qi,j we introduce a vertex qj , and denote the set of such
vertices by Q. For each vertex u ∈ Ci with an airport in S0, introduce a vertex lu and denote
this set of such vertices by L. Now we form a complete bipartite graph G′i, where the vertices
of Q are at one side of the bipartition, and the vertices of L are at the other side. An edge
{qj , lu} has cost equal to the minimum distance between the subpath qi,j and the vertex u.
More formally, the cost of the edge {qj , lu} equals minv∈Qi,j len({v, u}).

4 Note that if there are additional cities coincident with a city vi with an airport, the path should not
visit the city vi, but it should still visit the coincident additional cities.

5 Note that the paths Qi,j can have coincident endpoints, if they visit the coincident additional cities.
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We construct the solution S2 as follows. We start by setting S2 = S1. For each component
Ci of S0 we compute (in polynomial time) a min-cost perfect matching for the graph G′i
described above. Such a matching exists, as Ci has hi airports and hi subpaths, therefore
both parts of the bipartition have equal size. For each matching edge {qj , lu} ∈ Q× L we
add to the solution S2 an edge {v, u}, where v ∈ Qi,j has minimum distance to u out of all
vertices of Qi,j . We then remove the additional cities from each component of S2.

I Lemma 12. Solution S2 has the following properties: (i) it is a feasible solution for the
AR instance (without resource augmentation), and (ii) cost(S2) ≤

(
2 + k

k−1
)
(1 + ε)opt.

The proof of Theorem 2 now directly follows from Lemma 12 and by substituting ε with
ε/4.
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Aiming at extremely efficient algorithms for big data sets, we introduce property testing of rela-
tional databases of bounded degree. Our model generalises the bounded degree model for graphs
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2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near lin-
ear time algorithms, Theory of computation → Logic and databases, Mathematics of computing
→ Graph algorithms

Keywords and phrases Logic and Databases, Property Testing, Logical Meta-theorems, Bounded
Degree Model, Sublinear Algorithms

Digital Object Identifier 10.4230/LIPIcs.STACS.2018.6

Acknowledgements We would like to thank Tomáš Gavenčiak for critical discussions.

1 Introduction

As technology advances, there is an increased need for new extremely efficient algorithms
that deal with typical computational problems on ever larger databases. Approximate Query
Processing [4] addresses this by seeking to provide approximate answers to queries at a
fraction of the cost of traditional query execution, thus opening the path for revealing
new insights into voluminous data sets. In this spirit, we study a relaxation of Boolean
Query Evaluation on relational databases of bounded degree, including performance and
(probabilistic) accuracy guarantees.

The problem of Boolean Query Evaluation asks, for a Boolean query Q and a relational
database D, whether D satisfies Q. Relaxing this problem, we want to distinguish with
high probability correctly the case that D satisfies Q from the case that D is ε-far from
satisfying Q, i. e. from the case that we need to modify (add / delete) more than an ε-fraction
of the tuples in relations of D to make the database satisfy Q. For ε ∈ (0, 1], an ε-tester is
a probabilistic algorithm that makes this distinction by only looking at a small number of
small parts of the input database. More precisely, the ε-tester receives the size n of the input
database and has oracle access to the database. For each given element of the domain, the
tester can query the oracle for tuples (in any of the relations) containing the element. The
query complexity q(n) of the ε-tester is the maximum number of oracle queries performed,
over all input databases on n elements.
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6:2 Property Testing for Bounded Degree Databases

In this paper we only consider databases of degree bounded by a constant d, i. e. every
element participates in at most d tuples in relations, and we assume that the oracle can
answer queries in constant time. Due to the degree bound, a database D on n elements has
at most dn tuples in relations. We say D is ε-far from satisfying query Q, if we need to
delete or insert more than εdn tuples in D to satisfy Q. Given our interest in highly efficient
algorithms, we study testers with constant query complexity q, i. e. q is independent of n
(but may depend on ε and the degree d). Here, we view a Boolean query as an isomorphism
closed class of relational databases. We use the term property instead of Boolean query.
We say that a property Q is testable, if for every ε, there is an ε-tester for Q with constant
(oracle) query complexity.

In [2], Alon, Krivelevich, Newman and Szegedy proposed a systematic study of the
testability of logically defined properties. We obtain the first such logical meta-theorem for
property testing in the bounded degree model, which relates logical definability to time
efficient uniform testability. This is the main result of our paper. It can be thought of as
testability-analogue of the well-known theorem Courcelle [6], which states that each property
of relational databases which is definable in monadic second-order logic with counting (CMSO)
is decidable in linear time on relational databases of bounded tree-width. We show that each
such property is testable on structures of bounded degree and bounded tree-width.

Our model extends the bounded-degree model for property-testing of graphs, introduced
by Goldreich and Ron [15], and the bidirectional model for directed graphs of [3, 9]. In [21],
Newman and Sohler showed that every hyperfinite graph property is testable. This includes
properties such as planarity and minor-closed graph classes. Their testers are non-uniform
in the number n of vertices of the input graph. (Indeed, it is not hard to come up with
a property of (edgeless) graphs that is undecidable but hyperfinite, and hence testable.)
We generalise this result to databases of bounded degree over a fixed finite signature. We
then study conditions that allow for time efficient uniform testers, and we characterise both
non-uniform testability and uniform testability. We introduce a combinatorial criterion which
characterises non-uniform testability with constant query complexity. This criterion which
we call locality is similar to the concept of Hanf locality from mathematical logic which
provides a combinatorial method for proving non-definability results for first-order logic and
its counting extensions (cf. [17]). It captures the intuition that testability of a property with
constant query complexity means that the property is determined by the distribution of
substructures of a constant radius r (r-discs) in a structure. We also introduce a concept
which we call effective locality and which characterises uniform testability. This pinpoints
that uniform testability of a property is closely related to solving a relaxation of a realisability
problem of r-disc distributions. This problem asks for a given distribution D and a natural
number n whether there exists a structure on n elements satisfying the property and where
the r-discs are distributed according to D.

Techniques. Similar to the evaluation of scale independent queries in [12], our algorithms
only explore a constant size sub-database before outputting the answer. For this, we explicitly
require the database to have bounded degree, whereas scale-independent queries use a degree
restriction implicit in the access schema.

The proof of the CMSO-result involves a number of steps. By our characterisation of
uniform testability it suffices to show that all CMSO-definable properties are effectively
local. To prove this, we generalise the Local-Global Theorem [21, Thm. 3.1] from graphs
to databases. We then show that the realisability problem can be solved efficiently. For
this, we use the fact that many-sorted spectra of CMSO formulas on bounded tree-width are
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semilinear, a result by Fischer and Makowsky [13], that is based on Parikh’s Theorem [22].
This allows to encode the problem as an integer linear program (ILP) with a fixed number
of variables and inequalities. Using a result of Lenstra [18] for solving such ILPs we obtain
polylogarithmic running time.

Let us remark that some work goes into generalising tools from property testing on
graphs to relational databases. For this we could reprove the relevant results in our slightly
more general setting (this is not done in this extended abstract for space constraints). A
different approach would be to encode relational structures as (coloured) incidence graphs,
and apply the known results for graphs. This can be done, because bounded degree, bounded
tree-width and hyperfiniteness carry over to incidence graphs. Nevertheless, it involves some
technicalities, in particular when simulating testing algorithms on incidence graphs. We plan
to take this approach in the journal version.

Structure of the paper. Section 2 introduces the notation and general definitions used
throughout the paper. Section 3 is devoted to the discussion of our model, including
illustrating examples. Section 4 contains our logical meta-theorem, together with the
generalisations of known results about graphs to databases. Section 5 characterises testability
by our notion of locality, and uniform testability by effective locality. We conclude in
Section 6.

Proofs. Several proofs are omitted due to space contraints for this extended abstract. We
indicate this by (∗).

2 Preliminaries

We let N denote the set of natural numbers including 0. For each n ∈ N with n ≥ 1, we let
[n] := [1, n] ∩ N. A partition of a set A is a collection P of non-empty, pairwise disjoint
subsets of A whose union is A. For an element a ∈ A we let P [a] denote the unique member
of P containing a.

Relational structures. In this paper, we consider relational databases as finite relational
structures over finite signatures. A signature is a finite set σ := {R1, . . . , R`} of relation
symbols, each of which has an arity, ar(Ri) ∈ N. We let ar(σ) denote the maximum arity of
the relation symbols contained in σ. A σ-structure is a tuple A := (A,RA1 , . . . , RA` ) where A
is a finite set, called the universe of A, and RAi is a ar(Ri)-ary relation on A. The members
of the universe are the elements of A. We let |A| := n denote the number n of elements of
A. We assume that all structures are linearly ordered in some way or, equivalently, that
the universe of a structure with n elements is [n]. We extend the linear order on A to a
linear order on each relation of A via lexicographic ordering. We say that a σ-structure B is
a substructure of another σ-structure A, if B can be obtained from A by deleting a (possibly
empty) set of elements from A and a (possibly empty) set of tuples from the relations of
A. Note that we have to relabel the elements of B after deleting elements to be sure that
the universe of B is still an initial segment of the natural numbers. A substructure of A is
induced by a set M ⊆ A if it can be obtained from A by deleting all elements of A \M (and
all incident tuples). We denote such a structure by A[M ]. A property is a class of structures
that is closed under isomorphism. Indeed, we only consider isomorphism closed classes of
structures. For each class C of structures, we define C|n := {A ∈ C : |A| = n}. The degree
deg(a) of an element a in a structure A is the total number of tuples in all relations which
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6:4 Property Testing for Bounded Degree Databases

contain a. We define the degree deg(A) of a structure A as the maximum degree of its
elements. A class C of structures has bounded degree d if deg(A) ≤ d for each A ∈ C. A class
C is of structures is closed under removing tuples, if for every structure A ∈ C, the structure
A′ obtained from A by deleting a tuple from some relation of A is also a member of C.

A class C has bounded degree if there exists a number d such that C has bounded degree
d. We write Cσ,d for the class of all σ-structures of degree at most d. Most of the time,
σ will be fixed and we omit it from this notation. The Gaifman graph of a structure A is
the undirected graph G(A) = (A,E), where {x, y} ∈ E if x and y occur together in a tuple
belonging to some relation of A. Observe that our notion of bounded degree classes coincides
with the notion where the degree of A is defined as the (usual graph-theoretical) maximum
degree of G(A).

We transfer the usual graph theoretic (shortest path) distance and related notions (e.g.
radius, connectivity) from Gaifman graphs G(A) to structures A. A non-empty induced
substructure B of A is a connected component of A, if G(B) is a connected component of
G(A). For each r ∈ N, an r-disc is a pair (A, a) where A is a relational structure of radius
at most r and a is a central element of A. Two r-discs (A, a) and (B, b) are isomorphic
(written (A, a) ∼= (B, b)) if there is an isomorphism of A and B which maps a to b. An r-type
is an ∼=-equivalence-class of r-discs. The number of r-types is bounded by a constant which
depends only on the signature σ and the fixed degree bound d. We write c(r) to denote this
constant. For a given structure A and an element a of A, the r-neighbourhood of a in A,
written NAr (a) is the set of all elements with distance at most r to a. The r-disc around a in
A is the structure DAr (a) := (A[NAr (a)], a). We say that an element a realises an r-disc-type
τ , if DAr (a) ∈ τ . For each structure A, the r-histogram of A denotes the vector hr(A) with
c(r) components, indexed by the r-disc types, where the component corresponding to type
τ contains the number of elements of A which realise τ . More generally, we call a vector v̄
an r-histogram with n elements if it has c(r) components and if n =

∑
i≤c(r) v̄[i]. For every

class of structures C and each r ∈ N, we let Hr(C) := {hr(A) : A ∈ C}. If there exists a
structure A ∈ C such that v̄ = hr(A), we say that v̄ is C-realisable. For each r-histogram v̄

and each r-disc D, we let v̄[D] := v̄[i] where τi is the unique r-disc type with D ∈ τi. For an
r-histogram v̄ with n elements, the vector v̄/n specifies a distribution of r-types.

3 The Model

Algorithms with direct access. Let σ be a signature. We consider algorithms which process
σ-structures of bounded degree d. An algorithm that processes A does not obtain an encoding
of A as a bit string in the usual way. Instead, it has direct access to A using an oracle which
answers queries about the relations of A in constant time. The (usual) input of the algorithm
consists of auxiliary information. In our case, this will always be the size n of the universe of
A in binary representation. The oracle accepts queries of the form (R, i, j), for R ∈ σ, i ≤ n,
and j ≤ deg(A), to which it responds with the j-th tuple of the relation RA which contains
the i-th element, or with ⊥ if there are strictly less than j tuples in RA which contain i. The
running time of the algorithm is defined as usual, i.e. with respect to the auxiliary input
n. As common in property testing, we use a uniform cost model, i. e. we assume that all
basic arithmetic operations including random sampling can be performed in constant time,
regardless of the size of the numbers involved.

Distance. For two graphs G and H, both with n vertices, dist(G,H) denotes the minimum
number of edges that have to be inserted or removed from G and H to make G and H

isomorphic. For two σ-structures A,B with the same number n of elements, dist(A,B)
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denotes the minimum number of tuples that have to be inserted or removed from A and B
to make A and B isomorphic. Let ε ∈ [0, 1] and d ∈ N. If deg(A),deg(B) ≤ d, we say that A
and B are ε-close (with respect to d) if dist(A,B) ≤ εdn. Usually, the number d is fixed and
will not be mentioned. If A,B are not ε-close, then they are ε-far. We say that a structure
A is ε-close to a property P if A is ε-close to some B ∈ P. Otherwise, A is ε-far from P.
Given a class of structures C, we write ε -closeC(P) and ε -farC(P) for the set of σ-structures
from C which are ε-close and ε-far to P, respectively. Usually, we omit C from this notation
if it can be inferred from the context. Note that since P is closed under isomorphism, both
ε -close(P) and ε -far(P) are closed under isomorphism as well.

Degree bounds and distances carry over from structures to their Gaifman graphs as
follows.

I Lemma 1 (∗). Let σ be a signature of maximum arity α := ar(σ) and let A,B be
σ-structures of degree at most d ≥ 1. Then deg(G(A)) ≤ dα, and dist(G(A),G(B)) ≤(
α
2
)

dist(A,B).

I Definition 2 (ε-tester). Let σ be a signature and let d ∈ N. Let C be a class of σ-structures
of bounded degree d and let P ⊆ C be a property. An ε-tester for P on C is a probabilistic
algorithm with direct access to σ-structures. Given oracle access to a σ-structure A ∈ C and
given n := |A| as auxiliary input, the algorithm does the following:
1. If A ∈ P, then the tester accepts with probability at least 2

3 .
2. If A ∈ ε -far(P), then the tester rejects with probability at least 2

3 .
The query complexity of a tester is the maximum number of oracle queries made. A property
P ⊆ C is uniformly testable in time f(n) on C, if for each ε ∈ (0, 1] there is an ε-tester for
P which has constant query-complexity (i. e. independent of n) and whose running time on
structures with n elements is f(n). Note that this tester must work for all n.

A property P is non-uniformly testable, if for each n, the class P|n is testable on C|n,
i.e. there may be a different tester for each input size. (Note that this definition of uniform
testability is non-standard. Some authors define uniform testability as being uniform with
respect to ε.)

Our definitions subsume the bounded degree model of graph property testing. Let
σ := {E}, where E is a binary relation symbol, and let C denote the class of all undirected
graphs (viewed as symmetric, irreflexive directed graphs) of degree at most d. Then, up
to a constant factor in the query- and time complexity, all results about testability in the
bounded degree graph model carry over to testability in our model. In the same way, our
model generalises the bidirectional model for directed graphs of bounded degree introduced
in [3]. We illustrate the model by two simple examples.

I Example 3 (Keys). A component of a relation is a key if there are no two tuples in the
relation which contain the same value in this component. Let σ := {R} be a signature.
Consider the property Key containing all σ-structures A where the first component of RA is
a key. Let d ∈ N. We show that on the class Cσ,d, Key is uniformly testable with constant
running time. Let ε ∈ (0, 1]. Given oracle access to a σ-structure A on n elements, the
ε-tester proceeds as follows.
1. Sample α := log1−ε

1
3 elements from [n] uniformly and independently.

2. For each of these elements i, perform the queries (R, i, 1),. . . ,(R, i, d) to obtain all tuples
of RA which contain i.

3. If, in the previous step, two tuples with the same elements in their first components are
found, the tester rejects A. Otherwise, A is accepted.
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6:6 Property Testing for Bounded Degree Databases

Call a tuple belonging to RA bad if RA contains another tuple with the same first component.
An element is bad if it occurs in the first component of a bad tuple. The tester clearly accepts
A if A ∈ Key, i.e. it contains no bad tuples. Suppose that A is ε-far from Key. Then there
are at least εdn bad tuples. Since A has degree at most d, at least εn different elements
occur in the first components of these bad tuples. The probability that a uniformly random
element of A is bad is hence at least ε. The probability that our sample of α independently
selected elements contains no bad element is (1− ε)α ≤ 1

3 . Hence, with probability at least
2
3 the algorithm samples a bad element i. Since i is bad, there are at least two tuples which
contain i and hence the algorithm rejects A. The running time is constant.

I Example 4 (Symmetry). A k-ary relation is symmetric if for each tuple ā := (a1, . . . , ak)
of the relation and each permutation π of [k], the tuple π(ā) := (aπ(1), . . . , aπ(k)) is also
contained in the relation. Let σ be an arbitrary signature and let R ∈ σ be a k-ary relation
symbol. We show that the class Sym of σ-structures which interprete R by a symmetric
relation is strongly uniformly testable on the class Cσ,d, for each d ∈ N. Let ε ∈ (0, 1]. Given
oracle access to a σ-structure A on n elements, the tester proceeds as follows.
1. Sample α := log1−ε

1
3 elements uniformly and independently from the universe [n].

2. For each sampled element i, perform the queries (R, i, 1),. . . ,(R, i, d) to obtain all (at
most d) tuples ā of RA which contain i, and for each such tuple ā = (a1, . . . , ak) and for
each permutation π of [k], check whether the tuple π(ā) is also present.

3. If this is true for all α elements, accept. Otherwise reject.

The tester clearly accepts A if A ∈ Sym. Suppose that A is ε-far from Sym. Then there
are at least εdn bad tuples, i. e. tuples ā ∈ RA such that π(ā) /∈ RA for some permutation
π. Since each element of the universe is in at most d tuples, there are at least εn different
elements that are contained in bad tuples. Hence the probability that a random element is in
a bad tuple is at least εn/n = ε. Hence the probability that none of the α sampled elements
is in a bad tuple is at most (1− ε)α = 1/3. Hence the algorithm accepts with probability at
least 2/3. The tester has query complexity d log1−ε

1
3 and constant running time.

4 Monadic second-order logic and bounded tree-width

We are interested in identifying general conditions which ensure the time efficient uniform
testability of a wide range of properties on relational structures. In this section we consider
properties which are definable by sentences of monadic second order logic with counting
(CMSO) on classes of structures of bounded degree and bounded tree-width.

Before we state the main theorem of this section, we briefly introduce logic. We use
the notation which is usual in finite model theory (cf. e.g. [19] for a general overview and
[7] for an overview regarding CMSO and the notion of tree-width). Fix a signature σ. An
atomic formula, is a formula of the form x = y or R(x1, . . . , xr), where R ∈ σ is an r-ary
relation symbol and x, y, x1, . . . , xr are (individual) variables. The formulas of first-order
logic are built up from atomic formulas using the usual Boolean connectives and existential
and universal quantification over the elements of the universe of a structure. The class
of all formulas of first-order logic is denoted by FO. Monadic second-order logic (MSO)
is the extension of first-order logic allowing quantification not only over elements of the
universe of a structure, but also over subsets of the universe. Formally, we have two types of
variables: individual variables (denoted by small letters x, y, z, x1, ...), which are interpreted
by elements of a structure, and set variables (denoted by upper-case letters X,Y, Z,X1, ...),
which are interpreted by subsets of the universe of a structure. In addition to the atomic
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first-order formulas, in MSO we also have atoms Xx saying that x is an element of set X.
Furthermore, we have existential and universal quantification over both individual and set
variables. CMSO extends MSO by first-order modular counting quantifiers ∃m, for each
integer m, where ∃mϕ is true in a structure if the number of its elements for which ϕ is
satisfied is divisible by m. A free variable of a formula ϕ is an (individual or set) variable v
that does not occur in the scope of a quantifier ∃v or ∀v. A sentence is a formula without
free variables. For a structure A and a sentence ϕ we write A |= ϕ to denote that A satisfies
ϕ. Detailed introductions can be found in [10, 19].

By Mod(ϕ) we denote the class of all structures satisfying ϕ. For an arbitrary formula
ϕ and an assignment a in A to the free variables of ϕ, we write (A, a) |= ϕ to denote that
A satisfies ϕ if the free variables are interpreted according to a. We say that a property
P is definable in logic L, if there is a sentence ϕ of L with P = Mod(ϕ). For a class C of
structures, we say that Mod(ϕ) ∩C is the property defined by ϕ on C.

Recall that we have assumed that the universes of structures are initial segments of the
natural numbers. This was used for the definitions surrounding testability. We stress that
the linear orders on structures are not available in logical formulas.

I Proviso. Let d ∈ N, and fix a finite relational signature σ. From now on, all structures are
σ-structures and have degree at most d, unless stated otherwise. Moreover, we let α := ar(σ)
and C ⊆ Cσ,d.

We let Ctw
t denote the class of all σ-structures of degree at most d and tree-width at

most t. The main goal of this section is a proof of the following theorem.

I Theorem 5. Each property P which is CMSO-definable on Ctw
t is uniformly testable on

Ctw
t with polylogarithmic time complexity.

For the proof, we introduce a notion of locality, which is based on the distributions of
r-discs. In the next section, we will show that locality characterises non-uniform testability.
Newman and Sohler’s results [21] show that properties of hyperfinite graphs are non-uniformly
testable and local. We generalise these to relational structures, and we use the fact that
every class of relational structures of bounded tree-width is hyperfinite. This already implies
non-uniform testability. We then use semilinearity of Hr(P) for MSO-definable properties on
bounded tree-width and a restricted form of ILP to establish polylogarithmic running time.

Since Hanf’s paper [16], it is known that properties which are definable by formulas
of first-order logic are local, in the sense that whether or not a structure has a first-order
definable property depends only on the r-discs present in the structure. This is made precise
by several notions of locality such as Hanf locality and Gaifman locality (cf. [17]). These
yield a unified combinatorial method for showing that certain properties of sparse structures
are not first-order definable. Our notion of (approximate) locality is of similar spirit.

We introduce some notation. We identify each r-histogram vector v̄ with n components
with a structure A on n elements over a signature σr := {P1, . . . , Pc(r)} where each relation
symbol Pi is unary. The unary relations of A are pairwise disjoint sets such that |P v̄i | := v̄[i],
for each i ≤ c(r). In this way, we can transfer all definitions for structures (e.g., distance,
testability) to r-histograms. In particular, note that for all r-histograms ū, v̄ with the same
number n of elements, ū and v̄ are ε-close iff dist(ū, v̄) ≤ εn, because histogram vectors are
structures of degree d = 1. Recall that the `1-norm of a vector v̄ on ` components is defined
as ‖ū‖1 :=

∑`
i=1 |v̄[i]|.

I Lemma 6 (∗). dist(ū, v̄) = ‖ū − v̄‖1, for all r-histograms ū, v̄ with the same number of
elements.

STACS 2018
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I Definition 7 (Locality). Let ε ∈ (0, 1]. A property P ⊆ C is ε-local on C if there exist
r := r(ε) ∈ N and λ := λ(ε) ∈ (0, 1] such that for each A ∈ P and B ∈ C with the same
number of elements, if hr(A) is λ-close to hr(B), then B ∈ ε -close(P).

We call the parameters r and λ the locality radius and the disc proximity of P for ε,
respectively. A property is local if it is ε-local for each ε ∈ (0, 1].

The next example illustrates that locality and testability can indeed be established by very
similar arguments.

I Example 8 (Key is local). Recall the definitions of Example 3. We show that Key is
local on Cσ,d. Let ε ∈ (0, 1], let r := 1 and λ := ε. Consider structures A ∈ Key and B ∈ C
with n elements each and suppose that hr(A) and hr(B) are λ-close. Each bad tuple of RA
belongs to the 1-disc of its first component. Since A ∈ Key, the relation RA contains no
bad tuples, and hence h1(A)[D] = 0 for each 1-disc D such that RD contains two tuples
with the same first component. Since hr(A) and hr(B) are ε-close, the number of elements
whose 1-discs contain bad tuples in B is ≤ εn and each such element is contained in ≤ d

bad tuples. With ≤ εdn tuple deletions, we obtain a structure B′ ∈ Key from B. Hence,
B ∈ ε -close(Key).

We now generalise the results of Newman and Sohler [21] to properties on arbitrary
hyperfinite classes of relational structures of bounded degree. We begin with some definitions.

A substructure P of a structure A on n elements is a k-partition of A, if P and A have
the same universe (i. e. if P = A), every connected component of P contains at most k
elements, and for each element a ∈ A, the component P[a] of a in P is the substructure of
A induced by its universe P [a] ⊆ A. If, furthermore, dist(A,P) ≤ εn, we say that P is a
(ε, k)-partition of A. A class of structures C ⊆ D is ρ-hyperfinite on D if for each ε ∈ (0, 1]
and each structure A ∈ C there exists a (ε, ρ(ε))-partition P of A such that P ∈ D. We
call C hyperfinite on D if there exists a function ρ for which C is ρ-hyperfinite on D. This
definition generalises the notion of hyperfinite graph classes to general structures.

The proof of Theorem 5 makes use of the following theorem, which can be seen as
the generalisation of [21, Theorem 3.1] from graphs to structures. After generalising all
ingredients from graphs to relational structures, the proof of Theorem 9 can be put together
as in [21, Theorem 3.1].

I Theorem 9 (∗)(Local-Global Theorem). Let C be closed under removing tuples. If P ⊆ C
is hyperfinite on C, then P is local on C.

We want to approximate the histogram vector of a structure that comes from a hyperfinite
class of structures of bounded degree. For this we will make use of Lemma 5.1 in [21], which
allows us to approximate the distribution of the r-discs of a graph by looking at a constant
number of elements. This lemma easily translates to structures as follows. We write
EstimateFrequenciesr,s to denote an algorithm that, given access to a σ-structure A of degree
at most d, samples s elements in A uniformly and independently and explores their r-discs.
The algorithm returns the distribution vector v̄ of the r-disc-types of this sample.

I Lemma 10. Let λ ∈ (0, 1), r ∈ N. If s ≥ c(r)2

λ2 · ln(c(r)+40), with probability at least 19/20
the vector v̄ returned by EstimateFrequenciesr,s on input A satisfies ‖v − hr(A)/|A| ‖1 ≤ λ.

Our approach to the proof of Theorem 5 can be summarised as follows. It is known that
each class of graphs of bounded tree-width (and, more generally, any class of graphs which is
minor-closed, cf. [21]) is hyperfinite. From this, it follows that each property P is hyperfinite
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on Ctw
t . Hence, by Theorem 9, P is local on Ctw

t . Our aim is to show that a CMSO-definable
property P is not only local, but also uniformly testable in polylogarithmic time.

To this end, we study the structure of the sets Hr(P) for CMSO-definable properties
and arbitrary values of r. Using known results from logic, we show that these sets have a
particularly simple shape (i.e., they are semilinear) if we consider only structures of bounded
tree-width. Using this and a result about the complexity of integer linear programming (ILP)
with a bounded number of constraints and variables from [11], we can show that there is
an algorithm which, on input of an r-histogram on n elements decides in polylogarithmic
time if v̄ is λ-close to the r-histogram of a structure on n elements which belongs to P. This
algorithm then, in particular, establishes the testability of Hr(P), finishing the proof.

The first ingredient to our proof is the following lemma, which carries over from graphs
to structures.

I Lemma 11 (∗). Each property P ⊆ Ctw
t is hyperfinite on Ctw

t .

Next, we consider the structure of Hr(P). For this, we need the following definition.

I Definition 12 (semilinear sets). A set is semilinear if it is a finite union of linear sets. A
set M ⊆ Nc is linear if M = {v̄0 + a1v̄1 + · · ·+ akv̄k : a1, . . . , ak ∈ N}, for v̄0, . . . , v̄k ∈ Nc.

I Lemma 13. For each r ∈ N and each property P ⊆ Ctw
t which is CMSO-definable on Ctw

t ,
the set Hr(P ) is semilinear.

Lemma 13 is a corollary to a result of [13] about many-sorted spectra of CMSO-sentences.

I Definition 14 (many-sorted spectrum). For every signature σ and each ` ∈ N, we let
σ` := σ ∪ {P1, . . . , P`} where P1, . . . P` are unary relation symbols which do not occur in σ.
A σ`-structure A is `-sorted if PA1 , . . . , PA` is a partition of A, i.e. P1 ∪ · · · ∪ P` = A and
PAi ∩ PAj = ∅ for all 1 ≤ i < j ≤ `. We let n(A) := (|PA1 |, . . . , |PA` |). The many-sorted
spectrum of a CMSO[σ`]-sentence ϕ is the set

spec(ϕ) := {n(A) : A is a finite σ`-structure, A |= ϕ}.

I Theorem 15 ([13]). If the class defined by a CMSO[σ`]-sentence ϕ on the class of all
finite σ`-structures has bounded tree-width, then spec(ϕ) is semilinear.

Now we can prove our lemma.

Proof of Lemma 13. Let ϕ be a CMSO[σ]-sentence defining P on Ctw
t . Let τ1, . . . , τc(r) be

an enumeration of all r-types according to the fixed ordered on r-types that was used in the
definition of Hr(P). For each 1 ≤ i ≤ c(r), let ψi(x) be an FO[σ]-formula such that for each
A ∈ Ctw

t and a ∈ A, (A, a) |= ψi(x) if (A, a) ∼= τi. There is an MSO-sentence ψCtw
t

which
defines the class Ctw

t on the class of all finite σ-structures (using the forbidden minors for
tree-width ≤ t, see e. g. [8]). Consider the sentence

ξ := ϕ ∧ ψCtw
t
∧ ∀x

∧
1≤i≤c(r)

(
Pi(x)↔ ψi(x)

)
.

Note that spec(ξ) = Hr(P) and that all models of ξ have tree-width at most t for some
p := p(t). By Theorem 15, we obtain that Hr(P) is semilinear. J

To finish the proof of Theorem 5 it remains to link the semilinearity of Hr(P) to the
testability of P. The following lemma shows that semilinearity of Hr(P) implies decidability
of ε -close(Hr(P)) with polylogarithmic running time.

STACS 2018
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I Lemma 16 (∗) (Approximate realisability). Let r ∈ N and ε ∈ Q ∩ (0, 1], and let M ⊆ Nc(r)
be a semilinear set of r-histograms. Then there is an algorithm that, given an r-histogram
ū ∈ Nc(r) on n elements (in binary encoding), decides whether ū ∈ ε -close(M) in time
polylogarithmic in n.

For the proof of Lemma 16, we phrase the conditions for belonging to ε -close(M) as
an ILP with a constant number of variables and constraints. Using results of [18], [11], we
obtain the desired running time. It remains to prove the following lemma.

Proof of Theorem 5. Let P be a property defined by some fixed CMSO-formula on Ctw
t .

Given ε, we construct an ε-tester for P for inputs A ∈ Ctw
t on n elements. By Lemma 11, Ctw

t

is hyperfinite, and hence, by Theorem 9, P is local on Ctw
t . Let r = r(ε) be the locality radius

and λ = λ(ε) the disc proximity of P for ε, as in the definition of locality. Pick a sample
size s for r and λ/2 as required for the algorithm EstimateFrequenciesr,s of Lemma 10, and
run the algorithm to obtain an approximation v̄ of the frequency vector of A with high
probability. Accept, if n · v̄ is λ/2-close to Hr(P), and reject otherwise (using the algorithm
of Lemma 16). It is easy to see that the algorithm is correct. Since EstimateFrequenciesr,s
runs in constant time, and the algorithm of Lemma 16 runs in time polylogarithmic in n, we
obtain uniform testability with polylogarithmic running time. J

We remark that the vectors spanning the semilinear set Hr(P) (in the proof of Theorem 5)
can be computed from the CMSO-definition of P. This is implicit in [13].

The same argument as in the proof of Theorem 5 can be used to show the following
lemma.

I Lemma 17 (∗). If a property P ⊆ C is local and ε -closeHr(C)(Hr(P)) is decidable in
time polylog(n), for each ε ∈ (0, 1] and r ∈ N, then P is uniformly testable on C in time
polylog(n).

For the proof of Lemma 17, we first approximate the distribution of r-types by sampling.
Then we accept if this distribution is sufficiently close to the distribution of a structure in P
on the same number of elements as the input structure.

5 Locality and testability

In this section we characterise non-uniform testability by locality. Inspired by the proof
for uniform testability of MSO on bounded tree-width, we introduce the notion of effective
locality, which adds the requirement that a certain realisability problem for the neighbourhood
distributions be solvable. We use effective locality to characterise uniform testabilty (on
decidable classes). We believe that the characterisations are interesting, as they provide a
purely structural criterion for testability and non-testability. While it is implicitely clear
that non-uniform testability ‘only depends on the local neighbourhoods’, to our knowledge
this has not been cast into a characerisation in the literature so far. Uniform testability has
not been characterised before. Furthermore, they explain the role of uniformity which has
been brought up by the general results on non-uniform testability of Newman, Sohler [21].
In this section, with a few exceptions, we disregard the running times of testers since we are
interested in the structural properties of testability.

The first main theorem of this section shows that non-uniform testability is equivalent to
locality.

I Theorem 18 (Locality). Then for every property P ⊆ C, P is non-uniformly testable on C
if, and only if, P is local on C.
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We mention that from Theorems 18 and 9 it follows that every property of hyperfinite
databases is testable. This is a generalisation of [21].

I Corollary 19. Let C to be closed under removing tuples. If C is hyperfinite, then every
property P ⊆ C is non-uniformly testable on C.

For example, Theorem 18 can be used for purely graph-theoretic proofs of non-testability
(e.g. in the proof that bipartiteness is not testable with a constant number of queries [15]).
Note that locality of a property P is not enough to ensure uniform testability. This can
be easily shown since the halting problem for turing machines with empty input can be
trivially encoded as a local property of graphs of degree 0. Intuitively, we would like to
use the locality of P to construct a tester for P as follows: on input of a structure A, (1)
approximate the distribution of the r-types by random sampling and (2) accept A if this
distribution is sufficiently close to the distribution of some structure from P. The notion of
locality does not guarantee that step (2) can be implemented effectively, which motivates
introducing effective locality.

We now introduce effective locality. Recall from above that our notion of testability
applies, in particular, to properties of r-histograms which we treat as structures of degree 1.

I Definition 20. P ⊆ C is effectively local on C if it is local on C and for each ε ∈ (0, 1)
and for the corresponding locality radius r := r(ε), the problem Hr(P) is uniformly testable
on Hr(C). If the running time of the tester is T (n), we say that P is T (n)-effectively local.

The realisability problem (cf. e. g. [1]) for a graph parameter f which maps graphs G to
f(G) ∈ Nk and for a class C of graphs is the decision problem which, on input of a vector
v̄ ∈ Nk, asks if there exists a graph G ∈ C such that f(G) = v̄. Hence, the problem Hr(P)
can be viewed as a realisability problem for structures.

We show that effective locality characterises uniform testability. In the following theorem,
we need the notion of a promise problem. Following e.g. [14], we define this as a pair of
disjoint languages (LYES, LNO) of binary strings. We say that (LYES, LNO) is solvable if
there exists an algorithm which accepts all inputs which belong to LYES and rejects all inputs
which belong to LNO. Note that a brute-force derandomisation of an ε-tester for a property
P yields a deterministic algorithm which solves the promise problem (P, ε -far(P)). From a
conceptual point of view, disregarding running times, it is more convenient to consider the
promise problem.

The second main theorem of this section characterises uniform testability.

I Theorem 21 (Effective Locality). Let C be a decidable class of structures, that is closed
under removing tuples. For each property P ⊆ C, the following statements are equivalent.
1. P is uniformly testable on C.
2. P is effectively local on C.
3. P is local and the promise problem (P, ε -far(P)) is solvable for each ε ∈ (0, 1].

We break the proofs of Theorem 18 and Theorem 21 into several lemmas.

I Lemma 22 (∗). Let C be a decidable class of σ-structures. Let P ⊆ C be a property
such that the promise problem (P, ε -far(P)) is solvable for each ε ∈ (0, 1]. Then the promise
problem

(
Hr(P), λ -far(Hr(P)

)
is solvable for each r ∈ N and λ ∈ (0, 1].

I Lemma 23 (∗). Let C be a decidable class of σ-structures. Let P ⊆ C be a local property
such that the promise problem

(
Hr(P), λ -far(Hr(P))

)
is solvable for each r ∈ N and λ ∈ (0, 1],

then P is uniformly testable.

STACS 2018
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Without the solvability of the promise problem, we obtain non-uniform testability instead
of uniform testability.

Now we prove the implication from effective locality to uniform testability of Theorem 21.
The following lemma is stronger than what is needed here, because it also takes the running
time of the tester into account. It can be seen as a generalisation of Lemma 17.

I Lemma 24 (∗). If a property P ⊆ C is effectively polylog(n)-local on C, then it is uniformly
testable on C in time polylog(n).

I Corollary 25 (∗). If a property P is local on C, then it is non-uniformly testable on C.

Proof sketch. Since P|n is finite and local, it is effectively local and the result follows from
Lemma 24. J

I Lemma 26 (∗). If a property P ⊆ C is non-uniformly testable on C, then P is local on C.

Proof idea. It is intuitively clear that a tester with constant query complexity can only
inspect discs of a constant radius r. This is made precise by the Canonical Tester Lemma
which was proved by Czumaj, Peng, Sohler in the context of property testing for directed
graphs [9, Lemma 3.1]. This lemma extends to relational structures. It can be shown that,
on structures with sufficiently close r-histograms, a tester for P will see the same r-discs
with high probability. This is done in a similar way as in the proof of the “local versus global
graph structure”-theorem of Newman, Sohler [21, Theorem 3.1]. Hence, the tester will not
be able to distinguish between structures with close r-histograms, so if one of the structures
is in P, the other has to be in ε -close(P). This yields locality of P. J

We can now finish the proofs of both characterisation theorems.

Proof of Theorem 18. The theorem follows from Corollary 25 and Lemma 26. J

Proof of Theorem 21. The implication from statement 1 (uniform testability) to statement
3 (locality and solvability of (P, ε -far(P))) follows from Theorem 18 (locality) and by
derandomisation (solvability). The implication from 3 to 2 (testability of Hr(P)) is established
by Lemma 22. The implication from 2 to 1 is established by Lemma 23. J

6 Conclusion

We introduced property testing for relational databases of bounded degree. Our main result
is a logical meta-theorem proving testability of CMSO with constant query complexity
and polylogarithmic running time for databases of bounded tree-width, and we provide
characterisations of testability and uniform testability in the model. Our tester for CMSO
has two-sided error (because it samples the distribution of the r-discs), and it would be
interesting to know if a one-sided error can be achieved.

Since monadic second-order logic on words characterises the regular languages, Theorem 5
shows in particular, that regular languages are testable with a constant number of queries in
our model. In [2] testability of regular languages was already shown for a more restrictive
model, based on Hamming distance. Similarly, our result implies that regular (ranked) tree
languages are testable with a constant number of queries. In [20], testability of tree languages
was shown in a different model, using tree edit distance with an additional operation called
moves. The question of [5] (explicitly stated in [20]) whether regular tree languages with
Hamming distance are testable, remains open.
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A further interesting question is whether all properties definable in first-order logic are
(uniformly) testable is left open, and we are currently working on this. Furthermore, obtaining
a logical characterisation of the (uniformly) testable properties is interesting and challenging
open problem. It would also be interesting to determine the precise relation between our
notion of locality and Hanf-locality. Being reminiscent of realisability of degree sequences of
graphs, realisability of histograms seems worth studying in more detail.
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Abstract
The duality between packing and covering problems lies at the heart of fundamental combin-
atorial proofs, as well as well-known algorithmic methods such as the primal-dual method for
approximation and win/win-approach for parameterized analysis. The very essence of this du-
ality is encompassed by a well-known property called the Erdős-Pósa property, which has been
extensively studied for over five decades. Informally, we say that a class of graphs F admits the
Erdős-Pósa property if there exists f such that for any graph G, either G has k vertex-disjoint
“copies” of the graphs in F , or there is a set S ⊆ V (G) of f(k) vertices that intersects all copies
of the graphs in F . In the context of any graph class G, the most natural question that arises
in this regard is as follows – do obstructions to G have the Erdős-Pósa property? Having this
view in mind, we focus on the class of interval graphs. Structural properties of interval graphs
are intensively studied, also as they lead to the design of polynomial-time algorithms for classic
problems that are NP-hard on general graphs. Nevertheless, about one of the most basic proper-
ties of such graphs, namely, the Erdős-Pósa property, nothing is known. In this paper, we settle
this anomaly: we prove that the family of obstructions to interval graphs – namely, the family of
chordless cycles and ATs – admits the Erdős-Pósa property. Our main theorem immediately res-
ults in an algorithm to decide whether an input graph G has k vertex-disjoint ATs and chordless
cycles, or there exists a set of O(k2 log k) vertices in G that hits all ATs and chordless cycles.
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1 Introduction

Packing and covering problems are ubiquitous in both graph theory and computer science.
The duality between packing and covering problems lies at the heart of not only fundamental
combinatorial proofs, but also well-known algorithmic methods such as the primal-dual
method for approximation and win/win-approach for parameterized analysis. The very
essence of this duality is encompassed by a well-known property called the Erdős-Pósa
property. This property, being both simple and powerful, has been extensively studied for
over five decades. In the context of any graph class G, the most natural question that arises
in this regard is as follows – do obstructions to G have the Erdős-Pósa property? Having
this view in mind, we focus on the class of interval graphs. Arguably, this is the most basic
class of graphs that can be viewed as geometric inputs – indeed, an interval graph is the
intersection graph of a family of intervals on the real lines. Interval graphs are among the
most well-studied classes of graphs in the literature. In particular, the usage of interval
graphs as models is relevant to a wide variety of applications, ranging from resource allocation
in operations research and scheduling theory to assembling contiguous subsequences in DNA
mapping. From an algorithmic point of view, the structural properties of interval graphs are
also intensively studied as they allow to design polynomial-time algorithms for well-known
problems in computer science, such as Independent Set and Hamiltonian Path, that
are NP-hard on general graphs. Nevertheless, about one of the most basic properties of such
graphs, namely, the Erdős-Pósa property, nothing is known! Our main contribution settles
this anomaly: we prove that obstructions to interval graphs admit the Erdős-Pósa property.

Before we turn to consider our contribution in more detail, we present a gentle introduction
to the rich realm of studies of Erdős-Pósa properties. For this purpose, we first define
packing and covering problems. Let � be a containment relation (of a graph into another
graph), and let F be a family of graphs. For example, we can define the containment
relationship � as follows: for graphs G and H, H � G if and only if H is an induced
subgraph/subgraph/minor/topological minor of G. In this setting, (F ,�)-Packing is the
problem whose input consists of a graph G and an integer k, and the objective is to decide
if G has k vertex-disjoint subsets, S1, S2, . . . , Sk ⊆ V (G), where for each i ∈ [k], there
exists F ∈ F such that F � G[Si]. For example, if F = {F} and the relation refers to
induced subgraphs, then we simply ask whether G has k vertex-disjoint “exact copies” of F .
The (F ,�)-Covering problem has the same input, but its objective is to decide if there
is a set S ⊆ V (G) of size at most k such that there does not exist F ∈ F that satisfies
F � G−S. Some well-known examples of packing problems (and their corresponding covering
problems) are Maximum Matching (Vertex Cover), Vertex-Disjoint s-t Paths (s-t-
Separator), Cycle Packing (Feedback Vertex Set), P3-Packing (Cluster Vertex
Deletion), and Triangle Packing (Triangle Free Deletion).

Kőnig’s and Menger’s theorems are cornerstones of Graph Theory in general, and of
the study of packing and covering problems in particular, which have also found a wide
variety of applications in computer science. For example, Menger’s theorem is particularly
relevant to survivable network design (see, e.g., [5, 46]) and combinatorial optimization (see,
e.g., [43, 19]). Formally, Kőnig’s theorem states that in bipartite graphs, the maximum size
of a matching equals the minimum size of a vertex cover [30, 13]. Menger’s theorem also
exhibits an equality – it states that for a given graph G and a pair of vertices s and t, either
G has k vertex-disjoint paths between s and t or there is a set S ⊆ V (G)\{s, t} of size k such
that G− S has no path between s and t [33, 13]. Both theorems relate a packing problem to
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a covering problem1, by exhibiting equality between the size of a maximum packing and the
size of a minimum covering. However, most natural packing and covering problems are not
known to exhibit such an equality; in fact, frequently such an equality is proven not to exist.
By relaxing the notion of equality, we enter the rich realm of the Erdős-Pósa properties.

The Erdős-Pósa Property. A celebrated theorem by Erdős and Pósa [14] states that for
any graph G, either there is a set of k vertex-disjoint cycles in G, or there is a set S ⊆ V (G)
of f(k) = O(k log k) vertices that intersects (covers) all cycles of G.2 Notably, Erdős and
Pósa [14] also showed that there exists a constant c and infinitely many pairs (G, k) such
that G has neither k vertex-disjoint cycles nor a set S ⊆ V (G) of ck log k vertices that
covers all cycles of G. That is, not only equality cannot be expected, but also any function
f(k) = o(k log k). We remark that later, Simonovits [45] provided concrete examples which
realize the lower bound. The result of Erdős and Pósa [14] initiated a flurry of extensive study
of the so called “Erdős-Pósa property” for various families of graphs as well as containment
relationships. Formally, a family of graphs F and a containment relation � are said to admit
the Erdős-Pósa property if there exists a function f(·) such that given a graph G and an
integer k, either there are k vertex-disjoint subsets S1, . . . Sk ⊆ V (G) so that for each i ∈ [k],
there is F ∈ F satisfying F � G[Si], or there is a set S ⊆ V (G) of size at most f(k) so that
there is no F ∈ F satisfying F � G− S. Here, the first question that comes to mind is – do
all families of graphs F and containment relationships � exhibit the Erdős-Pósa property?

The answer to this question is negative. For example, consider a fixed graph H, and let
F(H) be the family of graphs that contain H as a minor. Robertson and Seymour [42] showed
that F(H) with the containment relation referring to subgraphs admits the Erdős-Pósa
property if and only if H is a planar graph. This result generalizes the result in [14]. However,
the function f(·) given by [42] is exponential – can it be made polynomial? A few years
ago, the bound was improved to O(k logc k) by Chekuri and Chuzhoy [12] following a more
general approach which is applicable to other families as well. A well-known example of
a different flavor conerns odd cycles. Specifically, for F being the family of odd length
cycles, Reed [39] showed that F (for subgraphs and induced subgraphs) does not admit the
Erdős-Pósa property.

Since the emergence of the result of Erdős and Pósa [14], a multitude of studies on the
Erdős-Pósa property have appeared in the literature for several combinatorial objects beyond
graphs. This includes extensions to digraphs [32, 44, 40, 22, 20], rooted graphs [9, 26, 35, 24],
labeled graphs [29], signed graphs [23, 3], hypergraphs [1, 6, 7], matroids [16], helly-type
theorems [21], H-minors [41], H-immersions [17, 31], and H-butterfly directed minors [2]
(also see [38]). This list is not comprehensive but rather illustrative. We refer to surveys such
as [37] for more information. Even for subfamilies of cycles alone, there is a vast literature
devoted to the Erdős-Pósa property. Studies of the Erdős-Pósa property for subfamilies of
cycles include, for example, long cycles (subgraphs) [4, 34], directed cycles (subgraphs and
induced subgraphs) [40, 20], chordless cycles (induced subgraphs) [25] and cycles intersecting
a prescribed vertex set [27, 35]. Not all subfamiles of cycles admit the Erdős-Pósa property.
For example, recall the result stated earlier regarding the family of odd cycles [39]. For this
subfamily of cycles alone, there has been a sequence of research about finding classes of

1 For example, Kőnig’s theorem addresses the class F = {F} such that F is the graph on a single edge,
where � refers to induced subgraphs/subgraphs.

2 In the terminology of packing and covering, we address the class F of all cycles, where � refers to
induced subgraphs/subgraphs.
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graphs for which the family of odd cycles (subgraphs and induced subgraphs) admits the
Erdős-Pósa property. This includes planar graphs [15], or graphs with certain connectivity
constraints [48, 36, 28, 24]. Not only the family of odd cycles does not admit the Erdős-Pósa
property, but also subfamilies such as the family of chordless cycles of length at least 5 [25].

A large number of the results above can be viewed as the question of packing or covering
obstructions to a class of graphs. In some of these papers, this view is explicitly stated as
the motivation behind the conducted studies. For example, the classic result by Erdős and
Pósa [14] regards the question of packing and covering obstructions to forests. The results
concerning odd cycles address obstructions to bipartite graphs. The setting of the work
about packing and covering chordless cycles, as presented by [25], addresses obstructions to
chordal graphs. Furthermore, Kőnig’s theorem relates to obstructions to edgeless graphs,
and the work by Robertson and Seymour [42] relates to obstructions to subfamilies of minor
free graphs. We remark that other results can also be interpreted in this manner. Given that
the class of interval graphs is among the most basic, well-studied families of graphs, we find
it important to study the Erdős-Pósa [14] property with respect to it. Let F be the family of
chordless cycles and asteroidal triples (ATs), see Section 2. It is well known that the class of
interval graphs is precisely the class of graphs that exclude every graph in F as an induced
subgraph [18, 8]. Given this clean characterization, the following question naturally arises:

Does the family of chordless cycles and ATs – that is, obstructions to interval graphs –
admit the Erdős-Pósa property?

Our Contribution. We provide an affirmative answer to the question above. Moreover, the
dependency of the size of the covering set on k in our result is only O(k2 log k).3 Specifically,
we obtain the following theorem, where from now on, “obstructions” refer to ATs and
chordless cycles.

I Theorem 1. Let G be a graph, and let k ∈ N. At least one of the following conditions
holds: (i) G has k vertex-disjoint obstructions; (ii) there exists a subset D ⊆ V (G) of size
O(k2 log k) such that G−D is an interval graph.

As a consequence of our main theorem, we also derive an algorithm to decide whether an
input graph G has k vertex-disjoint obstructions (to interval graphs), or there exists a set of
O(k2 log k) vertices in G that hits all such obstructions.

We conclude the introduction with a high-level (informal) overview of our proof. We
begin by easily “getting rid” of all chordless cycles due to the work by [25], as well as all
small ATs. Now, the heart of our proof consists of two main components. First, we exhibit
the Erdős-Pósa property of the family of ATs on graphs that have a clique caterpillar (that
is, a tree decomposition that is a caterpillar, where every bag is a clique). Second, we show
how this result can be utilized to derive our main theorem by analyzing “conflict-free sets”
(defined below) with respect to a modular tree decomposition of the graph. Let us now
elaborate on each component.

To analyze the case of a clique caterpillar, we present a procedure that at each iteration,
finds an AT O with specific properties, inserts a set S of O(k) new vertices into a set S?
initialized to be empty, and removes the vertices in S from the graph (only for the sake of
the execution of the procedure). Specifically, the set S consists of the terminals, centers and

3 In fact, all of our arguments achieve the dependency O(k2), but we gain an extra log k factor due to an
invocation of a result by Kwon and Kim [25].



A. Agrawal, D. Lokshtanov, P. Misra, S. Saurabh, and M. Zehavi 7:5

a few base vertices of O, as well as all of the vertices of a “small” separator between the
non-shallow terminals of O that we push as much as possible to the right of the caterpillar.
The procedure terminates once the graph becomes an interval graph. Hence, it is clear that
if at most O(k) iterations take place, then S? is a set of size O(k2) that intersects all ATs,
which implies that our job is done. Otherwise, we require an intricate analysis to establish
the existence of k vertex-disjoint ATs. Roughly, the two main components here are (1) from
the sequence of ATs encountered by our procedure, we can extract a sequence of the same
length (of possibly different ATs) where each AT has the property that the subpath of its
base that lies after the separator does not intersect any AT positioned after it in the sequence,
and (2) from the modified sequence, we can extract a subsequence of ATs where disjointess is
also guaranteed with respect to base vertices that lie before the separator.

Towards the proof of the second item, we first show that for every sequence “resembling”
the one encountered by our procedure, and for all ATs O and O′ in that sequence such that
O′ comes before O, we have the following property: only the leftmost terminal and base
vertex of O can belong to the base path of O′ that lies before the separator associated with
O′, and even that is only possible under certain conditions. This result then allows us to
further argue about the relation between every three ATs in the sequence with respect to the
“left sides of separators”. Having established this relation, the argument about a complete
sequence is derived. Towards the proof of the first item, we first show that for any AT O in
the sequence, we can find a path between a vertex in the separator associated with O and
the right terminal of O that avoids all ATs coming after O in the sequence. Then, by relying
on structural results by Cao and Marx [11], we argue that this path can be used to replace
part of O so that the result is yet another AT.

Let us now turn to our analysis of the general case – specifically, we explain how it is
reduced to instances of the case of a clique caterpillar. We define “problematic” nodes in the
modular tree decomposition of the input graph as the nodes associated with subgraphs that
contain at least one AT that is not present in any of the subgraphs associated with their
children. This definition also immediately gives rise to an association between nodes and ATs,
so that each AT is associated with exactly one node. We observe that maximal modules of
problematic nodes are vertex disjoint, and that each problematic node has “many” children.
It is also easily shown that the set of all problematic nodes can be partitioned into two sets
that have no “conflict” – that is, on the unique path between every two nodes of one set,
there exists a node of the other set. The point in analyzing each conflict-free set P separately
is that for each problematic node in such a set, we prove that there exist at least k vertices
in the subgraph associated with that node that do not belong to any subgraph associated
with its problematic descendants from P . In particular, this allows us to examine each
problematic node individually, and associate an instance of the clique caterpillar case with
it (the construction of the caterpillar decomposition itself partially follows from structural
results by Cao and Marx [11]). Specifically, we are able to collect the sets of ATs found in
each instance, and argue that (after some modification) all of these ATs across all the sets
are in fact vertex disjoint. This result then allows us to handle the “packing perspective” of
the proof. We remark that although we can create O(k) instances of the clique caterpillar
case, and each individual instance can create a gap of O(k2), we eventually get a gap of only
O(k2) rather than O(k3) as we argue that the sum of the contributions to the gap of all
individual instances is O(k2).

Due to lack of space, proofs of statements marked by “*” were omitted.
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2 Preliminaries

For n ∈ N, we use [n] as a shorthand for {1, 2, . . . , n}. Given a function f : A → B and a
subset A′ ⊂ A, we use f |A′ to denote the restriction of f to A′.

We refer to standard terminology from the book of Diestel [13] for graph-related terms that
are not explicitly defined here. When the graph G is clear from context, denote n = |V (G)|
and m = |E(G)|. We say that a vertex v in G is simplicial if NG(v) induces a clique. A
caterpillar is a tree T for which there exists a subpath P of T , called a central path, such
that the removal of the vertices of P from T results in an edgeless graph. Given a rooted
tree T and a vertex v ∈ V (T ), we use T |v to denote the subtree of T rooted at v. Moreover,
child(v) denotes the set of children of v in T . We do not treat a vertex as a descendant of
itself. A chordal graph is a graph with no chordless cycle on at least four vertices.

Interval Graphs. An interval graph is a graph G that does not contain any of the following
graphs, called obstructions, as an induced subgraph.

Long Claw. A graph O such that V (O) = {t`, tr, t, c, b1, b2, b3} and E(O) = {{t`, b1},
{tr, b3}, {t, b2}, {c, b1}, {c, b2}, {c, b3}}.
Whipping Top (or Umbrella). A graph O such that V (O) = {t`, tr, t, c, b1, b2, b3} and
E(O) = {{t`, b1}, {tr, b2}, {c, t}, {c, b1}, {c, b2}, {b3, t`}, {b3, b1}, {b3, c}, {b3, b2}, {b3, tr}}.
†-AW. A graph O such that V (O) = {t`, tr, t, c} ∪ {b1, b2, . . . , bz}, where t` = b0 and
tr = bz+1, E(O) = {{t, c), {t`, b1}, {tr, bz}} ∪ {{c, bi} | i ∈ [z]} ∪ {{bi, bi+1} | i ∈ [z − 1]},
and z ≥ 2. A †-AW where z = 2 is called a net.
‡-AW. A graph O such that V (O) = {t`, tr, t, c1, c2} ∪ {b1, b2, . . . , bz}, where t` = b0 and
tr = bz+1, E(O) = {{t, c1}, {t, c2}, {c1, c2}, {t`, b1}, {tr, bz}, {t`, c1}, {tr, c2}} ∪ {{c, bi} |
i ∈ [z]} ∪ {{bi, bi+1} | i ∈ [z − 1]}, and z ≥ 1. A ‡-AW where z = 1 is called a tent.
Hole. A chordless cycles on at least four vertices.

Long claws and whipping tops are also called ATs, but we shall reserve this name for
†-AWs and ‡-AWs (AW stand for Asteroidal Witness).4 An obstruction O is minimal if
there does not exist an obstruction O′ such that V (O′) ⊂ V (O). In each of the first four
obstructions, the vertices t`, tr, and t are called terminals, the vertices c, c1, and c2 are called
centers, and the other vertices are called base vertices. To simplify notation, when we consider
a †-AW, we use c1 and c2 to refer to c (this allows us to refer to a †-AW and a ‡-AW in
a unified manner). Furthermore, the vertex t is called the shallow terminal. The induced
path on the set of base vertices is called the base of the AT, and it is denoted by base(O).
Moreover, we say that the induced path on the set of base vertices, t` and tr is the extended
base of the AT, and it is denoted by P (O). Given a graph G, a vertex v is shallow in G if G
has at least one AT where v is the shallow terminal.

Tree Decomposition. For a tree decomposition (T, β) of a graph G, if T is a path, then
(T, β) is also called a path decomposition, and if T is a caterpillar then (T, β) is also called
a caterpillar decomposition. A clique path (clique caterpillar) of a graph G is a path
decomposition (resp. caterpillar decomposition) of G where every bag is a distinct maximal
clique. We remark that not every graph admits a clique caterpillar.

4 Like other papers on this topic, we abuse the standard usage of the term AT in the literature, which
refers to a triple of vertices such that each pair is joined by a path that avoids the neighborhood of the
other vertex. Our usage and the standard one are “almost equivalent” (see, e.g., [10]).



A. Agrawal, D. Lokshtanov, P. Misra, S. Saurabh, and M. Zehavi 7:7

Modules. Let G be a graph. A subset M ⊆ V (G) is a module if for all u,w ∈ M and
v ∈ V (G) \M , either both u and w are adjacent to v or both u and w are not adjacent to v.
A module is nontrivial if neither V (M) = ∅ nor V (M) = V (G).

A modular tree decomposition of a graph G = (V,E) is a linear-size representation of
all its modules. It consists of a rooted tree T , a function f : V (T )→ 2V (G) and a function
g : V (T )→ {0, 1}, which in particular satisfy the following properties:
1. M is a module of G if and only if there is a node v ∈ V (T ) for which, either M = f(v), or

both g(v) = 1 and there is a subset U of the set of children of v such thatM =
⋃
u∈U f(u).

2. Every v, u ∈ V (T ) that have the same parent in T satisfy f(v) ∩ f(u) = ∅.
3. For every v ∈ V (T ),

⋃
u∈child(v) f(u) = f(v).

4. |V (T )| ≤ 2n− 1.

Furthermore, no node in T has exactly one child. Every graph G admits a modular tree
decomposition, which can be constructed in O(n2) time and O(n) space [47].

Hitting Chordless Cycles and Small Obstructions. We first state the following corollary
of the results of Kim and Kwon [25].

I Corollary 2. Let G be a graph, and let k ∈ N. At least one of the following conditions
holds: (i) G has k vertex-disjoint obstructions; (ii) there exists a subset D ⊆ V (G) of
size O(k2 log k) such that G − D is a chordal graph that has no obstruction on at most
max{2k, 10} vertices.

3 The Case of a Clique Caterpillar

This section analyzes the Erdős-Pósa Property of ATs on graphs with a clique caterpillar.
Let us begin with a definition.

I Definition 3. Let G be a graph. A clique caterpillar (T, β) of G is nice if every shallow
vertex belongs to the bag of only one node of T and that node is a leaf.

The objective of this section is to prove the following lemma.

I Lemma 4. Let k ∈ N, and let G be a graph with a nice clique caterpillar (T, β), such
that G is chordal and has no obstruction on at most ten vertices.5 Then, at least one of
the following conditions holds: (i) G has k vertex-disjoint ATs; (ii) there exists a subset
D ⊆ V (G) of size O(k2) such that G−D is an interval graph.

To simplify statements in this section, let us fix k ∈ N and a chordal graph G with a nice
clique caterpillar (T, β), which has no obstruction on at most ten vertices. Thus, whenever we
discuss an obstruction in G, that obstruction is necessarily an AT on more than ten vertices.
Moreover, let us fix a central path of T , and call it P . We denote P = p1 − p2 − · · · − pd for
d = |V (P )|. We think of P as a path oriented from p1 to pd. For a vertex v ∈ V (G), we let
first(v) be the first node p on P such that v ∈ β(p) (if such a vertex does not exist, define
first(v) = nil), and we let last(v) be the last node p on P such that v ∈ β(p) (if such a vertex
does not exist, define last(v) = nil). The notation pi < pj means that i < j (similarly, we
define ≤). Note that as non-terminal vertices of an AT have non-adjacent neighbors, we have
the following observation.

5 We remark that the existence of the clique caterpillar already implies that G is chordal [18, 8].
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I Observation 5. Let O be an AT in G. For every non-terminal vertex v of O, there exists
p ∈ V (P ) such that v ∈ β(p).

Observation 5 implies that the notation presented next is well defined. In what follows,
when we consider an AT O, we index the base vertices bO1 , b

O
2 , . . . , b

O
ηO

such that first(bO1 ) ≤
first(bO

ηO
). When O is clear from context, we simplify the notation, also in the context of

terminal and center vertices.6 Note that η ≥ 5, as G does not have ATs on at most ten
vertices (we use this observation implicitly throughout, e.g. to assume that b1, b2, bη−2, bη−1
and bη are distinct vertices). We remark that clearly, for all i ∈ {2, 3, . . . , η − 1}, first(bi) ≤
last(bi−1) < first(bi+1) (also stated as Proposition 8.4 in [11]).

Our analysis relies on a notion of a special type of obstruction, defined by Cao and
Marx [11], to exploit the “almost linear nature” of a caterpillar. To this end, we have the
following notation. Given an AT O, N̂(O) denotes the set of vertices v ∈ V (G) such that v
is adjacent to every vertex in base(O). We also need to give three definitions.

I Definition 6 ([11]).
(i) An AT O in G is minimal if there does not exist an AT O′ such that last(b1) ≤ last(b′1) ≤

first(b′η′) ≤ first(bη), and last(b1) < last(b′1) or first(b′η′) < first(bη).
(ii) An AT O in G is short if P (O) is a shortest path between t` and tr in G[β(pi) ∪

β(pi+1) ∪ . . . ∪ β(pj) ∪ {t`, tr}]− N̂(base(O)), where pi = last(b1) and pj = first(bη).
(iii) An AT O in G is first if there does not exist an AT O′ such that first(b′η′) < first(bη).

We say that an AT is good if it is first, minimal and short. The following proposition
asserts that a good AT exists. In this context, recall that we implicitly assume that G is not
an arbitrary graph, but in particular it is a graph that has a nice clique caterpillar.

I Proposition 7 (Lemma 8.8 & Proof of Theorem 2.4 (Page 31) [11]). If G is not an interval
graph, then it has a good AT.

I Proposition 8 (Claim 5 [11]). Let O be a good AT. For any vertex v ∈ (β(p1) ∪ β(p2) ∪
. . . β(pi)) \ N̂(O), where pi = first(bη−2), it holds that v is not adjacent to any vertex that is
shallow in G.

Procedure SeparateProcedure. Let us consider the following procedure, which we call
SeparateProcedure. Initialize G1 = G and i = 1. Now, as long as Gi is not an interval
graph, we execute the following procedure:
1. Let Oi be a good AT in Gi, whose existence is guaranteed by Proposition 7.
2. Denote pj = first(biηi−2) and pq = last(bi1). For all δ ∈ [d], denote βi(pδ) = β(pδ) ∩ V (Gi).

Let γi = γ be the index in {q, q + 1, . . . , j − 1} such that,
there does not exist an index δ ∈ {γ+1, γ+2, . . . , j−1} such that |(βi(pδ)∩βi(pδ+1))\
N̂(Oi)| < 8k, and
|(βi(pγ) ∩ βi(pγ+1)) \ N̂(Oi)| < 8k.

If such an index γ does not exist, define γ = nil. Intuitively, γ is the largest index of a
“small” separator in Gi \ N̂(O) between bi1 and biη−2.

3. Denote Si = (βi(pγ) ∩ βi(pγ+1)) \ N̂(Oi) if γ 6= nil, and Si = ∅ otherwise.
4. Define Gi+1 = Gi − ((V (Oi) \ base(Oi)) ∪ {bi1, bi2, bi3, biη−3, b

i
η−2, b

i
η−1, b

i
ηi} ∪ Si).

5. Increment i by 1.

6 For example, if we consider an AT denoted by O, O′ and Oi, then we use b1 (bη), b′
1 (b′

η′), bi1 (biηi) to
refer to the first (last) base vertex of O, O′ and Oi, respectively.
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Let i? denote the last index i considered by SeparateProcedure. In particular, Gi? is an
interval graph. Let us denote S? = V (G) \ V (Gi?). Then, G − S? is an interval graph.
Furthermore, note that |S?| = O(i? · k).

I Observation 9. If i? ≤ 2k, then S? ⊆ V (G) is a set of size O(k2) such that G− S? is an
interval graph.

Thus, to prove Lemma 4, it is sufficient to prove the following claim.

I Lemma 10. If i? > 2k, then G has k vertex-disjoint obstructions.

In what follows, we suppose that i? > 2k. To prove this lemma, we first need to introduce
the following definitions.

I Definition 11. Let i ∈ [2k]. We say that an AT O in G is i-relevant if it is an AT in Gi,
t = ti, t` = ti`, tr = tir, c1 = ci1, c2 = ci2, b1 = bi1, b2 = bi2, bη−2 = biηi−2, bη−1 = biηi−1 and
bη = biηi .7 If in addition b3 = bi3 and bη−3 = biη−3, then we say that O is highly i-relevant.

I Definition 12. A tuple (Ô1, Ô2, . . . , Ô2k) is relevant if for all i ∈ [2k], Ôi is i-relevant.

We further need the following notation. For every i ∈ [2k], before(i) = β(p1) ∪ β(p2) ∪
. . . ∪ β(pγi) if γi 6= nil and before(i) = ∅ otherwise. The heart of the proof of Lemma 10 is
given by two statements. Towards the first one, let us first prove the following claim.

I Lemma 13 (*). For all i, i′ ∈ [2k] where i > i′, i-relevant AT O and i′-relevant AT O′, it
holds that, (1) V (O) ∩ V (O′) ∩ before(i′) ⊆ {t`, b1}; (2) |V (O) ∩ V (O′) ∩ before(i′)| ≤ 1; and
(3) if b1 ∈ V (O) ∩ V (O′) ∩ before(i′) then t` /∈ (

⋃
i∈[d] β(pi)).

We now present the first statement that lies at the heart of the proof.

I Lemma 14 (*). For all i, i′, î ∈ [2k] such that i > i′ > î, i-relevant AT O, i′-relevant
AT O′ and î-relevant AT Ô, for at least one index j ∈ {i′, î}, the following condition holds:
V (O) ∩ V (Oj) ∩ before(j) = ∅.

I Corollary 15 (*). Let (Ô1, Ô2, . . . , Ô2k) be a relevant tuple. There exist k indices, i1 <
i2 < . . . < ik, so that for every two indices x, y ∈ {i1, i2, . . . , ik} where x < y, V (Ôy) ∩
V (Ôx) ∩ before(x) = ∅.

Towards the statement of the second lemma that lies at the heart of our proof, let us
first state an immediate observation and one additional lemma.

I Observation 16. An AT in G can contain at most four vertices of a clique in G.

I Lemma 17 (*). Let (Ô1, Ô2, . . . , Ô2k) be a relevant tuple. For all i ∈ [2k− 1], there exists
a path in Gi − N̂(Oi) from a vertex in Si ∪ {bi1} to biη−2 that does not contain any of the
vertices of the ATs Ôi+1, Ôi+2, . . . , Ô2k.

We are now ready to prove the second statement central to the proof of Lemma 10.

I Lemma 18 (*). Let (Ô1, Ô2, . . . , Ô2k) be a relevant tuple. For all i ∈ [2k− 1] such that Oi
is a highly i-relevant good AT in Gi, there exists an i-relevant AT O′ such that the following
condition holds: the base path of O′ has a subpath Q from a vertex in Si ∪ {bi1} to biη that
does not contain any of the vertices of the ATs Ôi+1, Ôi+2, . . . , Ô2k.

7 That is, O and the AT Oi considered in the i-th iteration of SeparateProcedure have the same terminals,
centers and two first and three last base vertices.
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I Corollary 19 (*). There exists a relevant tuple (Ô1, Ô2, . . . , Ô2k) such that for all i ∈ [2k],
the following condition holds: the base path of Ôi has a subpath Q from a vertex in Si ∪ {bi1}
to biη that does not contain any of the vertices of the ATs Ôi+1, Ôi+2, . . . , Ô2k.

We are now ready to prove Lemma 10.

Proof of Lemma 10. By Corollary 19, there exists a relevant tuple (Ô1, Ô2, . . . , Ô2k) such
that for all i ∈ [2k], the following condition holds: the base path of Ôi has a subpath
Q from a vertex in Si ∪ {bi1} to biη that does not contain any of the vertices of the ATs
Ôi+1, Ôi+2, . . . , Ô2k. By Corollary 15, there exist k indices, i1 < i2 < . . . < ik, such that
for every two indices x, y ∈ {i1, i2, . . . , ik} where x < y, V (Ôy) ∩ V (Ôx) ∩ before(x) = ∅.
Without loss of generality, suppose that i1 = 1, i2 = 2, . . . , ik = k (the arguments to follow
hold for any i1 < i2 < . . . < ik).

We claim that Ô1, Ô2, . . . , Ôk are vertex disjoint, which would complete the proof. To
prove this claim, we arbitrarily choose i, j ∈ [k] such that i < j. First note that as Ôi and Ôj
are i-relevant and j-relevant, we have that the terminals and centers of Ôi do not belong to
Ôj . Moreover, the base path of Ôi has a subpath Q from a vertex v? in Si ∪ {bi1} to biηi that
has no vertex of Ôj . Let W denote the subpath of the base path of Ôi from bi1 to v?. Hence,
to conclude that Ôi and Ôj are vertex disjoint, it remains to show that no vertex of W
belongs to Ôj . Notice that V (W ) ⊆ V (Ôi) ∩ before(i). By our choice of (Ô1, Ô2, . . . , Ôk), it
holds that V (Ôi)∩before(i) does not have any vertex of Ôj . Thus, the proof is complete. J

4 Decomposition of Modules

Let us begin with the following simple observation, on which we rely implicitly in our
arguments, and which follows immediately from the definition of a modular tree decomposition.
For simplicity, we use the abbreviations f |v = f |V (T |v) and g|v = g|V (T |v).

I Observation 20. Let G be a graph with a modular tree decomposition (T, f, g), and let
v ∈ V (T ). Then, (T |v, f |v, g|v) is a modular tree decomposition of G[f(v)].

We proceed by introducing the definition of a problematic set and a problematic node.

I Definition 21. Let G be a graph with a modular tree decomposition (T, f, g). The set
of problematic obstructions of a node v ∈ V (T ), denoted by probG(v), is the set of all
obstructions O in G[f(v)] such that for every child u of v in T , O is not an obstruction in
G[f(u)], that is, V (O) \ f(u) 6= ∅. When G is clear from context, it is omitted.

I Definition 22. Let G be a graph with a modular tree decomposition (T, f, g). A node
v ∈ V (T ) is problematic if prob(v) 6= ∅. The set of problematic nodes is denoted by probG(T ).
When G is clear from context, it is omitted.

I Observation 23. Let G be a graph with a modular tree decomposition (T, f, g). The
sets prob(v), v ∈ prob(T ), define a partition of the set of obstructions of G. That is,
for all u, v ∈ V (T ), prob(u) ∩ prob(v) = ∅, and the set of obstructions of G is precisely⋃
v∈prob(T ) prob(v).

We argue that nodes assigned 1 by g are non-problematic. And further, a problematic
node should have “many” children.

I Lemma 24 (*). G be a graph that has no obstruction on at most max{2k, 10} vertices.
Let (T, f, g) be a modular tree decomposition of G, and let v ∈ V (T ) such that g(v) = 1.
Then, v is not a problematic node.
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I Lemma 25 (*). Let G be a graph that has no obstruction on at most max{2k, 10} vertices.
Let (T, f, g) be a modular tree decomposition of G, and let v ∈ V (T ) be a problematic node.
Then, v has at least max{2k, 10}+ 1 children in T .

In order to proceed, we need the following definition and notation.

I Definition 26. Let G be a graph with a modular tree decomposition (T, f, g). A subset
P ⊆ prob(T ) has a conflict if there exist u, v ∈ P such that v is a descendant of u in T and
on the (unique) path between u and v in T no vertex belongs to prob(T ) \ P .

I Definition 27. Let G be a graph with a modular tree decomposition (T, f, g). For a node
v ∈ V (T ), packG(v) is the maximum number of vertex-disjoint obstructions in prob(v). When
G is clear from context, it is omitted.

Note that a problematic node is precisely a node such that pack(v) ≥ 1.

I Lemma 28 (*). Let G be a graph that has no obstruction on at most max{2k, 10} vertices,
and which does not have k vertex-disjoint obstructions. Let (T, f, g) be a modular tree
decomposition of G. Let P ⊆ prob(T ) with no conflicts. Then, for each v ∈ P and each child
u of v in T such that u has a problematic descendant, there exist at least k vertices in f(u)
that do not belong to

⋃
w f(w) where w ranges over all nodes in P that are descendants of u

in T .

I Lemma 29 (*). Let G be a graph that has no obstruction on at most max{2k, 10} vertices.
Let (T, f, g) be a modular tree decomposition of G. Let P ⊆ prob(T ) with no conflicts. Then,
G has min{k,

∑
v∈P pack(v)} vertex-disjoint obstructions.

We also show that prob(T ) can be divided into two sets with no conflicts.

I Lemma 30 (*). Let G be a graph with a modular tree decomposition (T, f, g). There exists
a partition (P1, P2) of prob(T ) such that neither P1 has a conflict nor P2 has a conflict.

Specific classes of graphs, called reduced graphs and nice interval graphs, were defined by
Cao and Marx as follows.

I Definition 31 ([11]). A graph G is reduced if it satisfies the following properties: (i) Every
non-trivial module of G is a clique, and (ii) G does not have any obstruction on at most ten
vertices.

I Definition 32 ([11]). A graph G is nice if it satisfies the following properties: (i) G is
chordal; (ii) G does not have any obstruction on at most ten vertices; and (iii) every vertex
in G that is a shallow terminal of at least one obstruction is simplicial.

These definitions were in particular used to derive the following results.

I Proposition 33 (Theorem 2.1 [11]). Let G be a reduced graph. Every vertex in G that is a
shallow terminal of at least one obstruction is simplicial.

I Proposition 34 (Proposition 8.3 [11]). Any nice graph has a nice clique caterpillar (T, β).

I Corollary 35. Any chordal reduced graph has a nice clique caterpillar (T, β).

Let us derive a consequence of Corollary 35 with respect to a modular tree decomposition.

I Lemma 36 (*). Let G be a chordal graph that has no obstruction on at most max{2k, 10}
vertices. Let (T, f, g) be a modular tree decomposition of G, and let v ∈ V (T ) be a problematic
node such that for every child u of v in T , G[f(u)] is a clique. Then, G[f(v)] has a nice
clique caterpillar.
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Towards the proof of the main result of this section, we need one additional notation.

I Definition 37. Let G be a graph with a modular tree decomposition (T, f, g), and
let v ∈ V (T ). Then, clique(G, v) denotes the graph obtained from G by turning each
G[f(u)], u ∈ child(v), into a clique. That is, V (clique(G, v)) = V (G) and E(clique(G, v)) =
E(G) ∪ (

⋃
u∈child(v){{x, y} : x, y ∈ f(u)}).

I Lemma 38 (*). Let G be a graph that has no obstruction on at most max{2k, 10} vertices.
Let (T, f, g) be a modular tree decomposition of G, and let v ∈ V (T ). Then, the set of
obstructions in clique(G, v)[f(v)] is precisely probG(v).

I Lemma 39 (*). Let k ∈ N, and let G be a chordal graph that has no obstruction on at most
max{2k, 10} vertices. Let (T, f, g) be a modular tree decomposition of G, and let v ∈ V (T ).
Then, at least one of the following conditions holds: (i) pack(v) ≥ k; (ii) there exists a subset
D ⊆ V (G) of size O(k2) that intersects the vertex set of every obstruction in prob(v).

We are now ready to prove the main result of this section.

I Lemma 40. Let k ∈ N, and let G be a chordal graph that has no obstruction on at most
max{2k, 10} vertices. Then, at least one of the following conditions holds: (i) G has k
vertex-disjoint obstructions; (ii) there exists a subset D ⊆ V (G) of size O(k2) such that
G−D is an interval graph.

Proof. Suppose that G does not have k vertex-disjoint obstructions, else we are done. By
Lemma 30, there exists a partition (P1, P2) of prob(T ) such that neither P1 has a conflict
nor P2 has a conflict. By Lemma 29, for each i ∈ [2], G has

∑
v∈Pi

pack(v) vertex-disjoint
obstructions. Thus, by Observation 23, for each i ∈ [2], |

∑
v∈Pi

pack(v)| < k. This means
that

∑
v∈prob(T ) pack(v) < 2k.

By Lemma 39, for all v ∈ prob(T ), there exists a subsetDv ⊆ V (G) of sizeO((pack(v)+1)2)
that intersects the vertex set of every obstruction in prob(v). Denote D =

⋃
v∈prob(T ) Dv.

Then, |D| = O(
∑
v∈prob(T )(pack(v) + 1)2). By Observation 23, we have that G−D is an

interval graph. Thus, to conclude the proof, it remains to show that
∑
v∈prob(T )(pack(v) +

1)2 = O(k2). Since for all v ∈ prob(T ), pack(v) ≥ 1, it is sufficient to show that∑
v∈prob(T )(pack(v))2 = O(k2). Recall that

∑
v∈prob(T ) pack(v) < 2k. Thus,

∑
v∈prob(T )

(pack(v))2 ≤ (
∑
v∈prob(T ) pack(v)) · (

∑
v∈prob(T ) pack(v)) < 2k · 2k = O(k2). This completes

the proof. J

5 Putting It All Together

Finally, we are ready to prove our main theorem.

Proof of Theorem 1. By Corollary 2, at least one of the following conditions hold: (i) G
has k vertex-disjoint obstructions; (ii) there exists a subset D′ ⊆ V (G) of size O(k2 log k)
such that G−D′ is a chordal graph that has no obstruction on at most max{2k, 10} vertices.
In the first case, our proof is complete, and thus we next suppose that the second case
applies. Then, by Lemma 40, at least one of the following conditions hold: (i) G−D′ has
k vertex-disjoint obstructions; (ii) there exists a subset D̂ ⊆ V (G) of size O(k2) such that
(G −D′) − D̂ is an interval graph. In the first case, our proof is complete. In the second
case, we have that D = D′ ∪ D̂ is a set of size O(k2 log k) such that G −D is an interval
graph, which again completes the proof. J

Before we turn to prove a corollary of our main theorem, we need one more proposition.
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I Proposition 41 ([10]). There exists an O(nm)-time algorithm that, given a graph G,
outputs an integer d′ such that the following conditions hold: (i) there exists a subset
D′ ⊆ V (G) of size at most d′ such that G − D′ is an interval graph; (ii) d′ ≤ 8d for the
integer d that is the minimum size of a subset D ⊆ V (G) such that G −D is an interval
graph.

As a consequence of Theorem 1 and Proposition 41, we derive the following corollary.

I Corollary 42 (*). There exist a constant c ∈ N and an O(nm)-time algorithm that, given
a graph G and an integer k ∈ N, correctly concludes which one of the following conditions
holds:8 (i) G has k vertex-disjoint obstructions; (ii) there exists a subset D ⊆ V (G) of size
ck2 log k such that G−D is an interval graph.
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Abstract
We show that all known classical adversary lower bounds on randomized query complexity are
equivalent for total functions, and are equal to the fractional block sensitivity fbs(f). That
includes the Kolmogorov complexity bound of Laplante and Magniez and the earlier relational
adversary bound of Aaronson. For partial functions, we show unbounded separations between
fbs(f) and other adversary bounds, as well as between the relational and Kolmogorov complexity
bounds.

We also show that, for partial functions, fractional block sensitivity cannot give lower bounds
larger than

√
n · bs(f), where n is the number of variables and bs(f) is the block sensitivity.

Then we exhibit a partial function f that matches this upper bound, fbs(f) = Ω(
√
n · bs(f)).
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Jevgēnijs Vihrovs;
licensed under Creative Commons License CC-BY

35th Symposium on Theoretical Aspects of Computer Science (STACS 2018).
Editors: Rolf Niedermeier and Brigitte Vallée; Article No. 8; pp. 8:1–8:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:andris.ambainis@lu.lv
mailto:martins.kokainis,krisjanis.prusis@lu.lv
mailto:krisjanis.prusis@lu.lv
http://dx.doi.org/10.4230/LIPIcs.STACS.2018.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


8:2 All Classical Adversary Methods are Equivalent for Total Functions

computation. Thus, providing lower bounds in the query model is essential in understanding
the complexity of computational problems.

In the query model, an algorithm has to compute a function f : S → H, given a string
x from S ⊆ Gn, where G and H are finite alphabets. With a single query, it can provide
the oracle with an index i ∈ [n] and receive back the value xi. After a number of queries
(possibly, adaptive), the algorithm must compute f(x). The cost of the computation is the
number of queries made by the algorithm.

The query complexity of a function f in the deterministic setting is denoted by D(f) and
is also called the decision tree complexity. The two-sided bounded-error randomized and
quantum query complexities are denoted by R(f) and Q(f), respectively (which means that
given any input, the algorithm must produce a correct answer with probability at least 2/3).
For a comprehensive survey on the power of these models, see [9], and for the state-of-the-art
relationships between them, see [3].

In this work, we investigate the relations among a certain set of lower bound techniques
on R(f), called the classical adversary methods, and how they connect to other well-known
lower bounds on the randomized query complexity.

1.1 Known Lower Bounds
One of the first general lower bound methods on randomized query complexity is Yao’s
minimax principle, which states that it is sufficient to exhibit a hard distribution on the
inputs and lower bound the complexity of any deterministic algorithm under such distribution
[21]. Yao’s minimax principle is known to be optimal for any function but involves a hard-to-
describe and hard-to-compute quantity (the complexity of the best deterministic algorithm
under some distribution).

More concrete randomized lower bounds are block sensitivity bs(f) [16] and the approx-
imate degree of the polynomial representing the function d̃eg(f) [17] introduced by Nisan
and Szegedy. Afterwards, Aaronson extended the notion of the certificate complexity C(f) (a
deterministic lower bound) to the randomized setting by introducing randomized certificate
complexity RC(f) [2]. Following this result, both Tal and Gilmer, Saks and Srinivasan
independently discovered the fractional block sensitivity fbs(f) lower bound [20, 10], which
is equal to the fractional certificate complexity FC(f) measure, as respective dual linear
programs. Since these measures are relaxations of block sensitivity and certificate complexity
if written as integer programs, they satisfy the following hierarchy:

bs(f) ≤ fbs(f) = FC(f) ≤ C(f).

Perhaps surprisingly, fractional block sensitivity turned out to be equivalent to randomized
certificate complexity, fbs(f) = Θ(RC(f)). Approximate degree and fractional block sens-
itivity are incomparable in general, but it has been shown that fbs(f) ≤ d̃eg(f)2 [13] and
d̃eg(f) ≤ bs(f)3 ≤ fbs(f)3 [16, 7].

Currently one of the strongest lower bounds is the partition bound prt(f) of Jain and
Klauck [12], which is larger than all of the above mentioned randomized lower bounds (even
the approximate degree), and the classical adversary methods listed below. Its power is
illustrated by the Tribesn function (an And of

√
n Ors on

√
n variables), where it gives

a tight Ω(n) lower bound, while all of the other lower bounds give only O(
√
n). Recently,

Ben-David and Kothari introduced the randomized sabotage complexity measure RS(f) [8],
which is an even stronger classical lower bound than the partition bound.

In a separate line of research, Ambainis gave a versatile quantum adversary lower bound
method with a wide range of applications [4]. Since then, many generalizations of the
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quantum adversary method have been introduced (see [19] for a list of known quantum
adversary bounds). Several of these formulations have been lifted back to the randomized
setting. Aaronson proved a classical analogue of Ambainis’ relational adversary bound and
used it to provide a lower bound for the local search problem [1]. Laplante and Magniez
introduced the Kolmogorov complexity adversary bound for both quantum and classical
settings and showed that it subsumes many other adversary techniques. [14]. They also gave
a classical variation of Ambainis’ adversary bound in a different way than Aaronson. Some
of the other adversary methods like spectral adversary have not been generalized back to the
randomized setting.

While some relations between the adversary bounds had been known before, Špalek
and Szegedy proved that practically all known quantum adversary methods are in fact
equivalent [19] (this excludes the general quantum adversary bound, which gives an exact
estimate on quantum query complexity for all Boolean functions [11, 18]). This result cannot
be immediately generalized to the classical setting, as the equivalence follows through the
spectral adversary which has no classical analogue. They also showed that the quantum
adversary cannot give lower bounds better than a certain “certificate complexity barrier”.
Recently, Kulkarni and Tal strengthened the barrier using fractional certificate complexity.
Specifically, for any Boolean function f the quantum adversary is at most

√
FC0(f) FC1(f),

if f is total, and at most 2
√
n ·min{FC0(f),FC1(f)}, if f is partial [13].1

With the advances on the quantum adversary front, one could hope for a similar equi-
valence result to also hold for the classical adversary bounds. Some relations are known:
Laplante and Magniez have shown that the Kolmogorov complexity lower bound is at least
as strong as Aaronson’s relational and Ambainis’ weighted adversary bounds [14]. Jain and
Klauck have noted that the minimax over probability distributions adversary bound is at
most C(f) for total functions [12]. In general, the relationships among the classical adversary
bounds until this point remained unclear.

1.2 Our Results
Our main result shows that the known classical adversary bounds are all equivalent for
total functions. That includes Aaronson’s relational adversary bound CRA(f), Ambainis’
weighted adversary bound CWA(f), the Kolmogorov complexity adversary bound CKA(f)
and the minimax over probability distributions adversary bound CMM(f). Surprisingly, they
are equivalent to the fractional block sensitivity fbs(f).

We also add to this list a certain restricted version of the relational adversary bound.
More specifically, we require that the relation matrix between the inputs has rank 1, and
denote this (seemingly weaker) lower bound by CRA1(f). Thus for total functions CRA(f) =
Θ (CRA1(f)), where the latter is much easier to calculate for Boolean functions.

All this shows that fbs(f) is a fundamental lower bound measure for total functions with
many different formulations, including the previously known FC(f) and RC(f). Another
interesting corollary is that since the quantum certificate complexity QC(f) = Θ(

√
RC(f)) is

a lower bound on the quantum query complexity [2], we have that by taking the square root
of any of the adversary bounds above, we obtain a quantum lower bound for total functions.

Along the way, for partial functions we show the equivalence between CRA(f) and
CWA(f), and also between CKA(f) and CMM(f). In the case of partial functions, fbs(f)

1 Here, FC0(f) and FC1(f) stand for the maximum fractional certificate complexity over negative and
positive inputs, respectively.
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becomes weaker than all these adversary methods. In particular, we show an example
of a function where each of these adversary methods gives an Ω(n) lower bound, while
fractional block sensitivity is O(1). We also show that CRA(f) and CMM(f) are not
equivalent for partial functions, as there exists an example where CRA(f) is constant, but
CMM(f) = Θ(logn).

We also show a “block sensitivity” barrier for fractional block sensitivity. Namely, for
any partial function f , the fractional block sensitivity is at most

√
n · bs(f). Note that the

adversary bounds do not bear this limitation, as witnessed by the aforementioned example.
This result is tight, as we exhibit a partial function that matches this upper bound.

Even though our results are similar to the quantum case in [19] in spirit, the proof
methods are different.

2 Preliminaries

In this section we define the complexity measures we are going to work with in the paper.
In the following definitions and the rest of the paper consider f to be a partial function
f : S → H with domain S ⊆ Gn, where G,H are some finite alphabets and n is the length
of the input string. Throughout the paper we assume that f is not constant.

2.1 Block Sensitivity

For x ∈ S, a subset of indices B ⊆ [n] is a sensitive block of x if there exists a y such that
f(x) 6= f(y) and B = {i | xi 6= yi}. The block sensitivity bs(f, x) of f on x is the maximum
number k of disjoint subsets B1, . . . , Bk ⊆ [n] such that Bi is a sensitive block of x for each
i ∈ [k]. The block sensitivity of f is defined as bs(f) = maxx∈S bs(f, x).

Let B = {B | ∃y : f(x) 6= f(y) and B = {i | xi 6= yi}} be the set of sensitive blocks of x.
The fractional block sensitivity fbs(f, x) of f on x is defined as the optimal value of the
following linear program:

maximize
∑
B∈B

wx(B) subject to ∀i ∈ [n] :
∑
B∈B
i∈B

wx(B) ≤ 1.

Here, wx : B → [0; 1]. The fractional block sensitivity of f is defined as fbs(f) =
maxx∈S fbs(f, x).

When the weights are taken as either 0 or 1, the optimal solution to the corresponding
integer program is equal to bs(f, x). Hence fbs(f, x) is a relaxation of bs(f, x), and we have
bs(f, x) ≤ fbs(f, x).

2.2 Certificate Complexity

An assignment is a map A : {1, . . . , n} → G ∪ {∗}. Informally, the elements of G are the
values fixed by the assignment and * is a wildcard symbol that can be any letter of G. A
string x ∈ S is said to be consistent with A if for all i ∈ [n] such that A(i) 6= ∗, we have
xi = A(i). The length of A is the number of positions that A fixes to a letter of G.

For an h ∈ H, an h-certificate for f is an assignment A such that for all strings x ∈ A
we have f(x) = h. The certificate complexity C(f, x) of f on x is the size of the shortest
f(x)-certificate that x is consistent with. The certificate complexity of f is defined as
C(f) = maxx∈S C(f, x).
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The fractional certificate complexity FC(f, x) of f on x ∈ S is defined as the optimal
value of the following linear program:

minimize
∑
i∈[n]

vx(i) subject to ∀y ∈ S s.t. f(x) 6= f(y) :
∑

i:xi 6=yi

vx(i) ≥ 1.

Here, vx : [n]→ [0; 1] for each x ∈ S. The fractional certificate complexity of f is defined as
FC(f) = maxx∈S FC(f, x).

When the weights are taken as either 0 or 1, the optimal solution to the corresponding
integer program is equal to C(f, x). Hence FC(f, x) is a relaxation of C(f, x), and we have
FC(f, x) ≤ C(f, x).

It has been shown that fbs(f, x) and FC(f, x) are dual linear programs, hence their
optimal values are equal, fbs(f, x) = FC(f, x). As an immediate corollary, fbs(f) = FC(f).

2.3 One-Sided Measures
For Boolean functions with H = {0, 1}, for each measure M from bs(f), fbs(f),FC(f),C(f)
and a Boolean value b ∈ {0, 1}, define the corresponding one-sided measure as

M b(f) = max
x∈f−1(b)

M(f, x).

According to the earlier definitions, we then have M(f) = max{M0(f),M1(f)}. These
one-sided measures are useful when, for example, working with compositions of Or with
some Boolean function.

2.4 Kolmogorov Complexity
A set of strings S ⊂ {0, 1}∗ is called prefix-free if there are no two strings in S such that one
is a proper prefix of the other. Let M be a universal Turing machine and fix a prefix-free
set S. The prefix-free Kolmogorov complexity of x given y, is defined as the length of the
shortest program from S that prints x when given y:

K(x|y) = min{|P | | P ∈ S,M(P, y) = x}.

For a detailed introduction on Kolmogorov complexity, we refer the reader to [15].

3 Classical Adversary Bounds

Let f : S → H be a function, where S ⊆ Gn. The following are all known to be lower bounds
on bounded-error randomized query complexity.

3.1 Relational Adversary Bound
Let R : S × S → R≥0 be a real-valued function such that R(x, y) = R(y, x) for all x, y ∈ S
and R(x, y) = 0 whenever f(x) = f(y). Then for x ∈ S and an index i, let2

θ(x, i) =
∑
y∈S R(x, y)∑

y∈S:xi 6=yi
R(x, y) ,

2 We take the reciprocals of the expressions, compared to Aaronson’s definition.
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where θ(x, i) is undefined if the denominator is 0. Denote3

CRA(f) = max
R

min
x,y∈S,i∈[n]:

R(x,y)>0,xi 6=yi

max{θ(x, i), θ(y, i)}.

See [1] for details.

3.2 Rank-1 Relational Adversary Bound
We introduce the following restriction of the relational adversary bound. Let R′ be any
|S| × |S| matrix of rank 1, such that:

There exist u, v : S → R≥0 such that R′(x, y) = u(x)v(y) for all x, y ∈ S.
R′(x, y) = 0 whenever f(x) = f(y).

Then set R(x, y) = max{R′(x, y), R′(y, x)}.
Let X = {x | u(x) > 0} and Y = {y | v(y) > 0}. Note that for every x ∈ S, either u(x)

or v(x) must be 0, as R(x, x) must be 0, therefore X ∩ Y = ∅. Then denote

CRA1(f) = max
u,v

min
x∈X,y∈Y,i∈[n]:
u(x)v(y)>0,xi 6=yi

max{θ(x, i), θ(y, i)}.

where θ(x, i) can be simplified to

θ(x, i) =
∑
y∈Y v(y)∑

y∈Y :xi 6=yi
v(y) and θ(y, i) =

∑
x∈X u(x)∑

x∈X:xi 6=yi
u(x) .

Naturally, CRA1(f) ≤ CRA(f).
As R(x, y) = 0 whenever f(x) = f(y), we have that for every output h ∈ H either

f−1(h) ∩X = ∅ or f−1(h) ∩ Y = ∅. Therefore, CRA1(f) effectively bounds the complexity
of differentiating between two non-overlapping sets of outputs. This leads to the following
equivalent definition for CRA1(f):

I Proposition 1. Let A ∪B = H be a partition of the output alphabet, i.e., A ∩B = ∅. Let
p and q be probability distributions over X := f−1(A) and Y := f−1(B), respectively. Then

CRA1(f) = max
A,B
p,q

min
i∈[n],

g1,g2∈G:g1 6=g2
∃x∈X,y∈Y :p(x)q(y)>0

1
min {Prx∼p[xi 6= g1],Pry∼q[yi 6= g2]} .

For the proof of this proposition, see [6].

3.3 Weighted Adversary Bound
Let w,w′ be weight schemes as follows.

Every pair (x, y) ∈ S2 is assigned a non-negative weight w(x, y) = w(y, x) such that
w(x, y) = 0 whenever f(x) = f(y).
Every triple (x, y, i) is assigned a non-negative weight w′(x, y, i) such that w′(x, y, i) = 0
whenever xi = yi or f(x) = f(y), and w′(x, y, i), w′(y, x, i) ≥ w(x, y) for all x, y, i such
that xi 6= yi.

3 One can show that there exist optimal solutions for R, thus we can maximize over R instead of taking
the supremum.
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For all x, i, let wt(x) =
∑
y∈S w(x, y) and v(x, i) =

∑
y∈S w

′(x, y, i). Denote

CWA(f) = max
w,w′

min
x,y∈S,i∈[n]

w(x,y)6=0,xi 6=yi

max
{
wt(x)
v(x, i) ,

wt(y)
v(y, i)

}
.

This adversary method is formulated in [14] and is an adaptation of Ambainis’ quantum
adversary method [5].

3.4 Kolmogorov Complexity

Let σ ∈ {0, 1}∗ be any finite string.4 Denote

CKA(f) = min
σ

max
x,y∈S

f(x)6=f(y)

1∑
i:xi 6=yi

min{2−K(i|x,σ), 2−K(i|y,σ)}
.

See [14] for details.

3.5 Minimax over probability distributions

Let {px}x∈S be a set of probability distributions over [n]. Denote

CMM(f) = min
p

max
x,y∈S

f(x)6=f(y)

1∑
i:xi 6=yi

min{px(i), py(i)} .

See [14] for details.

4 Equivalence of the Adversary Bounds

In this section we prove the main theorem:

I Theorem 2. Let f : S → H be a partial Boolean function, where S ⊆ Gn. Then
fbs(f) ≤ CRA1(f) ≤ CRA(f) = CWA(f),
CWA(f) = O(CKA(f)),
CKA(f) = Θ(CMM(f)).

Moreover, for total functions f : Gn → H, we have fbs(f) = CMM(f).

The part CWA(f) = O(CKA(f)) has been already proven in [14].

4.1 Fractional Block Sensitivity and the Weighted Adversary Method

First, we prove that fractional block sensitivity lower bounds the relational adversary bound
for any partial function.

I Proposition 3. Let f : S → H be a partial Boolean function, where S ⊆ Gn. Then
fbs(f) ≤ CRA1(f).

4 By the argument of [19], we take the minimum over the strings instead of the algorithms computing f .
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Proof. Let x ∈ S be such that fbs(f, x) = fbs(f) and denote h = f(x). Let H ′ = H \ {h}
and S′ = f−1(H ′).

Let B be the set of sensitive blocks of x. Let w : B → [0, 1] be an optimal solution to
the fbs(f, x) linear program, that is,

∑
B∈B w(B) = fbs(f, x). For each B ∈ B, pick a single

yB ∈ S′ such that B = {i | xi 6= yi}. Then define R(x, yB) := w(B) for all B ∈ B. It is clear
that R has a corresponding rank 1 matrix R′, as it has only one row (corresponding to x)
that is not all zeros.

Let y ∈ S′ be any input such that R(x, y) > 0. Then for any i ∈ [n] such that xi 6= yi,

θ(x, i) =
∑
B∈B w(B)∑

B∈B:i∈B w(B) = fbs(f, x)∑
B∈B:i∈B w(B) ≥ fbs(f),

as 0 <
∑
B∈B:i∈B w(B) ≤ 1. On the other hand, note that θ(y, i) = w(B)

w(B) = 1, where
B = {i | xi 6= yi}. Therefore, for this R,

min
x,y∈S,i∈[n]:

R(x,y)>0,xi 6=yi

max{θ(x, i), θ(y, i)} ≥ min
y∈S′,i∈[n]:

R(x,y)>0,xi 6=yi

max{fbs(f), 1} = fbs(f),

and the claim follows. J

As mentioned in [14], CRA(f) is a weaker version of CWA(f). We show that in fact they
are exactly equal:

I Proposition 4. Let f : S → H be a partial Boolean function, where S ⊆ Gn. Then
CRA(f) = CWA(f).

Proof.
First we show that CRA(f) ≤ CWA(f).
Suppose that R is the function for which the relational bound achieves maximum value. Let
w(x, y) = w(y, x) = w(x, y, i) = w(y, x, i) = R(x, y) for any x, y, i such that f(x) 6= f(y)
and xi 6= yi. This pair of weight schemes satisfies the conditions of the weighted adversary
bound. The value of the latter with w,w′ is equal to CRA(f). As the weighted adversary
bound is a maximization measure, CRA(f) ≤ CWA(f).
Now we show that CRA(f) ≥ CWA(f).
Let w,w′ be optimal weight schemes for the weighted adversary bound. Let R(x, y) =
w(x, y) for any x, y ∈ S such that f(x) 6= f(y). Let S′ = f−1(H \ f(x)). Then

θ(x, i) =
∑
y∈S′ R(x, y)∑

y∈S′:xi 6=yi
R(x, y) =

∑
y∈S′ w(x, y)∑

y∈S′:xi 6=yi
w(x, y) ≥

∑
y∈S′ w(x, y)∑

y∈S′:xi 6=yi
w′(x, y, i) = wt(x)

v(x, i) ,

as w′(x, y, i) ≥ w(x, y) by the properties of w,w′. Similarly, θ(y, i) ≥ wt(y)
v(y,i) . Therefore,

for any x, y ∈ S and i ∈ [n] such that f(x) 6= f(y) and xi 6= yi, we have

max{θ(x, i), θ(y, i)} ≥ max
{
wt(x)
v(x, i) ,

wt(y)
v(y, i)

}
.

As the relational adversary bound is a maximization measure, CRA(f) ≥ CWA(f). J

The proof of this proposition also shows why CRA(f) and CWA(f) are equivalent — the
weight function w′ is redundant in the classical case (in contrast to the quantum setting).
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4.2 Kolmogorov Complexity and Minimax over Distributions
In this section we prove the equivalence between the minimax over probability distributions
and Kolmogorov complexity adversary bound. It has been shown in the proof of the main
theorem of [14] that CMM(f) = Ω(CKA(f)). Here we show the other direction using a
well-known result from coding theory.

I Proposition 5 (Kraft’s inequality). Let S be any prefix-free set of finite strings. Then∑
x∈S 2−|x| ≤ 1.

I Proposition 6. Let f : S → H be a partial Boolean function, where S ⊆ Gn. Then
CKA(f) ≥ CMM(f).

Proof. Let σ be the binary string for which CKA(f) achieves the smallest value. Define
the set of probability distributions {px}x∈S on [n] as follows. Let sx =

∑
i∈[n] 2−K(i|x,σ) and

px(i) = 2−K(i|x,σ)/sx. The set of programs that print out i ∈ [n], given x and σ, is prefix-free
(by the definition of S), as the information given to all programs is the same. Thus, by
Kraft’s inequality, we have sx ≤ 1.

Examine the value of the minimax bound with this set of probability distributions. For
any x, y ∈ S and i ∈ [n], we have

min{px(i), py(i)} = min
{

2−K(i|x,σ)

sx
,

2−K(i|y,σ)

sy

}
≥ min{2−K(i|x,σ), 2−K(i|y,σ)}.

Therefore, CKA(f) = Θ(CMM(f)). J

4.3 Fractional Block Sensitivity and Minimax over Distributions
Now we proceed to prove that for total functions, fractional block sensitivity is equal to the
minimax over probability distributions. The latter has the following equivalent form.

I Lemma 7. For any partial Boolean function f : S → H, where S ⊆ Gn,

CMM(f) = min
v

max
x∈S

∑
i∈[n]

vx(i) s.t. ∀y ∈ S s.t. f(x) 6= f(y) :
∑

i:xi 6=yi

min{vx(i), vy(i)} ≥ 1,

where {vx}x∈S is any set of weight functions vx : [n]→ R≥0.

For the proof of this lemma, see [6].
In this case we prove that for total functions the minimax over probability distributions is

equal to the fractional certificate complexity FC(f). The result follows since FC(f) = fbs(f).
The proof of this claim is almost immediate in light of the following “fractional certificate
intersection” lemma by Kulkarni and Tal:

I Proposition 8 ([13], Lemma 6.2). Let f : Gn → H be a total function5 and {vx}x∈Gn be a
feasible solution for the FC(f) linear program. Then for any two inputs x, y ∈ Gn such that
f(x) 6= f(y), we have

∑
i:xi 6=yi

min{vx(i), vy(i)} ≥ 1.

Let f be a total function. Suppose that {vx}x∈Gn is a feasible solution for the CMM(f)
program. Then for any x, y ∈ Gn such that f(x) 6= f(y), we have

∑
i:xi 6=yi

vx(i) ≥

5 Kulkarni and Tal prove the lemma for Boolean functions, but it is straightforward to check that their
proof also works for functions with arbitrary input and output alphabets.
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∑
i:xi 6=yi

min{vx(i), vy(i)} ≥ 1. Hence this is also a feasible solution for the FC(f) lin-
ear program. On the other hand, if {vx}x∈Gn is a feasible solution for FC(f) linear program,
then it is also a feasible solution for the CMM(f) program by Proposition 8. Therefore,
CMM(f) = FC(f).

5 Separations for Partial Functions

5.1 Fractional Block Sensitivity vs. Adversary Bounds
Here we show an example of a partial function that provides an unbounded separation
between the adversary measures and fractional block sensitivity.

I Theorem 9. There exists a partial Boolean function f : S → {0, 1}, where S ⊆ {0, 1}n,
such that fbs(f) = O(1) and CRA1(f),CRA(f),CWA(f),CKA(f),CMM(f) = Ω(n).

Proof. Let n be an even number and S = {x ∈ {0, 1}n | |x| = 1} be the set of bit strings of
Hamming weight 1. Define the “greater than half” function Gthn : S → {0, 1} to be 1 iff
xi = 1 for i > n/2.

For the first part, the certificate complexity is constant C(Gthn) = 1. To certify the
value of greater than half, it is enough to certify the position of the unique i such that xi = 1.
The claim follows, as C(f) ≥ fbs(f) for any f .

For the second part, by Theorem 2, it suffices to show that CRA1(Gthn) = Ω(n).
Let X = f−1(0) and Y = f−1(1). Let R(x, y) = 1 for all x ∈ X, y ∈ Y . Suppose that
x ∈ X, y ∈ Y, i ∈ [n] are such that xi = 1 (and thus yi = 0). Then

θ(x, i) =
∑
y∗∈Y R(x, y∗)∑
y∗∈Y :
xi 6=y∗i

R(x, y∗) = n/2
n/2 = 1, θ(y, i) =

∑
x∗∈X R(x∗, y)∑
x∗∈X:
x∗i 6=yi

R(x∗, y) = n/2
1 = n/2.

Therefore, max{θ(x, i), θ(y, i)} = n/2. Similarly, if i is such an index that yi = 1 and xi = 0,
we also have max{θ(x, i), θ(y, i)} = n/2. Also note that R has a corresponding rank 1 matrix
R′, hence CRA1(f) ≥ n/2 = Ω(n). J

We note that a similar function was used to prove lower bounds on the problem of
inverting a permutation [4, 1]. More specifically, we are given a permutation σ(1), . . . , σ(n),
and the function is 0 if σ−1(1) ≤ n/2 and 1 otherwise. With a single query, one can find the
value of σ(i) for any i. By construction, a lower bound on Gthn also gives a lower bound on
computing this function.

5.2 Relational Adversary vs. Kolmogorov Complexity Bound
Here we show that, for a variant of the ordered search problem, the Kolmogorov complexity
bound gives a tight logarithmic lower bound, while the relational adversary gives only a
constant value lower bound.

Let S = {x ∈ {0, 1}n | ∃i ∈ [0;n] : x1 = . . . xi = 0 and xi+1 = . . . = xn = 1}. In other
words, x is any string starting with some number of 0s followed by all 1s. Define the “ordered
search parity” function Ospn : S → {0, 1} to be Ind(x) mod 2, where Ind(x) is the last
index i such that xi = 0 (in the special case x = 1n, assume that i = 0).

I Theorem 10. For the ordered search parity, CRA1(Ospn),CRA(Ospn),CWA(Ospn) =
O(1) and CKA(Ospn),CMM(Ospn) = Ω(logn).

For the proof of this theorem, see [6].
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6 Limitation of Fractional Block Sensitivity

In this section we show that there is a certain barrier that the fractional block sensitivity
cannot overcome for partial functions.

6.1 Upper Bound in Terms of Block Sensitivity
I Theorem 11. For any partial function f : S → H, where S ⊆ Gn, fbs(f) ≤

√
n · bs(f).

Proof. We will prove that fbs(f, x) ≤
√
n · bs(f, x) for any x ∈ S. First we introduce a

parametrized version of the fractional block sensitivity. Let x ∈ S be any input, B the set of
sensitive blocks of x and N ≤ n a positive real number. Define

fbsN (f, x) = max
w

∑
B∈B

w(B) s.t. ∀i ∈ [n] :
∑

B∈B:i∈B
w(B) ≤ 1,

∑
B∈B
|B| · w(B) ≤ N.

where w : B → [0; 1]. If we let N = n, then the second condition becomes redundant and
fbsn(f, x) = fbs(f, x).

For simplicity, let k = bs(f, x). We will prove by induction on k that fbsN (f, x) ≤
√
Nk.

If k = 0, the claim obviously holds, so assume k > 0. Let ` be the length of the shortest
block in B. Then∑

B∈B
` · w(B) ≤

∑
B∈B
|B| · w(B) ≤ N

and fbsN (f, x) =
∑
B∈B w(B) ≤ N/`.

On the other hand, let D be any shortest sensitive block. Let f ′ be the restriction of f
where the variables with indices in D are fixed to the values of xi for all i ∈ D. Note that
bs(f ′, x) ≤ k − 1, as we have removed all sensitive blocks that overlap with D. Let B′ be
the set of sensitive blocks of x on f ′ and let T = {B ∈ B | B ∩D 6= ∅}, the set of sensitive
blocks that overlap with D (including D itself). Then no T ∈ T is a member of B′, therefore∑

B′∈B′
|B′| · w(B′) ≤ N −

∑
T∈T
|T | · w(T ) ≤ N − ` ·

∑
T∈T

w(T ).

Denote t =
∑
T∈T w(T ). We have that t ≤ |D| = `, as any T ∈ T overlaps with D. By

combining the two inequalities we get

fbsN (f, x) ≤ max
`∈[0;n]

min
{
N

`
, max
t∈[0;`]

{t+ fbsN−`t(f ′, x)}
}

≤ max
`∈[0;n]

min
{
N

`
, max
t∈[0;`]

{
t+
√

(N − `t)(k − 1)
}}

.

If N/` ≤
√
Nk, we are done. Thus further assume that ` <

√
N/k.

Denote g(t) = t+
√

(N − `t)(k − 1). We need to find the maximum of this function on
the interval [0; `] for a given `. Its derivative, g′(t) = 1− `

2

√
k−1
N−`t , is a monotone function in

t. Thus, it has exactly one root, t0 = N/`− (k− 1) · `/4. Therefore, g(t) attains its maximum
value on [0; `] at one of the points {0, t0, `}.

If t = 0, then g(0) =
√
N(k − 1) ≤

√
Nk.

If t = t0, then, as t ≤ ` <
√
N/k,

√
Nk − k − 1

4 ·
√
N

k
<
N

`
− (k − 1) `4 <

√
N

k
√
k − k − 1

4
√
k
<

√
1
k
.
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Thus 3k < 0, which has no solutions in natural numbers for k, so this case is not possible.
If t = `, then g(t) = `+

√
(N − `2)(k − 1).

Now it remains to find the maximum value of h(k) = `+
√

(N − `2)(k − 1) on the interval
[0;
√
N/k]. The derivative is equal to h′(`) = 1− ` ·

√
k−1
N−`2 . The only non-negative root of

h′(`) is equal to `0 =
√
N/k. Then h(`) is monotone on the interval [0;

√
N/k]. Thus h(`)

attains its maximal value at one of the points {0,
√
N/k}.

If ` = 0, then h(`) =
√
N(k − 1) <

√
Nk.

If ` = `0 =
√
N/k, then

h(`) =
√
N

k
+

√(
N − N

k

)
(k − 1) =

√
N

(√
1
k

+ (k − 1)
√

1
k

)
=
√
Nk.

Thus, h(`) ≤
√
Nk and that concludes the induction.

Therefore, fbs(f, x) = fbsn(f, x) ≤
√
n · bs(f, x), hence also fbs(f) ≤

√
n · bs(f). J

6.2 A Matching Construction
I Theorem 12. For any k ∈ N, there exists a partial Boolean function f : S → {0, 1}, where
S ⊆ {0, 1}n, such that bs(f) = k and fbs(f) = Ω(

√
n · bs(f)).

Proof. Take any finite projective plane of order t, then it has ` = t2 + t+ 1 many points.
Let n = k` and enumerate the points with integers from 1 to `. Let X = {0`} and Y = {y |
there exists a line L such that yi = 1 iff i ∈ L}. Define the (partial) finite projective plane
function Fppt : X ∪ Y → {0, 1} as Fppt(y) = 1 ⇐⇒ y ∈ Y .

We can calculate the 1-sided block sensitivity measures for this function:
fbs0(Fppt) ≥ (t2 + t+ 1) · 1

t+1 = Ω(t), as each line gives a sensitive block for 0n; since
each point belongs to t+ 1 lines, we can assign weight 1/(t+ 1) for each sensitive block
and that is a feasible solution for the fractional block sensitivity linear program.
bs0(Fppt) = 1, as any two lines intersect, so any two sensitive blocks of 0n overlap.
bs1(Fppt) = 1, as there is only one negative input.

Next, define f : S×k → {0, 1} as the composition of Or with the finite projective plane
function, f = Ork(Fppt(x(1)), . . . ,Fppt(x(k))). By the properties of composition with Or
(see Proposition 31 in [10] for details), we have

fbs(f) = max{fbs0(f), fbs1(f)} ≥ fbs0(f) = fbs0(Fppt) · k = Θ(t) · k = Θ(t · n/t2) =
Θ(n/t),
bs(f) = max{bs0(f), bs1(f)} = bs0(Fppt) · k = k = Θ(n/t2).

As
√
n · n/t2 = n/t, we have fbs(f) = Ω(

√
n · bs(f)) and hence the result. J

Note that our example is also tight in regard to the multiplicative constant, since t can
be unboundedly large (and the constant arbitrarily close to 1).

7 Open Ends

Rank 1 Weighted Adversary

Although we have shown that CRA(f) and CKA(f) are not equivalent for partial functions,
there is still a possibility that CRA1(f) = Θ(CRA(f)) might be true. If they are indeed
equivalent, then the weighted adversary would have a simpler formulation to use.
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Limitation of the Adversary Bounds

In the quantum setting, the certificate barrier shows a limitation on the quantum adversary
bounds. In the classical setting, by our results, fractional block sensitivity characterizes the
classical adversary bounds for total functions and thus is of course an upper bound. Is there
a general limitation on the classical adversary methods for partial functions?

Block Sensitivity vs. Fractional Block Sensitivity

We have exhibited an example with the largest separation between the two measures for partial
functions, bs(f) = O(

√
n · bs(f)). For total functions, one can show that fbs(f) ≤ bs(f)2,

but the best known separation achieves fbs(f) = Ω(bs(f)3/2) [10]. Can our results be
somehow extended for total functions to close the gap?
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Abstract
Given a hypergraph H = (V,E), what is the smallest subset X ⊆ V such that e ∩ X 6= ∅
holds for all e ∈ E? This problem, known as the hitting set problem, is a basic problem in
parameterized complexity theory. There are well-known kernelization algorithms for it, which
get a hypergraph H and a number k as input and output a hypergraph H ′ such that (1) H has
a hitting set of size k if, and only if, H ′ has such a hitting set and (2) the size of H ′ depends
only on k and on the maximum cardinality d of edges in H. The algorithms run in polynomial
time, but are highly sequential. Recently, it has been shown that one of them can be parallelized
to a certain degree: one can compute hitting set kernels in parallel time O(d) – but it was
conjectured that this is the best parallel algorithm possible. We refute this conjecture and show
how hitting set kernels can be computed in constant parallel time. For our proof, we introduce
a new, generalized notion of hypergraph sunflowers and show how iterated applications of the
color coding technique can sometimes be collapsed into a single application.

2012 ACM Subject Classification Mathematics of computing → Hypergraphs, Theory of com-
putation → Fixed parameter tractability, Theory of computation → Circuit complexity
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Related Version Full proofs can be found in the full version of the paper [5], http://arxiv.
org/abs/1801.00716.

1 Introduction

The hitting set problem is the following combinatorial problem: Given a hypergraph H =
(V,E) as input, consisting of a set V of vertices and a set E of hyperedges with e ⊆ V for all
e ∈ E, find a set X ⊆ V of minimum size that “hits” all hyperedges e ∈ E, that is, e∩X 6= ∅.
Many problems reduce to the hitting set problem, including the vertex cover problem (it is
exactly the special case where all edges have size |e| = 2) and the dominating set problem (a
dominating set of a graph is exactly a hitting set of the hypergraph whose hyperedges are the
closed neighborhoods of the graph’s vertices). The computational complexity of the hitting
set problem is thus of interest both in classical complexity theory and in parameterized
complexity theory.

The first result on the parameterized complexity of the hitting set problem was an efficient
kernelization algorithm for this problem restricted to edges of cardinality three [16]. This
was later improved to a kernelization for the d-uniform version (all hyperedges have size
exactly d) [15], which is based on the so-called Sunflower Lemma [13]. We will later have a
closer look at this algorithm; at this point let us just summarize its main idea by “repeatedly
find sunflowers and replace them by their cores until there are no more sunflowers.” The
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Sunflower Lemma tells us that this algorithm will stop only when the input graph has been
reduced to a kernel. The just-sketched kernelization algorithm is highly sequential, but Chen
et al. [11] have recently shown that it can be parallelized: Instead of reducing sunflowers
one-at-a-time, one can replace all sunflowers in a hypergraph by their cores simultaneously
in constant parallel time. This process only needs to be repeated d(H) = maxe∈E |e| times,
leading to a parallel algorithm running in time O(d(H)). However, there were good reasons
to believe that this algorithm is essentially the best possible (we will later discuss them)
and Chen et al. conjectured that the hitting set problem does not admit a kernelization
algorithm running in constant parallel time (that is, in time completely independent of the
input graph).

Our Contributions. In the present paper we refute the conjecture of Chen et al. and show
that there is a constant parallel time kernelization algorithm for the hitting set problem:

I Problem 1.1. pk,d-hitting-set
Instance: A hypergraph H = (V,E) and a number k ∈ N.
Parameter: k + d(H)
Question: Does H have a hitting set X with |X| ≤ k?

I Theorem 1.2 (Main Theorem). There is a dlogtime-uniform AC0-circuit family that
maps every hypergraph H = (V,E) and number k to a new hypergraph H ′ = (V,E′) that has
the same size-k hitting sets as H, has d(H ′) ≤ d(H), and has |E′| ≤ f(k, d(H)) for some
fixed computable function f .

Let us stress at this point that the AC0-family from the theorem really has a size that is
polynomial in the input length (no exponential or even worse dependency on the parameters)
and has a depth that is completely independent of the input. The hypergraph H ′ has the
same vertex set V as H – a feature shared by all hypergraphs considered in this paper
that simplifies the presentation. However, since V is still “large,” the circuit is not quite a
kernelization algorithm. Fortunately, this is easy to fix by replacing the vertex set of H ′ by
V ′ =

⋃
e∈E′ e, yielding the following corollary:

I Corollary 1.3 (Constant-Time Kernelization). There is a dlogtime-uniform AC0-circuit
family that computes a kernel for every instance for pk,d-hitting-set.

The theorem and corollary imply that all problems that can be reduced to pk,d-hitting-set
via a parameter-preserving AC0-reduction admit a kernelization computable by an AC0-circuit
family. This includes pk-vertex-cover, which is just pk,d-hitting-set with d fixed at 2; pk-
triangle-removal, where the objective is to remove at most k vertices from an undirected
graph so that no triangles remain; and also pk,deg-dominating-set, where we must find a
dominating set of size at most k in an undirected graph and we parameterized by k and the
maximum degree of the vertices.

Our proof of the main theorem requires the development of two new ideas, which we
believe may also be useful in other situations. The above-mentioned parallel kernelization
algorithm for the hitting set problem with runtime O(d(H)) essentially does the following:
“Repeat d(H) times: replace all sunflowers of size k + 1 by their cores” and the difficult task
in each of the d(H) iterations is to find the sunflowers. It turns out that this can be done
in constant parallel time using the color coding technique [2] and it has been shown in [3]
and again in [11] that this technique can be implemented in constant time. Our first idea
for turning the circuits depth from O(d) into O(1) is to collapse the color codings from the
d rounds into a single application of the color coding technique: Instead of applying color
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coding in each round to filter and describe “objects,” we would like to apply one global
application of color coding that already contains the internal colorings and does away with
the intermediate objects.

Unfortunately, there does not appear to be a simple (or any) way of actually collapsing
the colorings used when we “replace all sunflowers by their cores”: The coloring coding
technique is good at imposing requirements of the form “these objects must be disjoint,” but
cannot impose requirements of the form “these objects must be the same.” For this reason,
as our second new idea, we develop a generalization of the notion of a sunflower (which we
dub “pseudo-sunflowers”) that is tailored to the collapsing of color coding.

Related Work. The sequential kernelization algorithm for the hitting set problem based
on the Sunflower Lemma has been known for a longer time [15], but there have been recent
improvements that bring down the runtime to linear time [17]. A parallel version has recently
been studied by Chen et al. [11] and they show how kernels for pk,d-hitting-set can be
computed by circuits of depth O(d(H)). Chen et al. also conjecture that the circuit depth of
O(d(H)) is unavoidable (which we refute).

The results of this paper fit into the larger, fledgling field of parallel parameterized
complexity theory, which has already been studied both from a practical [1] and a theoretical
point of view [8]. First results go back to research on parameterized logarithmic space [7, 10, 14],
since it is known from classical complexity theory that problems that are solvable with such
a resource bound can also be parallelized. A more structured analysis of parameterized space
and circuit classes was later made by Elberfeld et al. [12], which addresses parallelization more
directly. Current research on parameterized parallelization – including this paper – focuses
on constant-time computations, that is, on a parameterized analogue of AC0 [9, 11, 3, 4]. We
remark that many previous results (including several of the authors) boil down to showing
that instead of using a known reduction rule many times sequentially, one can simply apply it
in parallel “everywhere,” but “only once.” In contrast, the kernelization algorithm developed
in the present paper had no previous counterpart in the sequential setting.

Organization of This Paper. After a short section on preliminaries, in Section 3 we review
known kernelization algorithms for the hitting set problem – both the sequential ones and
the parallel one. In Section 4 we discuss the obstacles that must be surmounted to turn
the known parallel algorithm into one that needs only constant time. Towards this aim,
we introduce the notions of pseudo-cores and pseudo-sunflowers as replacements for the
cores and sunflowers used in the known algorithms. In Section 5 we then argue that these
pseudo-sunflowers can be computed in constant time by “collapsing” multiple rounds of color
coding into a single round. Full proofs can be found in the full version of the paper [5].

2 Preliminaries

A hypergraph is a pair H = (V,E) such that for all hyperedges e ∈ E we have e ⊆ V . We write
V (H) = V and E(H) = E for the vertex and hyperedge sets of H. Let d(H) = maxe∈E |e|.
Throughout this paper, all hypergraphs will always have the same vertex set V , which
is the input vertex set. For this reason, in slight abuse of notation, for two hypergraphs
H1 = (V,E1) and H2 = (V,E2) we also write H1 ⊆ H2 for E(H1) ⊆ E(H2) and H1 ∪H2 for
(V,E(H1) ∪ E(H2)).

Concerning circuit classes and parallel computations, we will only need the notion of
AC-circuit families, which are sequences C = (C0, C1, C2, . . . ) of Boolean circuits where each
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Ci is a directed acyclic graph whose vertices are gates such that there are i input gates, the
inner gates are ∧-gates or ∨-gates with unbounded fan-in, or ¬-gates; and the number of
output gates is either 1 (for decision problems) or depends on the number of input gates (for
circuits computing a function). The size function S maps circuits to their size (number of
gates) and the depth function D maps them to their depth (longest path from input gates
to output gates). When D(Cn) ∈ O(1) and S(Cn) ∈ nO(1) hold, we call C an AC0-circuit
family. Concerning circuit uniformity, all circuit families in this paper will be dlogtime
uniform, which is the strongest notion of uniformity commonly considered [6] and defined as
follows: there is a dtm that on input of bin(i)# bin(n), where bin(x) is the binary encoding
of x, outputs the ith bit of a suitable encoding of Cn in at most O(logn) steps.

Even though this paper is about a parallel kernelization algorithm, we will need only
little from the machinery of parallel parameterized complexity theory. We do need the
following notions: A parameterized problem is a pair (Q, κ) where Q ⊆ Σ∗ is a language
and κ is a function κ : Σ∗ → N that is computable by a dlogtime-uniform AC0-circuit
family. When we write down a parameterized problem such as pk,d-hitting-set, the indices
of “p” (for “parameterized”) indicate which parameter function κ we mean. A kernelization
for a parameterized problem (Q, κ) is a function K that maps every instance x ∈ Σ∗ to a
new instance K(x) ∈ Σ∗ such that for all x ∈ Σ∗ we have (1) x ∈ Q ⇐⇒ K(x) ∈ Q and
(2) |K(x)| ≤ f(κ(x)) for some fixed computable function f .

A parameterized problem (Q, κ) lies in FPT if x ∈ Q can be decided by a sequential
algorithm running in time f(κ(x)) · |x|O(1) for a computable function f . The AC0-analogue
of FPT is the class para-AC0. It contains all problems (Q, κ) for which there is a circuit
family (Cn,k)n,k∈N such that for all inputs x we have C|x|,κ(x)(x) = 1 if, and only if, x ∈ Q,
and D(Cn,k) ∈ O(1) and S(Cn,k) ∈ f(k) · nO(1). It is well-known that (Q, κ) ∈ FPT holds
if, and only if, Q is decidable and there is a kernelization for (Q, κ) that is computable
in polynomial time. The same proof as for the polynomial-time case also shows that we
have (Q, κ) ∈ para-AC0 if, and only if, Q is decidable and (Q, κ) has a kernelization that
can be computed by an AC0-circuit family. (We stress once more that this means that the
kernelization is a normal AC0-circuit family, having size S(Cn) ∈ nO(1).)

We will use the color coding technique a lot. First introduced in [2], it has recently been
shown to work in the context of constant time computations [3, 11]. The key observation
underlying this technique is the following: Suppose we are given a set of n elements and
suppose you have k special elements x1, . . . , xk together with some specific colors c1, . . . , ck
for them “in mind”. Then we can compute a set Λ of “candidate colorings” of all elements of
the set such that at least one λ ∈ Λ colors each “in mind” vertex xi with the “desired” color
ci, that is λ(xi) = ci. Formally, the following holds (the original version of this lemma due
to Alon et al [2] is equivalent to the statement below – only without any depth guarantees):

I Fact 2.1 (Color Coding Lemma, [3]). There is a dlogtime-uniform family (Cn,k,c)n,k,c∈N
of AC-circuits without inputs such that each Cn,k,c

1. outputs a set Λ of functions λ : {1, . . . , n} → {1, . . . , c} (coded as a sequence of function
tables) with the property that for any k mutually distinct x1, . . . , xk ∈ {1, . . . , n} and any
c1, . . . , ck ∈ {1, . . . , c} there is a function λ ∈ Λ with λ(xi) = ci for all i ∈ {1, . . . , k},

2. has constant depth (independent of n, k, or c), and

3. has size at most O(log c · ck2 · k4 · n log2 n).
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3 Known Kernelization Algorithms for the Hitting Set Problem

Known Sequential Kernelization Algorithms. Known algorithms for computing kernels
for pk,d-hitting-set are based on the so-called Sunflower Lemma. The perhaps simplest
application of this lemma is to repeatedly collapses sufficiently large sunflowers to their cores
until there are no longer any large sunflowers in the graph and, then, the Sunflower Lemma
tells us that the graph “cannot be very large.” In detail, the definitions and algorithm are as
follows:

I Definition 3.1 (Sunflower). A sunflower S with core C is a set of proper supersets of C
such that for any two distinct p, q ∈ S we have p ∩ q = C. The elements of a sunflower are
called petals. A sunflower in a hypergraph is a sunflower whose petals are hyperedges of the
hypergraph.

I Fact 3.2 (Sunflower Lemma [13]). Every hypergraph H with more than kd(H) · d(H)!
hyperedges contains a sunflower of size k + 1.

The importance of the Sunflower Lemma for the hitting set problem lies in the following
observation: Suppose a hypergraph H contains a sunflower S of size at least k + 1. Then
H has a size-k hitting set if, and only if, the hypergraph obtained from H by removing all
petals of the sunflower and adding its core has such a hitting set (we cannot hit the k + 1
petals in the sunflower using only k vertices without using at least one vertex of the core;
thus, we hit all petals if, and only if, we hit the core). In other words, replacing a sunflower
of size k + 1 by its core is a reduction rule for the hitting set problem; and if we can no
longer apply this rule, the Sunflower Lemma tells us that the hypergraph’s size is bounded
by a function that depends only on k and d(H) – in other words, it is a kernel.

The just-described kernelization algorithm is simple, but “very sequential.” It is, however,
not too difficult to turn it into a more parallel algorithm – at least, as long as d(H) is fixed.
This was first noted by Chen et al. [11] and we explain the ideas behind their proof below,
rephrased for the purposes of the present paper.

A better sequential kernelization algorithm has recently [17] been proposed (it runs in
time O(2d(H)|E|), which is linear from a parameterized point of view) – but the algorithm is
arguably “even more sequential” and does not lend itself to easy parallelization.

Known Parallel Kernelization Algorithm. The first step towards a parallel kernelization is
the observation that we can compute many cores in parallel. Given a hypergraph H = (V,E)
and a number k, let a k-core in H be a core C of a sunflower in H with more than k petals.
Let k-cores(H) =

(
V, {C | C is a k-core in H}

)
. While in the sequential algorithm we always

replace one sunflower by its core, we now replace all sunflowers by their cores. This leaves
behind some hyperedges, but the Sunflower Lemma will show that their number is “small.”
Unfortunately, the set of cores itself may still be large and we need to apply the replace-all-
sunflowers-by-cores operation repeatedly. This process does stop after at most d(H) rounds
since the size of the cores decreases by 1 in each round and, hence, after d(H) rounds it has
shrunk to 0.

Let us now formalize these ideas a bit: Let H0 = H and let Hi+1 = k-cores(Hi). Then
H0 is the original hypergraph; H1 is the set of its k-cores; H2 is the set of H1’s k-cores and
thus the set of “cores of cores” of H; next H3 is the set of “cores of cores of cores” of H;
and so on, see Figure 1 for an example. In a sense, each Hi is nested into the previous
hypergraph, leading to a whole sequence resembling a matryoshka doll. Below, we define a
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H = H0
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Figure 1 Visualization of a hypergraph H0 and of its 2-cores H1 = 2-cores(H0). Vertices are
drawn as rectangles, while the ten hyperedges of H0 are drawn as lines: they contain all vertices that
they touch. For instance, the leftmost line starting in the vertex a in H0 visualizes the hyperedge
{a, b, c, f, u, v, w} and the rightmost line visualizes the hyperedge {a, b, e, n}. The hypergraph H0

contains three sunflowers of size 3, visualized by the red, blue, and green lines, respectively. Their
cores are the hyperedges shown in H1. These cores, in turn, form a sunflower in H1 with core {a, b},
but note that {a, b} is not a 2-core of H0. It is the only hyperedge of H2.

matryoshka sequence as a sequence that has this “nested in some sense” property and then
show in Lemma 3.4 that (H0, H1, . . . ) is, indeed, such a matryoshka sequence:

I Definition 3.3 (Matryoshka Sequence). A matryoshka sequence for a hypergraph H = (V,E)
and a number k is a sequence (M0,M1, . . . ,Md(H)) of hypergraphs, all of which have the
same vertex set V , with the following properties for all i ∈ {0, . . . , d(H)}:
1. M0 = H,
2. d(Mi) ≤ d(H)− i,
3. k-cores(Mi) ⊆Mi+1, and
4. every size-k hitting set of H is also a hitting set of Mi.

I Lemma 3.4 (Cores of Cores Form a Matryoshka Sequence). For every hypergraph H and
number k, the sequence (H0, . . . ,Hd(H)) is a matryoshka sequence for H and k.

Sketch of Proof. The first three items follow directly from the definition. The fourth item
is proven by induction over i, where the inductive step hinges on the observation that the
only way to hit a sunflower of size k + 1 with a size k set X is to hit its core. J

Recall that the idea behind the parallel computation of a kernel for the hitting set problem
is to repeatedly remove all sunflowers from H, each time perhaps leaving a manageable
number of hyperedges – and after d rounds, no hyperedges will remain. We use the following
notation for the “removal” operation: For two hypergraphs H = (V,E) and H ′ = (V,E′)
let H 	H ′ =

(
V, { e ∈ E | ∀e′ ∈ E′ : e′ 6⊆ e }

)
, that is, we remove all hyperedges from H

that contain a hyperedge of H ′. Thus, H 	H1 is the set of all hyperedges in H that are not
involved in any sunflower of size at least k + 1 since we remove all edges that contain a core.

The following theorem shows that the repeated removing operation only leaves behind a
“small” number of hyperedges. We formulate the theorem for arbitrary matryoshka sequences
(we will need this later on), but it is best to think of the Mi as the sets Hi.

I Theorem 3.5 (Kernel Theorem). Let (M0, . . . ,Md(H)) be a matryoshka sequence for H
and k. Let K = (M0 	M1) ∪ (M1 	M2) ∪ (M2 	M3) ∪ · · · ∪ (Md(H)−1 	Md(H)) ∪Md(H).



M. Bannach and T. Tantau 9:7

1. Then K has at most
∑d(H)
i=0 kii! hyperedges and

2. H and K have the same size-k hitting sets.

Sketch of Proof. For the first item we observe that Mi	Mi+1 does not contain a sunflower
and apply the Sunflower Lemma. The second item is proven by induction over i, where the
base case is given by the first property of a matryoshka sequence, and where the inductive
step can be derived from the fourth property of a matryoshka sequence. J

Instantiating the theorem with (H0, . . . ,Hd(H)) tells us that, if we can compute the
elements of K = (H0 	H1)∪ · · · ∪ (Hd(H)−1 	Hd(H))∪Hd(H) in parallel, we can compute a
kernel for the hitting set problem in parallel. Clearly, “computing K” essentially boils down
to “computing the Hi” in parallel. Thus, the real question, which we address next, is how
quickly and easily we can compute the hypergraphs Hi.

At this point, we briefly need to address some technical issues concerning the coding of
hypergraphs. For our purposes, it is largely a matter of taste how the input hypergraph H0
is encoded, but the encoding of the later graphs Hi becomes important in the context of
parallel constant-time computations. We consider H = (V,E) fixed and encoded using, for
instance, an incidence matrix (having |V | columns and |E| rows). We encode a refinement
of H, that is, a hypergraph H ′ = (V,E′) with the property that each e′ ∈ E′ is a subset of
some e ∈ E, using a matrix of 2d(H) columns and |E| rows. There is a column for each of
the at most 2d(H) possible subsets of an edge e ∈ E and the entry at the column for a given
row is 1 if this subset is an element of E′; otherwise it is 0. Let us call this the refinement
matrix encoding of hypergraph H ′ (with respect to the fixed input hypergraph H).

I Lemma 3.6 (Computing Cores in Constant Depth). For each d and i there is a dlogtime-
uniform family of AC-circuits that
1. on input of the incidence matrix of a hypergraph H with d(H) ≤ d, a number k, and the

refinement matrix encoding of the hypergraph Hi,
2. outputs the refinement matrix encoding of Hi+1,
3. has constant depth, and
4. has size f(k, d) · |V |O(1)|E|O(1) where f is some computable function.

Sketch of Proof: We can test all |E| · 2d(H) possible cores C in parallel and, for each of
them, we can search a corresponding sunflower via color coding: for each petal pi the vertices
in pi − C should receive color i. J

The lemma tells us that once we have computed some Hi, we can compute the next Hi+1
using only constant additional depth and using f(k, d) · |V |O(1)|E|O(1) additional size. Since
Hi 	Hi+1 can easily be computed from Hi and Hi+1 in constant depth, we get:

I Theorem 3.7 (Depth-O(d) Kernelization Algorithm, [11]). For each d there is a dlogtime-
uniform family of AC-circuits that
1. on input of a hypergraph H with d(H) ≤ d and a number k
2. outputs a hypergraph K having the same size-k hitting sets as H and having at most∑d(H)

i=0 kii! hyperedges,
3. has depth O(d),
4. and has size f(k, d) · |V |O(1)|E|O(1) where f is some computable function.
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4 Pseudo-Cores and Pseudo-Sunflowers

The parallel kernelization algorithm described in the previous section has a depth that is
linear in the parameter d, the maximum size of any hyperedge in the input hypergraph. The
reason for this linear dependency was that, while we managed to reduce not just one but all
sunflowers in the hypergraph to their cores in parallel, we had to repeat this “reduce to core”
procedure d times – and each round adds a constant number of layers to the circuit.

It is not obvious how this build-up of layers can be avoided. In the following, we first
explain why there are good reasons to believe that the computation of the hypergraphs Hi

necessitates deeper and deeper circuits. Following this discussion, we explain our proposal
for side-stepping these difficulties: we replace the hypergraphs Hi by new hypergraphs H ′i
that are easier to compute but still form a matryoshka sequence and – hence – can serve as
a replacement for the Hi in the Kernel Theorem, Theorem 3.5.

The Difficulty: Cores of Cores Are Hard to Compute. There are several reasons to believe
that one cannot compute kernels for the hitting set problem in constant depth using the
repeated sunflower-reduction-procedure. A first idea for reaching a constant depth is to
apply the reduction procedure only a constant number of times (instead of d times). Indeed,
it is not immediately clear that a “core of cores” is not already a core in the first round –
so do we actually need more than one round? Unfortunately, the answer is “yes, we do”:
Figure 1 shows an example where {a, b} is a 2-core of the 2-cores, but it is not a 2-core
of the original hypergraph. For a more complex example, where d − 1 rounds are needed
to arrive at a constant size kernel, consider the trees T `d (defined in detail later on) that
are perfectly balanced trees of depth d with `+ 1 children per node for a number ` ≥ k –
and now consider the hypergraph Hd that has one hyperedge for each node of T `d and this
hyperedge contains all the nodes on the path from the node to the root r. Now, for i > 0 we
have k-cores(Hi) = Hi−1 and the latter hypergraphs all have a size of at least the arbitrarily
large ` for i > 1. Thus, we need to apply the “core of cores” procedure at least d− 1 times
before arriving at a hypergraph whose size depends only on the parameter.

A second, more promising idea is the observation that it might be possible to somehow
“collapse” two (and then, hopefully, all) applications of the sunflower-reduction-procedure
“into a single application.” Unfortunately, we also run into a problem here, namely in the
“collapsed color coding process.” In essence, color coding is great at ensuring that certain
vertex sets are disjoint (namely those vertex sets that receive different colors), but fails at
enforcing that the same vertices are used in different hyperedges – which is exactly what is
needed when the definition of some Hi refers to Hi−1, which in turn refers to some Hi−2.

These problems with avoiding the build-up of additional layers with rising d have led
Chen et al. [11] to the conjecture that the build-up is unavoidable and that all parallel
kernelization algorithms for pk,d-hitting-set have a runtime that is linear in d. We agree
with Chen et al. in their assessment that the computation of the Hi presumably necessitates
a linear circuit depth – but, nevertheless, we will refute their conjecture in the following.

The Solution: Pseudo-Cores As a Replacement For Cores. Our idea is not to compute
the setsHi (we do not see how this can be done in constant time), but to compute hypergraphs
H ′i with rather similar properties (formally, they will form matryoshka sequences as well) that
we can compute in constant time for all d and i. We introduce a new notion of k-pseudo-cores
of level i and H ′i will be the hypergraph whose edges are the k-pseudo-cores of level i.
Crucially, the definition of H ′i (only) refers directly to the original input graph H and its
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Figure 2 A T 2
2 -pseudo-sunflower S for the level 2 pseudo-core {a, b} in the hypergraph H. The

four properties of pseudo-sunflowers hold: In “column S(l, 0)” we always have the pseudo-core, the
union of each row is a hyperedge, the sets in a row form a partition of this hyperedge, and – most
importantly – we have the disjointness property at each “branch” of the tree. This property requires
that for column S(l, 1) the sets of all red vertices, of all blue vertices, and of all green vertices are
pairwise disjoint; whereas for column S(l, 2) it requires that the three red sets are pairwise disjoint,
likewise for the three blue sets, and the three green sets. However, it is permissible (and the case)
that a red vertex in the third column is the same as green vertex in the third or the second column.

hyperedges can be obtained from H directly using color coding. At the same time, the H ′i
will form a matryoshka sequence and, hence, just as for the Hi, the core of any sunflower of
H ′i−1 must already be present in H ′i.

The definition of pseudo-cores is somewhat technical. We will, however, show that all
cores are pseudo-cores of level 1, cores of cores are pseudo-cores of level 2, and so on. The
reverse implication does not hold (for instance, pseudo-cores of level 2 need not be cores of
cores). For a “level” L and a number k, let T kL denote the rooted tree in which all leafs are at
the same depth L and all inner nodes have exactly k+ 1 children. The root of T kL will always
be called r in the following. Thus, T k1 is just a star consisting of r and its k + 1 children,
while in T k2 each of the k + 1 children of r has k + 1 new children, leading to (k + 1)2 leafs
in total. For each l ∈ leafs(T kL) = { l | l is a leaf of T kL } there is a unique path (l0, l1, . . . , lL)
from l0 = r to lL = l. An example for the following definition is shown in Figure 2.

I Definition 4.1 (Pseudo-Sunflowers and Pseudo-Cores). Let H = (V,E) be a hypergraph
and let L and k be fixed. A set C ⊆ V is called a k-pseudo-core of level L in H if there
exists a mapping S : leafs(T kL) × {0, 1, . . . , L} → 2V , called a T kL-pseudo-sunflower for H
with pseudo-core C, such that for all l,m ∈ leafs(T kL) with l 6= m we have:
1. S(l, 0) = C.
2. S(l, 0) ∪ S(l, 1) ∪ · · · ∪ S(l, L) ∈ E and let us write S(l) for this hyperedge.
3. S(l, i) ∩ S(l, j) = ∅ for 0 ≤ i < j ≤ L, but S(l, i) 6= ∅ for i ∈ {1, . . . , L}.
4. Let z ∈ {1, . . . , L} be the smallest number such that lz 6= mz, that is, z is the depth

where the path from r to l and the path from r to m diverge for the first time. Then
S(l, z) ∩ S(m, z) = ∅ must hold.

I Definition 4.2. For a hypergraph H = (V,E) and numbers k and i ≥ 1 let H ′i =
(
V, {C |

C is a k-pseudo-core of level i of H}
)
and let H ′0 = H.

To get some intuition, let us have a closer look at H ′1. As the following lemma shows,
pseudo-cores and cores are still very closely related at this first level – while for larger levels,
we no longer have Hi = H ′i, but only Hi ⊆ H ′i.
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I Lemma 4.3. Let H be a hypergraph and k a number. Then H1 = H ′1.

Sketch of Proof: For L = 1, the properties of a pseudo-sunflower enforce exactly that the
unions S(l, 0) ∪ S(l, 1) form petals of a sunflower with core S(l, 0). J

5 The Constant-Depth Kernelization

We show that hitting set kernels can be computed in constant depth in two steps:
1. We show that (H ′0, . . . ,H ′d(H)) is a matryoshka sequence.
2. We show that all H ′i can be computed by a constant depth circuit whose depth is

independent of both k and d(H).
By the Kernel Theorem, Theorem 3.5, taken together, these two items yield the desired
kernelization algorithm.

Step 1: Pseudo-Cores Form Matryoshka Sequences. Our first aim is to show the following
theorem, which is an analogue of Lemma 3.4 for pseudo-cores:

I Theorem 5.1. For every hypergraph H and number k, the sequence (H ′0, . . . ,H ′d(H)) from
Definition 4.2 is a matryoshka sequence for H and k.

The proof consists of four lemmas, one for each of four properties of a matryoshka
sequence:

I Lemma 5.2. H ′0 = H.

Proof. By definition. J

I Lemma 5.3. d(H ′L) ≤ d(H)− L holds for all L ∈ {0, . . . , d(H)}.

Proof. For every leaf l we have S(l) = S(l, 0) ∪̇ S(l, 1) ∪̇ · · · ∪̇ S(l, L) and all S(l, i) for
i ∈ {1, . . . , L} are non-empty sets. This implies that |S(l, 0)| ≤ |S(l)| − L ≤ d(H)− L. J

I Lemma 5.4. k-cores(H ′L) ⊆ H ′L+1 holds for all L ∈ {0, . . . , d(H)}.

Sketch of Proof. Proof by induction over L, where the base case is given by Lemma 4.3. For
the inductive step, consider a k-core C ∈ H ′L, which is witnessed by a sunflower that consists
of k + 1 different T kL-pseudo-sunflowers. From these we construct a T kL+1-pseudo-sunflower
with pseudo-core C and conclude C ∈ H ′L+1. J

I Lemma 5.5. Every size-k hitting set of H is also a size-k hitting set of H ′L for all
L ∈ {0, . . . , d(H)}.

Sketch of Proof. Given a size-k hitting set X, say that it hits a node n of T kL if there is a
leaf l ∈ leafs(T kL) and a depth i with n = li such that X ∩ (S(l, 0) ∪ · · · ∪ S(l, i)) 6= ∅. With
this definition, X trivially hits all leafs of T kL . By the fourth property of a pseudo-sunflower,
if X hits all children of a node, it also hits the node. By structural induction we get that the
root r = l0 gets hit and, thus, ∅ 6= X ∩ S(L, 0) = X ∩ C. J
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Step 2: Pseudo-Cores Can Be Computed in Constant Depth. Theorem 5.1 states that
the hypergraphs H ′i form a matryoshka sequence and, thus, the Kernel Theorem tells us that
the following hypergraph is a kernel for the hitting set problem:

K = (H ′0 	H ′1) ∪ (H ′1 	H ′2) ∪ · · · ∪ (H ′d(H)−1 	H
′
d(H)) ∪H ′d(H).

Of course, the whole effort that went into the definition of the H ′i and the proof of the
matryoshka properties would be for nothing, if the H ′i were not easier to compute than
the Hi.

This is exactly what we claim in the following theorem and prove in the rest of this paper:
It is an analogue of Lemma 3.6 for pseudo-cores. The crucial difference in the formulation is
that, now, we no longer get H ′i−1 as input when we compute H ′i, but rather we compute H ′i
“directly” from the original graph H.

I Theorem 5.6 (Computing Pseudo-Cores in Constant Depth). There is a dlogtime-uniform
family of AC-circuits that
1. on input of the incidence matrix of a hypergraph H = (V,E) and numbers k and L,
2. outputs the refinement matrix encoding of H ′L,
3. has constant depth (in particular, it is independent of |V |, |E|, d(H), k, and L), and
4. has size f(k, d(H)) · |V |O(1)|E|O(1) where f is some computable function.

To compute the encoding of H ′L, we can consider all candidate pseudo-cores in parallel.
Thus, proving the theorem boils down to deciding for a subset C ⊆ V whether there exists a
T kL-pseudo-sunflower S of H whose pseudo-core is C. Of course, we wish to use color coding
for this and our definition of pseudo-cores and pseudo-sunflowers was carefully crafted so
that it includes only requirements of the form “these parts of these hyperedges must be
disjoint” (and not – as is necessary for describing cores of cores – statements like “these
hyperedges must share the vertices that form petals”). Unfortunately, while we no longer
need to ensure that certain parts of different hyperedges are identical, we must be careful
that we do not inadvertently forbid vertices to be the same across hyperedges when we “do
not care whether they are the same”:

I Example 5.7. Suppose we wish to find two disjoint hyperedges e1 = {v1, v2, v3} and
e2 = {v4, v5, v6} in a hypergraph H plus another hyperedge e3 = {x, y} such that x /∈ e1 ∪ e2,
but do not care whether y ∈ e1 ∪ e2 holds or not. We can easily enforce the disjointness
properties by coloring v1 to v6 using colors 1 to 6 and x using color 7. However, how should
we color y for which we do not care about disjointness (at least with respect to e1 and e2)?
Fixing any of the colors 1 to 3 for y or any of the colors 4 to 6 (or, for that matter, any other
color) would be wrong, since this would enforce either y /∈ e2 or y /∈ e1 (or both).

Fortunately, there is a way out of the dilemma: we consider all feasible colors y could get
in parallel. To formalize this “trick”, we define a technical problem in which an undirected
graph G is used to specify which vertices in hyperedges of a hypergraph H should be different.
As is customary, a proper coloring of an undirected graph G = (U,F ) is a mapping c : U → C

to some set C of colors with c(u) 6= c(v) for all {u, v} ∈ F . Let us write f [X] = {f(x) | x ∈ X}
for the image of a set X under a function f . For an example instance see Figure 3.

I Problem 5.8. pG-restricted-coloring
Instance: A hypergraph H = (V,E) and an undirected graph G = (U,F ) together with a

partition U = U1 ∪̇ · · · ∪̇ Um of U .
Parameter: |G|
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Figure 3 An instance of pG-restricted-coloring consisting of a hypergraph H ′ and a graph G

(a thick edge connecting two areas with dashed borders indicates that there is an edge between each
vertex of the first area and each vertex of the second area; thus, in the example, each thick edge
corresponds to 12 · 12 = 144 edges). This instance is the one resulting from the reduction described
in the proof of Theorem 5.6 for L = 2, the hypergraph H from Figure 1, and the core {a, b} (except
that we use only four vertices in G per set S(l, i) instead of d = 9). A proper coloring is shown right
(the table indicates the values c(u) ∈ V (H ′) for the corresponding vertices u of G).

Question: Is there a proper coloring c : U → V of G such that c[Ui] ∈ E holds for all
i ∈ {1, . . . ,m}?

I Lemma 5.9. The problem pG-restricted-coloring can be solved by a dlogtime-
uniform family of AC-circuits of constant depth and size f(|G|)|V |O(1)|E|O(1) for some
computable function f .

Sketch of Proof. We show that c exists if, and only if, there is a mapping d : V → {1, . . . ,
|U |} with the following two properties (considering all possible proper colorings c′ in parallel
is the formal implementation of the above-mentioned “trick”):
1. There is a proper coloring c′ : U → {1, . . . , |U |} of G such that
2. for each i ∈ {1, . . . ,m} there is a hyperedge ei ∈ E with |d[ei]| = |ei| and d[ei] = c′[Ui].
Having proved this equivalence, we observe that we can determine c′ in constant depth via
“brute force”, as the number of candidates depends only on the parameter. The function d
can be found via color coding, since (a) the cardinality of its image depends only on the
parameter and since (b) we are only interested in the values of d on the subset of V that is
used by c as a color (the size of this subset depends only on the parameter). J

Sketch of Proof of Theorem 5.6. For each of the |E| · 2d(H) possible pseudo-cores C we
reduce the question of whether there is a T kL-pseudo-sunflower S with pseudo-core C to
an instance for pG-restricted-coloring. The constructed graph G has the vertex set
leafs(TLk ) × {1, . . . , L} × {1, . . . , d}, which means that for each set S(l, i) in the pseudo-
sunflower’s “table” there are d vertices available (which can then be mapped surjectively to
the elements S(l, i)). We use the partition of U to ensure that S(l) is always a hyperedge
and we insert edges to ensure the disjointness properties of pseudo-sunflowers. J

Theorem 5.6 now implies Theorem 1.2 by simple standard arguments.
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6 Conclusion

The results of this paper can be summarized as pk,d-hitting-set ∈ para-AC0 or, equivalently,
that kernels for the hitting set problem parameterized by k and d can be computed by a single
AC0-circuit family. This result refutes a conjecture of Chen et al. [11]. The proof introduced
a new technique: Iterated applications of color coding can sometimes be “collapsed” into
a single application. This collapsing is not always straightforward (as the present paper
showed) and additional technical machinery may be needed to make it work.

The proof of our main result would be much simpler if the number of k-cores of a
hypergraph depended only on the parameters k and d (since, then, only one round would be
needed in the parallel algorithm). While we gave examples that refute this hope, it might
be possible to tweak the idea a bit: We can compute in constant parallel time the set of all
inclusion-minimal k-cores of a hypergraph. We believe that we can prove that the number
of these inclusion-minimal k-cores depends only on k and d (unfortunately, we need rather
involved and technical combinatorics and the dependence on k and d seems to be “quite
bad”). Nevertheless, if this is the case, we get a different proof that pk,d-hitting-set has
an AC0-kernelization, where the complexity of proving correctness is shifted away from the
algorithm (which gets much simpler) towards the underlying graph theory and combinatorics
(which get more complex).
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Abstract

In Defective Coloring we are given a graph G = (V,E) and two integers χd,∆∗ and are
asked if we can partition V into χd color classes, so that each class induces a graph of maximum
degree ∆∗. We investigate the complexity of this generalization of Coloring with respect to
several well-studied graph parameters, and show that the problem is W-hard parameterized by
treewidth, pathwidth, tree-depth, or feedback vertex set, if χd = 2. As expected, this hardness
can be extended to larger values of χd for most of these parameters, with one surprising exception:
we show that the problem is FPT parameterized by feedback vertex set for any χd 6= 2, and hence
2-coloring is the only hard case for this parameter. In addition to the above, we give an ETH-
based lower bound for treewidth and pathwidth, showing that no algorithm can solve the problem
in no(pw), essentially matching the complexity of an algorithm obtained with standard techniques.

We complement these results by considering the problem’s approximability and show that,
with respect to ∆∗, the problem admits an algorithm which for any ε > 0 runs in time (tw/ε)O(tw)

and returns a solution with exactly the desired number of colors that approximates the optimal
∆∗ within (1 + ε). We also give a (tw)O(tw) algorithm which achieves the desired ∆∗ exactly
while 2-approximating the minimum value of χd. We show that this is close to optimal, by
establishing that no FPT algorithm can (under standard assumptions) achieve a better than
3/2-approximation to χd, even when an extra constant additive error is also allowed.
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1 Introduction

Defective Coloring is the following problem: we are given a graph G = (V,E), and two
integer parameters χd,∆∗, and are asked whether there exists a partition of V into at most
χd sets (color classes), such that each set induces a graph with maximum degree at most ∆∗.
Defective Coloring, which is also sometimes referred to in the literature as Improper
Coloring, is a natural generalization of the classical Coloring problem, which corresponds
to the case ∆∗ = 0. The problem was introduced more than thirty years ago [2, 17], and
since then has attracted a great deal of attention [1, 4, 6, 13, 14, 16, 23, 25, 28, 32, 33, 34].

From the point of view of applications, Defective Coloring is particularly interesting
in the context of wireless communication networks, where the assignment of colors to vertices
often represents the assignment of frequencies to communication nodes. In many practical
settings, the requirement of traditional coloring that all neighboring nodes receive distinct
colors is too rigid, as a small amount of interference is often tolerable, and may lead to
solutions that need drastically fewer frequencies. Defective Coloring allows one to model
this tolerance through the parameter ∆∗. As a result the problem’s complexity has been
well-investigated in graph topologies motivated by such applications, such as unit-disk graphs
and various classes of grids [5, 7, 8, 10, 26, 27]. For more background we refer to [22, 31].

In this paper we study Defective Coloring from the point of view of parameterized
complexity [18, 19, 21, 39]. The problem is of course NP-hard, even for small values of
χd,∆∗, as it generalizes Coloring. We are therefore strongly motivated to bring to bear
the powerful toolbox of structural graph parameters, such as treewidth, which have proved
extremely successful in tackling other intractable hard problems. Indeed, Coloring is one of
the success stories of this domain, since the complexity of this flagship problem with respect
to treewidth (and related parameters pathwidth, feedback vertex set, vertex cover) is by now
extremely well-understood [37, 30]. We pose the natural question of whether similar success
can be achieved for Defective Coloring, or whether the addition of ∆∗ significantly alters
the complexity behavior of the problem. Such results are not yet known for Defective
Coloring, except for the fact that it was observed in [9] that the problem admits (by
standard techniques) a roughly (χd∆∗)tw-time algorithm, where tw is the graph’s treewidth.
In parameterized complexity terms, this shows that the problem is FPT parameterized by
tw +∆∗. One of our main motivating questions is whether this running time can be improved
qualitatively (is the problem FPT parameterized only by tw?) or quantitavely.

Our first result is to establish that the problem is W-hard not just for treewidth, but also
for several much more restricted structural graph parameters, such as pathwidth, tree-depth,
and feedback vertex set. We recall that for Coloring, the standard χd

tw algorithm is FPT
by tw, as graphs of bounded treewidth also have bounded chromatic number (Lemma 1).
Our result shows that the complexity of the problem changes drastically with the addition of
the new parameter ∆∗, and it appears likely that tw must appear in the exponent of ∆∗ in
the running time, even when ∆∗ is large. More strongly, we establish this hardness even for
the case χd = 2, which corresponds to the problem of partitioning a graph into two parts so
as to minimize their maximum degree. This identifies Defective Coloring as another
member of a family of generalizations of Coloring (such as Equitable Coloring or List
Coloring) which are hard for treewidth [20].

As one might expect, the W-hardness results on Defective Coloring parameterized
by treewidth (or pathwidth, or tree-depth) easily carry over for values of χd larger than 2.
Surprisingly, we show that this is not the case for the parameter feedback vertex set, for
which the only W-hard case is 2-coloring: we establish with a simple win/win argument that



R. Belmonte, M. Lampis, and V. Mitsou 10:3

Table 1 Summary of results. Hardness results for tree-depth imply the same bounds for treewidth
and pathwidth. Conversely, algorithms which apply to treewidth apply also to all other parameters.

Parameter Result (Exact solution) Ref. Result (Approximation) Ref.
Feedback
Vertex Set

W[1]-hard for χd = 2 Thm 2 +1-approximation in
time fvsO(fvs)

Cor 28

FPT for χd 6= 2 Thm 20
Tree-depth W[1]-hard for any χd ≥ 2 Thm 2 W[1]-hard to color with

(3/2− ε)χd +O(1) colors
Thm 26

Treewidth,
Pathwidth

No no(pw) or no(tw) algo-
rithm under ETH

Thm 14 (1 + ε)-approximation for
∆∗ in (tw/ε)O(tw)

Thm 23

2-approximation for χd

in twO(tw)
Thm 25

Vertex Cover vcO(vc) algorithm Thm 21

the problem is FPT for any other value of χd. We also show that if one considers sufficiently
restricted parameters, such as vertex cover, the problem does eventually become FPT.

Our second step is to enhance the W-hardness result mentioned above with the aim of
determining as precisely as possible the complexity of Defective Coloring parameterized
by treewidth. Our reduction for tree-depth and feedback vertex set is quadratic in the
parameter, and hence implies that no algorithm can solve the problem in time no(

√
tw) under

the Exponential Time Hypothesis (ETH) [29]. We therefore present a second reduction,
which applies only to pathwidth and treewidth, but manages to show that no algorithm can
solve the problem in time no(pw) or no(tw) under the ETH. This lower bound is tight, as it
matches asymptotically the exponent given in the algorithm of [9].

To complement the above results, we also consider the problem from the point of view of
(parameterized) approximation. Here things become significantly better: we give an algorithm
using a technique of [36] which for any χd and error ε > 0 runs in time (tw/ε)O(tw)nO(1) and
approximates the optimal value of ∆∗ within a factor of (1 + ε). Hence, despite the problem’s
W-hardness, we produce a solution arbitrarily close to optimal in FPT time.

Motivated by this algorithm we also consider the complementary approximation problem:
given ∆∗ find a solution that comes as close to the minimum number of colors needed as
possible. By building on the approximation algorithm for ∆∗, we are able to present a
(tw)O(tw)nO(1) algorithm that achieves a 2-approximation for this problem. One can observe
that this is not far from optimal, since an FPT algorithm with approximation ratio better than
3/2 would contradict the problem’s W-hardness for χd = 2. However, this simple argument
is unsatisfying, because it does not rule out algorithms with a ratio significantly better than
3/2, if one also allows a small additive error; indeed, we observe that when parameterized by
feedback vertex set the problem admits an FPT algorithm that approximates the optimal
χd within an additive error of just 1. To resolve this problem we present a gap-introducing
version of our reduction which, for any i produces an instance for which the optimal value of
χd is either 2i, or at least 3i. In this way we show that, when parameterized by tree-depth,
pathwidth, or treewidth, approximating the optimal value of χd better than 3/2 is “truly”
hard, and this is not an artifact of the problem’s hardness for 2-coloring.

2 Definitions and Preliminaries

For a graph G = (V,E) and two integers χd ≥ 1, ∆∗ ≥ 0, we say that G admits a (χd,∆∗)-
coloring if one can partition V into χd sets such that the graph induced by each set has

STACS 2018
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maximum degree at most ∆∗. Defective Coloring is the problem of deciding, given
G,χd,∆∗, whether G admits a (χd,∆∗)-coloring. For ∆∗ = 0 this corresponds to Coloring.

We assume the reader is familiar with basic notions in parameterized complexity, such as
the classes FPT and W[1]. For the relevant definitions we refer to the standard textbooks
[18, 19, 21, 39]. We rely on a number of well-known graph measures: treewidth [12],
pathwidth, tree-depth [38], feedback vertex set, and vertex cover, denoted respectively as
tw(G),pw(G), td(G), fvs(G), vc(G), where we drop G if it is clear from the context.

I Lemma 1. For any graph G we have tw(G)− 1 ≤ fvs(G) ≤ vc(G) and tw(G) ≤ pw(G) ≤
td(G)− 1 ≤ vc(G). Furthermore, any graph G admits a (tw(G) + 1, 0)-coloring, a (pw(G) +
1, 0)-coloring, a (td(G), 0)-coloring, and a (fvs(G) + 2, 0)-coloring.

The Exponential Time Hypothesis (ETH) states that 3-SAT on instances with n variables
and m clauses cannot be solved in time 2o(n+m) [29]. We define the k-Multi-Colored
Clique problem as follows: we are given a graph G = (V,E), a partition of V into k

independent sets V1, . . . , Vk, such that for all i ∈ {1, . . . , k} we have |Vi| = n, and we are
asked if G contains a k-clique. It is well-known that this problem is W[1]-hard parameterized
by k, and that it does not admit any no(k) algorithm, unless the ETH is false [18].

3 W-hardness for Feedback Vertex Set and Tree-depth

The main result of this section states that deciding if a graph admits a (2,∆∗)-coloring,
where ∆∗ is part of the input, is W[1]-hard parameterized by either fvs or td. Because of
standard relations between graph parameters (Lemma 1), this implies also the same problem’s
W-hardness for parameters pw and tw. As might be expected, it is not hard to extend
our proof to give hardness for deciding if a (χd,∆∗)-coloring exists, for any constant χd,
parameterized by tree-depth (and hence, also treewidth and pathwidth). What is perhaps
more surprising is that this cannot be done in the case of feedback vertex set. Superficially,
the reason we cannot extend the reduction in this case is that one of the gadgets we use
in many copies in our construction has large fvs if χd > 2. However, we give a much more
convincing reason in Theorem 20 of Section 5 where we show that Defective Coloring is
FPT parameterized by fvs for χd ≥ 3, and therefore, if we could extend our reduction in this
case it would prove that FPT=W[1].

The main theorem of this section is stated below. We then present the reduction in
Sections 3.1, 3.2, and give the Lemmata that imply Theorem 2 in Section 3.3.

I Theorem 2. Deciding if a graph G admits a (2,∆∗)-coloring, where ∆∗ is part of the input,
is W[1]-hard parameterized by fvs(G). Deciding if a graph G admits a (χd,∆∗)-coloring,
where χd ≥ 2 is any fixed constant and ∆∗ is part of the input is W[1]-hard parameterized by
td(G).

3.1 Basic Gadgets
Before we proceed, we present some basic gadgets that will be useful in all the reductions of
this paper (Theorems 2, 14, 26). We first define a building block T (i, j) which is a graph that
can be properly colored with i colors, but admits no (i− 1, j)-coloring (similar constructions
appears in [28]). We then use this graph to build two gadgets: the Equality Gadget and the
Palette Gadget (Definitions 5 and 8). Informally, for given χd,∆∗, the equality gadget allows
us to express the constraint that two vertices v1, v2 of a graph must receive the same color
in any valid (χd,∆∗)-coloring. The palette gadget will be used to express the constraint
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that, among three vertices v1, v2, v3, there must exist two with the same color. For both
gadgets we first prove formally that they express these constraints (Lemmata 6 and 9). We
then show that, under certain conditions, these gadgets can be added to any graph without
significantly increasing its tree-depth or feedback vertex set (Lemmata 7 and 10).

I Definition 3. Given two integers i > 0, j ≥ 0, we define the graph T (i, j) recursively as
follows: T (1, j) = K1 for all j; for i > 1, T (i, j) is the graph obtained by taking (j + 1)
disjoint copies of T (i− 1, j) and adding to the graph a new universal vertex.

I Lemma 4. For all i > 0, j ≥ 0 we have: T (i, j) admits an (i, 0)-coloring; T (i, j) does not
admit an (i− 1, j)-coloring; td(T (i, j)) = pw(T (i, j)) + 1 = tw(T (i, j)) + 1 = i.

I Definition 5. (Equality Gadget) For i ≥ 2, j ≥ 0, we define the graph Q(u1, u2, i, j) as
follows: Q contains ij + 1 disjoint copies of T (i− 1, j) as well as two vertices u1, u2 which
are connected to all vertices except each other.

I Lemma 6. Let G = (V,E) be a graph with v1, v2 ∈ V and let G′ be the graph obtained
from G by adding to it a copy of Q(u1, u2, χd,∆∗) and identifying u1 with v1 and u2 with
v2. Then, any (χd,∆∗)-coloring of G′ must give the same color to v1, v2. Furthermore, if
there exists a (χd,∆∗)-coloring of G that gives the same color to v1, v2, this coloring can be
extended to a (χd,∆∗)-coloring of G′.

I Lemma 7. Let G = (V,E) be a graph, S ⊆ V , and G′ be a graph obtained from G by
repeated applications of the following operation: we select two vertices v1, v2 ∈ V such that
v1 ∈ S, add a new copy of Q(u1, u2, χd,∆∗) and identify ui with vi, for i ∈ {1, 2}. Then
td(G′) ≤ td(G \S) + |S|+χd− 1. Furthermore, if χd = 2 we have fvs(G′) ≤ fvs(G \S) + |S|.

I Definition 8. (Palette Gadget) For i ≥ 3, j ≥ 0 we define the graph P (u1, u2, u3, i, j) as
follows: P contains

(
i
2
)
j + 1 copies of T (i− 2, j), as well as three vertices u1, u2, u3 which

are connected to every vertex of P except each other.

I Lemma 9. Let G = (V,E) be a graph with v1, v2, v3 ∈ V and let G′ be the graph
obtained from G by adding to it a copy of P (u1, u2, u3, χd,∆∗) and identifying ui with vi for
i ∈ {1, 2, 3}. Then, in any (χd,∆∗)-coloring of G′ at least two of the vertices of {v1, v2, v3}
must share a color. Furthermore, if there exists a (χd,∆∗)-coloring of G that gives the same
color to two of the vertices of {v1, v2, v3}, this coloring can be extended to a (χd,∆∗)-coloring
of G′.

I Lemma 10. Let G = (V,E) be a graph, S ⊆ V , and G′ be a graph obtained from G

by repeated applications of the following operation: we select three vertices v1, v2, v3 ∈ V
such that v1, v2 ∈ S, add a new copy of P (u1, u2, u3, χd,∆∗) and identify ui with vi, for
i ∈ {1, 2, 3}. Then td(G′) ≤ td(G \ S) + |S|+ χd − 2.

3.2 Construction
We are now ready to present a reduction from k-Multi-Colored Clique. In this section
we describe a construction which, given an instance of this problem (G, k) as well as an
integer χd ≥ 2 produces an instance of Defective Coloring. Recall that we assume
that in the initial instance G = (V,E) is given to us partitioned into k independent sets
V1, . . . , Vk, all of which have size n. We will produce a graph H(G, k, χd) and an integer ∆∗
with the property that H admits a (χd,∆∗)-coloring if and only if G has a k-clique. In the
next section we prove the correctness of the construction and give bounds on the values of
td(H) and fvs(H) to establish Theorem 2.
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In our new instance we set ∆∗ = |E| −
(
k
2
)
. Let us now describe the graph H. Since we

will repeatedly use the gadgets from Definitions 5 and 8, we will use the following convention:
whenever v1, v2 are two vertices we have already introduced to H, when we say that we
add an equality gadget Q(v1, v2), this means that we add to H a copy of Q(u1, u2, χd,∆∗)
and then identify u1, u2 with v1, v2 respectively (similarly for palette gadgets). To ease
presentation we will gradually build the graph by describing its different conceptual parts.

Palette Part. Informally, the goal of this part is to obtain two vertices (pA, pB) which are
guaranteed to have different colors. This part contains the following:
1. Two vertices called pA, pB which we will call the main palette vertices.
2. For all i ∈ {1, . . . ,∆∗}, j ∈ {A,B} a vertex pij .
3. For all i ∈ {1, . . . ,∆∗}, j ∈ {A,B} we add an equality gadget Q(pj , pij).
4. An edge between pA, pB .
5. For all i ∈ {1, . . . ,∆∗}, j ∈ {A,B} an edge from pj to pij .

Choice Part. Informally, the goal of this part is to encode a choice of a vertex in each Vi.
To this end we make 2n choice vertices for each color class of the original instance. The
selection will be encoded by counting how many of the first n of these vertices have the same
color as pA. Formally, this part contains the following:
6. For all i ∈ {1, . . . , k}, j ∈ {1, . . . , 2n} the vertex cij . We call these the choice vertices.
7. For all i ∈ {1, . . . , k}, j ∈ {A,B} the vertex gij . We call these the guard vertices.
8. For all i ∈ {1, . . . , k}, j ∈ {1, . . . , 2n} edges between cij and the vertices giA and giB .
9. For all i ∈ {1, . . . , k}, j ∈ {A,B} we add an equality gadget Q(pj , gij).
10. If χd ≥ 3, for all i ∈ {1, . . . , k}, j ∈ {1, . . . , 2n} we add a palette gadget P (pA, pB , cij).

Transfer Part. Informally, the goal of this part is to transfer the choices of the previous
part to the rest of the graph. For each color class of the original instance we make (k − 1)
“low” transfer vertices, whose deficiency will equal the choice made in the previous part, and
(k− 1) “high” transfer vertices, whose deficiency will equal the complement of the same value.
Formally, this part of H contains the following:
11. For i, j ∈ {1, . . . , k}, i 6= j the vertex hi,j and the vertex li,j . We call these the high and

low transfer vertices.
12. For i, j ∈ {1, . . . , k}, i 6= j and for all l ∈ {1, . . . , n} an edge from li,j to cil.
13. For i, j ∈ {1, . . . , k}, i 6= j and for all l ∈ {n+ 1, . . . , 2n} an edge from hi,j to cil.
14. For all i, j ∈ {1, . . . , k}, i 6= j we add an equality gadget Q(pA, li,j) and an equality

gadget Q(pA, hi,j).

Edge representation. Informally, this part contains a gadget representing each edge of G.
Each gadget will contain a special vertex which will be able to receive the color of pB if
and only if the corresponding edge is part of the clique. Formally, we assume that all the
vertices of each Vi are numbered {1, . . . , n}. For each edge e of G, if e connects the vertex
with index i1 from Vj1 with the vertex with index i2 from Vj2 (assuming without loss of
generality j1 < j2) we add the following vertices and edges to H:
15. Four independent sets L1

e, H
1
e , L

2
e, H

2
e with respective sizes n− i1, i1, n− i2, i2.

16. Edges connecting the vertex lj1,j2 (respectively, hj1,j2 , lj2,j1 , hj2,j1) with all vertices of
the set L1

e (respectively the sets H1
e , L

2
e, H

2
e ).

17. A vertex ce, connected to all vertices in L1
e ∪H1

e ∪ L2
e ∪H2

e .
18. If χd ≥ 3, for each v ∈ L1

e ∪H1
e ∪ L2

e ∪H2
e ∪ {ce} we add a palette gadget P (pA, pB , v).
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Finally, once we have added a gadget (as described above) for each e ∈ E, we add the
following structure to H in order to ensure that we have a sufficient number of edges included
in our clique:
19. A vertex cU (universal checker) connected to all ce for e ∈ E.
20. An equality gadget Q(pA, cU ).

Budget-Setting. Our construction is now almost done, except for the fact that some crucial
vertices have degree significantly lower than ∆∗ (and hence are always trivially colorable). To
fix this, we will effectively lower their deficiency budget by giving them some extra neighbors.
Formally, we add the following:
21. For each guard vertex gij , with j ∈ {A,B}, we construct an independent set Gij of size

∆∗ − n and connect it to gij . For each v ∈ Gij we add an equality gadget Q(pj , v).
22. For each transfer vertex li,j (respectively hi,j), we construct an independent set of size

∆∗ − n and connect all its vertices to li,j (or respectively to hi,j). For each vertex v of
this independent set we add an equality gadget Q(pA, v).

23. For each vertex ce we add an independent set of size ∆∗ and connect all its vertices to
ce. For each vertex v of this independent set we add an equality gadget Q(pB , v).

This completes the construction of the graph H.

3.3 Correctness
To establish Theorem 2 we need to establish three properties of the graph H(G, k, χd)
described in the preceding section: that the existence of a k-clique in G implies that H
admits a (χd,∆∗)-coloring; that a (χd,∆∗)-coloring of H implies the existence of a k-clique
in G; and that the tree-depth and feedback vertex set of G are bounded by some function of
k. These are established in the Lemmata below.

I Lemma 11. For any χd ≥ 2, if G contains a k-clique, then the graph H(G, k, χd) described
in the previous section admits a (χd,∆∗)-coloring.

Proof. Consider a clique of size k in G that includes exactly one vertex from each Vi. We
will denote this clique by a function f : {1, . . . , k} → {1, . . . , n}, that is, we assume that the
clique contains the vertex with index f(i) from Vi. We produce a (χd,∆∗)-coloring of H as
follows: vertex pA receives color 1, while vertex pB receives color 2. All vertices for which
we have added an equality gadget with one endpoint identified with pA (respectively pB)
take color 1 (respectively 2). We use Lemma 6 to properly color the internal vertices of the
equality gadgets.

We have still left uncolored the choice vertices cij as well as the internal vertices
L1
e, H

1
e , L

2
e, H

2
e , ce of the edge gadgets. We proceed as follows: for all i ∈ {1, . . . , k} we

use color 1 on the vertices cil such that l ∈ {1, . . . , f(i)}∪ {n+ 1, . . . , 2n− f(i)}; we use color
2 on all remaining choice vertices. For every e ∈ E that is contained in the clique we color all
vertices of the sets L1

e, H
1
e , L

2
e, H

2
e with color 1, and ce with color 2. For all other edges we

use the opposite coloring: we color all vertices of the sets L1
e, H

1
e , L

2
e, H

2
e with color 2, and

ce with color 1. We use Lemma 9 to properly color the internal vertices of palette gadgets,
since all palette gadgets that we add use either color 1 or color 2 twice in their endpoints.
This completes the coloring.

To see that the coloring we described is a (χd,∆∗)-coloring, first we note that by Lemmata
6,9 internal vertices of equality and palette gadgets are properly colored. Vertices pA, pB
have exactly ∆∗ neighbors with the same color; guard vertices gij have exactly n neighbors
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with the same color among the choice vertices, hence exactly ∆∗ neighbors with the same
color overall; choice vertices have at most k neighbors of the same color, and we can assume
that k < |E| −

(
k
2
)
; the vertex cU has exactly ∆∗ = |E| −

(
k
2
)
neighbors with color 1, since

the clique contains exactly
(
k
2
)
edges; all internal vertices of edge gadgets have at most one

neighbor of the same color. Finally, for the transfer vertices li,j and hi,j , we note that li,j
(respectively hi,j) has exactly f(i) (respectively n− f(i)) neighbors with color 1 among the
choice vertices. Furthermore, when i < j, li,j (respectively hi,j) has |L1

e| (respectively |H1
e |)

neighbors with color 1 in the edge gadgets, those corresponding to the edge e that belongs
in the clique between Vi and Vj . But by construction |L1

e| = n− f(i) and |H1
e | = f(i), and

with similar observations for the case j < i we conclude that all vertices have deficiency at
most ∆∗. J

I Lemma 12. For any χd ≥ 2, if the graph H(G, k, χd) described in the previous section
admits a (χd,∆∗)-coloring, then G contains a k-clique.

I Lemma 13. For any χd ≥ 2, the graph H(G, k, χd) described in the previous section has
td(H) = O(k2 + χd). Furthermore, if χd = 2, then fvs(H) = O(k2).

Theorem 2 now follows directly from the reduction we have described and Lemmata
11,12,13.

4 ETH-based Lower Bounds for Treewidth and Pathwidth

In this section we present a reduction which strengthens the results of Section 3 for the
parameters treewidth and pathwidth. In particular, the reduction we present here establishes
that, under the ETH, the known algorithm for Defective Coloring for these parameters
is essentially best possible.

We use a similar presentation order as in the previous section, first giving the construction
and then the Lemmata that imply the result. Where possible, we re-use the gadgets we have
already presented. The main theorem of this section states the following:

I Theorem 14. For any fixed χd ≥ 2, if there exists an algorithm which, given a graph
G = (V,E) and parameters χd,∆∗ decides if G admits a (χd,∆∗)-coloring in time no(pw),
then the ETH is false.

4.1 Basic Gadgets
We use again the equality and palette gadgets of Section 3 (Definitions 5,8). Before proceeding,
let us show that adding these gadgets to the graph does not increase the pathwidth too much.
For the two types of gadget Q,P , we will call the vertices u1, u2(, u3) the endpoints of the
gadget.

I Lemma 15. Let G = (V,E) be a graph and let G′ be the graph obtained from G by repeating
the following operation: find a copy of Q(u1, u2, χd,∆∗), or P (u1, u2, u3, χd,∆∗); remove all
its internal vertices from the graph; and add all edges between its endpoints which are not
already connected. Then tw(G) ≤ max{tw(G′), χd} and pw(G) ≤ pw(G′) + χd.

4.2 Construction
We now describe a construction which, given an instance G = (V,E), k, of k-Multi-
Colored Clique and a constant χd returns a graph H(G, k, χd) and an integer ∆∗ such
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that H admits a (χd,∆∗)-coloring if and only if G has a k-clique, and the pathwidth of H is
O(k + χd). We use m to denote |E|, and we set ∆∗ = m−

(
k
2
)
. As in Section 3 we present

the construction in steps to ease presentation, and we use the same conventions regarding
adding Q and P gadgets to the graph.

Palette Part. This part repeats steps 1-5 of the construction of Section 3. We recall
that this creates two main palette vertices pA, pB (which are eventually guaranteed to have
different colors).

Choice Part. In this part we construct a sequence of independent sets, arranged in what
can be thought of as a k × 2m grid. The idea is that the choice we make in coloring the
first independent set of every row will be propagated throughout the row. We can therefore
encode k choices of a number between 1 and n, which will encode the clique.
6. For each i ∈ {1, . . . , k}, for each j ∈ {1, . . . , 2m} we construct an independent set Ci,j

of size n.
7. (Backbone vertices) For each i ∈ {1, . . . , k}, for each j ∈ {1, . . . , 2m − 1}, for each

l ∈ {A.B} we construct a vertex bli,j . We connect bli,j to all vertices of Ci,j and all
vertices of Ci,j+1.

8. For each backbone vertex bli,j added in the previous step, for l ∈ {A,B}, we add an
equality gadget Q(pl, bli,j).

Edge Representation. In the k×2m grid of independent sets we have constructed we devote
two columns to represent each edge of G. In the remainder we assume some numbering of
the edges of E with the numbers {1, . . . ,m}, as well as a numbering of each Vi with the
numbers {1, . . . , n}. Suppose that the j-th edge of E, where j ∈ {1, . . . ,m} connects the
j1-th vertex of Vi1 to the j2-th vertex of Vi2 , where j1, j2 ∈ {1, . . . , n} and i1, i2 ∈ {1, . . . , k}.
We perform the following steps for each such edge.
9. We construct four independent sets H1

j , L
1
j , H

2
j , L

2
j with respective sizes n− j1, j1, n−

j2, j2.
10. We construct four vertices h1

j , l
1
j , h

2
j , l

2
j . We connect h1

j (respectively l1j , h2
j , l

2
j ) with all

vertices of H1
j (respectively L1

j , H
2
j , L

2
j ).

11. We connect h1
j to all vertices of Ci1,2j−1, l1j to all vertices of Ci1,2j , h2

j to all vertices of
Ci2,2j−1, l2j to all vertices of Ci2,2j .

12. We add equality gadgets Q(pA, h1
j ), Q(pA, l1j ), Q(pA, h2

j ), Q(pA, l2j ).
13. We add a checker vertex cj and connect it to all vertices of H1

j ∪ L1
j ∪H2

j ∪ L2
j .

Validation and Budget-Setting. Finally, we add a vertex that counts how many edges we
have included in our clique, as well as appropriate vertices to diminish the deficiency budget
of various parts of our construction.
14. We add a universal checker vertex cU and connect it to all vertices cj added in step 13.

We add an equality gadget Q(pA, cU ).
15. For every vertex cj added in step 13 we construct an independent set of size ∆∗ and

connect all its vertices to cj . For each vertex v in this set we add an equality gadget
Q(pB , v).

16. For each vertex constructed in step 10 (h1
j , l

1
j , h

2
j , l

2
j ), we construct an independent set

of size ∆∗ − n and connect it to the vertex. For each vertex v of this independent set
we add an equality gadget Q(pA, v).
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17. For each backbone vertex bli,j , with l ∈ {A,B}, we construct an independent set of size
∆∗ − n and connect it to bli,j . For each vertex v of this independent set we add an
equality gadget Q(pl, v).

18. If χd ≥ 3, for each vertex v added in steps 6-17 we add a palette gadget P (pA, pB , v).

4.3 Correctness
I Lemma 16. For any χd ≥ 2, if G contains a k-clique then the graph H(G, k, χd) described
in the previous section admits a (χd,∆∗)-coloring.

I Lemma 17. For any χd ≥ 2, if the graph H(G, k, χd) described in the previous section
admits a (χd,∆∗)-coloring, then G contains a k-clique.

I Lemma 18. For the graph H(G, k, χd) described in the previous section pw(H) = O(k+χd).

The proof of Theorem 14 now follows directly from Lemmata 16,17,18.

5 Exact Algorithms for Treewidth and Other Parameters

In this section we present several exact algorithms for Defective Coloring. Theorem
19 gives a treewidth-based algorithm which can be obtained using standard techniques.
Essentially the same algorithm was already sketched in [9], but we give another version
here for the sake of completeness and because it is a building block for the approximation
algorithm of Theorem 23. Theorem 20 uses a win/win argument to show that the problem is
FPT parameterized by fvs when χd 6= 2 and therefore explains why the reduction presented
in Section 3 only works for 2 colors. Theorem 21 uses a similar argument to show that the
problem is FPT parameterized by vc (for any χd).

I Theorem 19. There is an algorithm which, given a graph G = (V,E), parameters χd,∆∗,
and a tree decomposition of G of width tw, decides if G admits a (χd,∆∗)-coloring in time
(χd∆∗)O(tw)nO(1).

I Theorem 20. Defective Coloring is FPT parameterized by fvs for χd 6= 2. More
precisely, there exists an algorithm which given a graph G = (V,E), parameters χd,∆∗, with
χd 6= 2, and a feedback vertex set of G of size fvs, decides if G admits a (χd,∆∗)-coloring in
time fvsO(fvs)nO(1).

I Theorem 21. Defective Coloring is FPT parameterized by vc. More precisely, there
exists an algorithm which, given a graph G = (V,E), parameters χd,∆∗, and a vertex cover
of G of size vc, decides if G admits a (χd,∆∗)-coloring in time vcO(vc)nO(1).

6 Approximation Algorithms and Lower Bounds

In this section we present two approximation algorithms which run in FPT time parameterized
by treewidth. The first algorithm (Theorem 23) is an FPT approximation scheme which,
given a desired number of colors χd, is able to approximate the minimum feasible value
of ∆∗ for this value of χd arbitrarily well (that is, within a factor (1 + ε)). The second
algorithm, which also runs in FPT time parameterized by treewidth, given a desired value
for ∆∗, produces a solution that approximates the minimum number of colors χd within a
factor of 2.

These results raise the question of whether it is possible to approximate χd as well as
we can approximate ∆∗, that is, whether there exists an algorithm which comes within a
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factor (1 + ε) (rather than 2) of the optimal number of colors. As a first response, one could
observe that such an algorithm probably cannot exist, because the problem is already hard
when χd = 2, and therefore an FPT algorithm with multiplicative error less than 3/2 would
imply that FPT=W[1]. However, this does not satisfactorily settle the problem as it does
not rule out an algorithm that achieves a much better approximation ratio, if we allow it to
also have a small additive error in the number of colors. Indeed, as we observe in Corollary
28, it is possible to obtain an algorithm which runs in FPT time parameterized by feedback
vertex set and has an additive error of only 1, as a consequence of the fact that the problem
is FPT for χd ≥ 3. This poses the question of whether we can design an FPT algorithm
parameterized by treewidth which, given a (χd,∆∗)-colorable graph, produces a coloring
with ρχd +O(1) colors, for ρ < 3/2.

In the second part of this section we settle this question negatively by showing, using
a recursive construction that builds on Theorem 2, that such an algorithm cannot exist.
More precisely, we present a gap-introducing version of our reduction: the ratio between the
number of colors needed to color Yes and No instances remains 3/2, even as the given χd
increases. This shows that the “correct” multiplicative approximation ratio for this problem
really lies somewhere between 3/2 and 2, or in other words, that there are significant barriers
impeding the design of a better than 3/2 FPT approximation for χd, beyond the simple fact
that 2-coloring is hard.

6.1 Approximation Algorithms
Our first approximation algorithm, which is an approximation scheme for the optimal value
of ∆∗, relies on a method introduced in [36] (see also [3]), and a theorem of [11]. The
high-level idea is the following: intuitively, the obstacle that stops us from obtaining an FPT
running time with the dynamic programming algorithm of Theorem 19 is that the dynamic
program is forced to store some potentially large values for each vertex. More specifically,
to characterize a partial solution we need to remember not just the color of each vertex
in a bag, but also how many neighbors with the same color this vertex has already seen
(which is a value that can go up to ∆∗). The main trick now is to “round” these values in
order to decrease the number of possible states a vertex can be found in. To do this, we
select an appropriate value δ (polynomial in ε

logn ), and try to replace every value that the
dynamic program would calculate with the next higher integer power of (1 + δ). This has
the advantage of limiting the number of possible values from ∆∗ to log(1+δ) ∆∗ ≈ log ∆∗

δ , and
this is sufficient to obtain the promised running time. The problem is now that the rounding
we applied introduces an approximation error, which is initially a factor of at most (1 + δ),
but may increase each time we apply an arithmetic operation as part of the algorithm. To
show that this error does not get out of control we show that in any bag of the tree all values
stored are within a factor (1 + δ)h of the correct ones, where h is the height of the bag. We
then use a theorem of Bodlaender and Hagerup [11] which states that any tree decomposition
can be balanced in such a way that its height is at most O(logn), and as a result we obtain
that all values are sufficiently close to being correct.

The second algorithm we present in this section (Theorem 25) uses the approximation
scheme for ∆∗ to obtain an FPT 2-approximation for χd. The idea here is that, given a
(χd,∆∗)-colorable graph, we first produce a (χd, (1 + ε)∆∗)-coloring using the algorithm of
Theorem 23, and then apply a procedure which uses 2 colors for each color class of this
solution but manages to divide by two the number of neighbors with the same color of every
vertex. This is achieved with a simple polynomial-time local search procedure.

STACS 2018
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I Theorem 22. [11] There is a polynomial-time algorithm which, given a graph G = (V,E)
and a tree decomposition of G of width tw, produces a tree decomposition of G of width at
most 3tw + 2 and height O(logn).

I Theorem 23. There is an algorithm which, given a graph G = (V,E), parameters χd,∆∗,
a tree decomposition of G of width tw, and an error parameter ε > 0, either returns a
(χd, (1 + ε)∆∗)-coloring of G, or correctly concludes that G does not admit a (χd,∆∗)-
coloring, in time (tw/ε)O(tw)nO(1).

I Lemma 24. There exists a polynomial-time algorithm which, given a graph with maximum
degree ∆, produces a two-coloring of that graph where all vertices have at most ∆/2 neighbors
of the same color.

I Theorem 25. There is an algorithm which, given a graph G = (V,E), parameters χd,∆∗,
and a tree decomposition of G of width tw, either returns a (2χd,∆∗)-coloring of G, or
correctly concludes that G does not admit a (χd,∆∗)-coloring, in time (tw)O(tw)nO(1).

6.2 Hardness of Approximation
The main result of this section is that χd cannot be approximated with a factor better than
3/2 in FPT time (for parameters tree-depth, pathwidth, or treewidth), even if we allow the
algorithm to also have a constant additive error. We remark that an FPT algorithm with
additive error 1 is easy to obtain for feedback vertex set (Corollary 28).

I Theorem 26. For any fixed χd > 0, if there exists an algorithm which, given a graph
G = (V,E) and a ∆∗ ≥ 0, correctly distinguishes between the case that G admits a (2χd,∆∗)-
coloring, and the case that G does not admit a (3χd − 1,∆∗)-coloring in FPT time parame-
terized by td(G), then FPT=W[1].

I Corollary 27. For any constants δ1, δ2 > 0, if there exists an algorithm which, given a
graph G = (V,E) that admits a (χd,∆∗)-coloring and parameters χd,∆∗, is able to produce
a (( 3

2 − δ1)χd + δ2,∆∗)-coloring of G in FPT time parameterized by td(G), then FPT=W[1].

I Corollary 28. There is an algorithm which, given a graph G = (V,E), parameters χd,∆∗,
and a feedback vertex set of G of size fvs, either returns a (χd + 1,∆∗)-coloring of G, or
correctly concludes that G does not admit a (χd,∆∗)-coloring, in time (fvs)O(fvs)nO(1).

7 Conclusions

In this paper we classified the complexity of Defective Coloring with respect to some of
the most well-studied graph parameters, given essentially tight ETH-based lower bounds for
pathwidth and treewidth, and explored the parameterized approximability of the problem.
Though this gives a good first overview of the problem’s parameterized complexity landscape,
there are several questions worth investigating next. First, is it possible to make the lower
bounds of Section 4 even tighter, by precisely determining the base of the exponent in the
algorithm’s dependence? This would presumably rely on a stronger complexity assumption
such as the SETH, as in [37]. Second, can we determine the complexity of the problem with
respect to other structural parameters, such as clique-width [15], modular-width [24], or
neighborhood diversity [35]? For some of these parameters the existence of FPT algorithms
is already ruled out by the fact that Defective Coloring is NP-hard on cographs [9],
however the complexity of the problem is unknown if we also add χd or ∆∗ as a parameter.
Finally, it would be very interesting to close the gap between 2 and 3/2 on the performance
of the best treewidth-parameterized FPT approximation for χd.
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Abstract
We relate different approaches for proving the unsatisfiability of a system of real polynomial equa-
tions over Boolean variables. On the one hand, there are the static proof systems Sherali-Adams
and sum-of-squares (a.k.a. Lasserre), which are based on linear and semi-definite programming
relaxations. On the other hand, we consider polynomial calculus, which is a dynamic algebraic
proof system that models Gröbner basis computations.

Our first result is that sum-of-squares simulates polynomial calculus: any polynomial calculus
refutation of degree d can be transformed into a sum-of-squares refutation of degree 2d and
only polynomial increase in size. In contrast, our second result shows that this is not the case
for Sherali-Adams: there are systems of polynomial equations that have polynomial calculus
refutations of degree 3 and polynomial size, but require Sherali-Adams refutations of degree
Ω(
√

n/ log n) and exponential size.
A corollary of our first result is that the proof systems Positivstellensatz and Positivstellensatz

Calculus, which have been separated over non-Boolean polynomials, simulate each other in the
presence of Boolean axioms.
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1 Introduction

The area of proof complexity was founded in [8] and studies the complexity of proofs for co-NP
complete problems. Traditionally, one considers proof systems for proving the unsatisfiability
of (or refuting) a propositional formula in conjunctive normal form. If one faces a proof
system, there are two important questions to ask:
1. Does the system always produce proofs of polynomial size?
2. How strong is the system compared to other proof systems?

If the answer to the first question is yes, in which case the system is called p-bounded,
then NP = co-NP. Therefore, it is conjectured that no proof system is p-bounded and this
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has been proven for a number of weak proof systems. For the second question, one considers
the notion of polynomial simulation: A proof system P polynomial simulates a proof system
Q if for every Q-proof of size S there is a P-proof of size poly(S).

Nowadays, a large part of proof complexity focuses on weak proof systems, for which the
first question has already been answered negatively. One reason for this is that they often
model algorithms for solving hard problems and understanding the complexity of proofs
might shed light on the complexity of algorithmic approaches that implicitly or explicitly
search for proofs in the underlying proof system. The (semi-)algebraic proof systems we
consider in this paper also fall into this category and are used to prove the unsatisfiability of
a system F of real polynomial equations fi = 0 over n Boolean variables xj ∈ {0, 1}.1 On
the one hand, we consider polynomial calculus, which is a dynamic algebraic proof system
that allows to derive new polynomial equations that follow from F line-by-line. This proof
system was introduced in [7] to model Gröbner basis computations and proofs of degree d

(where the degree of all polynomials in the derivation is bounded by d) can be found in time
nO(d) by a bounded-degree variant of the Gröbner basis algorithm.

On the other hand, we consider the semi-algebraic proof system Sherali-Adams and
the stronger sum-of-squares proof system. They are based on the linear and semi-definite
programming hierarchies of Sherali-Adams [22] and Lasserre [15] and can be used to prove the
unsatisfiability of a system of polynomial equations and inequalities. Proofs of degree d can
be found algorithmically by solving a linear program (for Sherali-Adams) or a semi-definite
program (for sum-of-squares) of size nO(d). Contrary to polynomial calculus, both systems
are static in the sense that they provide the whole proof at once.

In order to compare these semi-algebraic proof systems with polynomial calculus, we
first remark that it is known that both systems cannot be simulated by polynomial calculus.
A simple example is the linear equation

∑n
i=1 xi = n + 1, which has a refutation of linear

size and degree 2 in Sherali-Adams and sum-of-squares, but requires polynomial calculus
refutations of degree Ω(n) and size 2Ω(n) [13]. Our first theorem states that sum-of-squares
is strictly stronger than polynomial calculus.

I Theorem 1.1. Let F be a system of polynomial equations over the reals. If F has a
polynomial calculus refutation of degree d and size S, then it has a sum-of-squares refutation
of degree 2d and size poly(S).

For the author of this paper this theorem was highly unexpected. In fact, there has been
some evidence that the contrary might be true. First, in the non-Boolean setting there are
systems of equations that are easier to refute for polynomial calculus than for sum-of-squares
[12] (see Section 2.4 for a discussion). Second, even for systems of polynomial equations over
Boolean variables, separations of polynomial calculus from its static version Nullstellensatz
were known [6].

Since sum-of-squares extends Nullstellensatz, it follows that the semi-definite lifts in
the sum-of-squares/Lasserre hierarchy are necessary for “flattening” a dynamic polynomial
calculus proof into a static one, although polynomial calculus is a purely algebraic system
without semi-definite components. Our second theorem concerns the question whether the
weaker Sherali-Adams linear programming hierarchy is already able to simulate polynomial
calculus. Here we have a negative answer (that we would have expected for sum-of-squares
as well).

1 Note that this subsumes the problem of refuting 3-CNF formulas, because a clause x ∨ y ∨ z can be
encoded as polynomial equation (1− x)y(1− z) = 0.
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I Theorem 1.2. There is a system F of polynomial equations over R[x1, . . . , xn] such that:
1. F has a polynomial calculus refutation of degree 3 and size O(n2).
2. Every Sherali-Adams refutation of F has degree Ω(

√
n/ log n) and size 2Ω(

√
n/ log n).

The lower bound is based on a modified version of the pebbling contradictions. The
original pebbling contradictions have already been used to separate Nullstellensatz degree from
polynomial calculus degree [6], but it turns out that they are easy to refute in Sherali-Adams.
To obtain contradictions that are hard for Sherali-Adams (and still easy for polynomial
calculus), we apply a substitution trick twice: first to show that the resulting contradiction
requires high degree in Sherali-Adams and second to obtain a size lower bound from a
degree lower bound. We believe that both techniques are also helpful for future lower bound
arguments for static proof systems.

2 Proof Systems

For this section we fix a system of real polynomial equations F = {f1 = 0, . . . , fm = 0} and
a system of polynomial inequalities H = {h1 > 0, . . . , hs > 0} over variables x1, . . . , xn. As
it is common in propositional proof complexity, we focus on the special case of polynomial
equations (and inequalities) over Boolean variables and consider the task of proving that a
system of polynomial equations (and/or inequalities) has no 0/1-solution. To enforce Boolean
variables, the axioms x2

j = xj are always included in the proof systems. In Section 2.4 we
briefly discuss non-Boolean variants.

Algebraic proof systems are used for proving the unsatisfiability of a system of multivariate
polynomial equations over some field F. As we focus on real polynomials we set F = R, unless
mentioned otherwise. Semi-algebraic proof systems are used to prove the unsatisfiability
of a system of polynomial equations and/or polynomial inequalities (in this setting the
polynomials are always real).

2.1 Algebraic Proof Systems: Nullstellensatz and Polynomial Calculus
Nullstellensatz [3] is a static algebraic proof system that is based on Hilbert’s Nullstellensatz.
A Nullstellensatz proof of f = 0 from F is a sequence of polynomials (g1, . . . , gm; q1, . . . , qn)
such that

m∑
i=1

gifi +
n∑

j=1
qj(x2

j − xj) = f. (1)

Note that the proof is sound in the sense every 0/1-assignment that satisfies F also satisfies
f = 0. The degree of the Nullstellensatz proof is max

(
{deg(gifi) : i ∈ [m]} ∪ {deg(qj) + 2 :

j ∈ [n]}
)
. The size of the derivation is the sum of the sizes of the binary encoding of the

polynomials f , gifi, qj(x2
j − xj), each represented as a sum of monomials. A Nullstellensatz

refutation of F is a proof of −1 = 0 from F , in which case F is unsatisfiable (i. e., has no
0/1-solution). The Nullstellensatz system is also complete: If F is an unsatisfiable system of
multi-linear polynomials, then it has a refutation of degree at most n.

Nullstellensatz is a static (or one-shot) proof system, as it provides the whole proof at
once. The dynamic version of Nullstellensatz is polynomial calculus (PC) [7]. It consists
of the following derivation rules for polynomial equations (fi = 0) ∈ F , polynomials f, g,
variables xj , and numbers a, b ∈ R:

fi = 0 ,
x2

j − xj = 0 ,
f = 0

xjf = 0 ,
g = 0 f = 0

ag + bf = 0 . (2)
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11:4 Polynomial Calculus, Sherali-Adams, and Sum-of-Squares Proofs

A polynomial calculus derivation of f = 0 from F is a sequence (r1 = 0, . . . , rL = 0) of
polynomial equations that are iteratively derived using the rules (2) and lead to f = rL = 0.
The degree of a derivation is the maximum degree of the polynomials in the derivation and
the size is the sum of the sizes of the binary encoding of the polynomials in the derivation. A
polynomial calculus refutation is a derivation of −1 = 0. It is straightforward to check that
polynomial calculus simulates Nullstellensatz: If F has a Nullstellensatz refutation of degree
d and size N , then it has a polynomial calculus refutation of degree d and size polynomial in
N .

In both systems proofs of bounded degree d can be found in time nO(d): for Nullstellensatz
the coefficients of the polynomials can be computed by solving a system of linear equations
of size nO(d), and for polynomial calculus this can be done by using a bounded degree variant
of the Gröbner basis algorithm [7].

2.2 Semi-algebraic proof systems: Sherali-Adams, Sum-of-Squares,
Positivstellensatz

Sherali-Adams is a static proof system that models the Sherali-Adams lift-and-project
hierarchy of linear programming relaxations [22]. It can also be viewed as an extension of
the Nullstellensatz system. A Sherali-Adams proof of f > 0 from (F ,H) is a sequence of
polynomials (g1, . . . , gm; q1, . . . , qn; p0, . . . , ps) such that

m∑
i=1

gifi +
n∑

j=1
qj(x2

j − xj) + p0 +
s∑

`=1
p`h` = f,

and where every p` (` > 0) has the form p` =
∑

A,B a`
A,B

∏
j∈A xj

∏
j∈B(1− xj) with non-

negative coefficients a`
A,B .2 Note that the polynomials p` : Rn → R are non-negative in [0, 1]n

and hence the proof is sound in the sense every 0/1-assignment that satisfies F and H also
satisfies f > 0. The degree (sometime called rank) of a Sherali-Adams proof is the maximum
degree of the polynomials gifi, qj(x2

j − xj), p0, p`h` and the size is the sum of the sizes of
their encoding. A Sherali-Adams refutation of (F ,H) is a proof of −1 > 0 from (F ,H). Note
that every Nullstellensatz refutation of F is a Sherali-Adams refutation of (F , ∅) by choosing
p0 = 0.

Sum-of-squares (SOS) is a semi-algebraic proof system that extends Nullstellensatz and
Sherali-Adams. It models the Lasserre hierarchy of semi-definite programming relaxations [15],
for which reason it is sometimes called Lasserre, and also builds on Putinar’s Positivstellensatz
[21]. The difference to Sherali-Adams is that the positive polynomials p` are now sums of
squares. Formally, a sum-of-squares proof of f > 0 from (F ,H) is a sequence of polynomials
(g1, . . . , gm; q1, . . . , qn; p0, . . . , ps) such that

m∑
i=1

gifi +
n∑

j=1
qj(x2

j − xj) + p0 +
s∑

`=1
p`h` = f, (3)

and where every p` (` > 0) has the form p` =
∑t`

c=1(p`,c)2 (and is encoded as such) for
arbitrary polynomials p`,c (in standard monomial form). Again, the degree of a proof is the
maximum degree of the polynomials gifi, qj(x2

j − xj), p0, p`h`, the size is the sum of the
sizes of their encoding. A sum-of-squares refutation is a proof of −1 > 0. It is not hard to see

2 We assume that the p` are explicitely provided in this form, whereas gi and qj are arbitrary polynomials
encoded in the standard way as a sum of monomials.
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that the positive polynomials p =
∑

A,B aA,B

∏
j∈A xj

∏
j∈B(1− xj) in the Sherali-Adams

proof system have a sum-of-squares proof (from F = H = ∅) of degree |A| + |B| + 1 and
size poly(p). It immediately follows that sum-of-squares simulates Sherali-Adams (the same
argument is also implicit in [2, 16]).
I Lemma 2.1. If (F ,H) has a Sherali-Adams refutation of degree d and size N , then it has
a sum-of-squares refutation of degree d + 1 and size poly(N).

Another semi-algebraic system that is related to sum-of-squares is Positivstellensatz. It
builds on Stengle’s Positivstellensatz (independently proven by Krivine [14] and Stengle
[23]), which has also been used to define a hierarchy of relaxations, see [20]. Our definition
of the Positivstellensatz proof system follows the one introduced in [12], a different way of
formalising Stengle’s Positivstellensatz as a proof system (without focusing on complexity)
was presented in [17]. We remark that Stengle’s Positivstellensatz and the Positivstellensatz
proof system as defined in [12] do not necessarily include the Boolean axioms x2

j − xj and
also work for polynomials over non-Boolean variables. To be precise, we will call the system
that is named “Positivstellensatz” in [12] “non-Boolean Positivstellensatz” in this paper (see
Section 2.4). To define the proof system, we consider for the system of polynomial inequalities
H = {h1 > 0, . . . , hs > 0} the system Ĥ = {

∏
`∈I h` > 0 : I ⊆ [s]}, which extends H

by taking products of polynomial inequalities. Clearly, (F ,H) is satisfiable if and only if
(F , Ĥ) is satisfiable. A Positivstellensatz proof of f > 0 from (F ,H) is a sum-of-squares
proof of f > 0 from (F , Ĥ). Note that on systems of polynomial equations (where H = ∅)
sum-of-squares and Positivstellensatz are the same.

One way of combining polynomial calculus with semi-algebraic proof systems is as follows.
Note that a Sherali-Adams, sum-of-squares, or Positivstellensatz proof of f > 0 can be
decomposed to

g + p0 +
∑

`

p`h` = f, (4)

m∑
i=1

gifi +
n∑

j=1
qj(x2

j − xj) = g, (5)

where (5) is a Nullstellensatz proof of g = 0. By replacing this Nullstellensatz proof of g = 0
with a polynomial calculus proof of g = 0, we obtain dynamic versions of the static semi-
algebraic proof systems. The dynamic version of Positivstellensatz is called Positivstellensatz
calculus and was also introduced in [12]. However, the proof of Theorem 1.1 (in particular
Lemma 3.1) implies that Positivstellensatz and Positivstellensatz calculus can simulate each
other.
I Corollary 2.2. If (F ,H) has a Positivstellensatz calculus refutation of degree d and size S,
then it has a Positivstellensatz refutation of degree 2d and size poly(S).
Proof. By definition, a Positivstellensatz calculus refutation of (F ,H) is a polynomial
calculus derivation of −1− p0 −

∑
` p`h` from F , where h` ∈ Ĥ. By Lemma 3.1, there is a

degree-2d, size poly(S) sum-of-squares proof of non-negativity of

−
(
−1− p0−

∑
` p`h`

)2 = −1− 2p0− p2
0− (2 + 2p0)

(∑
` p`h`

)
−
(∑

`

∑
`′ p`p`′h`′h`

)
, (6)

from (F , Ĥ), which in turn is a Positivstellensatz refutation of (F ,H). J

For completeness, we mention that there are also dynamic semi-algebraic proof systems
that are based on the Lovász-Schrijver lift-and-project method [18] and where one can infer
polynomial inequalities line-by-line (see [11] for an overview). These systems are, however,
much stronger and somewhat different from the proof systems considered in this paper.
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11:6 Polynomial Calculus, Sherali-Adams, and Sum-of-Squares Proofs

2.3 Twin variables

In all the proof systems mentioned above, it might be useful to introduce twin variables: for
every variable xj one has available the formal variable x¬j that expresses its “negation” 1−xj .
To ensure that they are complementary, the additional polynomial equality xj + x¬j = 1 is
always present in F . Except for Sherali-Adams this does not change the definition of the
proof systems, as it only affects the input encoding. For Sherali-Adams with twin variables,
it is additionally assumed that every p` has now the form p` =

∑
A,B a`

A,B

∏
j∈A xj

∏
j∈B x¬j

[9].
Note that inclusion of twin variables does not affect the degree of a refutation, but it

might affect the size, as for example the polynomial
∏

j∈[n](1−xj), which has size 2Θ(n), can
be more succinctly expressed as

∏
j∈[n] x¬j , which is of size Θ(n). We are, however, not aware

of any formal separation of (semi-)algebraic proof systems with and without twin variables
with respect to proof size.

Twin variables are particularly useful when encoding CNF formulas into polynomial
equations. It is known that polynomial calculus with twin variables, which is called polynomial
calculus resolution (PCR) [1], can polynomially simulate the resolution calculus [7, 1]. The
same is true for Sherali-Adams [9] and hence sum-of-squares (by Lemma 2.1), but not for
Nullstellensatz3.

I Remark. Theorem 1.1 and Theorem 1.2 remain true in the presence of twin variables.

2.4 The non-Boolean case

It is also conceivable to consider (semi-)algebraic proof systems over non-Boolean variables.
In this case the additional Boolean axioms x2

j−xj = 0 are omitted in the definitions (formally,
we require that qj = 0 in the above definitions). Note that there is no meaningful non-Boolean
variant of the Sherali-Adams proof system, as its correctness (specifically, the non-negativity
of the polynomials p`) crucially depends on the fact that all variables are between 0 and 1.
However, non-Boolean variants of Nullstellensatz, polynomial calculus, sum-of-squares, and
Positivstellensatz are still sound proof systems. It follows from Stengle’s Positivstellensatz
[23], that Positivstellensatz is also refutational complete in this setting. For sum-of-squares
this does only hold if we put additional requirements on F ∪ H (being Archimedian [21]).
Non-Boolean Nullstellensatz and polynomial calculus are only complete over algebraically
closed fields (such as the complex numbers).

We remark that in these systems it is no longer the case that every unsatisfiable multi-linear
system of equations over n variables has a refutation of degree n: for example, the so-called
telescopic system F ts

n := {yx1 = 1, x2
1 = x2, x2

2 = x3, . . . , x2
n−1 = xn, xn = 0} requires

exponential refutation degree in Nullstellensatz [5] and sum-of-squares [12]. Moreover,
the same example shows that the simulation of polynomial calculus by sum-of-squares
(Theorem 1.1) does not hold in the non-Boolean case:

I Theorem 2.3 ([12]). Let F ts
n be the telescopic system as defined above.

1. F ts
n has a non-Boolean Nullstellensatz (hence sum-of-squares) refutation of degree 2O(n).

2. F ts
n has a non-Boolean polynomial calculus refutation of degree O(n).

3. Every non-Boolean sum-of-squares refutation of F ts
n has degree 2Ω(n).

3 This essentially follows from the degree lower bounds in [6] and Lemma 4.8.
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3 Sum-of-Squares Simulates Polynomial Calculus

This section is dedicated to the proof of Theorem 1.1. Let us fix an unsatisfiable system of
polynomial equations F = {f1 = 0, . . . , fm = 0}. Let (r1 = 0, . . . , rL = 0) be a polynomial
calculus derivation of rL = 0 from F of degree d and size S. Let a be the minimal integer
such that every non-zero coefficient c in the proof satisfies a−1 6 4c2 6 a. Hence, the largest
encoding size of a coefficient is Θ(log a). Theorem 1.1 follows immediately from the following
inductive lemma.

I Lemma 3.1. There are polynomials q1, . . . , qL and p1, . . . , pL of size at most poly(S) such
that for every L̂ 6 L there are nonnegative coefficients ai, b`, c` that are either zero or between
a−L̂ and aL̂, such that

m∑
i=1

(−aifi)fi +
L̂∑

`=1
b`q`(x2

j`
− xj`

) +
L̂∑

`=1
c`p

2
` = −(r

L̂
)2 (7)

is a sum-of-squares proof of −(r
L̂

)2 > 0 of degree 2d.

Proof. First note that (7) is indeed a sum-of-squares proof of the form (3) since

L̂∑
`=1

b`q`(x2
j`
− xj`

) =
n∑

j=1

( ∑
` : j`=j

b`q`

)
(x2

j − xj)

and c`p
2
` = (√c`p`)2 (as we require c` > 0). Although we shall first provide the polynomials

q` and p`, we just assume that we have already done so and postpone their definition for
ease of exposition. The proof is now by induction on L̂ and we do a case analysis on the
four types of derivation rules (2). First suppose that r

L̂
= fi is an axiom from F . Then we

can easily derive −(r
L̂

)2 in sum-of-squares by defining p
L̂

= q
L̂

:= 0, setting ai to 1 and all
other coefficients to 0. The case of a Boolean axiom r

L̂
= x2

j − xj is also simple. We define
q

L̂
:= −(x2

j − xj) as well as p
L̂

:= 0, set b
L̂
to 1 and all other coefficients to 0 in order to

derive −(r
L̂

)2.
Now suppose that r

L̂
= xj′rL′ is obtained by multiplying a previously derived polynomial

rL′ (for some L′ < L) by a variable xj′ . By induction assumption we have a sum-of-squares
proof of −(rL′)2 > 0 of degree 2d:

m∑
i=1

(−aifi)fi +
L′∑

`=1
b`q`(x2

j`
− xj`

) +
L′∑

`=1
c`p

2
` = −(rL′)2. (8)

Now we want to turn this proof into a proof of −(xj′rL′)2 > 0. Of course, we could do
this by just multiplying everything by x2

j′ . However, this would increase the degree of the
refutation to 2d + 2! Instead, we use the sum of squares polynomials in order to simulate
the multiplication rule in polynomial calculus without increasing the degree. We define
p

L̂
:= rL′ − xj′rL′ as well as q

L̂
:= −2(rL′)2 and observe that

(p
L̂

)2 + q
L̂
· (x2

j′ − xj′) = (rL′)2 − 2xj′(rL′)2 + x2
j (rL′)2 − 2x2

j′(rL′)2 + 2xj′(rL′)2 (9)

= (rL′)2 − (xj′rL′)2. (10)

By adding them to (8) we derive −(xj′rL′)2 > 0 without increasing the degree. Formally, we
define j

L̂
:= j′, set b

L̂
= c

L̂
= 1 and obtain

m∑
i=1

(−aifi)fi +
L̂∑

`=1
b`q`(x2

j`
− xj`

) +
L̂∑

`=1
c`p

2
` = −(xj′rL′)2 = −(r

L̂
)2.
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11:8 Polynomial Calculus, Sherali-Adams, and Sum-of-Squares Proofs

The remaining case is the derivation of r
L̂

= a ·rL′ +b ·rL′′ for a, b ∈ R as a linear combination
of two previously derived polynomials rL′ and rL′′ . By induction assumption we have

m∑
i=1

(−a′ifi)fi +
L′∑

`=1
b′`q`(x2

j`
− xj`

) +
L′∑

`=1
c′`p

2
` = −(rL′)2 and (11)

m∑
i=1

(−a′′i fi)fi +
L′′∑
`=1

b′′` q`(x2
j`
− xj`

) +
L′′∑
`=1

c′′` p2
` = −(rL′′)2. (12)

Our goal is to devise a sum-of-squares proof of −(r
L̂

)2 = −a2(rL′)2 − 2ab · rL′rL′′ − b2(rL′′)2.
For this we define p

L̂
:= a · rL′ − b · rL′′ and q

L̂
:= 0. To derive −(r

L̂
)2, we multiply the

sum-of-squares proof (11) by 2a2, multiply (12) by 2b2, and then add both proofs together
with (p

L̂
)2. More precisely, we set ai = 2a2a′i + 2b2a′′i for all i ∈ [m]; b` = 2a2b′` + 2b2b′′` ,

c` = 2a2c′` + 2b2c′′` for all ` 6 max(L′, L′′); c
L̂

= 1 and set the remaining coefficients to 0.
Then we obtain

m∑
i=1

(−aifi)fi +
L̂∑

`=1
b`q`(x2

j`
− xj`

) +
L̂∑

`=1
c`p

2
` = −2a2(rL′)2 − 2b2(rL′′)2 + (p

L̂
)2 (13)

= −a2(rL′)2 − b2(rL′′)2 − 2ab · rL′rL′′ (14)
= −(r

L̂
)2 (15)

By the definition of a, the factors 2a2 and 2b2 are bounded by 2a−1 and 1
2a from below and

above. Since by induction assumption we have a−L̂+1 6 a′i, b′`, c′`, a′′i , b′′` , c′′` 6 aL̂−1, it follows
that a−L̂ 6 ai, b`, c` 6 aL̂. This concludes the proof of Lemma 3.1. J

Proof of Theorem 1.1. The theorem follows immediately from Lemma 3.1, since every
degree-d polynomial calculus derivation of −1 = 0 can be transformed into a degree-2d

sum-of-squares proof of non-negativity of −(−1)2 = −1. By the requirements in the Lemma
the size of the sum-of-squares proof is poly(S). J

4 Sherali-Adams does not Simulate Polynomial Calculus

The system of polynomial equations that separates Sherali-Adams from polynomial calculus
(Theorem 1.2) is a variant of the pebbling contradictions, which are unsatisfiable propositional
formulas that are based on the black pebble game. These formulas and their variants have
found several applications in propositional proof complexity. For an in-depth treatment of
the history and some of the applications of pebbling in proof complexity we refer the reader
to the survey [19].

Let us fix some notation. In a directed graph G = (V, E) we let N−(v) = {u : (u, v) ∈ E}
be the set of incoming and N+(v) = {w : (v, w) ∈ E} be the set of outgoing neighbours of
a vertex v ∈ V . The vertex sets S = {v : N−(v) = ∅} and T = {v : N+(v) = ∅} are called
the sources and the sinks of G. A circuit is a directed acyclic graph G with a unique sink t

and where every non-source vertex v ∈ V \ S has two incoming neighbours.
The (black) pebble game is a one-player game played on a circuit G = (V, E). The player

has available a pool of P pebbles and the game proceeds by placing and removing pebbles
on the vertices of G. In each round the player can do one of the following moves:
1. place a pebble on a source vertex s ∈ S,
2. place a pebble on w ∈ V \ S if there are pebbles on both vertices in N−(w), or
3. remove an arbitrary pebble.
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The player wins the game when he places a pebble on the sink node t. It is obvious,
that the player can always win the game with |V | pebbles and the (black) pebbling price
Peb(G) 6 |V | is the minimal number P such that the player wins the black pebble game on
G with P pebbles. For our lower bounds we consider circuits G with high pebbling price.

I Theorem 4.1 ([10]). For every n there is a circuit G with n vertices and pebbling price
Peb(G) = Ω(n/ log n).

The pebbling contradiction FG for a circuit G = (V, E) is the system of polynomial
equations over Boolean variables {xv : v ∈ V } that contains the following equations:

xs = 1, for all s ∈ S, (16)
xuxv = xuxvxw, for all w ∈ V \ S and N−(w) = {u, v}, and (17)

xt = 0, for the sink t. (18)

It is easy to see that this system is unsatisfiable. Moreover, we remark that FG is the standard
encoding of the CNF pebbling contradiction, which contains clauses xs, xu ∨ xv ∨ xw, and xt.
As this CNF can be easily refuted in resolution using unit propagation, it follows that this
system is easy to refute in any proof system that simulates resolution, such as polynomial
calculus, Sherali-Adams, and sum-of-squares. For later reference, the next lemma formulates
this claim for polynomial calculus. The proof is deferred to the full version of the paper [4].

I Lemma 4.2. FG has a polynomial calculus refutation of degree 3 and size O(n) for any
n-vertex circuit G.

In [6] it was shown that every Nullstellensatz refutation of FG requires degree Peb(G)
and hence this system separates Nullstellensatz degree from polynomial calculus degree.
However, it is not hard to construct a Nullstellensatz refutation of FG that has size poly(n).
Therefore, this example does not separate both systems with respect to proof size. Moreover,
as mentioned before, this system is also easy for Sherali-Adams (with respect to size and
degree). To prove our separation theorem between Sherali-Adams and polynomial calculus,
we modify the formula a bit in order to make it hard for Sherali-Adams, while at the same
time it remains easy for polynomial calculus. We do this by substituting for every variable
xv the sum of fresh variables according to the following definition.

I Definition 4.3. Let F be a set of polynomial equations over variables x1, . . . , xn and
k > 1. The system F [+k] is obtained from F be replacing every variable xi in every f ∈ F by
the sum xi,1 + · · ·+ xi,k of k new variables and including the additional polynomial equations
xi,`xi,`′ = 0 for all i ∈ [n] and 1 6 ` < `′ 6 k.

The following lemma shows that after substitution the system remains easy to refute in
polynomial calculus.

I Lemma 4.4. Let F be a set of polynomial equations and suppose there is a polynomial
calculus refutation of F of degree d and size S. Then F [+k] has a polynomial calculus
refutation of degree d and size O(kdS).

Proof. We obtain the new proof by substituting all variables xi by xi,1 + · · · + xi,k and
expand the polynomials to monomial form (this increases the size by a factor of kd). It
remains to check that the substituted equations form a polynomial calculus refutation of
F [+k]. It is clear that a former derivation of an axiom f ∈ F is now a derivation of an
substituted axiom from F [+k]. A derivation of a Boolean axiom x2

i = xi translates to
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(
∑

`∈[k] xi,`)2 =
∑

`∈[k] xi,`, which can be derived using the Boolean axioms x2
i,` = xi,` and

the additional equations xi,`xi,`′ = 0 (see Definition 4.3). The substituted variant of a linear
combination of two previously derived polynomials f , g is just the linear combination of
the substituted versions of f and g. Multiplication by a variable xj to a polynomial in the
original proof translates to multiplying by

∑
`∈[k] xj,`, which can be simulated by k separate

multiplications of xj,1, . . . , xj,k and subsequent addition steps. J

To obtain a system of equations that is hard for Sherali-Adams and easy for polynomial
calculus we apply two substitution steps to the formula FG for circuits from Theorem 4.1.
First, we prove that every refutation of FG [+n] in Sherali-Adams requires degree d = Peb(G).
In the second step we show that a degree d lower bound for an arbitrary instance F translates
to a 2Ω(d) size lower bound for F [+2]. Together we obtain that FG [+n][+2] requires high
degree and size in Sherali-Adams. We will use a common approach for proving lower bounds
in static proof systems and define a solution for the “dual” system.

I Definition 4.5. A mapping D : R[x1, . . . , xn] → R is a d-evaluation if it satisfies the
following conditions.
(D1) D is linear: D(af + bg) = aD(f) + bD(g) for all f, g ∈ R[x1, . . . , xn] and D(1) = 1
(D2) D is multi-linear: D(

∏
j x

dj

j ) = D(
∏

j xj)
(D3) D(f · fi) = 0 for every axiom fi ∈ F and f ∈ R[x1, . . . , xn] with deg(f) 6 d− deg(fi)
(D4) D

(∏
j∈A xj

∏
j∈B(1− xj)

)
> 0 for all A, B ⊆ [n] with |A ∪B| 6 d.

It is not hard to verify that the existence of a d-evaluation implies that there is no
Sherali-Adams refutation of degree d: suppose for contradiction that there is a Sherali-Adams
refutation of degree d of the form

m∑
i=1

gifi +
n∑

j=1
qj(x2

j − xj) + p0 = −1, (19)

with p0 =
∑

A,B a0
A,B

∏
j∈A xj

∏
j∈B(1− xj). Now we apply D to both sides of the equation.

From (D3) it follows that D(gifi) = 0, from (D2) we obtain D(qj(x2
j − xj)) = 0, and from

(D4) it follows that D(p0) > 0. By linearity (D1) the left hand side is evaluated to something
non-negative, whereas on the right-hand side we have D(−1) = −1.

Due to the multi-linearity (D2) the lower bound technique actually proves something
stronger. The ml-degree of a polynomial is the degree of its multi-linearisation, i. e., the
maximum number of distinct variables in a monomial. We immediately get the following
lemma.

I Lemma 4.6. If a system of multi-linear equations F has a d-evaluation D, then there is
no Sherali-Adams refutation of F that has ml-degree 6 d.

The next lemma is proven by constructing a d-evaluation.

I Lemma 4.7. Let G be a circuit with n vertices. Every Sherali-Adams refutation of FG [+k]
requires ml-degree at least min(Peb(G), k/2).

Proof. Let d < min(Peb(G), k/2) and suppose for contradiction that there is a Sherali-Adams
refutation of ml-degree d. By Lemma 4.6 it suffices to define an operator D that satisfies (D1)–
(D4). We start by defining D on multi-linear terms. We call a multi-linear term inconsistent,
if it contains two distinct variables xv,` and xv,`′ for some v ∈ V . If g =

∏
(v,`)∈I xv,` is

an inconsistent term, we define D(g) := 0. Otherwise, g =
∏

(v,`)∈I xv,` =
∏

u∈U xu,`u
and

the value of D(g) := D̃(U) will only depend on the set U ⊆ V . To define the mapping
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D̃ : 2V → R, we say that U ⊆ V is reachable, if the player has a strategy in the black pebble
game with d pebbles to reach a position where exactly the vertices in U are pebbled. The
mapping is now defined as follows.

D̃(U) :=
{( 1

k

)|U |, if U is reachable,
0, otherwise.

(20)

We extend the definition of D to all polynomials by (multi-)linearity. Note that this completes
the definition of D and immediately satisfies (D1), (D2), as well as (D3) for the axioms
xi,`xi,`′ = 0 introduced by Definition 4.3. To verify (D4), we have to show that D(p) > 0 for
every polynomial p =

∏
(v,`)∈I xv,`

∏
(v,`)∈J(1− xv,`) of degree at most d. First note that if

I ∩J 6= ∅, then D(p) = 0 since the mapping D satisfies (D2). Therefore, we may assume that
p is multi-linear when multiplied out to monomial form. If

∏
(v,`)∈I xv,` is either inconsistent

or it is consistent and defines a non-reachable position, then D(p) = 0 and we are done.
Otherwise, D(

∏
(v,`)∈I xv,`) = k−|I| and we get

D(p) =
(

1
k

)|I|
+

∑
∅6=K⊆J

(−1)|K|D

 ∏
(v,`)∈K∪I

xv,`

 >

(
1
k

)|I|1−
|J|∑

z=1

(
|J |
z

)(
1
k

)z
 .

Because we have have |J | 6 d < k/2 it follows that

|J|∑
z=1

(
|J |
z

)(
1
k

)z

<

|J|∑
z=1

(
k

2

)z (1
k

)z

<

∞∑
z=1

2−z = 1.

Hence, D(p) > 0 and property (D4) is proven. It remains to verify (D3) for all three types of
substituted axioms. For every multi-linear term g we need to check:

D
(

g ·
(∑k

`=1 xs,`

))
= D(g) , (21)

D
(

g ·
(∑k

`=1 xu,`

)(∑k
`=1 xv,`

))
= D

(
g ·
(∑k

`=1 xu,`

)(∑k
`=1 xv,`

)(∑k
`=1 xw,`

))
, (22)

D
(

g ·
(∑k

`=1 xt,`

))
= 0, (23)

where s ∈ S is a source, w ∈ V \ S with N−(w) = {u, v}, and t is the sink. First suppose
that g is either inconsistent or defines a position U that is not reachable. In both cases
everything above evaluates to 0. Hence, let g =

∏
u∈U xu,`u

for a reachable vertex set U .
In the case of (21), we have |U | 6 d− 1. If s ∈ U , then D(xs,`s

g) = D(g), since we satisfy
(D2). Since the other summands xs,`g are inconsistent for ` 6= `s, they evaluate to 0 and
the equality (21) holds. Now assume that s /∈ U . We have that U ∪ {s} is reachable as well,
since the player has at least one pebble remaining and can place it on the source s. It follows
that D

(
g ·
(∑k

`=1 xs,`

))
= k · ( 1

k )|U |+1 = ( 1
k )|U | = D(g).

Checking (22) for non-source vertices w with N−(w) = {u, v} is similar. Here we have
|U | 6 d− 3 and by the rules of the game we know that U ∪ {u, v} is reachable if and only
if U ∪ {u, v, w} is reachable. Hence, if U ∪ {u, v} is not reachable, both sides evaluate to 0.
Otherwise, by a case analysis on the shape of U ∩ {u, v, w}, one can easily verify that both
sides evaluate to ( 1

k )|U |.
For the sink vertex t, note that since d < Peb(G), no position that contains t is reachable.

Hence, D(gxt,`) = 0 for all ` ∈ [k] and the equality (23) holds. This concludes the proof of
the lemma. J
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Nullstellensatz

sum-of-squares

polynomial calculus Sherali-Adams

Figure 1 Relation between the proof systems. An arrow P→ Q indicates that a proof in system
P of degree d and size S can be converted into a proof in system Q of degree O(d) and size poly(S).
Whenever there is no irreflexive arrow, it is known that the simulation does not hold.

Lemma 4.7 (together with Theorem 4.1 and Lemma 4.2) already provides a separation
between degree in Sherali-Adams and polynomial calculus. To separate the proof size we
need the following lifting lemma. The proof is deferred to the full version of the paper [4].

I Lemma 4.8. Let F be a system of multi-linear polynomial equations and let P be one of
the proof systems Nullstellensatz, Sherali-Adams, or sum-of-squares. If every P-refutation
of F has ml-degree at least d, then every P-refutation of F [+2] has ml-degree at least d and
size Ω(2d).

By combining Lemma 4.7 and Lemma 4.8 we can now prove Theorem 1.2

Proof of Theorem 1.2. Let G be a circuit from Theorem 4.1 on k vertices. By Lemma 4.7
we obtain that FG [+k] requires Sherali-Adams refutations of ml-degree Ω(k/ log k). By
Lemma 4.8 it follows that every Sherali-Adams refutation of FG [+k][+2] requires ml-degree
(and hence degree) Ω(k/ log k) and size 2Ω(k/ log k). On the other hand, Lemma 4.2 combined
with Lemma 4.4 shows that FG [+k][+2] has a polynomial calculus refutation of degree 3 and
size O(k4). Since FG [+k][+2] has n = 2k2 variables, the theorem follows. J

5 Conclusions

We compared the static semi-algebraic proof systems Sherali-Adams and sum-of-squares
with polynomial calculus, a dynamic algebraic proof system. The main results show that
sum-of-squares simulates polynomial calculus (Theorem 1.1), while Sherali-Adams is not able
to do so (Theorem 1.2). The relations between the proof systems considered in this paper
are described in Figure 1.

One open question concerns the separation between polynomial calculus and Sherali-
Adams. Note that the pebbling contradiction FG that separates polynomial calculus degree
from Nullstellensatz degree is a system of polynomial equations that encodes a CNF formula.
This is no longer the case for the substituted formula FG [+k][+2] that separates polynomial
calculus from Sherali-Adams, and encoding FG [+k][+2] as a CNF blows up its size exponen-
tially. It would therefore be nice to know whether there is a separating CNF. Note that such
a CNF would have to be hard for resolution as well, which is not the case for the substituted
variants of the pebbling contradictions (that are in conjunctive normal form) considered in
the literature (see [19]).
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Abstract
We propose the first general technique for proving genuine lower bounds in expansion-based QBF
proof systems. We present the technique in a framework centred on natural properties of winning
strategies in the ‘evaluation game’ interpretation of QBF semantics. As applications, we prove
an exponential proof-size lower bound for a whole class of formula families, and demonstrate the
power of our approach over existing methods by providing alternative short proofs of two known
hardness results. We also use our technique to deduce a result with manifest practical import: in
the absence of propositional hardness, formulas separating the two major QBF expansion systems
must have unbounded quantifier alternations.
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1 Introduction

The central problem in proof complexity is to determine the size of the smallest proof for a
given formula in a specified proof system. From its inception the field has borne tight and
fruitful connections to open problems in computational complexity (separation of complexity
classes [18, 14]) and first-order logic (separation of bounded arithmetic theories [32, 17]).

Proof complexity has since emerged as the natural theoretical counterpart of practical
SAT solving, a subfield of automated reasoning that has enjoyed major success in recent
years. Indeed, complexity of proofs and efficiency of solving are fundamentally related: the
trace of a SAT solver on an unsatisfiable instance can be interpreted as a proof of falsity,
whereby the correctness of each SAT solver is underpinned by a proof system. For example,
the dominant paradigm in SAT, conflict-driven clause learning (CDCL), produces proofs in
a system called resolution [14]. Lower bounds on resolution proof size therefore correspond
to best-case running time for CDCL solvers. Consequently, there has been intense research
activity focussed on proof-size lower bounds, and, in particular, general techniques for proof-
size lower bounds in propositional logic (cf. [40, 14]).

Proof-theoretic techniques are arguably even more valuable in the increasingly challen-
ging settings of modern solving. Consider the logic of quantified Boolean formulas (QBF),
which extends propositional logic with existential and universal quantification. The succinct
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encodings of problem instances afforded by this PSPACE-complete language [42] foster ap-
plications in diverse areas of computer science (automated planning [15, 22, 25, 39], formal
verification [4, 35, 36], ontological reasoning [30], and more [20, 41, 28, 33]). Moreover, the
more complex setting has spawned two distinct paradigms in solving and associated proof
systems.

One approach uses QCDCL [24], the natural extension of the SAT technology, under-
pinned by the P+∀red family of QBF proof systems [6].1 A second approach, implemented in
the solver RAReQs [26], is through expansion of universal variables, embodied by the proof
system ∀Exp+Res [27]. Research in proof complexity has revealed that these two paradigms
are incomparable [27, 7] – that is, their underlying proof systems do not simulate one an-
other.2 This observation lead to the proposal of the more sophisticated expansion system
IR-calc [7], which simulates both approaches.

It is fair to say that there is a distinct lack of general lower-bound techniques for QBF, es-
pecially for the expansion-based systems ∀Exp+Res and IR-calc. Researchers have of course
attempted to lift lower bound techniques from propositional logic, but with mixed suc-
cess. The celebrated size-width relations for resolution [3] are rendered ineffective in QBF
resolution [10]. Prover-delayer games are only applicable to weaker tree-like proofs, both
propositionally [38, 12] and in QBF [11]. Feasible interpolation [31] has been successfully
transferred to QBF [9], but is tailored towards instances of a rather specific syntactic form.

Moreover, lifting techniques from SAT to QBF can be misleading, since it inevitably
entails some degree of non-genuineness [16, 13]. The phenomenon of genuine QBF hardness
– where lower bounds do not originate from the propositional level, as formalised in the oracle
model of [13] – is a more suitable notion for the comparison of algorithms in quantified logic.
Recent work [5] introduced a new technique for genuine QBF lower bounds in the QCDCL
systems P+∀red. In this paper, we show that a semantically-grounded approach can also
be employed in expansion-based systems, fostering the general techniques for genuine lower
bounds that are currently missing.

Our contributions: framework, technique, and applications

We propose the first genuine lower-bound technique for QBF expansion. We introduce a
framework built upon two semantically-grounded measures: strategy size, the minimum
number of responses in a winning strategy; and weight, an extension of strategy size for
unbounded prenex CNFs. Our technique encompasses three valuable theorems that express
proof-size lower bounds for ∀Exp+Res and IR-calc solely in terms of these measures:

Strategy size is an absolute proof-size lower bound in ∀Exp+Res (Theorem 7).
Small strategy size implies short IR-calc proofs for bounded families (Theorem 9).
Weight is an absolute proof-size lower bound in IR-calc (Theorem 22).

All three theorems are proved by counting annotations, a unique feature of expansion
systems. Since propositional inferences preserve annotations, corollaries are invariably genu-
ine QBF lower bounds in the formal sense of [13]. Thus, by providing an account of genuine
hardness based on semantics, our technique offers valuable insight into the underlying reas-
ons for hardness in expansion systems. Applications of our theorems represent important
forward steps on at least three fronts.

1 More precisely, QCDCL is underpinned by Q-Res [29], the special case of P+∀red in which P is resolu-
tion.

2 Proof system P1 simulates proof system P2 whenever P1-proofs and be transformed into P2-proofs with
at most polynomial increase in proof size.
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Intuitive proofs. First, we provide short, semantically-intuitive proofs, supplanting the
complicated ad hoc arguments that hitherto represented the state-of-the-art in QBF ex-
pansion lower bounds. Whereas the authors of [27] needed to invoke Craig’s Interpolation
Theorem [19] on the explicit expansion of their unbounded formulas J ,3 we show their hard-
ness as an immediate consequence of their manifest exponential strategy size. Similarly, the
in-depth and lengthy proof of hardness in IR-calc [8] for the unbounded formulas of Kleine
Büning et al. [29] is here replaced with a short argument that determines their exponential
weight based on game semantics.

New hard formulas. Second, we demonstrate new exponential IR-calc proof-size lower
bounds for an entire class of formula families. Using the product constructions of [5, 13],
we combine a group of Π2 CNFs Fi with a minimally unsatisfiable CNF φ. Provided the Fi
have non-trivial strategy size (a natural stipulation), the strategy size of the product formula
grows exponentially with the size of φ. We present product formulas with a Σ3 prefix, but
the method easily generalises to arbitrarily many quantifier alternations.

Bounded vs unbounded separations. Third, by applying our second theorem to bounded
families in general, we prove that, in the absence of propositional hardness, any separation
of the two expansion systems is unbounded. Given that IR-calc simulates Q-Res, this result
has a remarkable corollary: any genuine separation of Q-Res from ∀Exp+Res is due to an
unbounded formula family.

Organisation. We begin with preliminaries in Section 2 followed by the necessary back-
ground for QBF expansion in Section 3. We present our lower-bound technique for bounded
CNFs and the associated applications in Section 4, and the extension to the unbounded case
follows in Section 5. We offer conclusions in Section 6.

2 Preliminaries

Quantified Boolean formulas. A literal is a Boolean variable or its negation, a clause is
a disjunction of literals, and a CNF is a conjunction of clauses. Throughout, we refer to a
clause as a set of literals and to a CNF as a set of clauses.

A quantified Boolean formula (QBF) in prenex conjunctive normal form (PCNF) is de-
noted F := Q · φ, where (a) Q := Q1Z1 · · · QnZn is the quantifier prefix, in which the Zi
are pairwise disjoint sets of Boolean variables called blocks, Qi ∈ {∃,∀} for each i ∈ [n], and
Qi 6= Qi+1 for each i ∈ [n−1], and (b) the matrix φ is a CNF over vars(F ) :=

⋃n
i=1(Ei∪Ui).

A PCNF is k-bounded if it has at most k universal blocks.
We denote the existential (resp. universal) variables of F by vars∃(F ) (resp. vars∀(F )).

For a literal l, we write var(l) := z if l = z or l = ¬z. For a clause C, we write vars(C) :=
{var(l) : l ∈ C}, and denote the set of existential (resp. universal) literals in C by C∃ (resp.
C∀). The prefix Q imposes a linear ordering <F on the variables of F , such that zi <F zj
holds whenever i < j, in which case we say that zj is right of zi and zi is left of zj . We
extend <F to the blocks of F in the natural way.

A (partial) assignment ρ to the variables of F is represented as a set of literals, typically
denoted {l1, . . . , lk}, where literal z (resp. ¬z) represents the assignment z 7→ 1 (resp. z 7→ 0).

3 This is our notation; in [27], the formulas are referred to simply as “(2)”.
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The CNF φ[ρ] is obtained from φ by removing any clause containing a literal in ρ, and
removing the negated literals ¬l1, . . . ,¬lk from the remaining clauses. The restriction of
F by ρ is F [ρ] := Q[ρ] · φ[ρ], where Q[ρ] is obtained from Q by removing the variables of
ρ along with any quantifier whose associated block is rendered empty. For assignments to
single variables we may omit the braces; for example, we write F [l] for F [{l}].

QBF semantics. Semantics for PCNFs are neatly described by the two-player evaluation
game. Over the course of a game, the variables of a PCNF are assigned 0/1 values in the order
of the prefix, with the ∃-player (∀-player) choosing the values for the existential (universal)
variables. When the game concludes, the players have constructed a total assignment ρ to
the variables. The ∀-player wins if and only if ρ falsifies some clause of the matrix.

A ∀-strategy dictates how the ∀-player should respond to every possible move of the ∃-
player. A ∀-strategy S for a PCNF F is a mapping from total assignments to vars∃(F ) into
total assignments to vars∀(F ), such that, for each i ∈ [n], S(α) and S(α′) agree on the first
i universal blocks whenever α and α′ agree on the first i existential blocks. A strategy S is
winning if and only if, for each α in the domain of S, φ[α∪S(α)] contains the empty clause.
We use the terms ‘winning ∀-strategy’ and ‘countermodel’ interchangeably. A PCNF is false
if and only if it has a countermodel.

QBF proof systems. A refutational PCNF proof system (or calculus) P employs a set of
axioms and inference rules to prove the falsity of PCNFs. A P derivation of a clause Cm
from the input PCNF F is a sequence of clauses π := C1, . . . , Cm in which (a) each Ci is
either an axiom, or is derivable from previous clauses using an inference rule, and (b) Cm is
the unique clause that is not the antecedent of an inference. The subderivation of Ci in π
is the subsequence terminating at Ci containing only those clauses used in the derivation of
Ci. The size |π| of a derivation is the total number of literals appearing in it. A refutation
is a derivation of the empty clause.

In this paper, we consider PCNF proof systems based on resolution. Resolution is a well-
studied refutational proof system for propositional CNF formulas with a single inference rule:
the resolvent C1 ∪ C2 may be derived from clauses C1 ∪ {x} and C2 ∪ {¬x} (variable x is
the pivot). Resolution is refutationally sound and complete: that is, the empty clause can
be derived from a CNF iff it is unsatisfiable. There exist a host of resolution-based QBF
proof systems – see [8] for a detailed account.

For two PCNF proof systems P1 and P2, a PCNF family F separates P1 from P2 if F
has polynomial-size refutations in P1 but not in P2. P1 p-simulates P2 if each P2-proof can
be transformed in polynomial time into a P1-proof of the same formula [18].

3 Fundamentals of expansion-based calculi

In this section, we recall the definitions of ∀Exp+Res [27] and IR-calc [7] and discuss the
underlying concepts of the calculi, including their use of annotations. We also cover proof
restrictions and strategy extraction, both of which are central to the following discourse.

Intuition and definition. To explain the concept of expansion, we consider the example
PCNF ∃x∀u∃t. φ(x, u, t). The formula is semantically equivalent to ∃x∃t0∃t1. φ(x, 0, t0) ∧
φ(x, 1, t1), in which the universal variable u has been ‘expanded out’, yielding a fully ex-
istentially quantified formula. Note that variable x, which is left of u, remains unchanged,
while we have to create two duplicate copies t0 and t1 for the variable t, which is right of u.
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To keep track of why we created these copies of t, we annotate them with the reason for their
creation, i.e., we write t¬u instead of t0 (where ¬u corresponds to the assignment u 7→ 0)
and likewise tu instead of t1. Syntactically, t¬u and tu are just new, distinct existential
variables.

Since a single expansion doubles the formula size in the worst case, the complete expan-
sion of a PCNF can blow up exponentially. In the worst case, an existential in the scope of
n universals will require 2n duplicate copies. Keeping track of all these duplicates requires
annotations that are assignments to sets of the preceding universal variables.

In the basic theoretical model ∀Exp+Res [27], each axiom clause is immediately annotated
with a fixed, complete assignment to the universal variables. The proof then proceeds exactly
as a propositional resolution proof, with clauses in fully annotated variables. In short,
∀Exp+Res is propositional resolution on the conjuncts of a PCNF’s complete expansion.

IR-calc, defined in [7], improves on this approach by working instead with partial as-
signments. In addition to resolution, the calculus is equipped with an instantiation rule
by which partial annotations are grown throughout the course of the proof. To facilitate
instantiation, the ◦ operator describes how partial assignments are combined. Formally, for
each PCNF F, we define ann(F ) to be the set of partial assignments to vars∀(F ). Then for
each τ, σ ∈ ann(F ), we define τ ◦ σ := τ ∪ {l ∈ σ | ¬l /∈ τ}.

The rules of both systems are given in Figure 1. Note that we write annotations as literal
strings (e.g. u1¬u3¬u6u7) rather than as sets.

Restrictions. This paper makes frequent use of restrictions of PCNFs and IR-calc refut-
ations, operations that derive from their counterparts in propositional logic. Let π be an
IR-calc refutation of a PCNF F .

As we will see, the purpose of restricting π by an assignment ρ is to obtain a refutation
of the restricted formula F [ρ]. Naturally, one applies the assignment to the refutation and
simplifies the result, eliminating all satisfied clauses in the process. The procedure differs
depending on the quantification of the assigned variable.

For an existential literal l, the restricted refutation π[l] is obtained as follows. First,
remove all clauses containing a literal of the form lτ for some τ ∈ ann(F ), and from the
remaining clauses remove all literals of the form ¬lτ for some τ ∈ ann(F ). Then π[l] is the
subderivation of the first occurrence of the empty clause in the resulting sequence.4

For a universal literal l that is unopposed in π (meaning that ¬l does not appear in the
annotations), the restricted derivation π[l] is obtained from π simply by removing l from
the annotations. We need only define restriction for unopposed universal literals.

Finally, for restriction by a partial assignment ρ := {l1, . . . , ln} with var(li) left of
var(li+1) for each i ∈ [n − 1], we define π[ρ] := πn, where π0 := π and πi := πi−1[li]
for each i ∈ [n], provided that each intermediate restriction is defined.

Restrictions of IR-calc refutations are central to strategy extraction, which rests upon
the following two propositions. The first implies that first block universal literals are always
unopposed. The second states that IR-calc refutations are closed under restrictions.

I Proposition 1. Let π be an IR-calc derivation from a PCNF F whose leftmost block U
is universal. There exists a function f such that, for each clause C in π, (a) for each
annotation τ in C, the projection of τ to U is f(C), and (b) f(C ′) ⊆ f(C) for each C ′ in
the subderivation of C.

4 That such a clause and its subderivation remain is proved as part of Proposition 2. We note that this
subderivation may include weakening steps – the addition of arbitrary literals to a clause – but such
steps are easily erased from a refutation.
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[axiom(C, τ)]
{lτ(l) | l ∈ C∃}

C is a clause in the matrix of F
τ is a total assignment to vars∀(F ) falsifying C∀
τ(l) is the projection of τ to the universal
variables left of var(l)

C1 ∪ {xτ} C2 ∪ {¬xτ} [res(C1, C2, x
τ )]

C1 ∪ C2

[axiom(C)]
{lτ(l) | l ∈ C∃}

C is a clause in the matrix of F .
τ is the smallest assignment falsifying C∀
τ(l) is the projection of τ to the universal
variables left of var(l)

C [inst(C, τ)]
{lσ◦τ(l) | lσ ∈ C}

τ is a partial assignment to vars∀(F ).
τ(l) is the projection of τ to the universal
variables left of var(l).

C1 ∪ {xτ} C2 ∪ {¬xτ} [res(C1, C2, x
τ )]

C1 ∪ C2

Figure 1 The rules of ∀Exp+Res [27] (top) and IR-calc [7] (bottom). Note that F = Q · φ is the
input PCNF.

I Proposition 2 ([7]). Let π be an IR-calc refutation of a PCNF F and let l be a literal with
var(l) ∈ vars(F ). Then π[l] is an IR-calc refutation of F [l] if (a) l is existential, or (b) l is
universal and unopposed in π.

Strategy extraction. Strategy extraction is a prevalent paradigm in QBF proof complexity
[23, 6, 1, 37], and has already been studied for IR-calc [7]. In summary, there exists an
algorithm that takes a refutation and returns a countermodel (the extracted strategy).

Starting with an IR-calc refutation π of a PCNF F := ∃X1∀U1 · · · ∃Xn∀Un∃Xn+1 · φ, we
build a winning ∀-strategy S, viewing F as a game of n rounds. In round one, the ∃-player
chooses some total assignment α1 to X1, and we collect the ∀-player’s response β1 simply
by negating the U1 literals appearing in the annotations of π[α1]. By Proposition 1, all such
literals are unopposed, so β1 is indeed an assignment. Any absent variables are assigned to
0, extending β1 to a total assignment to U1. By Proposition 2, π[α1 ∪ β1] is a refutation of
∃X2∀U2 · · · ∃Xn∀Un∃Xn+1 ·φ[α1 ∪ β1], i.e. of F [α1 ∪β1], so we repeat the process to obtain
the ∀-player’s response for the next round.

In this way, one obtains a full response S(α) to each total assignment α to the existentials,
such that α∪S(α) falsifies φ. Moreover, S(α) and S(α′) must agree up to block Ui if α and
α′ agree up to block Xi. This serves as a proof sketch for the following proposition.
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I Proposition 3 ([7]). If π is an IR-calc refutation of a PCNF F , then the extracted strategy
for π is a winning ∀-strategy for F .

4 A technique for bounded formula families

In this section, we present our results for bounded PCNF families, culminating in a theorem
with obvious practical relevance: in the absence of propositional hardness, separation of
IR-calc from ∀Exp+Res is due to an unbounded formula family. We employ the following
(unbounded) formulas from [27] (equation (2) in Section 6) as a running example.

I Definition 4 ([27]). Let J be the PCNF family defined by J (n) := QJ (n) ·φJ (n), where

QJ (n) := Q1 · · · Qn , where Qi := ∃xi∀ui∃t2i−1t2i for each i ∈ [n] ,
φJ (n) := {(¬t1, . . . ,¬t2n)} ∪

⋃n
i=1{(¬xi, t2i−1), (¬ui, t2i−1), (xi, t2i), (ui, t2i)} .

The authors of [27] showed that this PCNF family separates IR-calc from ∀Exp+Res.5 In
light of our results, the fact that J is an unbounded family is not coincidental; indeed, we
show that coercing J into a bounded family by variable reordering yields a PCNF family
that is hard even for IR-calc.

4.1 IR-calc lower bounds by strategy size
Our principal insight for bounded families is that proof-size lower-bounds can be obtained
by appealing to a natural and semantically-grounded measure we call strategy size. The
strategy size of a false PCNF is the minimum number of responses in a winning strategy for
the ∀-player. We recall that a winning strategy, or countermodel, is represented formally
as a function (cf. Section 2) whose range is the set of responses. Strategy size is therefore
defined as the minimum cardinality of the range of a countermodel.

I Definition 5 (strategy size). The strategy size of a false QBF F is the minimum cardinality
of the range of a countermodel for F . The strategy size of a PCNF family F is the function
∇F : N→ N mapping n to the strategy size of F(n).

I Example 6. For each n ∈ N, the strategy size of J (n) is 2n, so the strategy size of J is
∇J (n) = 2n. To see this, observe that the only way for the ∀-player to win the evaluation
game by force is to set ui not equal to xi for each i ∈ [n]. This necessitates at least 2n
distinct responses. On the other hand, the range of a countermodel for J (n) is at most 2n,
since there are exactly n universal variables.

Now, recall that ∀Exp+Res works by applying propositional resolution to the clauses in
the complete universal expansion of a PCNF. In fact, the conjuncts of the full expansion
are exactly the allowable axiom clauses. An interesting question arises: how many such
clauses must be introduced as axioms? It is perhaps not too difficult to see that the smallest
unsatisfiable subset of the allowable axioms has cardinality not less than strategy size –
this holds because the initial instantiations, one per axiom, encompass a complete set of
responses for a winning strategy. Hence strategy size is an absolute proof-size lower-bound
in ∀Exp+Res.

5 In fact, the authors separated Q-Res from ∀Exp+Res; since IR-calc p-simulates Q-Res [7], the result
stated in the text is an immediate corollary.
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I Theorem 7. A PCNF family F requires ∀Exp+Res refutations of size ∇F (n).

The hardness of J in ∀Exp+Res is an immediate corollary to Theorem 7. Moreover,
the fact that J has short IR-calc refutations implies that Theorem 7 does not lift to IR-
calc. As we will see, the crux of this counterexample is that J is unbounded. We can in
fact use strategy size as the basis for a lower-bound technique in IR-calc if we restrict our
attention to bounded families. We introduce a technique based on counting annotations in
the refutation. (Refutation size is clearly greater than the number of distinct annotations.)
Of particular importance is the final annotation, the annotation to the final pivot.

I Definition 8. Let π be an IR-calc refutation, and let xτ be the unique Boolean variable
for which the empty clause is derived in π by resolution over the pivot variable xτ . Then τ
is the final annotation of π.

Now, if we dig into the details of the strategy extraction paradigm, we unearth a useful
corollary to Proposition 1 from Section 3: Given a refutation of a PCNF whose first block U
is universal, all the U -literals appearing in the annotations of π occur in the final annotation.
This fact is crucial in the proof of the following theorem.

I Theorem 9. A k-bounded PCNF family F requires IR-calc refutations of size k
√
∇F (n).

Proof sketch. Let F be a k-bounded PCNF family. We apply the pigeonhole principle
multiplicatively to deduce the following: for any countermodel S for F(n), there exists some
i ∈ [k] for which the assignments to the ith universal block Ui number at least b k

√
∇F (n)c.

By Proposition 1 and the definition of strategy extraction, each such partial response appears
as the projection to Ui of the final annotation of π[α], extended by zeros to a total assignment
to Ui, for some existential assignment α. By the definition of restriction, each such final
annotation is in fact the projection to Ui of an annotation in the original refutation. It
follows that π contains at least k

√
∇F (n) distinct annotations. J

We illustrate the effectiveness of Theorem 9 by proving that natural Σ3 versions of J are
hard even in IR-calc. We transform J into a bounded family J ′ by reordering the quantifier
prefix, while preserving the strategy size.

I Definition 10. Let J ′ be the PCNF family defined by J ′(n) := QJ ′(n) · φJ (n), where
QJ ′(n) := ∃x1 · · ·xn∀u1 · · ·un∃t1 · · · t2n.

To see that exponential strategy size is preserved in J ′, observe that the unique winning
strategy for the ∀-player is to play ui not equal to xi for each i ∈ [n]. Since J ′ is a 1-bounded
PCNF family with ∇J ′(n) = 2n, Theorem 9 yields an exponential proof-size lower bound.

I Theorem 11. The PCNF family J ′ requires exponential-size IR-calc refutations.

4.2 A new class of bounded hard families
Applying Theorem 7, we present a blueprint for a PCNF family with large strategy size,
yielding a whole class of bounded families that are hard for IR-calc. For any CNF φ and
clause C, let us write φ⊗C := {C ′ ∪C : C ′ ∈ φ} for the CNF obtained by augmenting each
clause in φ with the literals of C. Consider the following construction, which is inspired by
the random QBFs in [5].

I Definition 12. Let k : N → N be a function satisfying k(n) = nΩ(1). Further, for each
n ∈ N, let {Cn1 , . . . , Cnk(n)} be a minimally unsatisfiable CNF over variables Tn, and, for
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i ∈ [k(n)], let ∃Xn
i ∀Uni · φni be variable-disjoint false PCNFs with strategy size greater than

1. Then the PCNF family P defined by P(n) := QP(n) · φP(n) is a linear product, where

QP(n) := ∃Xn
1 · · ·Xn

k(n)∀U
n
1 · · ·Unk(n)∃T

n , and φP(n) :=
k(n)⋃
i=1

(φni ⊗ Cni ) .

The intuition behind the construction of a linear product is this: to win the evaluation
game on P(n), the ∀-player must win each ‘subgame’ ∃Xn

i ∀Uni · φni in order to leave each
clause Cni on the board. The non-trivial strategy size of the subgames causes the overall
strategy size to blow up exponentially.

I Lemma 13. Let P be a linear product. Then ∇P(n) = exp(nΩ(1)).

Proof sketch. Let P be defined as in Definition 12. The only winning approach for the ∀-
player – to reduce each CNF φni ⊗Cni to the clause Cni – encompasses winning strategies for
each PCNF Fni := ∃Xn

i ∀Uni · φni . Since the Fni are pairwise variable disjoint, and therefore
semantically independent from one another, one may deduce that the strategy size of P(n)
is at least the product of the individual strategy sizes of the Fni . Hence the strategy size of
P(n) is at least 2k(n). It follows that ∇P(n) = exp(nΩ(1)). J

Since a linear product is 1-bounded, applying Theorem 9 yields an IR-calc lower bound.

I Theorem 14. Any linear product requires superpolynomial-size IR-calc refutations.

4.3 Separations and propositional hardness

As a further application of Theorem 9, we prove an interesting theorem with clear relevance
to QBF solving.

First, consider a PCNF F := Q·φ that has a countermodel S. The elements of the range
of S are all total assignments to the universal variables of F , and it should be clear that
instantiating each clause in φ by each element of rng(S) gives rise to an unsatisfiable set of
clauses in annotated variables. Let us denote this set ψ := inst(φ, rng(S)), and say that F
expands to ψ. Further, let us say that a PCNF family F expands to a CNF family f if and
only if F(n) expands to f(n), for each natural number n.

An immediate corollary to Theorem 9 is that any bounded PCNF family with polynomial-
size IR-calc refutations must have polynomial strategy size; hence any such family expands
to a CNF family of polynomial-size. This observation leads to the following theorem.

I Theorem 15. Let F be a bounded PCNF family separating IR-calc from ∀Exp+Res. Then
F expands to a polynomial-size CNF family requiring superpolynomial-size resolution refut-
ations.

Proof. Let F(n) := QF (n) · φF (n). Since F has polynomial-size IR-calc refutations, ∇F
is polynomially bounded, by Theorem 9. Hence, there exist countermodels S(n) for F(n)
for which |rng(S(n))| is polynomially bounded, and the number of literals in the CNF
f(n) := inst(φF (n), rng(S(n))) is polynomially bounded. Therefore, the function f : n 7→
f(n) is a CNF family. Observe that every clause in f(n) may be downloaded as an axiom
in a ∀Exp+Res derivation from F(n), and that F requires superpolynomial-size ∀Exp+Res
refutations. It follows that polynomial-size resolution refutations of f do not exist. J
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The import of Theorem 15. The essence of the result can perhaps be captured as follows:
if the lower bound is not derived from propositional hardness, a separation of IR-calc from
∀Exp+Res must be due to an unbounded family of PCNFs. In the spirit of [13], it is natural
to label this kind of separation as genuine, since the ∀Exp+Res lower bound is due to a large
expansion, rather than a large number of resolution steps.

Moreover, since IR-calc simulates the well-studied QBF proof system Q-resolution (Q-Res
[29]), Theorem 15 holds when IR-calc is replaced by Q-Res. Thus, a ‘genuine separation’ of
Q-Res from ∀Exp+Res requires an unbounded PCNF family.

As the theoretical models of ∀Exp+Res and Q-Res underpin the two major paradigms in
QBF practice – expansion-based solving [27] and QCDCL [24] – Theorem 15 has a clear prac-
tical import. A typical QBF expansion solver will use a SAT solver as an oracle, assuming
that SAT calls are inexpensive. According to Theorem 15, if bounded formulas separating
Q-Res from ∀Exp+Res exist, they may still be easy for an expansion-based algorithm given
access to a SAT oracle, and hence offer no insight into how to improve the algorithm.

5 The Weight Theorem: conquering unbounded families

In this section, we extend the lower-bound technique to cover unbounded PCNF families.
Since the technical details are quite demanding, the proof of the main theorem is preceded
by a brief overview of the technique. We conclude with an application: a very short proof
of hardness for what is arguably the most famous PCNF family.

5.1 Outline of the technique
We invite the reader to consider once again the example PCNF family J (Definition 4)
from the previous section. That family has exponential strategy size and linear-size IR-calc
refutations. This illustrates that the responses from the extracted strategy do not always
appear as annotations in an IR-calc refutation. However, with careful analysis, we can show
that certain portions of the responses always will.

Our method makes use of a particular class of assignments: assignments to all existentials
except those in the final block. We call such assignments restrictors.

I Definition 16. Let Z be the rightmost block of a PCNF F . Any total assignment to the
variables vars∃(F ) \ Z is a restrictor of F .

Now, take a refutation π of a PCNF F and select a restrictor α. First, apply strategy
extraction to π, and consider the response S(α) in the extracted strategy S. Then compare
this response with the final annotation τα of the restricted refutation π[α]. On the one
hand, the definition of strategy extraction ensures that the literals in τα are a subset of the
response S(α). We combine this with a proof that certain critical variables must occur in
τα. As a result, we obtain a subset of the response to α, called the critical response, that
must be contained in the annotation τα. This is the central observation of our method,
depicted in Figure 2. Note that τα occurs also as an annotation in the original refutation.

Proof of the Weight Theorem. The critical variables of a PCNF are those universals that
appear in every subset of the matrix that is false under the quantifier prefix. The projection
of a restrictor’s response to its critical variables is termed the critical response.

I Definition 17. Let S be a countermodel for a false PCNF F := Q · φ, and let α be a
restrictor of F . The critical variables of F are the universal variables appearing in every
CNF φ′ for which (a) φ′ ⊆ φ and (b) Q · φ′ is false. The critical response to α with respect
to S and F is the projection of S(α) to the critical variables of F [α].
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Refutation of F

π

S

R(α, S)

π[α]

(xτα) (¬xτα)

∅

critical response to α ⊆ τα

apply strategy
extraction

restrict by
restrictor α

get the response
to restrictor α

get the
final pivot

take only the
critical variables

take the final
annotation

Figure 2 Depiction of the central observation of our lower-bound technique. The final statement
is proved in Lemma 18.

The key notion in our argument is the following relationship between the critical response
to a restrictor and the final annotation of the restricted refutation.

I Lemma 18. Let S be the extracted strategy for a IR-calc refutation π of a PCNF F . Then,
for each restrictor α of F , the final annotation of π[α] contains the critical response to α
with respect to S and F .

Proof sketch. The lemma is vacuously true if F contains no universal variables, so we
assume otherwise. Let α be a restrictor of F , and let τ [α] be the final annotation of π[α]. In
combination with Proposition 1, the fact that F [α] has a Π2 prefix is enough to deduce that
vars(τα) contains the critical variables of F [α]. Hence, the lemma follows from the claim
that τα ⊆ S(α), a fairly straightforward consequence of the definition of strategy extraction,
and Propositions 1 and 2. J

Since the final annotation of π[α] appears also in π, any k mutually inconsistent critical
responses give rise to k distinct annotations in π. For that reason, given a winning ∀-strategy
S, we define the critical response graph that has a vertex for each critical response and an
edge between each inconsistent pair. Hence, as we prove subsequently, the number of distinct
annotations in a refutation is lower bounded by the clique number of the critical response
graph for the extracted strategy. The clique number of a graph G is denoted ω(G).

I Definition 19. Let S be a countermodel for a PCNF F . The critical response graph of S
with respect to F is the undirected graph G(S, F ) defined as follows: (a) For each restrictor
α of F , G(S, F ) has a vertex labelled with the critical response to α with respect to S and F ;
(b) G(S, F ) has an edge between two vertices if and only if their labels are inconsistent.

I Lemma 20. Let S be the strategy extracted from an IR-calc refutation π of a PCNF F .
Then there are at least ω(G(S, F )) distinct annotations in π.

Proof. Let k := ω(G(S, F )), and let α1, . . . , αk be restrictors of F whose critical responses
(with respect to S and F ) are pairwise inconsistent. For each i ∈ [k], the final annotation ταi
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of π[αi] contains the critical response to αi, by Lemma 18, and ταi appears as an annotation
in π (an existential restriction of π preserves any annotation that is not deleted). Hence, for
each i, j ∈ [k] with i 6= j, ταi and ταj are distinct annotations appearing in π. J

An IR-calc proof is at least as large as the number of distinct annotations; hence, the
minimal clique number of a critical response graph for a countermodel yields a refutation-
size lower bound. This motivates the following definition, in which we define the weight of
a PCNF F , denoted µ(F ), to be equal to this minimal clique number.

I Definition 21. The weight µ(F ) of a false PCNF F is the minimum value of ω(G(S, F ))
over the countermodels S of F .

The main result of this section, the Weight Theorem, is almost immediate from Lemma 20.

I Theorem 22 (Weight Theorem). The size of any IR-calc refutation of a PCNF F is at
least the weight of F .

Proof. Let S be the strategy extracted from a refutation π of F . Since S is a winning
∀-strategy by Proposition 3, the weight of F is at most ω(G(S, F )). By Lemma 20, at least
ω(G(S, F )) distinct annotations, and at least as many distinct literals, appear in π. J

5.2 Application to the formulas of Kleine Büning et al.

The final application of our framework is to the familiar QBFs introduced in [29] which
occupy a central place in the QBF proof complexity literature (e.g. [21, 8, 2, 34]; the
original formulas from [29] are called Φt and appear there in the proof of Theorem 3.2).
We state the formulas and then prove that they have exponential weight. The IR-calc lower
bound follows immediately, by the Weight Theorem (Theorem 22).

I Definition 23 ([29]). Let K be the PCNF family defined by K(n) := QK(n) ·φK(n), where

QK(n) := ∃x1y1∀u1 · · · ∃xnyn∀un∃t1 · · · tn ,
φK(n) := {(¬x1,¬y1), (xn, un,¬t1, . . . ,¬tn), (yn,¬un,¬t1, . . . ,¬tn)}⋃n−1

i=1 {(xi, ui,¬xi+1,¬yi+1), (yi,¬ui,¬xi+1,¬yi+1)}⋃n
i=1{(ui, ti), (¬ui, ti)} .

I Lemma 24. For each n ∈ N, the weight of K(n) is at least 2n.

Proof sketch. Consider the set A of restrictors of K(n) that contain exactly one of ¬xi and
¬yi for each i ∈ [n], and let α ∈ A. For any countermodel S of K(n), the gameplay implies
that ¬ui ∈ S(α)⇔ ¬xi ∈ α and ui ∈ S(α)⇔ ¬yi ∈ α, for each i ∈ [n]. Moreover, it can be
verified that vars∀(K(n)) are all critical in K(n)[α]. It follows that every total assignment
to the universals is the critical response to some restrictor in A. Hence, the critical response
graph G(S,K(n)) has a 2n-clique. J

Applying the Weight Theorem concludes a very short proof of this historic QBF result.

I Theorem 25 ([29, 8]). The family K(n) requires exponential-size IR-calc refutations.
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6 Conclusions

We introduced the first technique for genuine QBF lower bounds in expansion systems. As
applications, we proved exponential IR-calc lower bounds for a new class of formula families,
and produced greatly simplified proofs of two known hardness results. Whereas our work on
unbounded families was based on restrictions up to the penultimate existential block, the
technique could be explored in greater generality by considering restrictions up to the ith
block. We also applied the technique to prove that any bounded separation of IR-calc from
∀Exp+Res is due to a non-genuine lower bound. It remains an open problem whether such
a bounded separation exists.
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Abstract
Real life graphs and networks are prone to failure of nodes (vertices) and links (edges). In
particular, for a pair of nodes s and t and a failing edge e in an n-vertex unweighted graph
G = (V (G), E(G)), the replacement path πG−e(s, t) is a shortest s− t path that avoids e. In this
paper we present several efficient constructions that, for every (s, t) ∈ S×T , where S, T ⊆ V (G),
and every e ∈ E(G), maintain the collection of all πG−e(s, t), either implicitly (i.e., through
compact data structures a.k.a. distance sensitivity oracles (DSO)), or explicitly (i.e., through
sparse subgraphs a.k.a. fault-tolerant preservers (FTP)). More precisely, we provide the following
results:
(1) DSO: For every S, T ⊆ V (G), we construct a DSO for maintaining S × T distances under

single edge (or vertex) faults. This DSO has size Õ(n
√
|S||T |) and query time of O(

√
|S||T |).

At the expense of having quasi-polynomial query time, the size of the oracle can be improved
to Õ(n|S| + |T |

√
|S|n), which is optimal for |T | = Ω(

√
n|S|). When |T | = Ω(n 3

4 |S| 14 ), the
construction can be further refined in order to get a polynomial query time. We also consider
the approximate additive setting, and show a family of DSOs that exhibits a tradeoff between
the additive stretch and the size of the oracle. Finally, for the meaningful single-source case,
the above result is complemented by a lower bound conditioned on the Set-Intersection
conjecture. This lower bound establishes a separation between the oracle and the subgraph
settings.

(2) FTP: We show the construction of a path-reporting DSO of size Õ(n4/3(|S||T |)1/3) reporting
πG−e(s, t) in O(|πG−e(s, t)| + (n|S||T |)1/3) time. Such a DSO can be transformed into a
FTP having the same size, and moreover it can be elaborated in order to make it optimal
(up to a poly-logarithmic factor) both in space and query time for the special case in which
T = V (G). Our FTP improves over previous constructions when |T | = O(

√
|S|n) (up to

inverse poly-logarithmic factors).
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(3) Routing and Labeling Schemes: For the well-studied single-source setting, we present a novel
routing scheme, that allows to route messages on πG−e(s, t) by using edge labels and routing
tables of size Õ(

√
n), and a header message of poly-logarithmic size. We also present a

labeling scheme for the setting which is optimal in space up to constant factors.

2012 ACM Subject Classification Theory of computation → Sparsification and spanners

Keywords and phrases Fault Tolerant, Shortest Path, Oracle, Routing

Digital Object Identifier 10.4230/LIPIcs.STACS.2018.13

1 Introduction

1.1 Motivation

Shortest path in graphs is perhaps one of the most classical concepts in network algorithms.
As real life networks are prone to failures, much attention has been devoted, recently, for
studying replacement paths, namely, shortest paths that avoid failed edges or vertices.

A traditional objective in shortest path research is to reduce the size of the distance
representation. One common way to do so is to use sparse graph spanners, that is a spanning
subgraph of the original graph using possibly few edges while preserving some distance
information. In the context of fault tolerance, Peleg and Parter [24] introduced the notion of
FT-BFS trees, namely sparse subgraphs that contain a collection of all replacement paths from
a given source s that avoids a single edge or vertex in the graph. For an n-vertex unweighted
graph G = (V (G), E(G)), [24] showed a simple construction of FT-BFS subgraphs with
O(n3/2) edges. For the case of multiple sources S ⊆ V , they showed the construction of an
FT-BFS for each s ∈ S with O(n3/2

√
|S|) edges. Albeit being optimal in space, FT-BFS

structures H ⊆ G are lacking some useful properties such as fast reporting of s− t distances
in G− e = (V (G), E(G) \ {e}) or being able to route messages along the replacement paths.
For instance, to return the distance between the source vertex s and any other vertex t of
the graph, following a failure of e, the best one can do with FT-BFS structure is to run a
Dijkstra’s algorithm in H − e rather than G− e.

Our goal in this paper is to devise more structured representations of replacement paths
that have useful applications in communication networks.1 We present efficient constructions
of data structures that enjoy not only optimal space (like FT-BFS subgraphs) but also have
additional desired attributes, e.g., allowing fast extraction of distances; balanced information
spreading in the network; and routing on replacement paths using small routing tables.

In principle, storing the replacement paths in data structures might be more space efficient
than using a subgraph of the original network. Unfortunately, here this is not the case; by
using standard tools [11, 22, 1], one can show that the lower bound of Ω(n3/2

√
|S|) edges

for FT-BFS structures for S × V distances applies against any kind of replacement paths
representation, and not just subgraphs. Our starting point is:

There are bad n-vertex graph families, for which any representation allowing for the
return of all the S × V post-failure distances must have size Ω(n3/2

√
|S|) bits.

1 We focus on single edge failures and undirected graphs, although most of the results extend to single
vertex failures and directed graphs as well.
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Unlike the sourcewise scenario that has been studied thoroughly in the subgraph setting,
almost nothing is known for the more general S × T case, i.e., where T is not necessarily V ,
but for the fault-free framework [20, 15]. We fill some of that gap here and provide tools
that go beyond the sourcewise setting.

1.2 Contribution
We provide a comprehensive study of several space aspects for replacement paths. We consider
three fundamental data structures for maintaining shortest paths: distance sensitivity oracles,
labeling schemes and compact routing schemes. Roughly speaking, distance sensitivity
oracle is a compact data structure that can also report distances fast; labeling scheme is a
more structured type of distance sensitivity oracles in which (hopefully) the same amount
of distance information is now spread evenly in the network and hence the memory load
per vertex is bounded; Finally a compact routing scheme is a distributed algorithm that
sends messages from s to t along some short path. The next hop is computed by using the
information at the message headers as well as the routing table stored at the current vertex.

Distance Sensitivity Oracles (DSO) and Labeling Schemes
For an n-vertex unweighted graph G = (V (G), E(G)), subsets S, T ⊆ V , an S × T DSO is
a compact data structure that answers efficiently queries of the form (s, t, e): Return the
distance between s ∈ S and t ∈ T when the edge e fails. Our main results are the following:

A polynomial time constructable S × T DSO of size Õ(n
√
|S||T |) and query time

O(
√
|S||T |). If quasi-polynomial query time is allowed, then the size of such oracle can be

improved to Õ(n|S|+ |T |
√
|S|n), which we will show to be optimal for |T | = Ω(

√
n|S|).

Moreover, when |T | = Ω(n 3
4 |S| 14 ), the construction can be further refined in order to get

a polynomial query time.
A polynomial time constructable family of approximate S×T DSOs, returning in constant
time a distance stretched by an additive term which decreases as soon as the size of the
oracle increases. In particular, for |S| = O(

√
n), we can obtain an oracle of size Õ(n3/2)

and additive distortion Õ(
√
n).

A path-reporting DSO of size Õ(n4/3(|S||T |)1/3) returning πG−e(s, t) in O(|πG−e(s, t)|+
(n|S||T |)1/3) time. Such a DSO can be transformed into an S × T fault-tolerant preserver
(FTP) (i.e., a subgraph of G maintaining all the S × T shortest paths after any edge
failure) having the same size. Thus, our FTP improves over the multi-source preserver
provided in [24] as soon as |T | = O(

√
|S|n) (up to inverse poly-logarithmic factors).

Finally, for the remarkable case in which T = V (G), it can be elaborated in order to
get a DSO having size Õ(n

√
n|S|) and reporting πG−e(s, t) in O(|πG−e(s, t)|) time; this

construction represents the oracle counterpart of the multi-source preserver provided in
[24], and thus it has not only optimal size (up to a poly-logarithmic factor), but it also
allows to retrieve a shortest path in optimal time.
Let ε ∈ (0, 1] be any fixed constant; we show that conditioned on the Set-Intersection
Conjecture [26], any {s} × V DSO with constant query time and additive distortion
d = O(n1−ε) must use Ω̃

(
n

3
2 ε
)
bits of memory.

Concerning the first result, our construction in fact gives a tradeoff between the query
time and the size of the oracle. Note that prior to our construction, for the single-source
setting, a trivial query time was O(n3/2) by running Dijkstra on the FT-BFS structure with
O(n3/2) edges. For the S × T setting, the trivial query time was O(

√
|S|n3/2), using the

FT-BFS construction of [24] for multiple sources S.
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Concerning the lower bound for the single-source setting, it compares favorably with
the non-conditional lower-bounds given in [25]. Indeed, it improves the range of additive
distortions for which no linear-size {s}×V DSO can exist from d = O(logn) to d = O(n 1

3−ε),
for any constant ε > 0. Moreover, it shows that for any d = O(1), Ω̃(n 3

2 ) bits are needed by
any {s} × V DSO with constant query time. This is in contrast with the 4-additive FT-BFS
structure of size O(n 4

3 ) given in [25] thus establishing that designing a corresponding oracle
is harder than its FT-BFS counterpart. Notice also that for exact distances (i.e., d = 0)
this lower bound still allows for the existence of a (single-source) DSO having size O(n 3

2 )
and constant query time. We regard the problem of finding the best query time for an
optimal-size DSO as an interesting remaining open problem. Due to space limitations the
discussion of our lower bound, as well as the proof of several statements, will be provided in
the full version of the paper.

Single-Source Labeling Schemes. Labeling schemes are special type of a “balanced” dis-
tance oracle with the benefit of having the distance information evenly distributed between
all the nodes in the network. Here we obtain a space-optimal (up to constant factors) labeling
scheme for the meaningful single-source to all-destinations case. It consists of a label with
Õ(
√
n) bits for each node, which allows to compute |πG−e(s, t)|, by simply looking at the

label of t and of the end-vertices of the failing edge e.

Single-Source Routing Scheme
A routing scheme for a given source s is a distributed mechanism that, for the failure of any
edge e ∈ E, can deliver packets of information from s to any other node t of the network
along the corresponding replacement path. This is done by storing compact routing tables at
each node, by assigning labels to edges, and finally by adding a short header to the message
containing information about the target t and the failing edge e. Our key observation is that
every replacement path can be decomposed into two (fault-free) tree paths connected by an
edge, as shown in [21]. By combining the routing schemes for trees of Thorup and Zwick [29]
along with our labeling scheme, we can provide the following:

A scheme for routing packets from a source s along shortest paths with poly-logarithmic
headers and Õ(

√
n)-size routing tables and edge labels.

1.3 Additional Related Work
In this work, we mainly consider exact distances under faults. In the literature, many related
settings have been studied thoroughly as discussed next.

Single source approximate shortest paths avoiding any failed vertex. Baswana and
Khanna [3] showed that for the undirected unweighted graph G = (V,E), one can construct a
subgraph H with O(n logn/ε3) edges satisfying that dist(s, t,H−e) ≤ (1+ε) dist(s, t,G−e)
for every t ∈ V (G), e ∈ E(G). They also provide a DSO of the same size that can report
these distances or even the paths in optimal time. This was later extended to the weighted
case, for both the subgraph [7] and the oracle setting [8]. Multiple faults have been studied
in [9, 25] and structures with additive stretch have been studied in [23, 6].

Distance sensitivity oracles (for all pairs). In a seminal work, Demetrescu et al. [17]
showed that given a directed weighted graph G of size n, it is possible to construct in time
Õ(mn2) a DSO of size O(n2 logn) capable of answering distance queries in O(1) time in
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the presence of a single failed edge or vertex. The preprocessing time was then improved
to Õ(mn), with unchanged size and query time [5]. Grandoni and Williams [19] presented
the first DSO that achieves simultaneously subcubic preprocessing time and sublinear query
time for directed graphs with bounded integer edge weights. A dual failure fault tolerant
DSO of size O(n2 log3 n) and O(logn) query time was presented in [18]. The f faults case
was studied in [30, 13].

FT distance labels and compact routing schemes. Label-based fault-tolerant routing
schemes for graphs of bounded clique-width are presented in [16]. To route from s to t, the
source needs to specify the labels λ(s) and λ(t) and the set of failures F , and the scheme
efficiently calculates the shortest path between s and t that avoids F . For an n-vertex graph
of tree-width or clique-width k, the constructed labels are of size O(k2 log2 n). Turning to
general graphs, FT compact routing schemes were first considered in [14], for up to two edge
failures. Further work considered multiple failures [12] and (1 + ε) approximation [2].

Set intersection and distance oracles. The set intersection problem has several related
variants and has been widely used to provide conditional lower bounds on the space and
query time of distance oracles. The folklore conjecture for set intersection states that, given
n sets of cardinality polylogarithmic in n, answering a set intersection query in constant time
requires Ω(n2) space. For the connection between distance oracles and various variants of
the set intersection problem, see [28, 26, 27]. In this paper we provide the first connection
between distance sensitivity oracles and the set intersection problem.

2 Preliminaries and Notations

Let G = (V (G), E(G)) be a directed or undirected graph on n vertices with S ⊆ V (G) as
the source set and T ⊆ V (G) as the destination set. Let H be a subgraph of G. We use HR

to denote the graph obtained by reversing all edge directions of H (if H is undirected then
HR is same as H). For any vertex w, let Tw,H be the shortest path tree of H rooted at w,
and T Rw,H be the shortest path tree of HR rooted at w. When H is same as G, we can as
well use the notions Tw and T Rw . We will denote by πH(u, v) the shortest path between the
two vertices u and v in H, and by dH(u, v) its length, i.e., the distance between u and v in
H. Moreover, whenever H = G, we will omit the subscript. Given a set F ⊆ E(G) of edges,
we will denote by G− F the subgraph of G obtained by removing the edges in F from E(G).
For the sake of simplicity we might slightly abuse the notation and write G− e instead of
G−{e} when F = {e}. Given a simple path P , we denote by |P | its size, i.e., the number of
its edges. Moreover, if P traverses the vertices u and v in this order, we denote by P (u, v)
the subpath of P between u and v (endpoints included). For any non-negative integer i, we
define P [−i] to be the path containing the last min{|P |, i} edges of P . Given any two paths
P and Q with last vertex of P same as the first vertex of Q, we use P ::Q to denote the path
formed by concatenating paths P and Q.

Given a tree T and any two vertices a, b ∈ T , we use the notation T (a, b) to denote the
path from a to b in tree T . Throughout the paper we use Õ(f(x)) (resp. Ω̃(f(x))) as a
shorthand for O(f(x)polylogf(x)) (resp. Ω(f(x)/polylogf(x)). Below we state a lemma
that will be crucially used in our fault tolerant data structures.

I Lemma 1. Let G be an undirected unweighted graph, and let L ∈ [5, n/ logn] and P =
{π(u, v) | u, v ∈ V (G), d(u, v) ≥ L logn} be the family of shortest paths in G having length
at least L logn. Then (i) In expected polynomial time we can compute a subset R of V (G)
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with O(n/L) vertices such that R ∩ V (P ) 6= ∅ for each path P ∈ P; (ii) We can also have a
deterministic polynomial time construction for set R that intersects each path in P, such an
R contains O

(
n
L logn

)
vertices.

Although Lemma 1 allows for both randomized and deterministic constructions, in the
rest of the paper, we will only focus on the randomized case, as however this will only differ
up to logarithmic factors in the query time and the size of our solutions.

We assume edge weights are slightly perturbed by adding a small noise so that edge-
weights are always positive and between any two vertices x, y there is exactly one shortest
path. This will help us to uniquely define πH(x, y) for any subgraph H of G. When we focus
on undirected graphs, we assume perturbation is small enough so that for any simple path P
between x and y of weighted length λ, we have |P | = bλc.

3 Distance Sensitivity Oracle

The basic building block in our construction is an W ×W DSO that reports, in O(1) time,
the distance between any pair of vertices in W ⊆ V (G). This will be used to obtain our
S × T oracle.

3.1 Distance Sensitivity Oracle for W × W

As an input we are given a set W of vertices in a directed or undirected weighted graph G.
We will use ideas similar to the ones of the edge/vertex fault tolerant V × V oracle of [17].
For the sake of simplicity we only discuss the edge-failure case, but our results naturally
extend to the vertex failures as well. Our data structure stores the following information:
1. For each w ∈W , it stores:

An incoming and an outgoing shortest path tree rooted at w, i.e. trees Tw and T Rw ;
The pre-order and post-order numbering, and depth of each v ∈ V in Tw and T Rw ;
A level ancestor data structure for trees Tw and T Rw , namely a data structure able to
return in O(1) time the k-th ancestor of a node, for any k ≥ 1 [4];
The distances d(w, v) and d(v, w), where v ∈ V .

2. For every vertex pair (s, t) ∈ (W × V ) ∪ (V ×W ) and every integer 0 ≤ i ≤ log |π(s, t)|:
B1(s, t, i) stores the distance dG−e(s, t), where e = (u, v) is an edge lying on π(s, t)
and satisfying |π(s, u)| = 2i;
B2(s, t, i) stores the distance dG−π(u,v)(s, t), where u, v are vertices on π(s, t) and
satisfying (i) |π(u, v)| = 2i, and (ii) |π(s, u)| = 2i.

We now explain the query process. Let (s, t) ∈W ×W be a query pair and e = (u, v) be
a failing edge lying on π(s, t). (Whether e lies on π(s, t) or not can be verified in constant
time using pre-order and post-order numbering, and depth of vertices in Tw and T Rw , w ∈W ).
Let i0 and j0 be greatest integers satisfying 2i0 ≤ |π(s, u)| and 2j0 ≤ |π(u, t)|. Let s′, t′ be
vertices on π(s, t) such that |π(s′, u)| = 2i0 and |π(v, t′)| = 2j0 . (See Figure 1). These vertices
can be computed in constant time by using the level ancestor data structure on shortest
path trees Tw and T Rw .

Let P be an s− t shortest path in G− e. We have the following two cases.
1 P passes through either s′ or t′:

If P passes through t′, then dG−e(s, t) = dG−e(s, t′) + d(t′, t), and if P passes through
s′, then dG−e(s, t) = d(s, s′) + dG−e(s′, t). So in this case we can use B1 to report the
distance between s and t in G− e.
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s u v ts0 u0 v0 t0

2i0 2j0

2i0 2i0

Figure 1 Depiction of vertices s′, u′, v′, t′ when the failing edge e = (u, v) lies on path π(s, t).

2 P does not pass through s′ and t′:
Let us assume that i0 ≤ j0. (If j0 < i0 then a similar analysis will follow). Let u′, v′
be vertices on π(s, t) such that |π(s, u′)| = |π(u′, v′)| = 2i0 . Since 2i0 ≤ 2j0 , we have
u′ ∈ π(s′, u) and v′ ∈ π(v, t′). Thus P does not pass through segment π(u′, v′), i.e.,
πG−e(s, t) = πG−π(u′,v′)(s, t). So in this case, we can use B2 to report dG−e(s, t).

The space and the query time of our data structure are summarized by the following
theorem:

I Theorem 2. An n-vertex directed or undirected weighted graph G for a given set W ⊆ V (G)
can be preprocessed in polynomial time to compute a data structure of O(n|W | logn) size
that given any two vertices s, t ∈W and any failing edge e can report dG−e(s, t) in constant
time. Our result also holds for single vertex failure.

3.2 Distance Sensitivity S × T Oracle
In the following we assume that G is a directed or undirected unweighted graph. Also we
assume |S| ≤ |T |, as otherwise we could consider GR instead and swap the roles of S and T .
Let L ≥ 5 be a parameter in [n/

√
|S||T |, n/ logn] and let R ⊆ V (G) be a set of size O(n/L)

as obtained from Lemma 1. Also let ` be dL logne. Our construction is a simple two step
process:
1. Set W = S ∪R, and compute the W ×W oracle of Section 3.1 over set W .
2. For each pair (s, t) ∈ S × T , if e1, e2, . . . , emin{`,|π(s,t)|} are the edges on π(s, t)[−`] listed

in reverse order (i.e., from t towards s), then store in d−i(s,t) the distance dG−ei(s, t).

I Lemma 3. Let e = (u, v) be an edge lying on π(s, t) for some vertices s, t ∈ V (G). Also
let x ∈ V (G) be such that d(x, t) ≤ d(v, t). Then e /∈ π(x, t), and so dG−e(x, t) = d(x, t).

Proof. Let us assume on the contrary that π(x, t) traverses e, and let u′ (resp. v′) be the
first (resp. last) vertex in {u, v} it encounters. Then

d(x, t) = d(x, u′) + 1 + d(v′, t) ≥ 1 + d(v, t) > d(v, t).
However, by our hypothesis d(x, t) ≤ d(v, t). Hence, we get a contradiction. J

I Lemma 4. Let e = (u, v) be an edge lying on π(s, t) for some vertices s, t ∈ V (G). Also
assume e /∈ π(s, t)[−`], then dG−e(s, t) = min

x∈R, d(x,t)≤`

(
dG−e(s, x) + d(x, t)

)
.

Proof. Let P be the shortest path from s to t inG−e. Since |P | ≥ d(s, t) > `, by Lemma 1 and
sub-optimality of shortest paths, the path P [−`] must contain at least one vertex from set R,
let this be r. Consider the path P (r, t) = πG−e(r, t). Since d(r, t) ≤ |πG−e(r, t)| ≤ ` ≤ d(v, t),
Lemma 3 implies that dG−e(r, t) is equal to d(r, t). Therefore we have:

dG−e(s, t) = dG−e(s, r) + dG−e(r, t) = dG−e(s, r) + d(r, t).
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Algorithm 1: Compute dG−e(s, t) where e = (u, v) is a failing edge on π(s, t).
1 if (i ≤ `) then return d−i

(s,t) = dG−e(s, t)
2 else return min

x∈R, d(x,t)≤`

(
dG−e(s, x) + d(x, t)

)

Also notice that for any r0 ∈ R, if d(r0, t) ≤ `, then by Lemma 3, d(r0, t) = dG−e(r0, t), as
d(v, t) ≥ `. Thus dG−e(s, r0) + d(r0, t) = dG−e(s, r0) + dG−e(r0, t) ≥ dG−e(s, t). So from
above discussion it follows that dG−e(s, t) = minx∈R, d(x,t)≤`

(
dG−e(s, x) + d(x, t)

)
. J

Query algorithm. Consider a pair (s, t), let e = (u, v) be a failing edge lying on π(s, t). (As
before whether e belongs to π(s, t) can be verified in constant time). If π(s, t)[−`] contains
e, then we can output new distance in O(1) time. If π(s, t)[−`] does not contain e, then
by Lemma 4, dG−e(s, t) = min{dG−e(s, r) + d(r, t)|r ∈ R, d(r, t) ≤ `}. In this equation the
distance dG−e(s, r) for any s ∈ S and r ∈ R can be computed in constant time using the data
structure of the previous subsection. Since the values d(r, t) are pre-stored, the query time
is O(|R|) = O(n/L). Algorithm 1 presents the pseudocode of our implementation. Notice
that the space used is O(n|W | logn + |S||T |`) = O

(
(n2/L + |S||T |L) logn

)
which, due to

our choice of L, is O(|S||T |L logn). We hence obtain the following result:

I Theorem 5. An n-vertex (directed or undirected) unweighted graph G for a given source set
S ⊆ V (G) and destination set T ⊆ V (G) can be preprocessed in polynomial time to compute
a DSO of size O(|S||T |L logn) and query time O(n/L), where L ∈ [n/

√
|S||T |, n/ logn].

Notice that the subgraph lower bound of Ω(n
√
n|S|) provided in [24] holds also for the

oracles setting (by using standard information theoretic arguments). Therefore, by choosing
L = Θ(n/

√
|S||T |) in Theorem 5, we obtain an oracle of size O(n

√
|S||T | logn) and query

time O(
√
|S||T |) which, for |T | = Θ(n), has optimal size (up to the poly-logarithmic factors).

3.3 Space-Improved S × T Oracle
Recall that in last subsection we computed an S × T oracle with O(n

√
|S||T | logn) space

and O(
√
|S||T |) query time using a random sample of vertices R. In this section, we obtain

an oracle with an improved size at the expense of higher (quasi-polynomial) query time. In
particular, this oracle has the optimal size for |T | = Ω(

√
|S|n). Our main idea is to use a

hierarchy of random sets R1, R2, . . . , Rα for an appropriate α.
We now explain our construction. Let α be integer to be fixed later on, and for i ∈ [0, α],

let Li be (n/|S|) 2α−i
2α and Ri be random set of size O(n/Li) = O(|S| 2α−i2α n

i
2α ) computed

using Lemma 1. For each i ≥ 0, we will compute an oracle for S ×Ri, say OS×Ri . Also we
use OS×T to denote our oracle for the product S×T . Since |R0| = O(|S|), we use Theorem 2
to compute an oracle for S ×R0 with O(n|S| logn) space and O(1) query time. It turns out
that for any i > 1, our oracle OS×Ri uses OS×Ri−1 , and OS×T uses OS×Rα .

For sake of convenience let Rα+1 = T . For an oracle O, let size(O) be the size of the
oracle and let time(O) be its query time. For any i ∈ [0, α], we compute the OS×Ri+1 oracle
from OS×Ri as follows. We first compute oracle OS×Ri , this is augmented by storing
1. d(x, y) for (x, y) ∈ Ri ×Ri+1, and
2. dG−e(s, y) for (s, y) ∈ S ×Ri+1, e ∈ π(s, y)[−Li logn].
So, we have: size

(
OS×Ri+1

)
= size

(
OS×Ri

)
+ (|Ri||Ri+1|+ |S||Ri+1|Li logn).
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For any y ∈ Ri+1, to report the distance dG−e(s, y) we proceed in a similar way as
in Algorithm 1. If π(s, y)[−Li logn] contains e we return the stored distance. Otherwise
we compute dG−e(s, y) as minx∈Ri, d(x,y)≤Li logn

(
dG−e(s, x) + d(x, y)

)
, where dG−e(s, x) is

obtained by querying OS×Ri . Since at most |Ri| queries to OS×Ri are performed, we have
time

(
OS×Ri+1

)
= time

(
OS×Ri

)
× |Ri|. Summing the first equation from i = 0 to α, and

substituting α = logn− 1, we obtain the size of oracle OS×T :

size
(
OS×T

)
= size

(
OS×R0

)
+

α∑
i=0

(|Ri||Ri+1|+ |S||Ri+1|Li logn)

≤ n|S| logn+ α|Rα|2 + |Rα||T |+
α−1∑
i=0

(|S||Ri+1|Li logn) + |S||T |Lα logn

= (α+ logn)n|S|+ |T |
√
n|S|+

α−1∑
i=0

(n|S|(n/|S|) 1
2α logn) + |T |

√
n|S| logn

= O(n|S| log2 n+ |T |
√
n|S| logn).

Turning to query time, we get that time(OS×T ) = O(1)·
α∏
i=0
|Ri| = (n|S|)

α+1
2 = O

(
(n|S|)

logn
2
)
.

The following theorem follows from above discussion.
I Theorem 6. An n-vertex (directed or undirected) unweighted graph G for a given source
set S ⊆ V (G) and destination set T ⊆ V (G) can be preprocessed in polynomial time to
compute a DSO with O(n|S| log2 n+ |T |

√
n|S| logn) size and O

(
(n|S|)

logn
2
)
query time.

Notice that the subgraph lower bound of Ω(n
√
n|S|) provided in [24] can be easily

adapted to yield an Ω(|T |
√
n|S|) lower bound for the S × T case (oracles setting included),

and the details will be given in the full version of the paper. Therefore, for |T | = Ω(
√
n|S|),

the oracle of Theorem 6 has optimal size (up to poly-logarithmic factors).
We next show that for the special case of |T | = Ω(n 3

4 |S| 14 ), we can obtain an even better
space-optimal oracle (up to logarithmic factors) having polynomial query time.
I Theorem 7. An n-vertex (directed or undirected) unweighted graph G for a given source
set S ⊆ V (G) and destination set T ⊆ V (G) satisfying the condition |T | = Ω(n 3

4 |S| 14 ) can be
preprocessed in polynomial time to compute a DSO of size O

(
T
√
n|S| logn

)
and query time

O
(
n

3
2 |S| 32 |T |−1) = O(n 3

4 |S| 54 ) .
Proof. Let L be a parameter and R be a random set of size O(n/L) computed by Lemma 1.
Our oracle consists of an S×R oracle OS×R of size O(|S||R|L0 logn) and query time O(n/L0),
for some parameter L0 ∈ [n/

√
|S||R|, n/ logn] (see Theorem 5). This is augmented by storing

(i) d(x, t) for x ∈ R, t ∈ T , and (ii) the distance dG−e(s, t) for s ∈ S, t ∈ T , e ∈ π(s, t)[−`]
(recall that ` = dL logne). The overall size is O(|S||R|L0 logn+ |R||T |+ |S||T |L logn).

To report dG−e(s, t) we proceed in a similar way discussed in Algorithm 1. If e ∈ π(s, t)[−`]
we return the stored distance. Otherwise we compute dG−e(s, t) as
minx∈R, d(x,t)≤`

(
dG−e(s, x)+d(x, t)

)
, where dG−e(s, x) is obtained by querying OS×R. Since

O(|R|) queries to OS×R are performed, the total query time is O(|R|(n/L0)).
Now we get our result by substituting |R| as Θ(n/L), and picking L =

√
n/|S| and

L0 = |T |/|S| to obtain an oracle of size O(T
√
n|S| logn), and query time O((n|S|) 3

2 /|T |). J

3.4 S × T Oracle with Additive Distortion
We conclude this section by focusing on the case in which an additive distortion to the reported
distance is allowed. The following theorem provides a family of oracles whose additive stretch
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decreases as soon as the size increases, regardless of the number of destinations.

I Theorem 8. Let L ∈ [5, n/|S|] and G be an undirected unweighted graph with S as source
set and T as destination set, and assume w.l.o.g. that |S| ≤ |T |. Then, there exists a
polynomial-time constructible (2L logn)-additive DSO of O((n2/L) · logn) size and O(1)
query time.

For the prominent single-source case, the above result is complemented by the following
conditional lower bound:

I Theorem 9. Let ε ∈ (0, 1] be any fixed constant. If the Set-Intersection Conjecture holds,
then any single-source DSO with constant query time and additive distortion d = O(n1−ε)
must use Ω̃

(
n

3
2 ε
)
bits of memory.

The above result improves several (unconditional) lower bounds on fault-tolerant additive-
distortion single-source structures. Moreover, we have recently extended the above lower
bound to the case of multiple sources, and we will provide it in the full version of the paper.

4 Path-Reporting S × T Oracle and Fault-Tolerant Preservers

The following lemma shows that the shortest paths have a very nice structure in the graph
G− e. (Since all our results in this section will crucially use this lemma, the results in this
section will hold for undirected graphs and edge failures only.)

I Lemma 10 (also proved in [21, 10]). Let G be an undirected weighted graph, s, t ∈ V (G) and
e ∈ π(s, t) such that s and t are connected in G− e. There exists an edge (y, z) ∈ G− e such
that π(s, y)::(y, z)::π(z, t) is a shortest path in G− e. We will refer to (y, z) by link(s, t, e).

For W ×W , the above lemma implies the following:

I Theorem 11. An n-vertex undirected weighted graph G for a given set W ⊆ V (G) can
be preprocessed in polynomial time to compute a data structure of O(n|W | logn) size that
given any two vertices s, t ∈ W and any failing edge e ∈ E(G), can report πG−e(s, t) in
O(|πG−e(s, t)|) time.

Moreover, as a by-product we get a sparse subgraph with O(n|W | logn) edges that preserves
distance between any vertex pair (s, t) ∈W ×W after single edge failure e.

The above construction can be used to design a path-reporting oracle for S × T , for the
unweighted case only though. As before, for a parameter L we take a random set R with
O(n/L) vertices. We pre-compute the path reporting oracle for W ×W , where W = S ∪R,
and also the distance oracle for S × T . Recall that this will take O((n2/L+ |S||T |L) logn)
space. Next, for each (s, t) ∈ S × T and e ∈ π(s, t)[−`], we store the following: (i) edge
(y, z) = link(s, t, e), (ii) the distance d(z, t), and (iii) the suffix πG−e(s, t)[−`].

Notice that the total space used by us is O((n2/L) logn+ |S||T |L2 log2 n). On choosing L
as n2/3(|S||T |)−1/3, we get a bound of O(n4/3(|S||T |)1/3 log2 n). Then, we use the following:

Path-reporting Query Algorithm
1. If e /∈ π(s, t), we return π(s, t) stored in the shortest path tree Ts (recall s ∈W ).
2. If e ∈ π(s, t)[−`] then we retrieve the pre-stored edge (y, z) = link(s, t, e), the distance

d(z, t), and the path P = πG−e(s, t)[−`].
If d(z, t) ≤ `, then z must lie on P and πG−e(s, t) will be equal to π(s, y)::(y, z)::P (z, t).
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If d(z, t) > `, then we compute a vertex r ∈ R lying on P = πG−e(s, t)[−`] in O(|P |) =
O(`) time. Such an r exists by Lemma 1. We output πG−e(s, t) = πG−e(s, r)::π(r, t).
Notice that in this case πG−e(s, t) can be outputted in O(|πG−e(s, t)|) time.

3. If e /∈ π(s, t)[−`], then it follows from Lemma 4 that πG−e(s, t) = πG−e(s, r)::π(r, t),
where r = arg min

(
dG−e(s, x) + d(x, t) | x ∈ R, d(x, t) ≤ `

)
. Such an r is computable

in O(|R|) = O(n1/3|S|1/3|T |1/3) time. Thus in this case in O(|πG−e(s, t)|+ (n|S||T |)1/3)
time we can report πG−e(s, t).

The above analysis thus implies the following result:

I Theorem 12. For any undirected unweighted graph G there exists a polynomial-time con-
structible DSO for a source set S and destination set T of size O(n4/3(|S||T |)1/3 log2 n)
that for any (s, t) ∈ S × T , and any failing edge e ∈ E(G), can report πG−e(s, t) in
O(|πG−e(s, t)|+ (n|S||T |)1/3) time.

Moreover, as a by-product we get a sparse subgraph with O(n4/3|S|1/3|T |1/3 log2 n) edges
that preserves distance between any vertex pair (s, t) ∈ S × T after single edge failure e.

Finally, we conclude this section by providing an even better oracle for the meaningful
scenario in which T = V (G). As before we take a set R with

√
|S||T | vertices and compute

the path reporting oracle for W ×W , where W = S ∪R. We also pre-compute a distance
oracle for S × T . For each t ∈ V (G), and each e ∈ π(s, t)[−`], we store the last edge of
πG−e(s, t). Notice that the overall size of the oracle remains same, i.e. O(n

√
|S||T | logn).

A path query is performed as follows: if e /∈ π(s, t), we return π(s, t) stored in the shortest
path tree Ts (recall s ∈W ); if e appears on π(s, t)[−`], we can access the last edge, say (w, t),
of P = πG−e(s, t) in constant time and obtain path P [s, w] = πG−e(s, w) by recursively
querying the oracle. Finally, in the remaining case, we compute in O(|R|) time the vertex
r = arg min{dG−e(x) + d(z, t) | x ∈ R, d(x, t) ≤ `}. We know that the concatenation
πG−e(s, r) :: π(r, t) is a shortest path from s to t in G− e. Notice that using Theorem 11,
πG−e(s, r) can be reported in O(|πG−e(s, r)|) time, also the path π(r, t) is stored in the tree Tr
(recall r ∈W ). Thus the time for reporting path πG−e(s, t) is O(|R| + |πG−e(s, t)|). Notice
that |R| =

√
n|S| and |πG−e(s, t)| ≥ d(s, t) ≥ ` = (n/|R|) logn =

√
n/|S| logn. Therefore in

this case as well, the total time spent is of order of the number of edges on the shortest path
πG−e(s, t). To summarize, we have:

I Theorem 13. For any undirected unweighted graph G there exists a polynomial-time
constructible DSO for a source set S of size O(n

√
n|S| logn) that for any s ∈ S, t ∈ V (G),

and any failing edge e ∈ E(G), can report πG−e(s, t) in O(|πG−e(s, t)|) time.

Remarkably, the above multi-source oracle is the natural counterpart of the multi-source
fault-tolerant preserver given in [24], and so it is optimal in space (up to poly-logarithmic
factors) and in query time.

5 Distributed Routing Scheme for Single-Source Distances

In this section, we present the main crux of our edge-fault-tolerant routing distributed
schemes for the single-source to all-destinations case. Details about our labeling scheme and
the remaining details of the routing scheme can be found in the full version of the paper.
We use s to denote the designated source vertex. For any two vertices a, b, we denote by
Treepath(a, b) the path from a to b in tree Ts.

It turns out that finding our labeling scheme of Õ(n 3
2 ) bitsize is quite easy, while designing

our routing scheme is not that straightforward. Our approach for it works as follows. First
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we show how to represent the FT-BFS (w.r.t. s) subgraph as a union of trees and link-edges
(see Lemma 10) of total size Õ(n3/2), so that each replacement path can be represented as a
combination of two tree paths connected by a link edge. We can then use the routing scheme
over trees by Thorup and Zwick [29]. For ensuring small routing tables, we will need that
each vertex must be present in only Õ(

√
n) number of trees in the family of trees considered

by us. In this way, we will obtain a scheme for routing packets from s along replacement
shortest paths with poly-logarithmic headers and Õ(

√
n) bitsize node routing tables and

edge labels.

5.1 Tree Representations
For a parameter L =

√
n we take R ⊆ V (G) to be a set of vertices as obtained from Lemma 1.

Also ` is taken to be dL logne. We define two family of trees Tlong and Tshort as follows:
(i) The family Tlong consists of shortest path tree Ts, and the shortest path trees Tr for each
r ∈ R; (ii) The family Tshort consists of all the possible trees Te,z given by Definition 14
below and have depth at most `.

I Definition 14. Let e = (u, v) ∈ Ts, and (y, z) be an edge that becomes tree edge in Ts,G−e.
Also assume d(u, z) ≤ 2`. We define Te,z to be a subtree of Ts,G−e which is (i) rooted at
vertex z, and (ii) truncated to depth `, that is, it contains only those vertices whose depth
differ from depth of z in Ts,G−e by at most `.

In the following table, we show how the families Tlong and Tshort can be directly used to
obtain a shortest path from s to any arbitrary vertex t after an edge failure on Treepath(s, t).

If Then New s− t shortest path in G− e

t = r0 ∈ R
Treepath(s, y)::(y, z)::Tr0 (z, r0)

where (y, z) = link(s, r0, e)
e ∈ Treepath(s, t)[−`]

(y, z) = link(s, t, e), d(z, t) ≤ ` t ∈ Te,z ∈ Tshort Treepath(s, y)::(y, z)::Te,z(z, t)

Remaining
cases

πG−e(s, t)[−`] must
contain some r ∈ R

Treepath(s, yr)::(yr, zr)::Tr(zr, t)
where (yr, zr) = link(s, r, e)

We now show correctness of above table case by case.

Case 1. t = r0 ∈ R
Let (y, z) = link(s, r0, e). Recall that we showed in Lemma 10, π(s, y)::(y, z)::π(z, r0) =
Treepath(s, y)::(y, z)::Tr0(z, r0) is a shortest path from s to r0 in G − e. Notice that
the trees Ts and Tr0 are present in the family Tlong.

Case 2. e ∈ Treepath(s, t)[−`], (y, z) = link(s, t, e), d(z, t) ≤ `
Since d(t, z) ≤ `, we will have d(u, z) ≤ 2`. This along with the fact that (y, z) be-
comes a tree edge in Ts,G−e shows that tree Te,z is present in the family Tshort. Also
from Lemma 10 we know that e cannot lie on π(z, t), so dG−e(z, t) = d(z, t) ≤ `.
Since tree Te,z contains shortest paths up to depth `, vertex t must lie in Te,z. This
shows that Te,z(z, t) = πG−e(z, t) = π(z, t). So by applying Lemma 10, we get that
Treepath(s, y)::(y, z)::Te,z(z, t) is a shortest path from s to t in G− e.

Case 3(i). e ∈ Treepath(s, t)[−`], (y, z) = link(s, t, e), d(z, t) > `

Let P = π(s, y)::(y, z)::π(z, t) be a shortest path from s to t in G \ e (see Lemma 10).
As |P (z, t)| ≥ `, by Lemma 1, P [−`] must contain a vertex from set R, say r. Let
(yr, zr) = link(s, r, e). Since P [s, r] = πG−e(s, r), edge (yr, zr) must be identical to the



D. Bilò et al. 13:13

edge (y, z). Notice that π(z, t) = Tr(z, r)::Tr(r, t) = Tr(z, t) = Tr(zr, t). Thus in this case
Treepath(s, yr)::(yr, zr)::Tr(zr, t) is a shortest path from s to t in the graph G− e.

Case 3(ii). e /∈ Treepath(s, t)[−`]
Let P = πG−e(s, t). By Lemma 1, P [−`] must contain a vertex from set R, say r.
We know by Lemma 3 that P [r, t] is a shortest path in G, thus P [r, t] = Tr(r, t). Let
(yr, zr) = link(s, r, e), then P [s, r] = πG−e(s, r) = Treepath(s, yr)::(yr, zr)::Tr(zr, r).
Thus in this case also πG−e(s, t) = Treepath(s, yr)::(yr, zr)::Tr(zr, t). (Notice that if
Treepath(s, r) is intact in graph G − e, then we can define link(s, r, e) to be any
arbitrary edge on Treepath(s, r)).

All that remains is to show that each vertex in G appears in Õ(
√
n) trees in the families

Tshort and Tlong. For the family Tlong, proof is trivial because |Tlong| = O(|R|) = O(
√
n),

and it turns out the same holds for the family Tshort. From this, the bound on the size of
our routing scheme will follow.
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Abstract
Selfish Network Creation focuses on modeling real world networks from a game-theoretic point
of view. One of the classic models by Fabrikant et al. [PODC’03] is the network creation game,
where agents correspond to nodes in a network which buy incident edges for the price of α per
edge to minimize their total distance to all other nodes. The model is well-studied but still
has intriguing open problems. The most famous conjectures state that the price of anarchy is
constant for all α and that for α ≥ n all equilibrium networks are trees.

We introduce a novel technique for analyzing stable networks for high edge-price α and employ
it to improve on the best known bounds for both conjectures. In particular we show that for
α > 4n − 13 all equilibrium networks must be trees, which implies a constant price of anarchy
for this range of α. Moreover, we also improve the constant upper bound on the price of anarchy
for equilibrium trees.
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1 Introduction

Many important networks, e.g. the Internet or social networks, have been created in a
decentralized way by selfishly acting agents. Modeling and understanding such networks is
an important challenge for researchers in the fields of Computer Science, Network Science,
Economics and Social Sciences. A significant part of this research focuses on assessing the
impact of the agents’ selfish behavior on the overall network quality measured by the price
of anarchy [32]. Clearly, if there is no or little coordination among the egoistic agents, then it
cannot be expected that the obtained networks minimize the social cost. The reason for this
is that each agent aims to improve the network quality for herself while minimizing the spent
cost. However, empirical observations, e.g. the famous small-world phenomenon [40, 30, 9],
suggest that selfishly built networks are indeed very efficient in terms of the overall cost and
of the individually perceived service quality. Thus, it is a main challenge to justify these
observations analytically.
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14:2 On the Tree Conjecture for the Network Creation Game

A very promising approach towards this justification is to model the creation of a network
as a strategic game which yields networks as equilibrium outcomes and then to investigate
the quality of these networks. For this, a thorough understanding of the structural properties
of such equilibrium networks is the key.

We contribute to this endeavor by providing new insights into the structure of equilibrium
networks for one of the classical models of selfish network creation [24]. In this model, agents
correspond to nodes in a network and can buy costly links to other nodes to minimize their
total distance in the created network. Our insights yield improved bounds on the price of
anarchy and significant progress towards settling the so-called tree conjecture [24, 36].

1.1 Model and Definitions
We consider the classical network creation game as introduced by Fabrikant et al. [24]. There
are n agents V , which correspond to nodes in a network, who want to create a connected
network among themselves. Each agent selfishly strives for minimizing her cost for creating
network links while maximizing her own connection quality. All edges in the network are
undirected and unweighted and agents can create any incident edge for the price of α > 0,
where α is a fixed parameter of the game. The strategy Su ⊆ V \ {u} of an agent u denotes
which edges are bought by this agent, that is, agent u is willing to create (and pay for) all
the edges (u, x), for all x ∈ Su. Let s be the n-dimensional vector of the strategies of all
agents. The strategy-vector s induces an undirected network G(s) = (V,E(s)), where for
each edge (u, v) ∈ E(s) we have v ∈ Su or u ∈ Sv. If v ∈ Su, then we say that agent u is the
owner of edge (u, v) or that agent u buys the edge (u, v), otherwise, if u ∈ Sv, then agent
v owns or buys the edge (u, v).1 Since the created networks will heavily depend on α we
emphasize this by writing (G(s), α) instead of G(s). The cost of an agent u in the network
(G(s), α) is the sum of her cost for buying edges, called the creation cost, and her cost for
using the network, called the distance cost, which depends on agent u’s distances to all other
nodes within the network. The cost of u is defined as

cost(G(s), α, u) = α|Su|+ distcost(G(s), u),

where the distance cost is defined as

distcost(G(s), u) =
{∑

w∈V dG(s)(u,w), if G(s) is connected
∞, otherwise.

Here dG(s)(u,w) denotes the length of a shortest path between u and w in the network G(s).
We will mostly omit the reference to the strategy vector, since it is clear that a strategy
vector directly induces a network and vice versa. Moreover, if the network is clear from
the context, then we will also omit the reference to the network, e.g. writing distcost(u)
instead of distcost(G, u).

A network (G(s), α) is in pure Nash equilibrium (NE), if no agent can unilaterally change
her strategy to strictly decrease her cost. That is, in a NE network no agent can profit by a
strategy change if all other agents stick to their strategies. Since in a NE network no agent
wants to change the network, we call them stable.

The social cost, denoted cost(G(s), α), of a network (G(s), α) is the sum of the cost of all
agents, that is, cost(G(s), α) =

∑
u∈V cost(G(s), α, u). Let OPTn be the minimum social

1 No edge can have two owners in any equilibrium network. Hence, we will assume throughout the paper
that each edge in E(s) has a unique owner.
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cost of a n agent network and let maxNEn be the maximum social cost of any NE network
on n agents. The price of anarchy (PoA) [32] is the maximum over all n of the ratio maxNEn

OPTn
.

Let G = (V,E) be any undirected connected graph with n vertices. A cut-vertex x of G
is a vertex with the property that G with vertex x removed contains at least two connected
components. We say that G is biconnected if n ≥ 3 and G contains no cut-vertex. A
biconnected component H of G is a maximal induced subgraph of G which is also biconnected.
Note that we rule out trivial biconnected components which contain exactly one edge. Thus,
there exist at least two vertex-disjoint paths between any pair of vertices x, y in a biconnected
component H, which implies that there exists a simple cycle containing x and y.

1.2 Related Work
Network creation games, as defined above, were introduced by Fabrikant et al. [24]. They
gave the first general bound of O(

√
α) on the PoA and they conjectured that above some

constant edge-price all NE networks are trees. This conjecture, called the tree conjecture, is
especially interesting since they also showed that tree networks in NE have constant PoA.
In particular, they proved that the PoA of stable tree networks is at most 5. Interestingly,
the tree conjecture in its general version was later disproved by Albers et al. [1]. However,
non-tree NE networks are known only when α < n, in particular, for every ε > 0, there exist
non-tree NE networks with α ≤ n− ε [36]. It is believed that for α ≥ n the tree conjecture
may be true. Settling this claim is currently a major open problem and there has been a
series of papers which improved bounds concerning the tree conjecture.

First, Albers et al. [1] proved that for α ≥ 12n logn every NE network is a tree. Then,
using a technique based on the average degree of the biconnected component, this was
significantly improved to α > 273n by Mihalák & Schlegel [39] and even further to α ≥ 65n
by Mamageishvili et al. [36]. The main idea of this average degree technique is to prove a
lower and an upper bound on the average degree of the unique biconnected component in
any equilibrium network. The lower bound has the form “for α > c1n the average degree is
at least c2” and the upper bound has the form “for α > c3n the average degree is at most
f(α)”, where c1, c2, c3 are constants and f is a function which monotonically decreases in
α. For large enough α both bounds contradict each other, which proves that equilibrium
networks for this α cannot have a biconnected component and thus must be trees. Very
recently a preprint by Àlvarez & Messegué [5] was announced which invokes the average
degree technique with a stronger lower bound. This then yields a contradiction already for
α > 17n. For their stronger lower bound the authors use that in every minimal cycle (we
call them “min cycles”) of an equilibrium network all agents in the cycle buy exactly one
edge of the cycle. This fact has been independently established by us [35] and we also use it.

The currently best general upper bound of 2O(
√

logn) on the PoA is due to Demaine et
al. [22] and it is known that the PoA is constant if α < n1−ε for any fixed ε ≥ 1

logn [22]. Thus,
the PoA was shown to be constant for almost all α, except for the range between n1−ε, for
any fixed ε ≥ 1

logn , and α < 65n (or α ≤ 9n which is claimed in [5]). It is widely conjectured
that the PoA is constant for all α and settling this open question is a long standing problem
in the field. A constant PoA proves that agents create socially close-to-optimal networks
even without central coordination. Quite recently, a constant PoA was proven by Chauhan
et al. [16] for a version with non-uniform edge prices. In contrast, non-constant lower bounds
on the PoA have been proven for local versions of the network creation game by Bilò et
al. [10, 12] and Cord-Landwehr & Lenzner [19].

For other variants and aspects of network creation games, we refer the reader to [26, 8,
18, 15, 21, 6, 31, 33, 34, 38, 29, 2, 37, 20, 23, 13, 11, 7, 25, 17, 3, 4, 27].
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1.3 Our Contribution
In this paper we introduce a new technique for analyzing stable non-tree networks for high
edge-price α and use it to improve on the current best lower bound for α for which all stable
networks must be trees. In particular, we prove that for α > 4n − 13 any stable network
must be a tree (see Section 2). This is a significant improvement over the known bound of
α > 65n by Mamageishvili et al. [36] and the recently claimed bound of α > 17n by Àlvarez
& Messegué [5]. Since the price of anarchy for stable tree networks is constant [24], our
bound directly implies a constant price of anarchy for α > 4n− 13. Moreover, in Section 3,
we also give a refined analysis of the price of anarchy of stable tree networks and thereby
improve the best known constant upper bound for stable trees.

Thus, we make significant progress towards settling the tree conjecture in network creation
games and we enlarge the range of α for which the price of anarchy is provably constant.

Our new technique exploits properties of cycles in stable networks by focusing on critical
pairs, strong critical pairs and min cycles. The latter have been introduced in our earlier
work [35] and are also used in the preprint by Àlvarez & Messegué [5]. However, in contrast
to the last attempts for settling the tree conjecture [39, 36, 5], we do not rely on the average
degree technique. Instead we propose a more direct and entirely structural approach using
(strong) critical pairs in combination with min cycles. Besides giving better bounds with a
simpler technique, we believe that this approach is better suited for finally resolving the tree
conjecture.

Due to space constraints, all omitted details can be found in the full version [14].

2 Improving the Range of α of the Tree Conjecture

In this section we prove our main result, that is, we show that for α > 4n− 13, every NE
network (G,α) with n ≥ 4 nodes must be a tree.

We proceed by first establishing properties of cycles in stable networks. Then we introduce
the key concepts called critical pairs, strong critical pairs and min cycles. Finally, we provide
the last ingredient, which is a critical pair with a specific additional property, and combine
all ingredients to obtain the claimed result.

2.1 Properties of Cycles in Stable Networks
We begin by showing that for large values of α, stable networks cannot contain cycles of
length either 3 or 4.

I Lemma 1. For α > n−1
2 , no stable network (G,α) contains a cycle of length 3.

Proof. Let (G,α) be a stable network for a fixed value of α > n−1
2 . For the sake of

contradiction, assume that G contains a cycle C of length 3. Assume that V (C) = {u0, u1, u2}
and that C contains the three edges (u0, u1), (u1, u2), and (u2, u0). Let Vi =

{
x ∈ V |

dG(ui, x) < dG(uj , x),∀j 6= i
}
. Observe that, for every i ∈ {0, 1, 2} we have |Vi| ≥ 1,

as ui ∈ Vi. Furthermore, all the Vi’s are pairwise disjoint. W.l.o.g., assume that |V0| =
max

{
|V0|, |V1|, |V2|

}
. Furthermore, w.l.o.g., assume that u1 buys the edge (u1, u2). Consider

the strategy change in which agent u1 deletes the edge (u1, u2). The building cost of the
agent decreases by α while her distance cost increases by at most |V2|. Since |V2| ≤ |V0|, from
|V0|+ |V1|+ |V2| ≤ n we obtain |V2| ≤ n−1

2 . Since G is stable, n−1
2 − α ≥ 0, i.e., α ≤ n−1

2 , a
contradiction. J

I Lemma 2. For α > n− 2, no stable network (G,α) contains a cycle of length 4.
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Proof. Let (G,α) be a stable network for a fixed value of α > n− 2. For the sake of contra-
diction, assume that G contains a cycle C of length 4. Assume that V (C) = {u0, u1, u2, u3}
and that C contains the four edges (u0, u1), (u1, u2), (u2, u3), and (u3, u0). For the rest
of this proof, we assume that all indices are modulo 4 in order to simplify notation. Let
Vi =

{
x ∈ V | dG(ui, x) < dG(uj , x),∀j 6= i

}
. Observe that for every i ∈ {0, 1, 2, 3} we have

|Vi| ≥ 1, as ui ∈ Vi. Let Zi =
{
x ∈ V | dG(ui, x) = dG(ui−1, x) and dG(ui, x), dG(ui−1, x) <

dG(uj , x),∀j 6= i, i− 1
}
. Observe that in the families of the sets Vi and Zi every pair of sets

is pairwise disjoint.
We now rule out the case in which an agent owns two edges of C. W.l.o.g., assume that

agent u0 owns the two edges (u0, u1) and (u0, u3). Consider the strategy change in which
agent u0 swaps2 the edge (u0, u1) with the edge (u0, u2) and, at the same time, deletes the
edge (u0, u3). The creation cost of agent u0 decreases by α, while her distance cost increases
by |V1| + |V3| − |V2|. Since (G,α) is stable, agent u0 has no incentive in deviating from
her current strategy. Therefore, |V1| + |V3| − |V2| − α ≥ 0, i.e., α ≤ |V1| + |V3| − |V2| ≤
n − |V0| − |V2| − |V2| ≤ n − 3, where the last but one inequality follows from the pairwise
disjointness of all Vi sets, which implies |V0|+ |V1|+ |V2|+ |V3| ≤ n. Since, α > n− 2, no
agent can own two edges of C. Therefore, to prove the claim, we need to show that no agent
can own a single edge of C.

W.l.o.g., assume that for every i ∈ {0, 1, 2, 3} agent ui owns the edge (ui, ui+1). Moreover,
w.l.o.g., assume that |V1|+ |Z2| = min0≤i≤3

{
|Vi|+ |Zi+1|

}
. Since

∑
0≤i≤3

(
|Vi|+ |Zi+1|

)
≤ n,

we have that |V1|+ |Z2| ≤ n
4 .

Consider the strategy change in which agent u0 deletes the edge (u0, u1). The creation
cost of agent u0 decreases by α, while her distance cost increases by 2|V1|+ |Z2| ≤ n

2 .
Since (G,α) is stable, agent u0 has no incentive to deviate from her current strategy.

Therefore, n2 −α ≥ 0, i.e., α ≤ n
2 ≤ n−2, when n ≥ 4. We have obtained a contradiction. J

I Definition 3 (Directed Cycle). Let C be a cycle of (G,α) of length k. We say that C is
directed if there is an ordering u0, . . . , uk−1 of its k vertices such that, for every i = 0, . . . , k−1,
(ui, u(i+1) mod k) is an edge of C which is bought by agent ui.

We now show that if α is large enough, then directed cycles cannot be contained in a stable
network as a biconnected component.

I Lemma 4. For α > n − 2, no stable network (G,α) with n ≥ 6 vertices contains a
biconnected component which is also a directed cycle.

Proof. Let (G,α) be a stable network for a fixed value of α > n− 2. Let H be a biconnected
component of G. For the sake of contradiction, assume that H is a directed cycle of length k.
We can apply Lemma 2 to exclude the case in which k = 4. Similarly, since α > n− 2 ≥ n−1

2
for every n ≥ 3, we can use Lemma 1 to exclude the case in which k = 3.

Let u0, . . . , uk−1 be the k vertices of H and, w.l.o.g., assume that every agent ui is buying
an edge towards agent u(i+1) mod k. To simplify notation, in the rest of this proof we assume
that all indices are modulo k. Let Vi =

{
x ∈ V | dG(ui, x) < dG(uj , x),∀j 6= i

}
. Observe

that Vi is a partition of V . We divide the proof into two cases.
The first case occurs when H is a cycle of length k ≥ 6. W.l.o.g., assume that |V2| =

max0≤i≤k−1 |Vi|. In this case, consider the strategy change of agent u0 when she swaps the

2 A swap of edge (a, b) to edge (a, c) by agent a who owns edge (a, b) consists of deleting edge (a, b) and
buying edge (a, c).
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Figure 1 Illustrations of a critical pair 〈v, u〉. Edge-ownership is depicted by directing edges away
from their owner. Left: Edge (u, u′) belongs to a shortest path tree T rooted at v and u′ is the
parent of u in T . Middle: Edge (u, u′) does not belong to any shortest path tree T rooted at v.
Note that in this case (v, v2) can also be on the shortest path from v to u′. Right: Illustration of a
strong critical pair 〈v, u〉.

edge (u0, u1) with the edge (u0, u2). The distance cost of agent u0 increases by |V1| − |V2| −
|V3| ≤ −1. Thus, agent u0 has an improving strategy, a contradiction.

The second and last case occurs when H is a cycle of length k = 5. If |Vi| 6= |Vj | for some
i, j ∈ {0, 1, 2, 3, 4}, then there exists an i ∈ {0, 1, 2, 3, 4} such that |Vi| < |Vi+1|. W.l.o.g.,
let |V1| < |V2|. The distance cost of agent u0 when she swaps the edge (u0, u1) with the
edge (u0, u2) increases by |V1| − |V2| ≤ −1. Thus agent u0 has an improving strategy, a
contradiction. If |V0| = |V1| = |V2| = |V3| = |V4|, then the increase in the overall cost incurred
by agent u0 when she deletes the edge (u0, u1) would be equal to 3|V1|+ |V2| − α = 4

5n− α.
Since G is stable and n is a multiple of 5, 4

5n−α ≥ 0, i.e., α ≤ 4
5n ≤ n− 2, for every n ≥ 10,

a contradiction. J

2.2 Critical Pairs
The next definition introduces the concept of a (strong) critical pair. As we will see, (strong)
critical pairs are the first key ingredient for our analysis. Essentially, we will show that stable
networks cannot have critical pairs, if α is large enough.

I Definition 5 (Critical Pair). Let (G,α) be a non-tree network and let H be a biconnected
component of G. We say that 〈v, u〉 is a critical pair if all of the following five properties
hold:
1. Agent v ∈ V (H) buys two distinct non-bridge edges, say (v, v1) and (v, v2), with v1, v2 ∈

V (H);
2. Agent u ∈ V (H), with u 6= v buys at least one edge (u, u′) with u′ ∈ V (H) and u′ 6= v;
3. dG(v, u) ≥ 2;
4. there is a shortest path between v and u in G which uses the edge (v, v1);
5. there is a shortest path between v and u′ in G which does not use the edge (u, u′).
The critical pair 〈v, u〉 is strong if there is a shortest path between u and v2 which does not
use the edge (v, v2). See Fig. 1 for an illustration.

In the rest of this section, when we say that two vertices v and u of G form a critical pair, we
will denote by v1, v2, and u′ the vertices corresponding to the critical pair 〈v, u〉 that satisfy
all the conditions given in Definition 5. We can observe the following.
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I Observation 6. If 〈v, u〉 is a critical pair of a network (G,α), then there exists a shortest
path tree T of G rooted at v, where either the edge (u, u′) is not an edge of T or u′ is the
parent of u in T .

I Observation 7. If 〈v, u〉 is a critical pair, then for every shortest path tree T of (G,α) rooted
at u, either the edge (v, v1) is not an edge of T or v1 is the parent of v in T . Furthermore, if
〈v, u〉 is a strong critical pair, then there is a shortest path tree of G rooted at u such that
the edge (v, v2) is not contained in the shortest path tree.

The next technical lemma provides useful bounds on the distance cost of the nodes involved
in a critical pair.

I Lemma 8. Let (G,α) be a stable network and let a, b be two distinct vertices of G such
that a buys an edge (a, a′), with a′ 6= b. If dG(a, b) ≥ 2 and there exists a shortest path tree T
of G rooted at b such that either (a, a′) is not an edge of T or a′ is the parent of a in T , then
distcost(a) ≤ distcost(b) + n− 3. Furthermore, if a is buying also the edge (a, a′′), with
a′′ 6= a′, a′′ 6= b, and (a, a′′) is not an edge of T , then distcost(a) ≤ distcost(b)+n−3−α.

Proof. Consider the strategy change in which agent a swaps the edge (a, a′) with the edge
(a, b) and deletes any other edge she owns and which is not contained in T , if any. Let T ′
be a shortest path tree rooted at b of the graph obtained after the swap. Observe that
dT ′(b, x) ≤ dG(b, x), for every x ∈ V . Furthermore, as dG(a, b) ≥ 2, while dT ′(a, b) = 1, we
have dT ′(a, b) ≤ dG(a, b)− 1. Therefore,

∑
x∈V dT ′(b, x) ≤ distcost(b)− 1. Moreover, the

distance from a to every x 6= a is at most 1 +dT ′(b, x). Finally, the distance from a to herself,
which is clearly 0, is exactly 1 less than the distance from b to a in T ′. Therefore the distance
cost of a in T ′ is less than or equal to distcost(b)− 1 + (n− 1)− 1 = distcost(b) + n− 3.

If besides performing the mentioned swap agent a additionally saves at least α in cost by
deleting at least one additional edge which is not in T , then distcost(a) ≤ distcost(b) +
n− 3− α. This is true since G is stable, which implies that the overall cost of a in G cannot
be larger than the overall cost of a after the strategy change. J

Now we employ Lemma 8 to prove the structural property that stable networks cannot
contain strong critical pairs if α is large enough.

I Lemma 9. For α > 2n− 6, no stable network (G,α) contains a strong critical pair.

Proof. Let (G,α) be a non-tree stable network for a fixed value of α > 2n− 6 and, for the
sake of contradiction, let 〈v, u〉 be a strong critical pair. Using Observation 6 together with
Lemma 8 (where a = u, a′ = u′, and b = v), we have that

distcost(u) ≤ distcost(v) + n− 3.

Furthermore, using Observation 7 together with Lemma 8 (where a = v, a′ = v1, a
′′ = v2,

and b = u), we have that

distcost(v) ≤ distcost(u) + n− 3− α.

By summing up both the left-hand and the right-hand side of the two inequalities we obtain
0 ≤ 2n− 6− α, i.e., α ≤ 2n− 6, a contradiction. J
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e

Π

P ′

P
length = `

length = `′

length < `′

Figure 2 The cycle C containing edge e and the paths P, P ′ and Π.

2.3 Min Cycles
We now introduce the second key ingredient for our analysis: min cycles.

I Definition 10 (Min Cycle). Let (G,α) be a non-tree network and let C be a cycle in G.
We say that C is a min cycle if, for every two vertices x, x′ ∈ V (C), dC(x, x′) = dG(x, x′).

First, we show that every edge of every biconnected graph is contained in some min cycle.
This was also proven in [35] and [5].

I Lemma 11. Let H be a biconnected graph. Then, for every edge e of H, there is a min
cycle that contains the edge e.

Proof. Since H is biconnected, there exists at least a cycle containing the edge e. Among
all the cycles in H that contain the edge e, let C be a cycle of minimum length. We claim
that C is a min cycle. For the sake of contradiction, assume that C is not a min cycle.
This implies that there are two vertices x, y ∈ V (C) such that dH(x, y) < dC(x, y). Among
all pairs x, y ∈ V (C) of vertices such that dH(x, y) < dC(x, y), let x′, y′ be the one that
minimizes the value dH(x′, y′) (ties are broken arbitrarily). Let Π be a shortest path between
x′ and y′ in G. By the choice of x′ and y′, Π is edge disjoint from C. Let P and P ′ be the
two edge-disjoint paths between x′ and y′ in C and, w.l.o.g., assume that e is contained in P .
Let ` and `′ be the length of P and P ′, respectively. See Fig. 2. Clearly, the length of C is
equal to `+ `′. Since dC(x′, y′) ≤ `′, we obtain dH(x′, y′) < `′. Therefore, the cycle obtained
by concatenating P and Π has a length equal to `+ dH(x′, y′) < `+ `′, and therefore, it is
strictly shorter than C, a contradiction. J

Now we proceed with showing that stable networks contain only min cycles which are directed
and not too short. For this, we employ our knowledge about strong critical pairs.

I Lemma 12. For α > 2n − 6, every min cycle of a non-tree stable network (G,α) with
n ≥ 4 vertices is directed and has a length of at least 5.

Proof. Let (G,α) be a non-tree stable network for a fixed α > 2n− 6 and let C be a min
cycle of G. Since 2n − 6 ≥ n−1

2 for every n ≥ 4, using Lemma 1, we have that C cannot
be a cycle of length equal to 3. Furthermore, Since 2n− 6 ≥ n− 2 for every n ≥ 4, using
Lemma 2, we have that C cannot be either a cycle of length equal to 4. Therefore, C is a
cycle of length greater than or equal to 5.

For the sake of contradiction, assume that C is not directed. This means that C contains
a agent, say v, that is buying both her incident edges in C. We prove the contradiction
thanks to Lemma 9, by showing that C contains a strong critical pair.
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If C is an odd-length cycle, then v has two distinct antipodal vertices u, u′ ∈ V (C) which
are also adjacent in C.3 W.l.o.g., assume that u is buying the edge towards u′. Clearly,
dG(v, u) ≥ 2. Furthermore, since C is a min cycle, it is easy to check that 〈v, u〉 is a strong
critical pair.

If C is an even-length cycle, then let u ∈ V (C) be the (unique) antipodal vertex of v and
let u′ be a vertex that is adjacent to u in C. Observe that dG(v, u), dG(v, u′) ≥ 2. Again
using the fact that C is a min cycle, we have the following:

If u is buying the edge towards u′, then 〈v, u〉 is a strong critical pair.
If u′ is buying the edge towards u, then 〈v, u′〉 is a strong critical pair.

In both cases, we have proved that C contains a strong critical pair. J

Let (G,α) be a non-tree stable network with n ≥ 6 vertices for a fixed α > 2n− 6 and let H
be a biconnected component of G. Since 2n− 6 ≥ n− 2 for every n ≥ 4, Lemma 4 implies
that H cannot be a directed cycle. At the same time, if H is a cycle, then it is also a min
cycle and therefore, Lemma 12 implies that H must be directed, which contradicts Lemma 4.
Therefore, we have proved the following.

I Corollary 13. For α > 2n − 6, no non-tree stable network (G,α) with n ≥ 6 vertices
contains a cycle as one of its biconnected components.

2.4 Combining the Ingredients
Towards our main result, we start with proving that every stable network must contain a
critical pair which satisfies an interesting structural property. This lemma is the third and
last ingredient that is used in our analysis.

I Lemma 14. For α > 2n − 6, every non-tree stable network (G,α) with n ≥ 6 vertices
contains a critical pair 〈v, u〉. Furthermore, there exists a path P between v and v2 in G such
that (a) the length of P is at most 2dG(u, v) and (b) P uses none of the edges (v, v1) and
(v, v2).

Proof. Let (G,α) be a network of n ≥ 6 vertices which is stable for a fixed α > 2n− 6, and
let H be any biconnected component of G. By Corollary 13, we have that H cannot be a
cycle. As a consequence, H contains at least |V (H)|+ 1 edges and, therefore, it has a vertex,
say v, that buys at least two edges of H.

Let v1 and v2 be the two distinct vertices of H such that v buys the edges (v, v1) and
(v, v2). Let Ci be the min cycle that contains the edge (v, vi), whose existence is guaranteed
by Lemma 11. Lemma 12 implies that Ci is a directed cycle of length greater than or equal
to 5. Therefore, since (v, v1) is an edge of C1 bought by agent v, C1 cannot contain the edge
(v, v2), which is also bought by v. Similarly, since (v, v2) is an edge of C2 bought by agent v,
C2 cannot contain the edge (v, v1), which is also bought by v.

Let T be a shortest path tree rooted at v which gives priority to the shortest paths using
the edges (v, v1) or (v, v2). More precisely, for every vertex x, if there is a shortest path
from v to x containing the edge (v, v1), then x is a descendant of v1 in T . Furthermore, if no
shortest path from v to x contains the edge (v, v1), but there is a shortest path from v to x
containing the edge (v, v2), then x is a descendant of v2 in T .

Consider the directed version of Ci in which each edge is directed from their owner
agent towards the other end vertex. Let ui be, among the vertices of Ci which are also

3 In a cycle of length `, two vertices of the cycles are antipodal if their distance is equal to b`/2c.
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descendants of vi in T , the one which is in maximum distance from v w.r.t. the directed
version of Ci. Finally, let (ui, u′i) be the edge of Ci which is bought by agent ui. Clearly,
u′i is not a descendant of vi in T . Therefore, by construction of T , dG(v, u′i) ≤ dG(v, ui),
otherwise u′i would have been a descendant of vi in T , or there would have been a min
cycle containing both edges (v, v1) and (v, v2) (which are both bought by agent v), thus
contradicting Lemma 12.

W.l.o.g., assume that dG(v, u2) ≤ dG(v, u1). Let u = u1 and u′ = u′1. We show that
〈v, u〉 is a critical pair. By Lemma 12, C1 is a cycle of length k ≥ 5. As C1 is a min
cycle, k = dG(v, u) + 1 + dG(v, u′). Moreover, since dG(v, u′) ≤ dG(v, u), we have that
dG(v, u) ≥ k−1

2 ≥ 2. Therefore u′ 6= v. Next, the shortest path in T between v and u uses
the edge (v, v1) which is owned by agent v. Furthermore, the shortest path in T between v
and u′ does not use the edge (u, u′). Therefore, 〈v, u〉 is a critical pair.

Now, consider the path P which is obtained from C2 by removing the edge (v, v2).
Recalling that C2 does not contain the edge (v, v1), it follows that P is a path between
v and v2 which uses none of the two edges (v, v1) and (v, v2). Therefore, recalling that
dG(v, u′2) ≤ dG(v, u2), the overall length of P is less than or equal to

dG(v, u′2) + 1 + dG(v2, u2) ≤ dG(v, u2) + 1 + dG(v, u2)− 1 ≤ 2dG(v, u1) = 2dG(v, u). J

Finally, we prove our main result. For this and in the rest of the paper, given a vertex x of a
network (G,α) and a subset U of vertices of G, we denote by dG(x, U) :=

∑
x′∈U dG(x, x′).

I Theorem 15. For α > 4n− 13, every stable network (G,α) with n ≥ 4 vertices is a tree.

Proof. First of all, it is easy to check that for α > 3 every stable network with n = 4 vertices
is a tree. Moreover, the same holds true for n = 5 for α > 7.

Let α > 4n− 13 be a fixed value and let (G,α) be a stable network with n ≥ 6 vertices.
Since 4n − 13 ≥ 2n − 6, for every n ≥ 4, we have that if (G,α) is not a tree, then, by
Lemma 14, it contains a critical pair 〈v, u〉 satisfying the conditions stated in Lemma 14.
Moreover, Lemma 9 implies that 〈v, u〉 cannot be a strong critical pair. As a consequence,
every shortest path from u to v2 uses the edge (v, v2). Since 〈v, u〉 is a critical pair, this
implies that there is a shortest path from u to v2 which uses both the edges (v1, v) and
(v, v2). To finish our proof, we show that this contradicts the assumed stability of (G,α).
This implies that (G,α) must be a tree.

Let T (u) be a shortest path tree of G rooted at u having v1 as the parent of v and v
as the parent of v2. Observe that, by definition of a critical pair, there is a shortest path
between v and u containing the edge (v, v1). Therefore, T (u) is well defined. Furthermore,
let X be the set of vertices which are descendants of v2 in T (u). Note that since v2 ∈ X, we
have |X| ≥ 1.

Since 〈v, u〉 is a critical pair, thanks to Observation 6, we can use Lemma 8 (where
a = u, a′ = u′, and b = v) to obtain

distcost(u) ≤ distcost(v) + n− 3. (1)

Furthermore, observe that

distcost(u) =
∑
x∈X

(
dG(u, v) + dG(v, x)

)
+ dG(u, V \X) (2)

= dG(u, v)|X|+ dG(v,X) + dG(u, V \X).

Therefore, by substituting distcost(u) in (1) with (2) we obtain the following

dG(u, v)|X|+ dG(v,X) + dG(u, V \X) ≤ distcost(v) + n− 3. (3)
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Let T ′(u) be the tree obtained from T (u) by the the swap of the edge (v, v1) with the edge
(v, u). The distance cost incurred by agent v if she swaps the edge (v, v1) with the edge (v, u)
is at most

dT ′(u)(v, V ) = dT ′(u)(v,X) + dT ′(u)(v, V \X) = dT (u)(v,X) + dT ′(u)(v, V \X)

≤ dT (u)(v,X) +
∑

x∈V \(X∪{v})

(
1 + dT (u)(u, x)

)
≤ dG(v,X) +

∑
x∈V \X

(
1 + dG(u, x)

)
− 2

= dG(v,X) + n− |X|+ dG(u, V \X)− 2.

Since (G,α) is stable, agent v cannot decrease her distance cost by swapping any of the edges
she owns. Therefore, we obtain

distcost(v) ≤ dG(v,X) + n− |X|+ dG(u, V \X)− 2. (4)

By summing both the left-hand and the right-hand sides of the two inequalities (3) to (4)
and simplifying we obtain

dG(u, v)|X| ≤ 2n− 5− |X|. (5)

Consider the network (G′, α) induced by the strategy vector in which agent v deviates from
her current strategy by swapping the edge (v, v1) with the edge (v, u) and, at the same time,
by deleting the edge(v, v2). By Lemma 14, there exists a path P between v and v2 in G,
of length at most 2dG(u, v), such that P uses none of the edges (v, v1) and (v, v2). As a
consequence, using both (1) and (5) in the second to last inequality of the following chain,
the distance cost of v w.r.t. (G′, α) is upper bounded by

dG′(v, V ) ≤
∑
x∈X

(
2dG(u, v) + dG(v2, x)

)
+

∑
x∈V \(X∪{v})

(
1 + dG(u, x)

)
≤ 2dG(u, v)|X|+ dG(v2, X) + n− |X|+ dG(u, V \X)− 2
≤ 2dG(u, v)|X|+ dG(v,X)− |X|+ n− |X|+ dG(u, V \X)− 2
= 2dG(u, v)|X|+ dG(u,X)− dG(u, v)|X|+ n− 2|X|+ dG(u, V \X)− 2
= dG(u, v)|X|+ n− 2|X|+ distcost(u)− 2
≤ 2n− 5− |X|+ n− 2|X|+ distcost(v) + n− 3− 2
= distcost(v) + 4n− 10− 3|X| ≤ distcost(v) + 4n− 13.

By her strategy change, agent v will save α in edge cost and her distance cost will increase
by at most 4n− 13. Thus, if α > 4n− 13, then this yields a strict cost decrease for agent v
which contradicts the stability of (G,α). J

With the results from Fabrikant et al. [24] Theorem 15 yields:

I Corollary 16. For α > 4n− 13 the PoA is at most 5.

In Section 3 we improve the upper bound of 5 on the PoA for stable tree networks from
Fabrikant et al. [24]. With this, we establish the following:

I Corollary 17. For every α > 4n− 13 the PoA is at most 3 + 2n
2n+α .
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3 Improved Price of Anarchy for Stable Tree Networks

In this section we show a better bound on the PoA of stable tree networks. To prove the
bound, we need to introduce some new notation first. Let T be a tree on n vertices and, for
a vertex v of T , let T − v be the forest obtained by removing vertex v together with all its
incident edges from T . We say that v is a centroid of T if every tree in T − v has at most
n/2 vertices. It is well known that every tree has at least one centroid vertex [28].

I Lemma 18. Let (T, α) be a stable tree network rooted at a centroid c of T , and let
u, v ∈ V (T ), with u, v 6= c, be two vertices such that u buys the edge towards v in T . Then
dT (c, u) < dT (c, v), i.e. u is the parent of v in T . Furthermore, if T denotes the subtree of
T rooted at v, then v is a centroid of T .

We now show a useful bound on the number of vertices contained in each of the subtrees of a
stable tree network rooted at a centroid.

I Lemma 19. Let (T, α) be a stable tree network rooted at a centroid c of T , let u be a child
of c in T and let v be a leaf of T contained in the subtree of T rooted at u. Let c1, . . . , ck be
the vertices along the path in T between c0 = u and ck = v, where ci+1 is the child of ci, and,
finally, for every i = 1, . . . , k, let

ni =
∣∣{x ∈ V | dT (ci, x) < dT (cj , x), j 6= i

}∣∣.
We have that

∑i
j=1 nj ≥ n ·

∑i
j=1 1/2j.

We can finally prove our upper bound on the PoA of stable tree networks.

I Theorem 20. For α ≥ 2, the PoA restricted to the class of stable tree networks of n
vertices is upper bounded by 3 + 2n2−8n−4α

2n2+(α−2)n .

Proof sketch. We consider a stable tree network (T, α) rooted at a centroid vertex c. Then
we consider any child c′ of c and focus on a leaf vertex v in the subtree of T rooted at c′.
Agent v could buy an edge to vertex c′, but since (T, α) is stable, this does not yield a cost
decrease for agent v. Using Lemma 19, we then compute a lower bound on the distance cost
decrease if agent v buys the edge (v, c′) and obtain an upper bound on the distance from any
leaf v to the centroid c. This translates to an upper bound on the diameter of T . Now, using
this diameter upper bound, we compute an upper bound on the social cost of (T, α) and
compare it with the social cost of the socially optimal network, which is a n-node star [24],
to derive the claimed bound. J

4 Conclusion

In this paper we have opened a new line of attack on settling the tree conjecture and on
proving a constant price of anarchy for the network creation game for all α. Our technique
is orthogonal to the known approaches using bounds on the average degree of vertices in a
biconnected component. We are confident that our methods can be refined and/or combined
with the average degree technique to obtain even better bounds – ideally proving or disproving
the conjectures.

Another interesting approach is to modify our techniques to cope with the so-called
max-version of the network creation game [22], where agents try to minimize their maximum
distance to all other nodes, instead of minimizing the sum of distances. Also for the
max-version it is still open for which α all stable networks must be trees.
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Abstract
Relativizing computations of Turing machines to an oracle is a central concept in the theory
of computation, both in complexity theory and in computability theory(!). Inspired by lowness
notions from computability theory, Allender introduced the concept of “low for speed” oracles. An
oracle A is low for speed if relativizing to A has essentially no effect on computational complexity,
meaning that if a decidable language can be decided in time f(n) with access to oracle A, then
it can be decided in time poly(f(n)) without any oracle. The existence of non-computable such
A’s was later proven by Bayer and Slaman, who even constructed a computably enumerable one,
and exhibited a number of properties of these oracles as well as interesting connections with
computability theory. In this paper, we pursue this line of research, answering the questions left
by Bayer and Slaman and give further evidence that the structure of the class of low for speed
oracles is a very rich one.
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1 Introduction

The subject of this paper is oracle computation, more specifically the effect of oracles on the
speed of computation. There are many notable results about oracles in classical complexity,
beginning with the Baker-Gill-Solovay result [3] which asserts that there are oracles A such
that PA = NPA, but that there are also oracles B such that PB 6= NPB (thus demonstrating
that methods that relativize will not suffice to solve basic questions like P vs NP). An
underlying question is whether oracle results can say things about complexity questions in
the unrelativized world. Eric Allender and his co-authors [1, 2] showed that oracle access to
the sets of random strings could give insight into basic complexity questions. For example,
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in [2], Allender et. al. showed that ∩UPRKU ∩ COMP ⊆ PSPACE where RKU
denotes the

strings whose prefix-free Kolmogorov complexity (relative to universal machine U) is at least
their length, and COMP denotes the collection of computable sets. Later the “∩COMP” was
removed by Cai et. al. [7]. Thus we conclude that reductions to very complex sets like the
random strings somehow gives insight into very simple things like computable sets.

Inspired by lowness notions in computability theory, Allender asked whether there were
non-trivial sets which were “low for speed” in that, as oracles, they did not accelerate running
times of computations by more than a polynomial amount. Of course, as stated this makes
little sense since using any X as oracle, we can decide membership in X in linear time, while
without oracle X may not even be computable at all! Thus, what we are really interested in
is the set of oracles which do not speed-up the computation of computable sets by more than
a polynomial amount. More precisely, an oracle X is low for speed if for any computable
language L, if some Turing machineM with access to oracle X decides L in time f , then there
is a Turing machine M ′ without oracle and polynomial p such that M ′ decides L in time p◦f .
(Here computation time of oracle computation is counted in the usual complexity-theoretic
fashion: we have a “query tape” on which we can write strings, and once a string x is written
on this tape, we get to ask the oracle whether x belongs to it in time O(1)).

There are trivial examples of such sets, namely oracles that belong to P, because any
query to such an oracle can be replaced by a polynomial-time computation. Allender’s precise
question was therefore:

Is there an oracle X /∈ P which is low for speed?

Such an X, if it exists, has to be non-computable, for the same reason as above (if X is
computable and low for speed, then X is decidable in linear time using oracle X, thus – by
lowness – decidable in polynomial time without oracle, i.e., X ∈ P).

A partial answer was given by Lance Fortnow (unpublished), who observed the following.

I Theorem 1 (Fortnow). If X is a hypersimple and computably enumerable oracle, then X
is low for polynomial time, in that if L ∈ PX , then L ∈ P.

Allender’s question was finally solved by Bayer and Slaman, who showed the following.

I Theorem 2 (Bayer-Slaman [4]). There are non-computable, computably enumerable, sets X
which are low for speed.

Once their existence is established, it is natural to wonder what kind of sets might be
low for speed. A precise characterization seems currently out of reach, but it is interesting
to see how lowness for speed interacts with other computability-theoretic properties. One
needs however to keep in mind that lowness for speed is not closed under Turing equivalence:
we saw above that in the 0 degree (computable sets) some members are low for speed and
others that are not (on the other hand it is easy to see that if A is polynomial-time reducible
to B and B is low for speed, then A is also low for speed).

In his PhD thesis, Bayer showed that if X is computably enumerable and of promptly
simple Turing degree, then X is not low for speed, but also proved that this did not
characterize the computable enumerable oracles that are low for speed. Bayer also studied
the size of the set of low for speed oracles, where ‘size’ is understood in terms of Baire
category. Surprisingly, whether the set of low for speed oracles is meager or co-meager
depends on the answer of the famous P =?NP question.

In this paper, we continue Bayer and Slaman’s investigation on the set of low for speed
oracles. In the next section, we give an easier proof of the existence of non-computable low
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for speed oracles which does not require the full Bayer-Slaman machinery (but the oracle
we construct is not computably enumerable). In Section 3, we focus on the computably
enumerable low for speed oracles, and prove that – quite surprisingly – they cannot be low
in the computability-theoretic sense, but can however be low2. Finally, we pursue Bayer and
Slaman’s idea to study how large the set of low for speed oracles is, in terms of measure and
category. In particular, we solve a question they left open by showing that the set of low
for speed oracles has measure 0 and obtain some interesting connections with algorithmic
randomness. Finally, though lowness for speed is not closed under Turing equivalence, it is
nonetheless natural to ask which Turing degrees contain a low for speed member, which is
what Section 5 is about.

Throughout this paper, we will denote by {0, 1}∗ the set of finite strings. In our setting,
an oracle is a language, i.e., a subset of {0, 1}∗; however, as is typical in computability theory,
it is more convenient in some of the results we present below to view oracles as infinite binary
sequences (whose set we denote by {0, 1}ω), by first identifying finite strings with integers (the
(n+ 1)-th string in the length-lexicographic order being identified with n) making the oracle
a subset of N and then identifying the oracle with its characteristic sequence (the (n+ 1)-th
bit is 1 if n belongs to the oracle, 0 otherwise). When building oracles X with certain
computability-theoretic properties, viewed as infinite binary sequences, we will often need
to refer to prefixes of X, which are themselves binary strings. To avoid confusion between
members and prefixes of oracles, we will use latin letters x, y, z, . . . to denote members of
oracles, and greek letters σ, τ, . . . for prefixes of oracles. Two strings σ and τ are incompatible
if for some i < min(|σ|, |τ |), σ(i) 6= τ(i). We denote this by σ⊥ τ . The join X ⊕ Y of two
infinite binary sequences X,Y is the sequence X(0)Y (0)X(1)Y (1) . . .. Finally X � n is the
prefix of X of length n.

Our paper requires some knowledge of computability theory and algorithmic randomness.
One can consult the book [8] for the results and concepts we allude to below. Our notation
is mostly standard. We fix a computable bijection 〈., .〉 from pairs of strings/integers to
strings/integers. We also fix an effective list (Φe) of all oracle Turing functionals (or machines:
ΦAe is the Turing machine of index e with oracle A, which for a fixed A is a partial function
from {0, 1}∗ to {0, 1}). For a given functional Φe and oracle A, time(ΦA

e , x) denotes the
running time of Φe on input x with oracle A (counting time according to the model of
computation described above) and time(ΦAe ) is the function x 7→ time(ΦAe , x). We let (Ri)
be an effective enumeration of all partial computable functions from {0, 1}∗ to {0, 1}. We
denote the set of low for speed oracles by LFS, and the subset of LFS consisting of its
non-computable elements by LFS∗.

Due to space restrictions some proofs are omitted. They can be found in the extended
version of the paper, available at https://arxiv.org/abs/1712.09710.

2 Existence of non-computable low for speed sets

In this section we will present a simple proof of the existence of a non-computable low for
speed oracle. Define the set S of strings by S = {02n | n ∈ N} and – identifying S with a set
of integers as discussed above – let S be the set of ‘sparse’ infinite binary sequences (viewed
as sets of integers) that only contain elements from S, that is, S = {X ∈ {0, 1}ω | X ⊆ S}.

By extension, we say that a string σ is in S if it is a prefix of some element of S. The
interest of the set S is that there are only O(n) strings in S of length n. Thus, given a Turing
machine Φ, it is possible to simulate in time poly(t) the behaviour of ΦX during t steps of
computation on all X ∈ S (an idea that is already present in the Bayer-Slaman argument
presented in the next section).
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I Theorem 3. There exists a non-computable X which is low for speed.

Proof. We want X to satisfy all requirements R(e,i), defined as follows:

R(e,i): either Ri is partial, or ΦXe 6= Ri, or ΦXe = Ri but the computation of Ri via ΦXe
can be simulated by a functional Ψ running in time polynomial in time(ΦXe ).

We build our oracle X by finite extension. Let σ0 be the empty string. At stage
s+ 1 = 〈e, i〉, do the following.
(a) If there is an n and a τ ∈ S extending σs such that Φτe (n) and Ri(n) both converge and

have different values, then let σs+1 be the first (say in length-lexicographic order) such
string τ .

(b) If there is no such string τ , then take σs+1 = σs0

Finally let X be the unique infinite sequence extending all σs. We claim that X is as
wanted. Let us first prove that X must be incomputable. Suppose X = Ri for a total Ri.
Let e be an index such that Φe is the identity functional. By construction, when choosing
the prefix τ of X at stage s+ 1 = 〈e, i〉, we must be in case (a), and thus τ is precisely chosen
to ensure X 6= Ri, a contradiction. Let us now prove that X is low for speed. Fix a pair
(e, i) let s + 1 = 〈e, i〉, and let us see how σs+1 was constructed. If we were in case (a) at
that stage, we have ensured Φσs+1

e ⊥Ri and thus ΦX
e ⊥Ri, thereby satisfying R(e,i). If we

were in case (b), there are three subcases:
Either Ri is partial, then the requirement R(e,i) is satisfied.
Or there is an n such that Φτe (n) ↑ for any extension τ of σs, in which case ΦXe (n) ↑ and
thus ΦXe 6= Ri should Ri be total.
Or, if we are in neither of the two above cases, for every n there is an extension τ

of σs such that Φτ
e (n) ↓, and for any such τ , we have Φτ

e (n) = Ri(n). In this case,
we can build a functional Ψ which computes Ri as follows. On input n, at stage t, it
computes Φτe (n) during t steps of computation for all τ ∈ S of length t extending σs. If
a τ is found such that Φτ

e (n) ↓, then we set Ψ(n) = Φτ
e (n). As we already mentioned,

there are only O(t) strings of length t in S and it is obvious that they can be listed in
polynomial time. Hence, simulating all computations Φτe (n) during t steps can be done
in time p(t) for some polynomial t. This shows that for any Y ∈ S extending σs, if
ΦY
e (n) returns (the value of Ri(n)) in time t, this is found out by the procedure Ψ at

stage t, which corresponds to
∑
s≤t p(s) +O(1) steps of computation for Ψ, which is also

polynomial in t. This being true for any Y ∈ S extending σs, we have in particular that
time(Ψ) = poly(time(ΦXe )). J

One should note that the case disjunction in this proof is a Σ1/Π1 dichotomy, and
therefore one can carry out the construction below 0′, therefore establishing the existence
of a 0′-computable set that is low for speed. This is weaker than the Bayer-Slaman result
presented in the next section, which asserts the existence of a c.e. such set. However, this
proof is both simpler and, as we will see in the remainder of the paper, has further useful
corollaries.

3 Computably enumerable low for speed sets

We now restrict ourselves to the computably enumerable (c.e.) sets, and study which of
these can be low for speed. For the sake of completeness, we present the main ideas of the
proof of Bayer and Slaman [4] that there are indeed c.e. sets in LFS∗.
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I Theorem 4 (Bayer-Slaman Theorem). There exist c.e. non-computable sets that are low
for speed.

Proof sketch. The proof uses a tree-of-strategies argument. We need to satisfy

Pe : A 6= We,

and

Le,i : If ΦAe = Ri total, then some Ψ computes Ri in time polynomial in time(ΦAe ).

The Pe-strategy is a standard Friedberg-Muchnik strategy on a tree. A node ρ devoted to
this requirement picks a fresh follower x, waits for x ∈ We[s] and if this happens puts x
into A.

The basic strategy for Le,i is the following. First, throughout the whole construction
of A, we will promise that if we add an element x to A at stage t, then we must immediately
also add all y ∈ [x, t] (this is often referred to as a dump construction). This way, at any
stage s, there will only be at most s strings α of length s that can potentially be a prefix
of (the final) A. And thus – just like in the previous section – at stage s, it is possible to
emulate all computations Φαe (x)[s] for all such α’s and x ≤ s in time poly(s).

When the strategy is eligible to act at stage s, for every x ≤ s on which Ψ is not defined
yet, it computes all Φαe (x)[s] for all potential prefixes α of A, and should one of them converge,
defines Ψ(x) to be the value of Φα

e (x) for the α that has the fastest convergence. If no
Φαe (x)[s] converges, Ψ(x) remains undefined until the strategy is eligible to act again.

Now, if at some later stage we find a value x such that Ri(x) ↓ and Ψ(x) 6= Ri(x), then
we find the α such that Ψ(x) = Φαe and add elements into A so that α becomes a prefix of A.
This ensures ΦAe 6= Ri and terminates the strategy. All strategies of lower priorities are then
injured and must be reset. If we never find such an x, this means that either ΦAe is partial,
or Ri is, or Ψ = ΦA

e = Ri and by construction the running time of Ψ is polynomial in the
running time of ΦAe .1

This is enough to ensure the success of the strategy in isolation. The difficulty comes
from the interaction with lower-priority strategies which might want to add elements into A.
The final key to the Bayer-Slaman proof is the following. Suppose that at some stage s a
strategy of lower priority wants to add an interval [y, s] of elements into A. The problem is
that the computations on this configuration might be slow. Perhaps for some x of length
≤ s we have not as yet seen ΦAs∪[y,s]

e (x) ↓. Even more importantly, we don’t even know that
the value of this will agree with the value Ψ(x) we have already defined.

The idea is the following. Ri has to confirm the computations, that is, we wait until
Ri(x) converges on all x where Ψ has already been defined. When (and if) this happens, we
must have Ψ(x) = Ri(x) for all such x otherwise we would be in the above case where we
can ensure ΦA

e 6= Ri and satisfy the requirement. If this never happens, our requirement
will be satisfied because Ri would be partial. And if it does happen, then we can safely add
[y, s] to A because if this causes ΦAe (x) to change, it will yield ΦAe (x) 6= Ri(x) which satisfies
the requirement. But there is one last problem: while waiting for this confirmation, the
construction of Ψ cannot wait as we need it to be as fast as ΦAe . The crucial trick is, from
the point of view of our strategy, to carry on as if [y, s] had already been enumerated into A.

1 Actually, there is a subtlety here: one must ensure that the strategy for Le,i is eligible to act often
enough, i.e., allowed to act for the n-th time before stage q(n) for some polynomial q, but this can
easily be ensured.
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Indeed, if the confirmation ever happens, the elements of [y, s] will be truly enumerated
into A which Ψ will have correctly assumed ahead of time, and if the confirmation never
happens, Ψ might be wrong (i.e., Ψ 6= ΦAe ) but this will not matter because in this case Ri
will be either partial or different from ΦA

e . Of course, in the case where the confirmation
never occurs the strategy of lower priority never gets to enumerate into A the elements it
wants. This is where we make use of a standard tree construction where strategies of lower
priorities guess the outcome of strategies of higher priority. We refer the reader to [4] for
details. J

Within the c.e. sets, one would expect that a low for speed c.e. set would be one with little
computational power, in the same way that sets low for 1-randomness are all (super-)low
(see Nies [14]). The next theorem is therefore quite surprising.

I Theorem 5. If A is non-computable, c.e., and of low Turing degree (i.e. A′ ≡T ∅′), then
A is not low for speed.

Proof. Assume that A is not computable, is c.e., and is low. Let (Φe, pe) be an enumeration
of pairs of one functional and one polynomial with coefficients in N. We will build a Turing
functional Ψ and a computable set R such that ΨA = R. This is our global requirement and
we make the following global commitment: if a value R(n) gets defined at some stage, ΨX(n)
is immediately defined to be equal to R(n) for all X’s on which ΨX(n) is still undefined. We
want to satisfy, for each e:

(Re) : Φe does not compute R in time pe(time(ΨA))

thus proving that A is not low for speed. We give a strategy for a single requirement (Re)
(the strategies for different requirements interact to the extent that each one needs to know
the actions of the others in order to pick fresh witnesses, but the construction is injury-free).
Throughout the construction, we build a ‘verifier’, i.e., a partial computable S such that
S(e, .) is the attempt by the (Re)-strategy to guess A. We also define an auxiliary functional
Θ common to all strategies whose index we know in advance, and use the lowness of A to
obtain a computable 0-1 valued function h(., .) such that limt h(e, t) exists for all e, and
equals 1 when ΘA(e) ↓, 0 otherwise. (Informally, ΘX(e) ↓ means that a prefix of X is
believed to be a prefix of A at some stage of the strategy for (Re), and this will cause the
strategy to enter Case 3 as described below.)

At the initial stage s1, S is empty and we pick a first fresh witness w1 larger than any
integer mentioned so far in the construction and define ΨAs1�1(w1) = 0. Let t1 be the time
this computation takes. Now, check whether Φe(w1) returns in pe(t1) steps. We distinguish
three cases:
Case 1: Φe(w1) returns 1 in ≤ pe(t1) steps. In this case, we set R(w1) = 0 and R(n) = 0

for all n ≤ w1 on which R is still undefined, and commit to having ΨA(w1) = 0 even
after potential future A-changes. This way we ensure Φe 6= R = ΨA, thus immediately
satisfying (Re), and we stop the strategy for this requirement.

Case 2: Φe(w1) returns 0 in ≤ pe(t1) steps. In this case, we do not define R(w1) just yet.
Instead, we set S(e, 1) = As1 � 1. We then create a second witness w2 at stage s2 and
proceed as above for this new witness (with As2 � 2 in place of As1 � 1). And so on: for
further occurrences of this case, the procedure will extend S and create a witness w3 at
stage s3 looking at prefixes of length l = 3, etc (and if Case 2 then causes a reset, we stay
at the same level l, that is, keep the same l, when resetting). Meanwhile, we continue to
monitor A. Again, there are two subcases for a given l:



L. Bienvenu and R. Downey 15:7

(a) At some point we discover that Asl
� l is not in fact an initial segment of A, we are

then free to set R(wl) = 1 (which will guarantee ΨA(wl) = 1 = R(wl) 6= Φe(wl) since
we only committed to Ψσ(wl) = 0 for σ’s that are not prefixes of A), and this way we
have satisfied (Re). We then stop the strategy.

(b) Asl
� l is a true initial segment of A, in which case nothing further will happen regarding

witness wl. What is gained is that S(e, l) will be defined to be Asl
� l = A � l, thus

progress was made towards computing A.
Case 3: Φe(w1) is still undefined after pe(t1) steps. In this case, we set ΘAs1�1(e) ↓ (which

should be interpreted as signalling that we are currently in Case 3). Observe that if As1 � 1
is a true prefix of A, this implies ΘA(e) ↓ and therefore we would have lim h(e, t) = 1.
We distinguish two subcases.

(a) The current value h(e, s) is 0. Then we wait for a stage t > s such that either h(e, t) = 1
or At � 1 6= As � 1 (one of the two must happen as we explained above). If the former
happens first we move to subcase (b) below. If the latter happens first, we restart the
procedure, resetting s1 to the current stage t and keeping the same w1.

(b) The current value h(e, s) is 1. We then set R(w1) = 0, set R(n) = 0 for all n ≤ w1 on
which R is still undefined and terminate the strategy for now. However, if at a later
time t > s, we see that h(e, t) = 0 and At � 1 6= As1 � 1, then we resurrect the strategy
and start over at the level l where we left off.

We claim that this strategy satisfies the requirement (Re). If Case 1 happens for any
witness wl, the requirement is satisfied. Case 3a can only happen finitely many times at a
given level since as Asl

� l can only change finitely many times. Case 3b can only happen
finitely many times across all levels as each passage through this case causes a flip of h(e, .),
and we know h(e, .) converges. Case 2b can also happen only finitely often, because each
time we go through this case and do not get to diagonalize, S(e, .) computes a longer initial
segment of A, but A is incomputable so S(e, l) would eventually have to be wrong.

Thus we either eventually end up in Case 1 (and immediately succeed) or Case 2a (and
immediately succeed) or a terminal Case 3b, i.e., the strategy enters Case 3b and stays there
forever. It remains to check this last scenario. Suppose the terminal Case 3b happens for
some Asl

� l which is not a prefix of A, this means that ΨA(wl) has not been defined yet and
thus, should nothing else happen, we would have limt h(e, t) = 0 and would see a change in
A � l, thus leaving this occurrence of Case 3b, a contradiction. So Asl

� l is indeed a prefix
of A and by construction ΨA(wl) returns 0 = R(i) in a number of steps t while Φe(wl) does
not return in less than pe(t) steps, thus the requirement is satisfied. It is now straightforward
to satisfy all requirements by ordering them in order of priority, noticing that each strategy
only makes finitely many changes to R before achieving its goal and R is total as every time
R(w) becomes defined, so do the R(n) for n ≤ w that were previously undefined. J

It is important to note that Theorem 5 fails to hold outside of the c.e. setting.

I Theorem 6. There exists a low, non-computable set X which is low for speed.

Proof. See Section 5. J

One can also show that Theorem 5 does not extend to other levels of the ‘low’ hierarchy
within c.e. sets.

I Theorem 7. There is a low2 c.e. set that is low for speed.
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We can also combine the the same ideas (dump construction together with awaiting
for certification) with the standard proof that there exists an incomplete c.e. set A of high
Turing degree (i.e., A′ ≡T ∅′′) to get the following.

I Theorem 8. There is a high c.e. set A which is low for speed.

4 How big is LFS?

Bayer and Slaman showed that whether LFS is meager or not... depends on the answer to
P vs NP question! More precisely, if P = NP, then LFS is co-meager (even more precisely,
every 2-generic is low for speed, see [8, Section 2.24] for a discussion of the various notions of
genericity), while if P 6= NP, then LFS is meager (more precisely, every recursively generic
is not low for speed). They left as an open question whether LFS has measure (Lebesgue)
0 or 1 (by Kolmogorov’s 0/1-law, it has to be one or the other). One might expect that,
just like the meagerness of LFS depends on the P vs NP question, its measure depends on
complexity-theoretic assumptions, such as the ‘P vs BPP’ question. This is not the case: we
show that LFS is – unconditionally – a nullset.

I Theorem 9. The set LFS has measure 0.

We postpone the proof of this theorem to the next section as it builds upon the proof of
Theorem 15.

On the other hand, we will see in the next section that LFS is large in the set-theoretic
sense, namely that it has the size of the continuum.

Finally, there is one last notion of size for subsets of {0, 1}ω that is dear to computability
theorists, namely, a set is ‘large’ if it contains a Turing upper cone and is ‘small’ if it disjoint
from a Turing upper cone. Martin’s Turing determinacy theorem tells us that any Borel set
which is closed under Turing equivalence must be either large or small on this account. The
set LFS is indeed Borel (this is easy to see from the definition), but it is not closed under
Turing equivalence, so Martin’s theorem does not apply. In the next section, we will use a
classical result from complexity theory to show that LFS is in fact disjoint from a Turing
upper cone (Theorem 15).

5 Lowness for speed and Turing degrees

While lowness for speed is not closed under Turing equivalence, the following question is
nonetheless interesting:

Which sets are Turing equivalent to some low for speed X? Which sets compute some
non-computable low for speed X?

We denote by LFS and LFS∗ the set of Turing degrees that contain a low for speed set
and a non-computable low for speed set, respectively. One of the main results of Bayer [4]
is that not all degrees are in LFS. Indeed, there exists a c.e. degree a /∈ LFS. The main
question left open by Bayer regarding LFS is whether it is downward closed under ≤T or
closed under join. We give a negative answer to both questions. To show that it is not
downward closed, we need the following extension of Theorem 5 to degrees.

I Theorem 10. For any low c.e. degree a > 0, we have a /∈ LFS.
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I Corollary 11. LFS is not downward closed under ≤T , even within c.e. degrees.

Proof. Let a > 0 be a c.e. degree in LFS whose existence was explained in Section 3.
By Sacks’s splitting theorem [15], there is a low c.e. degree 0 < b < a. By Theorem 10,
b /∈ LFS. J

The next theorem will show that while not every c.e. degree contains a low for speed
member, every non-zero c.e. degree a bounds a degree b ∈ LFS. Recall Bayer’s result that
whether 2-generics are low for speed or not depends on the ‘P vs NP’ question. When it
comes to the degree of generics, we have that every 1-generic is Turing-equivalent to a set
that is low for speed, independently of complexity-theoretic assumptions.

I Theorem 12. Every 1-generic degree g belongs to LFS∗.

Proof. We get this result by refining the proof of Theorem 3. In that proof, we built an X
low for speed by finite extension, and ensuring that X was a subset of S = {02n | n ∈ N}.
For G ⊆ N, let SG = {02n | n ∈ G}. We claim that when G is 1-generic, SG = {02n | n ∈ G}
is low for speed (and clearly SG ≡T G). In the proof of Theorem 3, if we let Ue,i be the
effectively open set of those Z such that for some n, ΦSZ

e (n) and Ri(n) both converge to
different values, we know that G, being 1-generic, is either in Ue,i (hence satisfying the
requirement Re,i as per case (a)), or in the interior of the complement of Ue,i, which precisely
corresponds to case (b), hence the requirement is also satisfied in this case. J

We can derive a number of useful corollaries from this theorem. First of all, we see
that LFS has the size of the continuum since G 7→ SG is one-to-one, and there are continuum
many 1-generic G. We also get an immediate proof of Theorem 6 that asserts the existence
of a set of low degree that is low for speed.

Proof of Theorem 6. Take a ∆0
2 1-generic G; the corresponding set SG is low for speed

and is low because it is both ∆0
2 and GL1 (Indeed a result of Jockusch [10] states that

every 1-generic degree G is GL1, that is, G′ ≡T G⊕ ∅′; when G ≤T ∅′, this is equivalent to
G′ ≡T ∅′). J

A similar idea allows us to show that LFS contains a non-trivial interval in the Turing
degrees.

I Corollary 13. There is a degree a > 0 such that every 0 ≤ b ≤ a is in LFS.

Proof. By a result of Haught [9], if a is a ∆0
2 1-generic degree, every b > 0 below a is of

1-generic degree. Then the result follows immediately from Theorem 12. J

Another interesting corollary is that every non-computable c.e. set bounds a non-
computable low for speed set. Likewise almost every set, in the measure-theoretic sense,
bounds a non-computable low for speed set.

I Corollary 14. Every non-zero c.e. degree bounds a member LFS∗, every 2-random degree
bounds a member of LFS∗.

Proof. This is simply because every non-zero c.e. degree and every 2-random degree bounds
a 1-generic degree [13, 11]. J

We now show that LFS avoids a cone, namely all degrees above 0′.

I Theorem 15. If a ≥ 0′, then a /∈ LFS.
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Proof. The proof of this theorem relies on the proof of a classical computational complexity
theorem, namely Blum’s speed-up theorem [6] (see also [12, Theorem 32.2]), which asserts
that for every sufficiently fast growing computable function f , there exists a computable set
R which admits no fastest algorithm in that for every i such that Φi = R, there is a j such
that Φj = R and f(time(Φj , x)) ≤ time(Φi, x) for almost every x.

Blum’s theorem is proven as follows. We build R by diagonalization against all Φi, where
for all x in order we try to find an ‘active’ i ≤ |x| such that Φi(x) converges in less than
f |x|−i(|x|) steps, and if such an i is found, we set R(x) = 1− Φi(x) for the smallest such i,
and declare i inactive from that point on (since we have already ensured Φi 6= R, we no
longer need to deal with Φi). If no such i is found, set R(x) = 0. By construction, R
is computable, and any Φi computing it must satisfy time(Φi, x) ≥ f |x|−i(|x|) for almost
all |x| ≥ i (otherwise, Φi would be diagonalized at some point, because for any x such that
time(Φi, x) < f |x|−i(|x|), the only way Φi can escape diagonalization is when some other
Φj with j < i is diagonalized in priority, but this situation can happen at most i times).
Now, suppose Φe is a functional that computes R. We need to show that there is another
functional which computes R much faster than Φe. Fix an integer k and assume we are given
as ‘advice’ the finite list σk of indices i < k such that Φi eventually gets diagonalized against
(and therefore i becomes inactive) in the construction of R. Now, we can compute R via the
following procedure. In a first phase, simply follow the construction of R as described above,
until we reach a point where all i ∈ σk have become inactive. At this point, we know (only
because we know σk!) that none of the {Φi | i < k} are relevant for the construction of R
on future x. Thus, we enter a second phase where to compute each R(x), we only need to
simulate, for k ≤ j ≤ |x|, Φj(x) during f |x|−j(|x|) steps of computation. By dovetailing, this
can be done in poly(|x| · f |x|−k(|x|)) (the polynomial being independent of k) which, if f is
fast growing enough and k large enough compared to e, is < f

(
f |x|−e(|x|)

)
, which in turn is

< f(time(Φe, x)) for almost all x (note that such a k can be computed uniformly given e).
Now, suppose we are given A ≥T ∅′. Let f(n) = 2n and R the corresponding set in

Blum’s theorem. Note that in the above, determining whether a given i will eventually
become inactive can be done uniformly relative to ∅′, and thus the list σk can be computed
uniformly in k relative to ∅′. Thus, using A as oracle, we can consider the procedure
ΨA which for each pair (Φe, pe) of a functional and a polynomial sequentially, finds the
k and σk above, checks whether e ∈ σk, in which case there is nothing to do as Φe 6= R

by definition, and if not, use the above 2-phase method to compute R, until a large x is
found such that f(time(ΨA, x)) < time(Φe, x), which for x sufficiently large guarantees
pe(time(ΨA, x)) < time(Φe, x), and we can then move on to the next index e+ 1. J

I Theorem 16. There are a,b ∈ LFS such that a ∨ b /∈ LFS

Proof. Let G0 be 2-generic, i.e., 1-generic relative to ∅′. Consider G1 = G0∆∅′ where ∆
is the symmetric difference. It is easy to check that G1 is also 2-generic. Thus SG0 and
SG1 (defined as in the proof of Theorem 12) are both low for speed (Theorem 12) but
SG0 ⊕ SG1 ≥T G0 ⊕ G1 ≥T G0∆G1 = ∅′, so by the previous theorem, deg(SG0 ⊕ SG1) /∈
LFS. J

Using a diagonalization technique like in Blum’s theorem (though with the same time
bound for all functionals), we can prove that LFS has measure 0. In fact, we get a more
precise statement in terms of algorithmic randomness.

I Theorem 17. No Schnorr random sequence A is low for speed.



L. Bienvenu and R. Downey 15:11

Proof. The extra ingredient we need on top of Blum’s theorem is to make the set R sparse:
it will contains at most one string of each length. For each n, we compute Φi(x) during
f(|x|) = 2|x| of computation for all x of length n and all active i ≤ n (here we don’t need to
have different time bounds for different functionals; all we need is for f to be computable
and sufficiently fast-growing). If for any of these strings we see that Φi(x) converges, we
take the smallest such i and then the smallest x for which we see convergence, and set
R(x) = 1− Φi(x), as well as R(y) = 0 for all y 6= x of length n, and then declare i inactive.
This way we do ensure sparseness of R, and like in the previous proof, that for all i, if Φi

computes R, time(Φi, x) > 2|x| for almost all x. On the other hand, consider the following
procedure Ψ. Given oracle Z and input x, ΨZ(x) first splits Z (viewed as a binary sequence)
as Z = ζ1ζ2 . . . with |ζi| = i and ΨZ(x) returns 0 if x = ζ|x| (thus the resulting computation
is polynomial in |x|), and ΨZ(x) = R(x) otherwise, using a fixed procedure to compute R.
So there is a polynomial p such that for any Z, time(ΨZ , x) ≤ p(|x|) for infinitely many x’s.
Furthermore, we can only have ΨZ(x) 6= R(x) if x = ζ|x| and ζ|x| happens to be the only
string of its length in R. This has probability at most 2−|x| (‘at most’ because R can also
have no string of length |x| at all) if Z is chosen at random. This means that, by setting
Cn = {Z | (∃x) |x| = n ∧ ΨZ(x) 6= R(x)}, we have λ(Cn) ≤ 2−n.

The Cn’s are uniformly computable clopen subsets of {0, 1}ω because Ψ is a truth-table
functional. Thus, a Schnorr random A can only belong to finitely many Cn’s (see for
example [5, Lemma 1.5.9]), meaning that ΨA(x) = R(x) for almost all x. Thus there is a
finite variation Ψ̂ of Ψ such that Ψ̂A = R, and Ψ̂A(x) is computed in polynomial time for
infinitely many x while time(Φi, x) > 2|x| for any Φi computing R and almost all x. This
shows that A is not low for speed. J

Theorem 17 shows that LFS is a nullset, but it leaves open the possibility that almost
all X are Turing-equivalent to a low for speed set. This would be similar to the category
situation where – under the reasonable assumption P 6= NP – the set LFS is meager (as proven
by Bayer and Slaman) but the set of A’s whose degree is in LFS is co-meager (Theorem 12).
It turns out that LFS behaves quite differently in the measure setting:

I Theorem 18. The set {A ∈ {0, 1}ω | deg(A) ∈ LFS} has measure 0.

At this point, we know that the set of X’s which compute a member of LFS∗ is very
large: it has measure 1 and is co-meager, it contains every c.e. set, etc. We might even start
thinking that every non-computable X computes a member of LFS∗. This is not the case
however, as shown by the following theorem (which contrasts Corollary 13).

I Theorem 19. There is a degree a > 0 such that no 0 < b ≤ a is in LFS. Indeed, a can
be chosen to be a minimal Turing degree.

The classical construction of a minimal degree is done by forcing over total computable
function trees (here we follow the terminology of [16]). A function tree is a partial function
T : {0, 1}∗ → {0, 1}∗ such that if either T (σ0) or T (σ1) is defined, then all of T (σ), T (σ0)
and T (σ1) are, and T (σ0) and T (σ1) are strict extensions of T (σ) such that T (σ0)⊥T (σ1)
(we say that T (σ0) and T (σ1) split T (σ)). We say that σ is a node of T if σ ∈ rng(T ).
A tree S is a sub-f-tree of T , which we denote by S 4 T when every node of S is a node
of T . An infinite binary sequence Z is a path on an f-tree T if infinitely many prefixes of
Z are nodes of T . The set of paths of T is denoted by [T ]. An f-tree naturally extends
to a functional from {0, 1}ω to {0, 1}∗ ∪ {0, 1}ω by setting T (X) =

⋃
σ4X T (σ) When an

f-tree T is total, this extension is an homeomorphism from {0, 1}ω to {0, 1}ω, and if T is
furthermore computable, its inverse T−1 is also computable. Given a functional Φe, we say
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that T is e-consistent if for any two nodes σ and τ on T and any n, if Φσe (n) and Φτe (n) are
both defined, then they are equal; in this case, for any path X of T , ΦXe is either partial or
computable. We say that T is e-splitting if T is total and for any σ, ΦT (σ0)

e and ΦT (σ1)
e are

incomparable; in this case, the restriction of Φe to [T ] is total, one-to-one, and its inverse is
computable.

The key lemma in the construction of a minimal degree states that for any total computable
f-tree T and every e, there is a total computable sub-f-tree S of T which is either e-consistent
or e-splitting. Then an X ∈ {0, 1}ω of minimal degree is obtained by taking a sufficiently
generic filter G over the set of total computable f-trees ordered by 4, and take the intersection
of their sets of paths (the non-computability of X can be further ensured by remarking that
for any σ, the set of computable f-trees whose nodes are all incomparable with σ is a dense
set for the order 4, thus one can choose X to avoid any fixed subset of {0, 1}ω, such as its
computable elements).

We are going to prove Theorem 19 by showing that taking a sufficiently generic filter for
the order 4 ensures lowness for speed as well. For this, we will make use of the following
lemma.

I Lemma 20. Let T be a total computable f-tree. There exists a total computable f-subtree
S 4 T none of whose paths is low for speed.

Proof. The functional T−1 : [T ]→ {0, 1}ω is total on its domain, which is a Π0
1 class, and

thus is a tt-reduction by effective compactness. Let f be a computable time bound for
the running time of T−1, that is, for any Y ∈ [T ], whether x ∈ T−1(Y ) can be decided
in time f(|x|) with access to oracle Y . Now, let L be a computable set that cannot be
computed in time 2f(n+1). Let S be the sub-f-tree of T defined by S(σ) = T (σ ⊕ L) (where
σ ⊕ L = σ(0)L(0) . . . σ(k − 1)L(k − 1) when k = |σ|). The paths of S are exactly the sets of
the form T (X ⊕ L) for some X. Each of them computes L in time f(n+ 1) by definition
of f , which is exponentially faster than any procedure computing L without oracle by our
assumption on L. J

Proof of Theorem 19. Let T be a total computable f-tree and Φe a functional. As we
explained earlier, the usual construction of a minimal degree shows that there is S 4 T

which is either e-consistent or e-splitting. In the case S is e-consistent, we are satisfied (this
guarantees ΦAe to be either partial or computable). If it is e-splitting, we further refine S as
follows. Since S is e-splitting, we consider the total computable f-tree S′ corresponding to the
image of S by Φe: S′(σ) = ΦS(σ)

e (this is indeed an f-tree precisely because S is e-splitting).
By the previous lemma, there is a total computable S′′ 4 S′ none of whose paths is low for
speed. Now the pullback T ′ = Φ−1

e (S′′) is a total computable f-subtree of T , which forces
ΦAe to not be low for speed.

Thus we can force for all e that ΦAe is partial or not low for speed, and force A to be of
minimal degree and be non-computable as usual. J

Our last theorem shows that the analogue of the low basis theorem (which asserts that
every non-empty Π0

1 class contains a member of low Turing degree) for lowness for speed
fails.

I Theorem 21. If a is a PA-degree, a /∈ LFS. Thus there is a non-empty Π0
1 class such

that no member has a low for speed degree.

Note that this is in fact a stronger statement than Theorem 15 since 0′ is a PA-degree.
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Abstract
Population protocols are a well established model of distributed computation by mobile finite-
state agents with very limited storage. A classical result establishes that population protocols
compute exactly predicates definable in Presburger arithmetic. We initiate the study of the
minimal amount of memory required to compute a given predicate as a function of its size.
We present results on the predicates x ≥ n for n ∈ N, and more generally on the predicates
corresponding to systems of linear inequalities. We show that they can be computed by protocols
with O(logn) states (or, more generally, logarithmic in the coefficients of the predicate), and that,
surprisingly, some families of predicates can be computed by protocols with O(log logn) states.
We give essentially matching lower bounds for the class of 1-aware protocols.
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1 Introduction

Population protocols [4] are a model of distributed computation by anonymous, identical,
and mobile finite-state agents. Initially introduced to model networks of passively mobile
sensors, they also capture the essence of distributed computation in trust propagation or
chemical reactions, the latter under the name of chemical reaction networks (see e.g. [18]).
Structurally, population protocols can also be seen as a special class of Petri nets or vector
addition systems [11].

Since the agents executing a protocol are anonymous and identical, its global state –
called a configuration – is completely determined by the number of agents at each local state.
In each computation step, a pair of agents, chosen by an adversary subject to a fairness
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condition stating that any repeatedly reachable configuration is eventually reached, interact
and move to new states according to a joint transition function. In a closely related model,
the adversary chooses the pair of agents uniformly at random.

A protocol computes a boolean value for a given initial configuration if in all fair executions
all agents eventually agree to this value – so, intuitively, population protocols compute by
reaching consensus. Given a set of initial configurations, the predicate computed by a protocol
is the function that assigns to each configuration C the boolean value computed by the
protocol starting from C.

Much research on population protocols has focused on their expressive power, i.e., the
class of predicates computable by different classes of protocols (see e.g. [3, 6, 13, 16, 7]). In
a famous result [6], Angluin et al. have shown that predicates computable by population
protocols are exactly the predicates definable in Presburger arithmetic. There is also much
work on complexity metrics for protocols. The main two metrics are the runtime of a protocol
– defined for the model with a randomized adversary as the expected number of pairwise
interactions until all agents have the correct output value – and its state space size, e.g. the
number of states of each agent. In [5], Angluin et al. show that every Presburger predicate is
computed with high probability by a population protocol with a leader – a distinguished
auxiliary agent that assumes a specific state in the initial configuration irrespective of the
input – in O(n log4 n) interactions in expectation, where n is the number of agents of the
initial configuration. Several recent papers study time-space trade-offs for specific tasks, like
electing a leader [10], or for specific predicates, like majority [2, 1, 9].

In this paper we study the state space size of protocols as a function of the predicate they
compute. In particular, we are interested in the minimal number of states needed to evaluate
systems of linear constraints (a large subclass of the predicates computed by population
protocols) as a function of the number of bits needed to describe the system. To the best
of our knowledge, this question has not been considered so far. We study the question for
protocols with and without leaders. Our results show that protocols with leaders can be
exponentially more compact than leaderless protocols.

In order to introduce our results in the simplest possible setting, in the first part of the
paper we focus on the family of predicates {x ≥ n : n ∈ N}. These predicates specify the
well-known flock-of-birds problem [4], in which tiny sensors placed on birds have to reach
consensus on whether the number of sick birds in a flock exceeds a given constant. The
minimal number of states for computing x ≥ n formalizes a very natural question about
emerging behavior: How many states must agents have in order to exhibit a “phase transition”
when their number reaches n? The standard protocol for the predicate x ≥ n (see Example 1)
has n+ 1 states. We are interested in protocols with at most O(logn) states, either leaderless
or with at most O(logn) leaders. In the second part of the paper, we generalize our results
to a much larger class of predicates, namely systems of linear inequalities Ax ≥ b. Since
x ≥ n is a (very) special case, our lower bounds for flock-of-birds protocols apply, while the
upper bounds require new (and involved) constructions.

Protocol size for the flock-of-birds problem. In a first warm-up phase we exhibit a family
of leaderless protocols with only O(logn) states. More precisely, we prove:
(1) There exists a family {Pn : n ∈ N} of leaderless population protocols such that Pn has

O(log2 n) states and computes the predicate x ≥ n for every n ∈ N.
We also give a lower bound:
(2) For every family {Pn : n ∈ N} of leaderless population protocols such that Pn computes

x ≥ n, there exist infinitely many n such that Pn has at least (logn)1/4 states.
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However, this bound is only existential (“there exists infinitely many n” instead of “for all
n”). Moreover, it follows from a counting argument that does not provide any information
on the values of n realizing the bound. Is there a poly-logarithmic universal bound? We
show that, surprisingly, the answer is negative:
(3) There exists a family {Pn : n ∈ N} of population protocols with two leaders, and values

c0 < c1 < . . . ∈ N, such that Pn has O(log log cn) states and computes the predicate
x ≥ cn for every n ∈ N.

Observe that in these protocols the “phase transition” occurs at x = cn, even though no
agent has enough memory to index a particular bit of cn.

Can one go even further, and design O(log log log cn) protocols? We show that the answer
is negative for 1-aware protocols. Both the standard protocol for x ≥ n and the families of
(1) and (3) have the following, natural property: If the number of agents is greater than or
equal to n, then the agents not only reach consensus 1, they also eventually know that they
will reach this consensus. We say that these protocols are 1-aware.

We obtain lower bounds for 1-aware protocols that essentially match the upper bounds
of (1) and (3):
(4) Every leaderless, 1-aware population protocol computing x ≥ n has at least log3 n states.
(5) Every 1-aware protocol (leaderless or not) computing x ≥ n has at least (log log(n)/151)1/9

states.

Protocols for systems of linear inequalities. In the second part of the paper we show that
our results can be extended to other predicates. First, instead of the simple predicate x ≥ n,
we study the general linear predicate a1x1 + a2x2 + · · · + akxk ≥ c for arbitrary integer
coefficients a1, . . . , ak, c ∈ Z. By means of a delicate construction we give protocols whose
number of states grows only logarithmically in the size of the coefficients:
(6) There is a protocol with at most O(kn) states and O(n) leaders that computes a1x1 +
· · ·+ akxk ≥ c, where n is the size of the binary encoding of max(|a1|, |a2|, . . . , |ak|, |c|).

Finally, in the most involved construction of the paper, we show that the same applies to
arbitrary systems of linear inequalities. Note that the standard conjunction construction,
which produces a protocol for ϕ1∧ϕ2 from protocols computing predicates ϕ1 and ϕ2, cannot
be applied because it would lead to exponentially large protocols.
(7) There is a protocol with at most O((logm + n)(m + k)) states and O(m(logm + n))

leaders that computes Ax ≥ c, where A ∈ Zm×k and n is the size of the largest entry in
A and c.

Structure of the paper. Section 2 introduces basic definitions, protocols with and without
leaders, and a simple construction with an involved correctness proof showing how to simulate
protocols with k-way interactions by standard protocols. Sections 3 to 5 present our bounds
on the flock-of-birds predicates, and Section 6 the bounds on systems of linear inequalities.
Due to space constraints, some proofs are deferred to the full version of this paper.

2 Preliminaries

Numbers. Let n ∈ N>0. The logarithm in base b of n is denoted by logb n. Whenever
b = 2, we omit the subscript. We define bits(n) as the set of indices of the bits occurring
in the binary representation of n, e.g. bits(13) = {0, 2, 3} since 13 = 11012. The size of
n, denoted size(n), is the number of bits required to represent n in binary. Note that
|bits(n)| ≤ size(n) = blognc+ 1.

STACS 2018



16:4 Large Flocks of Small Birds: on the Minimal Size of Population Protocols

Multisets. A multiset over a finite set E is a mapping M : E → N. The set of all multisets
over E is denoted NE . For every e ∈ E, M(e) denotes the number of occurrences of e in
M , and for every E′ ⊆ E we define M(E′) def=

∑
e∈E′ M(e). The support and size of M are

defined respectively as JMK def= {e ∈ E : M(e) > 0} and |M | def=
∑
e∈EM(e). Addition and

comparison are extended to multisets componentwise, i.e. (M +M ′)(e) def= M(e) +M ′(e) for
every e ∈ E, and M ≤M ′ def⇐⇒ M(e) ≤M(e) for every e ∈ E. We define multiset difference
as (M �M ′)(e) def= max(M(e)−M ′(e), 0) for every e ∈ E. The empty multiset is denoted 0.
We sometimes denote multisets using a set-like notation, e.g. Hf, 2 · g, hI is the multiset M
such that M(f) = 1, M(g) = 2, M(h) = 1 and M(e) = 0 for every e ∈ E \ {f, g, h}.

Population protocols. We introduce a rather general model of population protocols, al-
lowing for interactions between more than two agents and for leaders. A k-way population
protocol is a tuple P = (Q,T, I, L,O) such that

Q is a finite set of states,
T ⊆

⋃
2≤i≤kQ

i ×Qi is a set of transitions,
I ⊆ Q is a set of initial states,
L ∈ NQ is a set of leaders, and
O : Q→ {0, 1} is the output mapping.

We assume throughout the paper that agents can always interact, i.e., that for every pair of
states (p, q), there exists a pair of states (p′, q′) such that ((p, q), (p′, q′)) ∈ T .

A configuration of P is a multiset C ∈ NQ such that |C| > 0. Intuitively, C describes a
non empty collection containing C(q) agents in state q for every q ∈ Q. We denote the set of
configurations over E ⊆ Q by Pop(E). A configuration C is initial if C = D + L for some
D ∈ Pop(I). So, intuitively, leaders are distinguished agents that are present in every initial
configuration. The number of leaders of P is |L|. We say that P is leaderless if it has no
leader, i.e. if L = 0. We discuss protocols with and without leaders later in this section.

Let t = ((p1, p2, . . . , pi), (q1, q2, . . . , qi)) be a transition. To simplify the notation, we
denote t as p1, p2, . . . , pi 7→ q1, q2, . . . , qi. Intuitively, t describes that i agents at states
p1, . . . , pi may interact and move to states q1, . . . , qi. The preset and postset of t are
respectively defined as •t def= {p1, p2, . . . , pi} and t•

def= {q1, q2, . . . , qi}. We extend presets and
postsets to sets of transitions, e.g. •T def=

⋃
t∈T

•t. The pre-multiset and post-multiset of t are
respectively defined as pre(t) def= Hp1, p2, . . . , piI and post(t) def= Hq1, q2, . . . , qiI.

We say that t is enabled at C ∈ Pop(Q) if C ≥ pre(t). If t is enabled at C, then it can
occur, in which case it leads to the configuration C ′ = (C�pre(t)) + post(t)). We denote this
by C t−→ C ′. We say that t is silent if pre(t) = post(t). In particular, if t is silent and C t−→ C ′,
then C = C ′. We write C −→ C ′ if C t−→ C ′ for some t ∈ T . We write C t1t2···tk−−−−−→ C ′ if there
exist C0, C1, . . . , Ck ∈ Pop(Q) and t1, t2, . . . , tk ∈ T such that C = C0

t1−→ C1
t2−→ · · ·Ck = C ′.

We write C ∗−→ C ′ if C σ−→ C ′ for some σ ∈ T ∗. We say that C ′ is reachable from C if C ∗−→ C ′.
The support of a sequence σ = t1t2 · · · tn ∈ T ∗ is JσK

def= {ti : 1 ≤ i ≤ n}.

I Example 1. The flock-of-birds protocol mentioned in the introduction is formally defined
as Pn = (Q,T, I, L,O) where Q = {0, 1, . . . , n}, I = {1}, L = 0, O(a) = 1 ⇐⇒ a = n, and
where T consists of the following transitions:

sa,b : a, b 7→ 0,min(a+ b, n) for every 0 ≤ a, b < n,

ta : a, n 7→ n, n for every 0 ≤ a ≤ n.

Pn is 2-way and leaderless. Intuitively, it works as follows. Each agent stores a number.
When two agents meet, one agent stores the sum of their values and the other one stores
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0. Sums cap at n. Once an agent reaches n, all agents eventually get converted to n. To
illustrate the above definitions, observe that: •s2,3 = {2, 3}, t•2 = {n}, pre(s2,3) = H2, 3I
and post(t2) = Hn, nI. Configuration H1, 1, 1I is initial, but H1, 0, 2I is not. We have
H1, 1, 1I s1,1−−→ H1, 0, 2I t0−→ H1, 2, 2I t1−→ H2, 2, 2I, or more concisely H1, 1, 1I σ−→ H2, 2, 2I where
σ = s1,1t0t1.

Computing with population protocols. An execution π is an infinite sequence of configur-
ations C0C1 · · · such that C0 −→ C1 −→ · · · . We say that π is fair if for every configuration D
the following holds1:

if {i ∈ N : Ci
∗−→ D} is infinite, then {i ∈ N : Ci = D} is infinite.

In other words, fairness ensures that a configuration cannot be avoided forever if it can be
reached infinitely often along π. We say that a configuration C is a consensus configuration if
O(p) = O(q) for every p, q ∈ JCK. If a configuration C is a consensus configuration, then its
output O(C) is the unique output of its states, otherwise it is ⊥. An execution π = C0C1 · · ·
stabilizes to b ∈ {0, 1} if O(Ci) = O(Ci+1) = · · · = b for some i ∈ N. The output of π is
O(π) def= b if it stabilizes to b, and O(π) def= ⊥ otherwise. A consensus configuration C is
stable if every configuration C ′ reachable from C is a consensus configuration such that
O(C ′) = O(C). It can easily be shown that a fair execution stabilizes to b ∈ {0, 1} if and
only if it contains a stable configuration whose output is b.

A population protocol P = (Q,T, I, L,O) is well-specified if for every initial configuration
C0, there exists b ∈ {0, 1} such that every fair execution π starting at C0 has output b. If P
is well-specified, then we say that it computes the predicate ϕ : Pop(I)→ {0, 1} if for every
D ∈ Pop(I), every fair execution starting at D + L has output ϕ(D).

I Example 2. Consider the protocol P2 defined in Example 1 (i.e, n = 2). We have
O(H1, 1, 1I) = 0, O(H2, 2, 2I) = 1 and O(H1, 0, 2I) = ⊥. The execution H1, 1, 1I −→ H1, 0, 2I −→
H1, 2, 2I −→ H2, 2, 2I −→ H2, 2, 2I −→ · · · is fair and its output is 1. However, the execution
H1, 1, 1I −→ H1, 0, 2I −→ H1, 0, 2I −→ · · · is not fair since H1, 0, 2I occurs infinitely often and can
lead to H2, 2, 2I which does not occur.

Leaders. Intuitively, leaders are extra agents present in every initial configuration. Allowing
a large number of leaders may help to compute predicates with fewer states. To illustrate
this, consider the leaderless protocol of Example 1. It computes x ≥ n with n + 1 states.
We describe a 2-way protocol with only 4 states, but n leaders. It is an adaptation of the
well-known basic majority protocol (see, e.g., [8]). Let P ′n = (Q,T, I, Ln, O) be the protocol
where Q def= {x, y, x, y}, I def= {x}, Ln

def= Hn · yI, O(x) = O(x) def= 1, O(y) = O(y) def= 0, and
where T consists of the following transitions:

x, y 7→ x, y, x, y 7→ x, x, y, x 7→ y, y, x, y 7→ x, x.

Informally, “active” agents in states x and y collide and become “passive” agents in states
x and y. At some point, some active agents “win” and convert all passive agents to their
output. It is known that this protocol is well-specified and computes the predicate x ≥ y

when there are no leaders (i.e., if we set Ln = 0). So, by initially fixing n leaders in state y,
P ′n computes x ≥ n.

1 This definition of fairness differs from the original definition of Angluin et al. [4], but is equivalent.
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Thus, the predicate x ≥ n can be computed either with O(n) states and no leaders, or
with 4 states and O(n) leaders. This indicates a trade-off between states and leaders, and
one should avoid hiding all of the complexity in one of them. For this reason, we make these
two quantities explicit in all of our results.

The reason for considering protocols with leaders is that, as we shall see, even a constant
number of leaders demonstrably leads to exponentially more compact protocols for some
predicates. Other papers have made similar observations with respect to other resource
measures (see e.g. [5, 14]).

From k-way to 2-way protocols. In our constructions it is very convenient to use k-way
transitions for k > 2. The following lemma shows that k-way protocols can be transformed
into 2-way protocols by introducing a few extra states. Intuitively, a k-way transition is
simulated by a chain of 2-way transitions. The first part of the chain “collects” k participants
one by one. First, two agents agree to participate, and one of them becomes “passive”,
while the second “searches” for a third participant. This is iterated until k participants are
collected. In the second part, the last collected agent “informs” all passive agents, one by
one, that k agents have been collected; upon hearing this, the passive agents move to their
destination states and become active again. To prevent faulty behavior when there are not
enough agents, all transitions of the first part can be “reversed”, that is, the agent that
is currently searching and the last collected agent can “repent” and “undo” the transition.
While the construction is simple and intuitive, its correctness proof is very involved, because
agents that reach their destination can engage in other interactions while other participants
are still passive. The construction is presented in the full version of this paper.

I Lemma 3. Let P = (Q,T, I, L,O) be a well-specified k-way population protocol. For every
3 ≤ i ≤ k, let ni be the number of i-way transitions of P. There exists a 2-way population
protocol P ′, with at most |Q|+

∑
3≤i≤k 3i · ni states, which is well-specified and computes

the same predicate as P.

3 Leaderless protocols for x ≥ n

In this section, we consider leaderless protocols for the predicate x ≥ n. We first show that
the number of states required to compute this predicate can be reduced from the known O(n)
bound to O(logn), using a similar binary encoding as in [1]. Then we show an existential
lower bound of O((logn)1/4).

A protocol with O(log n) states. We describe a leaderless size(n)-way protocol Pn =
(Qn, Tn, In,0, On) with size(n) + 3 states that computes x ≥ n. The states are Qn

def=
{0,20, . . . ,2size(n),n} and the sole initial state is In

def= {20}. The output mapping is defined
as On(n) def= 1 and On(q) def= 0 for every state q 6= n.

Before defining the set Tn of transitions, we need some preliminaries. For every state q ∈
Qn, let val(q) denote the number q stands for, i.e. val(0) = 0, val(n) = n and val(2i) = 2i for
every 0 ≤ i ≤ size(n). Moreover, for every configuration C, let val(C) def=

∑
q∈Qn

val(q) ·C(q).
A configuration C is a representation of m if val(C) = m. For example, the configuration
H0,21, 5 ·23I is a representation of 0+21 +5 ·23 = 42. Observe that every initial configuration
C0 is a representation of |C0|.

Tn is the union of two sets T 1
n and T 2

n . Intuitively, T 1
n allows the protocol to reach from a

representation of a number, say m, other representations of m. Formally, the transitions of
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T 1
n are:

2i,2i 7→ 2i+1,0 for every 0 ≤ i < size(n)
2i+1,0 7→ 2i,2i for every 0 ≤ i < size(n)

H2i : i ∈ bits(n)I 7→ n,0, · · · ,0︸ ︷︷ ︸
|bits(n)|−1 copies

The transitions of T 2
n allow agents in state n to “attract” all other agents to n. Formally,

they are:

n, q 7→ n,n for every q ∈ Qn.

Let us show that Pn computes x ≥ n. Let C0 = Hm · 20I. If m < n, then C(n) = 0
holds for every representation C of m. Therefore, every configuration C reachable from C0
satisfies C(n) = 0 and, since n is the only state with output 1, the protocol stabilizes to 0. If
m ≥ n, then it is possible to reach a representation C of m satisfying C(n) > 0, for example
C = Hn, (m − n) · 20I. Since for every transition 2i,2i 7→ 2i+1,0 the set Tn also contains
the reverse transition 2i+1,0 7→ 2i,2i, every representation C of m satisfying C(n) = 0 can
reach a representation C ′ of m satisfying C ′(n) > 0. Let π = C0C1C2 · · · be a fair execution.
By fairness, there is some i ∈ N such that Ci(n) > 0. Again by fairness, and because of T 2

n ,
there is also an index j such that Ck = Hm · nI for every k ≥ j, and so π stabilizes to 1.

Note that |Qn| = size(n) + 3. Moreover, Pn has one |bits(n)|-way transition. Thus, by
Lemma 3, we obtain the following theorem:

I Theorem 4. There exists a family {P0,P1, . . .} of leaderless and 2-way population protocols
such that Pn has at most 4blognc+ 7 states and computes the predicate x ≥ n.

An existential (log n)1/4 lower bound. We show that every family {Pn}n∈N of leaderless
and 2-way protocols computing the family of predicates {x ≥ n}n∈N must contain infinitely
many members of size Ω((logn)1/4). We call this an existential lower bound, contrary to a
universal lower bound, which would state that Pn has size Ω((logn)1/4) for every n ≥ 1.

I Theorem 5. Let {P0,P1, . . .} be an infinite family of leaderless and 2-way population
protocols such that Pn computes the predicate x ≥ n for every n ∈ N. There exist infinitely
many indices n such that Pn has at least (logn)1/4 states.

Proof sketch. The proof boils down to bounding the number d(m) of unary predicates
computed by protocols with m states. The number of distinct sets of transitions, excluding
silent ones, is bounded by 2m4−m2 . The number of possible initial states and output mappings
are respectively m and 2m. Altogether, we obtain:

d(m) ≤ 2m
4−m2

·m · 2m = 2m
4
· 2m ·m

2m2 ≤ 2m
4
. J

4 A O(log log n) protocol with leaders for some x ≥ n

The lower bound of Section 3 is not valid for every n, it only ensures that, for some values
of n, protocols computing x ≥ n must have a logarithmic number of states. We prove
that, surprisingly, there is an infinite sequence n1 < n2 < · · · of values that break through
the logarithmic barrier: The predicates x ≥ ni can be computed by protocols with only
O(log logni) states and two leaders. So, loosely speaking, a flock of birds can decide if it
contains at least ni birds, even though no bird has enough memory to index a bit of ni.
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The result is based on a construction of [15]. In this paper, Mayr and Meyer study the
word problem for commutative semigroup presentations. Given a finite set A of generators,
a presentation of a commutative semigroup generated by A is a finite set of productions
S = {l1 → r1, . . . , lm → rm}, where li, ri ∈ A∗ for every 1 ≤ i ≤ m, satisfying:

Commutativity: ab→ ba ∈ S for every a, b ∈ A;2 and
Reversibility: if l→ r ∈ S, then r → l ∈ S.

Given α, β ∈ A∗, we say that β is derived from α in one step, denoted by α −→ β, if α = γ l δ

and β = γ r δ for some γ, δ ∈ A∗ and some r → l ∈ S. We say that β is derived from α if
α
∗−→ β, where ∗−→ is the reflexive transitive closure of the relation induced by −→. Observe

that, by reversibility, we have α ∗−→ β iff β ∗−→ α. Further, by commutativity we have α ∗−→ β

iff π(α) ∗−→ π′(β) for every permutation π of A.
Mayr and Meyer study the following question: given a commutative semigroup presenta-

tion S over A, and initial and final letters s, f ∈ A, what is the length of the shortest word α
such that s ∗−→ fα? They exhibit a family of presentations of size O(n) for which the shortest
α has double exponential length 22n . More precisely, in [15, Sect. 6], they construct a family
{Sn}n≥1 of presentations over alphabets {An}n≥1 satisfying the following properties:
(1) |An| = 14n+ 10, |Sn| = 20n+ 8, and max{|l|, |r| : l→ r ∈ Sn} = 5.
(2) {sn, fn, bn, cn} ⊆ An for every n ≥ 1.
(3) sncn

∗−→ fnα iff α = cnb
22n

n [15, Lemma 6 and 8].
To apply this result, for each n ≥ 1 we construct a 5-way population protocol Pn =
(Qn, Tn, In, Ln, On) with two leaders as follows:

Qn
def= An ∪ {x} for some x /∈ An.

Tn
def= T 1

n ∪ T 2
n , where:

T 1
n contains a transition pad(p) for every production p = l → r of Sn, obtained by

“padding” p with x so that its left and right sides have the same length. For example,
pad(aab→ cd) = a, a, b 7→ c, d, x, and pad(a→ bc) = a, x 7→ b, c,
T 2
n

def= {fn, q 7→ fn, fn | q ∈ Qn},
In

def= {x},
Ln

def= Hcn, snI, and
On(fn) def= 1 and On(q) def= 0 for every q 6= fn.

Intuitively, T 1
n allows Pn to simulate derivations of Sn: a step C pad(p)−−−−→ C ′ of Pn simulates a

one-step derivation of Sn. We make this more precise. Given α ∈ A∗n and m ≥ |α|, let Cα,m
be the configuration of Pn defined as follows: Cα,m(x) = m, and Cα,m(a) = |α|a for every
a ∈ An, where |α|a is the number of occurrences of a in α. Further, given a configuration C
of Pn, let αC be the element of Sn given by αC = a

C(a1)
1 · · · aC(am)

m , where a1, . . . , am is a
fixed enumeration of An. We have:

I Lemma 6. Let α, β ∈ A∗n and let C,C ′ be configurations of Pn.
(a) If α p1···pk−−−−→ β in Sn, then for every m ≥ 4k, Cα,m

pad(p1)···pad(pk)−−−−−−−−−−−→ Cβ,m′ in Pn for some
m′ ≥ 0.

(b) If C pad(p1)···pad(pk)−−−−−−−−−−−→ C ′ in Pn, then αC
p1···pk−−−−→ αC′ in Sn.

From Lemma 6, (1) and (3), the following can be shown:

I Theorem 7. For every n ∈ N, there is a 5-way protocol Pn with at most 14n+11 states and
at most 34n+ 19 transitions that computes the predicate x ≥ cn for some number cn ≥ 22n .

2 In [15], the elements of S are written using uppercase letters. We use lowercase for convenience.
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Using Theorem 7 and Lemma 3, we obtain:

I Corollary 8. There exists a family {P0,P1, . . .} of 2-way protocols with two leaders and a
family {c0, c1, . . .} of natural numbers such that for every n ∈ N the following holds: cn ≥ 22n

and protocol Pn has at most 314 log log cn + 131 states and computes the predicate x ≥ cn.

5 Universal lower bounds for 1-aware protocols

To the best of our knowledge, all the protocols in the literature for predicates x ≥ n, including
those of Section 3 and Section 4, share a very natural property: if the number of agents is
greater than or equal to n, then the agents not only eventually reach consensus 1, they also
eventually know that they will reach this consensus. Let us formalize this idea:

I Definition 9. A well-specified population protocol P = (Q,T, I, L,O) is 1-aware if there
is a set Q1 ⊆ Q \ (I ∪ JLK) of states such that for every initial configuration C0 and every
fair execution π = C0C1 · · ·
(1) if π stabilizes to 0, then Ci(Q1) = 0 for every i ≥ 0, and
(2) if π stabilizes to 1, then there is some i ≥ 0 such that Cj(Q \Q1) = 0 for every j ≥ i.

If in the course of an execution π an agent reaches a state of Q1, then π cannot stabilize
to 0 by (1), and so, since P is well-specified, it stabilizes to 1; intuitively, at this moment the
agent “knows” that the consensus will be 1. Further, if an execution stabilizes to 1, then
all agents eventually reach and remain in Q1 by (2), and so eventually all agents “know”.3
Albeit seemingly restrictive, 1-aware protocols compute a significant subclass of predicates:
monotonic Presburger predicates (see the full version of the paper for more details).

We say that a state q is coverable from a configuration C if C ∗−→ C ′ for some configuration
C ′ such that C ′(q) > 0. The fundamental property of 1-aware protocols is that, loosely
speaking, consensus reduces to coverability:

I Lemma 10. Let P = (Q,T, {x}, L,O) be a 1-aware protocol computing a unary predicate
ϕ. We have ϕ(n) = 1 if and only if some state of Q1 is coverable from Hn · xI + L.

We show that for 1-aware protocols, the bounds of Sections 3 and 4 are essentially tight.

Leaderless protocols. We prove that a 1-aware, leaderless and 2-way protocol computing
x ≥ n has at least log3 n states. By Lemma 10, it suffices to show that some state of Q1 is
coverable from H3k · qI, where q is the initial state. Proposition 11 below is the key to the
proof. It states that for every finite execution C1

π−→ C2, there is C ′1
π′

−→ C ′2 such that C ′1
has the same support as C1 and is not too large, and C ′2 contains a “record” of all states
encountered during the execution of π (this is the set JC1K ∪ JπK•).

Let us define the norm of a configuration C as ‖C‖ def= max{C(q) : q ∈ JCK}. We obtain:

I Proposition 11. Let P = (Q,T, I, L,O) be a k-way population protocol and let C1
π−→ C2 be

a finite execution of P. There exists a finite execution C ′1
π′

−→ C ′2 such that (a) JC ′1K = JC1K,
(b) JC ′2K = JC1K ∪ Jπ′K•, and (c) ‖C ′1‖ ≤ (k + 1)|Q|.

3 We could also require the seemingly weaker property that eventually at least one agent “knows”. However,
by adding transitions that “attract” all other agents to Q1, we can transform a protocol in which some
agent “knows” into a protocol computing the same predicate in which all agents “know”.
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I Theorem 12. Every 1-aware, leaderless and 2-way population protocol P = (Q,T, {q0},0,
O) computing x ≥ n has at least log3 n states.

Proof. Let Q1 ⊆ Q be the set of states from the definition of 1-awareness. Since L = 0,
C0 = Hn ·q0I is the smallest initial configuration with output 1, and by Lemma 10 the smallest
initial configuration from which some state q1 ∈ Q1 is coverable. Let C0

π−→ C ≥ Hq1I. Since
q1 6= q0, we have q1 ∈ JπK•. By Proposition 11, and since P is 2-way, q1 is also coverable from
C ′0 satisfying JC ′0K = JC0K = {q0} and ‖C ′0‖ = 3|Q|. Thus, C ′0 = H3|Q| · q0I. By minimality of
n, we get n ≤ 3|Q|, and thus |Q| ≥ log3 n. J

Observe that the proof Theorem 12 uses the fact that P is leaderless to conclude
C ′0 = H3|Q| · q0I from JC ′0K = JC0K and ‖C ′0‖ = 3|Q|, which is not necessarily true with leaders.

Protocols with leaders. In the case of protocols with leaders we obtain a lower bound from
Rackoff’s procedure for the coverability problem of vector addition systems [17].

A vector addition system of dimension k (k-VAS) is a pair (A,v0), where v0 ∈ Nk is
an initial vector and A ⊆ Zk is a set of vectors. An execution of a k-VAS is a sequence
v0v1 · · ·vn of vectors of Nk such that each vi+1 = vi+ai for some ai ∈ A. We write v0

∗−→ vn
and say that the execution has length n. A vector v is coverable in (A,v0) if v0

∗−→ v′ for
some v′ ≥ v. The size of a vector v ∈ Zk is

∑
1≤i≤k size(max(|v(i)|, 1)). The size of a set of

vectors is the sum of the size of its vectors. In [17] Rackoff proves:

I Theorem 13 ([17]). Let A ⊆ Zk be a set of vectors of size at most n and dimension k ≤ n,
and let v0 ∈ Nk be a vector of size n. For every v ∈ Nk, if v is coverable in (A,v0), then v

is coverable by means of an execution of length at most 2(3n)n .

Using a standard construction from the Petri net literature, it can be shown that every
2-way protocol P with n states can be simulated by a VAS VP of size at most 12n8, where
each execution of P has a corresponding execution twice as long in VP . Thus, by Theorem 13:

I Proposition 14. Let P = (Q,T, I, L,O) be a 2-way population protocol and let q ∈ Q.
For every configuration C, if q is coverable from C, then it is coverable by means of a finite
execution of length at most 2(3m)m−1 where m = 12|Q|8.

Using the above proposition, we derive:

I Theorem 15. Let P be a 1-aware and 2-way population protocol. For every n ≥ 2, if P
computes x ≥ n, then P has at least (log log(n)/151)1/9 states.

6 Protocols for systems of linear inequalities

In Section 3, we have shown that the predicate x ≥ c can be computed by a leaderless
protocol with O(log c) states. In this section, we will see that adding a few leaders allows to
compute systems of linear inequalities. More formally, we show that there exists a protocol
with O((m+k) · log(dm)) states and O(m · log(dm)) leaders computing the predicate Ax ≥ c,
where A ∈ Zm×k, c ∈ Zm and d is the the largest absolute value occuring in A and c.

There are three crucial points that make systems of linear inequalities more complicated
than flock-of-birds predicates: (1) variables have coefficients, (2) coefficients may be positive
or negative, and (3) they are the conjunction of linear inequalities. We will explain how to
address the two first points by considering the special case of linear inequalities. We will
then discuss how to handle the third point.
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Linear inequalities. Note that the predicate
∑

1≤i≤k aixi ≥ c is equivalent to
∑

1≤i≤k aixi+
(1−c) > 0. Therefore, it suffices to describe protocols for predicates of the form

∑
1≤i≤k aixi+

c > 0. In order to make the presentation more pleasant, we will first restrain ourselves to the
predicate ax − by + c > 0 for some fixed a, b ∈ N and c ∈ Z. Such a predicate admits the
difficult aspects, i.e. coefficients and negative numbers. Moreover, as we will see, handling
more than two variables is not an issue.

Let us now describe a protocol Plin for the predicate ax − by + c > 0. The idea
is to keep a representation of ax − by + c throughout executions of the protocol. Let
n

def= size(max(log |a|, log |b|, log |c|, 1)). As in Section 3, we construct states to represent
powers of two. However, this time, we also need states to represent negative numbers:

Q+ def= {+2i : 0 ≤ i ≤ n} and Q−
def= {−2i : 0 ≤ i ≤ n}.

We also need states X def= {x,y} for the variables, and two additional states R def= {+0,−0}.
The set of all states of Plin is Q def= X ∪Q+ ∪Q− ∪R, and the initial states are I def= X.

Let us explain the purpose of R. Intuitively, we would like to have the transitions:

x 7→ H+2i : i ∈ bits(a)I and y 7→ H−2i : i ∈ bits(|b|)I.

This way, every agent in state x (resp. y) could be converted to the binary representation of
a (resp. b). Unfortunately, this is not possible as these transitions produce more states than
they consume. This is where leaders become useful. If R initially contains enough leaders,
then R can act as a reservoir of extra states which allow to “pad” transitions. More formally,
let rep(z) : Z→ Pop(Q \X) be defined as follows:

rep(z) def=


H+2i : i ∈ bits(z)I if z > 0,
H−2i : i ∈ bits(|z|)I if z < 0,
H−0I if z = 0.

For every r ∈ R, we add to Plin the following transitions:

addx,r : x, r, r, . . . , r︸ ︷︷ ︸
|rep(a)|−1 times

7→ rep(a) and addy,r : y, r, r, . . . , r︸ ︷︷ ︸
|rep(b)|−1 times

7→ rep(b).

We set the leaders to L def= rep(c) + H(4n+ 2) ·−0I. We claim that 4n+ 2 reservoir states
are enough, we will explain later why. Now, the key idea of the construction is that it is
always possible to put 2n agents back into R. Thus, fairness ensures that the number of
agents in X eventually decreases to zero, and then that the value represented over Q+ ∪Q−
is ax− by+ c. We let the representations over Q+ and Q− “cancel out” until one side “wins”.
If the positive (resp. negative) side wins, i.e. if ax− by + c > 0 (resp. ax− by + c ≤ 0), then
it signals all agents in R to move to +0 (resp. −0). To achieve this, for every 0 ≤ i ≤ n,
we add transition canceli : +2i,−2i 7→ +0,−0 to the protocol. Since bits of the positive
and negative numbers may not be “aligned”, we follow the idea of Section 3 and add further
transitions to change representations to equivalent ones:

up+
i : +2i,+2i 7→ +2i+1,+0, down+

i+1,r : +2i+1, r 7→ +2i,+2i,

up−i : −2i,−2i 7→ −2i+1,−0, down−i+1,r : −2i+1, r 7→ −2i,−2i,

where 0 ≤ i < n and r ∈ R. Finally, for every 0 ≤ i ≤ n, we add transitions to signal which
side wins:

signal+i : +2i,−0 7→ +2i,+0, signal : −0,+0 7→ −0,−0,
signal−i : −2i,+0 7→ −2i,−0.
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Note that −0 “wins” over +0 because the predicate is false whenever ax− by + c = 0. It
remains to specify the output mapping of Plin which we define as expected, i.e. O(q) def= 1 if
q ∈ Q+ ∪ {+0}, and O(q) def= 0 otherwise.

Let us briefly explain why 4n+ 2 reservoir states suffice. At any reachable configuration
C, transitions of the form up+

i and up−i can occur until C(±2i) ≤ 1 for every 0 ≤ i < n.
Afterwards, at most 2n agents remain in these states. There can however be many agents in
S = {+2n,−2n}. But, these two states represent numbers respectively larger and smaller
than any coefficient, hence the number of agents in S can only grow by one each time a state
from X is consumed. Overall, this means that C ∗−→ C ′ for some C ′ such that C ′(R) ≥ 2n.

In order to handle more variables {x1, x2, . . . , xk}, note that all we need to do is to set
X = {x1,x2, . . . ,xk} instead, and add transitions addxi,r for every 1 ≤ i ≤ k and r ∈ R.

By applying Lemma 3 on Plin, we obtain:

I Theorem 16. Let a1, a2, . . . , ak, c ∈ Z and let n = size(max(|a1|, |a2|, . . . , |ak|, |c|, 1)).
There exists a 2-way population protocol, with at most 10kn states and at most 5n+ 2 leaders,
that computes the predicate

∑
1≤i≤k aixi + c > 0.

Conjunction of linear inequalities. We briefly explain how to lift the construction for linear
inequalities to systems of linear inequalities. The details of the formal construction and
proofs are a bit involved, and are thus deferred to the full version of this paper. Let us fix
some A ∈ Zm×k and c ∈ Zm. We sketch a protocol Psys for the predicate Ax + c > 0. For
every 1 ≤ i ≤ m, we construct a protocol Pi for the predicate

∑
1≤j≤k Ai,j · xj + ci > 0.

Protocol Pi is obtained as presented earlier, but with some modifications. The largest power
of two is picked as n def= size(d) + dlog 2m2e where

d
def= max(1, {|Ai,j | : 1 ≤ i ≤ m, 1 ≤ j ≤ k}, {|ci| : 1 ≤ i ≤ m}).

The reason for this modification is that the number of agents, in a largest power of two,
should now increase by at most 1/m each time an initial state is consumed, as opposed to 1.

We also replace each positive state q ∈ Q+ of Pi by two states q0 and q1, its 0-copy and
1-copy. The reason behind this is that positive states should not necessarily have output 1.
Indeed, one linear inequality may be satisfied while the other ones are not. Therefore, −0
and each negative state q ∈ Q− should be able to signal a 0-consensus to the positive states.
The transitions of the form up+

j , down+
j and cancelj are adapted accordingly.

Protocol Psys is obtained as follows. First, subprotocols P1,P2, . . . ,Pm are put side by
side. Their initial (resp. reservoir) states are merged into a single set X (resp. R). For
every 1 ≤ j ≤ k, transitions addxj,r of the m subprotocols are replaced by a single transition
consuming xj, and enough reservoir states, and producing rep(Ai,j) in each subprotocol Pi,
where 1 ≤ i ≤ m. The signal mechanisms are replaced by these new ones:

the 0-copy of state +20 of all subprotocols can meet to convert −0 to +0,
state +0 can convert any positive state to its 1-copy,
state −0 or any negative state can convert +0 to −0, and any positive state to its 0-copy.

A careful analysis of the formal construction of Psys combined with Lemma 3 yields:

I Theorem 17. Let A ∈ Zm×k, c ∈ Zm and n = size(max(1, {|Ai,j | : 1 ≤ i ≤ m, 1 ≤ j ≤ k}),
{|ci| : 1 ≤ i ≤ m}). There exists a 2-way population protocol, with at most 27(logm+n)(m+k)
states and at most 14m(logm+ n) leaders, that computes the predicate Ax + c > 0.
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7 Conclusion and further work

We have initiated the study of the state space size of population protocols as a function of
the size of the predicate they compute. Previous lower bounds were only for single predicates,
like the majority predicate x ≤ y, or for a variant of the model in which the number of states
is a function of the number of agents.

There are many open questions. We conjecture that systems of linear inequalities can
be computed by leaderless protocols with a polynomial number of states. A second, very
intriguing question is whether the function f(n) giving the minimal number of states of
a two-leader protocol computing x ≥ n exhibits large gaps, i.e., if there are (families of)
numbers c and c+ 1 such that f(c) is exponentially larger than f(c+ 1). A third question
is whether there exist protocols with O(log log logn) states for the flock-of-birds predicates
x ≥ n. Such protocols cannot be 1-aware, but they might exist. Their existence is linked to
the long standing question of whether the reachability problem for reversible VAS (a model
equivalent to the commutative semigroup representations of [15]) has the same complexity
as reachability for arbitrary VAS (see [12] for a brief introduction).
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1 Introduction

The study of logic-automata connections has ever played a key role in computer science,
relating concepts that are a priori very different. Its motivation is at least twofold. First,
automata may serve as a tool to decide logical theories. Beginning with the work of Büchi,
Elgot, and Trakhtenbrot, who established expressive equivalence of monadic second-order
(MSO) logic and finite automata [8, 9, 26], the “automata-theoretic” approach to logic has
been successfully applied, for example, to MSO logic on trees [23], temporal logics [27],
and first-order logic with two variables over words with an equivalence relation (aka data
words) [4]. Second, automata serve as models of various kind of state-based systems. Against
this background, Büchi-like theorems lay the foundation of synthesis, i.e., the process of
transforming high-level specifications (represented as logic formulas) into faithful system
models. In this paper, we provide a Büchi theorem for communicating finite-state machines,
which are a classical model of concurrent message-passing systems.

One of the simplest system models are finite automata. They can be considered as single
finite-state processes and, therefore, serve as a model of sequential systems. Their executions
are words, which, seen as a logical structure, consist of a set of positions (also referred to
as events) that carry letters from a finite alphabet and are linearly ordered by some binary
relation ≤. The simple MSO (even first-order) formula ∀x.

(
a(x) =⇒ ∃y.(x ≤ y ∧ b(y))

)
says

that every “request” a is eventually followed by an “acknowledgment” b. In fact, Büchi’s
theorem allows one to turn any logical MSO specification into a finite automaton. The latter
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can then be considered correct by construction. Though the situation quickly becomes more
intricate when we turn to other automata models, Büchi theorems have been established for
expressive generalizations of finite automata that also constitute natural system models. In
the following, we will discuss some of them.

Data automata accept (in the context of system models, we may also say generate) words
that, in addition to the linear order ≤ and its direct-successor relation, are equipped with
an equivalence relation ∼ [4]. Positions (events) that belong to the same equivalence class
may be considered as being executed by one and the same process, while ≤ reflects a sort of
global control. It is, therefore, convenient to also include a predicate that connects successive
events in an equivalence class. Bojańczyk et al. showed that data automata are expressively
equivalent to existential MSO logic with two first-order variables [4]. A typical formula is
¬∃x.∃y.(x 6= y ∧ x ∼ y), which says that every equivalence class is a singleton. It should
be noted that data automata scan a word twice and, therefore, can hardly be seen as a
system model. However, they are expressively equivalent to class-memory automata, which
distinguish between a global control (modeling, e.g., a shared variable) and a local control
for every process [3].

Unlike finite automata and data automata, asynchronous automata are a model of
concurrent shared-memory systems, with a finite number of processes. Their executions
are Mazurkiewicz traces, where the relation ≤ is no longer a total, but a partial order.
Thus, there may be parallel events x and y, for which neither x ≤ y nor y ≤ x holds. A
typical logical specification is the mutual exclusion property, which can be expressed in
MSO logic as ¬∃x.∃y.(CS(x) ∧ CS(y) ∧ x ‖ y) where the parallel operator x ‖ y is defined
as ¬(x ≤ y) ∧ ¬(y ≤ x). Note that this is even a first-order formula that uses only two
first-order variables, x and y. It says that there are no two events x and y that access a
critical section simultaneously. Asynchronous automata are closed under complementation
[29] so that the inductive approach to translating formulas into automata can be applied
to obtain a Büchi theorem [24]. Note that complementability is also the key ingredient for
MSO characterizations of nested-word automata [1] and branching automata running over
series-parallel posets (aka N-free posets) [18, 2].

The situation is quite different in the realm of communicating finite-state machines
(CFMs), aka communicating automata or message-passing automata, where finitely many
processes communicate by exchanging messages through unbounded FIFO channels [7]. A
CFM accepts/generates message-sequence charts (MSCs) which are also equipped with a
partial order ≤. Additional binary predicates connect (i) the emission of a message with its
reception, and (ii) successive events executed by one and the same process. Unfortunately,
CFMs are not closed under complementation [6] so that an inductive translation of MSO
logic into automata will fail. In fact, they are strictly less expressive than MSO logic. Two
approaches have been adopted to overcome these problems. First, when channels are (existen-
tially or universally) bounded, closure under complementation is recovered so that CFMs are
expressively equivalent to MSO logic [17, 19, 11, 12]. Note that, however, the corresponding
proofs are much more intricate than in the case of finite automata. Second, CFMs with
unbounded channels have been shown to be expressively equivalent to existential MSO logic
when dropping the order ≤ [6]. The proof relies on Hanf’s normal form of first-order formulas
on structures of bounded degree (which is why one has to discard ≤) [15]. However, it is clear
that many specifications (such as mutual exclusion) are easier to express in terms of ≤. But,
to the best of our knowledge, a convenient specification language that is exactly as expressive
as CFMs has still been missing.

It is the aim of this paper to close this gap, i.e., to provide a logic that
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matches exactly the expressive power of unrestricted CFMs (in particular, every specifi-
cation should be realizable as an automaton), and
includes the order ≤ so that one can easily express natural properties like mutual exclusion.

We show that existential MSO logic with two first-order variables is an appropriate
logic. To translate a formula into an automaton, we first follow the approach of [4] for
data automata and consider its Scott normal form (cf. [13]). However, while data automata
generate total orders, the main difficulty in our proof comes from the fact that ≤ is a partial
order. Actually, our main technical contribution is a CFM that, running on an MSC, marks
precisely those events that are in parallel to some event of a certain type.

It should be noted that message-passing automata can also be used as acceptors of the
underlying (graph) architecture. In that case, logical characterizations have been obtained in
terms of MSO and modal logics [20, 16, 21, 22]. However, in our framework, the architecture
is fixed and we rather reason about the set of executions of a CFM.

The paper is structured as follows. In Section 2, we recall the classical notions of CFMs
and MSO logic. Section 3 states our main result, describes our proof strategy, and settles
several preliminary lemmas. The main technical part is contained in Section 4. We conclude
in Section 5. Missing proofs can be found at: https://arxiv.org/abs/1709.09991.

2 Preliminaries

Let Σ be a finite alphabet. The set of finite words over Σ is denoted by Σ∗, which includes
the empty word ε. For w ∈ Σ∗, let |w| denote its length. In particular, |ε| = 0. The inverse
of a binary relation R is defined as R−1 = {(f, e) | (e, f) ∈ R}. We denote the size of a finite
set A by |A|. The disjoint union of sets A and B is denoted by A ]B.

2.1 Communicating Finite-State Machines

Communicating finite-state machines are a natural model of communicating systems where a
finite number of processes communicate through a priori unbounded FIFO channels [7]. Every
process is represented as a finite transition system (S, ι,∆) over some finite alphabet Γ, i.e.,
S is a finite set of states with initial state ι ∈ S, and ∆ ⊆ S×Γ×S is the transition relation.
An element from Γ will describe the action that is performed when taking a transition (e.g.,
“send a message to some process” or “perform a local computation”).

A communicating finite-state machine is a collection of finite transition systems, one for
each process. We assume a finite set P = {p, q, r, . . .} of processes and a finite alphabet
Σ = {a, b, c, . . .} of labels. We suppose that there is a channel between any two distinct
processes. Thus, the set of channels is Ch = {(p, q) ∈ P × P | p 6= q}.

I Definition 1. A communicating finite-state machine (CFM) over P and Σ is a tuple
A = ((Ap)p∈P ,Msg,Acc) where

Msg is a finite set of messages,
Ap = (Sp, ιp,∆p) is a finite transition system over Σ∪ (Σ×{! , ?}×Msg× (P \ {p})), and
Acc ⊆

∏
p∈P Sp is the set of global accepting states.1

1 We may also include several global initial states without changing the expressive power, which is
convenient in several of the forthcoming constructions.
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Let t = (s, α, s′) ∈ ∆p be a transition of process p. We call s the source state of t, denoted
by source(t), and s′ its target state, denoted target(t). Moreover, α is the action executed
by t. If α ∈ Σ, then t is said to be internal, and we let label(t) = α. The label from Σ may
provide some more information about an event (such as “enter critical section”). When α is
of the form (a, ! ,m, q), then t is a send transition, which writes message m into the channel
(p, q). Accordingly, we let msg(t) = m, receiver(t) = q, and label(t) = a. Finally, performing
α = (a, ?,m, q) removes message m from channel (q, p). In that case, we set msg(t) = m,
sender(t) = q, and label(t) = a.

If there is only one process, i.e., P is a singleton, then all transitions are internal so that
a CFM is simply a finite automaton accepting a regular set of words over the alphabet Σ. In
the presence of several processes, a single behavior is a tuple of words over Σ, one for every
process. However, these words are not completely independent (unless all transitions are
internal and there is no communication), since the sending of a message can be linked to its
reception. This is naturally reflected by a binary relation C that connects word positions on
distinct processes. The resulting structure is called a message sequence chart.

I Definition 2. A message sequence chart (MSC) over P and Σ is a tuple M = ((wp)p∈P ,C)
where wp ∈ Σ∗ for every p ∈ P . We require that at least one of these words be non-empty.
By Ep = {p} × {1, . . . , |wp|}, we denote the set of events that are executed by process p.
Accordingly, the (disjoint) union E =

⋃
p∈P Ep is the set of all events. Implicitly, we obtain

the labeling λ : E → (P ×Σ) defined by λ((p, i)) = (p, a) where a is the i-th letter of wp, and
the process-edge relation → ⊆

⋃
p∈P (Ep × Ep), which connects successive events that are

executed by one and the same process: (p, i)→ (p, i+1) for all p ∈ P and i ∈ {1, . . . , |wp|−1}.
Now, C ⊆

⋃
(p,q)∈Ch(Ep × Eq) is a set of message edges, satisfying the following:

(→ ∪ C) is acyclic (intuitively, messages cannot travel backwards in time), and the
associated partial order is denoted ≤ = (→∪C)∗ with strict part < = (→∪C)+,
each event is part of at most one message edge, and
for all (p, q) ∈ Ch and (e, f), (e′, f ′) ∈ C∩ (Ep ×Eq), we have e→∗ e′ iff f →∗ f ′ (which
guarantees a FIFO behavior).

An event that does not belong to a message edge is called internal. We say that two
events e, f ∈ E are parallel, written e ‖ f , if neither e ≤ f nor f ≤ e. The set of all MSCs is
denoted MSC(P,Σ).

I Example 3. An example MSC over P = {p, q, r} and Σ = {a, b, c} is depicted in Figure 1.
For the moment, we ignore the colored areas and annotations. We have wp = aacaaaaa,
wr = aaaaaaaaaa, and wq = abbaacaaa (note that q is the bottom process). Consider the
events f = (p, 4), e = (p, 5), and g = (q, 2). That is, f → e and gC e. Moreover, (p, 3) ‖ (q, 6)
(i.e., the two c-labeled events are parallel), while (p, 3) ≤ (q, 8).

Let M = ((wp)p∈P ,C) be an MSC over P and Σ. A run of the CFM A on M is given by
a mapping ρ that associates with every event e ∈ Ep (p ∈ P ) the transition ρ(e) ∈ ∆p that
is executed at e. We require that
1. for every e ∈ E with λ(e) = (p, a), we have label(ρ(e)) = a,
2. for every process p ∈ P such that Ep 6= ∅, we have source(ρ((p, 1))) = ιp,
3. for every process edge (e, f) ∈ →, we have target(ρ(e)) = source(ρ(f)),
4. for every internal event e ∈ E, ρ(e) is an internal transition, and
5. for every message edge (e, f) ∈ C with e ∈ Ep and f ∈ Eq, ρ(e) ∈ ∆p is a send transition

and ρ(f) ∈ ∆q is a receive transition such that msg(ρ(e)) = msg(ρ(f)), receiver(ρ(e)) = q,
and sender(ρ(f)) = p.
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Figure 1 An MSC (cf. Example 3) and the partition determined by an event e (cf. Example 10).

Note that, when |P | = 1, Condition 5. becomes meaningless and Conditions 1.–4. emulate
the behavior of a finite automaton.

It remains to define when ρ is accepting. To this aim, we collect the final states of each
process p. If Ep 6= ∅, then let sp be the target state of ρ((p, |wp|)), i.e., of the last transition
taken by p. Otherwise, let sp = ιp. Now, we say that ρ is accepting if (sp)p∈P ∈ Acc.

Finally, the language of A is defined as L(A) = {M ∈MSC(P,Σ) | there is an accepting
run of A on M}.

2.2 MSO and Two-Variable Logic

While CFMs serve as an operational model of concurrent systems, MSO logic can be
considered as a high-level specification language. It uses first-order variables x, y, . . . to
quantify over events, and second-order variables X,Y, . . . to represent sets of events. The
logic MSO (we assume that P and Σ are understood from the context) is defined by the
following grammar:

ϕ ::= p(x) | a(x) | x ∈ X | x = y | x→ y | xC y | x ≤ y | ϕ ∨ ϕ | ¬ϕ | ∃x.ϕ | ∃X.ϕ

where x and y are first-order variables, X is a second-order variable, p ∈ P , and a ∈ Σ.
We use the usual operator precedence. For convenience, we allow usual abbreviations such
as conjunction ϕ ∧ ψ, universal quantification ∀x.ϕ, implication ϕ =⇒ ψ, etc. The atomic
formulas p(x) and a(x) are interpreted as “x is located on process p” and, respectively, “the
label of event x is a”. The binary predicates are self-explanatory, and the boolean connectives
and quantification are interpreted as usual. The size |ϕ| of a formula ϕ ∈ MSO is the length
of ϕ seen as a string.

A variable that occurs free in a formula requires an interpretation in terms of an event/a
set of events from the given MSC. We will write, for example, M,x 7→ e, y 7→ f |= ϕ if M
satisfies ϕ provided x is interpreted as e and y as f . If ϕ is a sentence (i.e., does not contain
any free variable), then we write M |= ϕ to denote that M satisfies ϕ. With a sentence ϕ,
we associate the MSC language L(ϕ) = {M ∈MSC(P,Σ) |M |= ϕ}.

The set FO of first-order formulas is the fragment of MSO that does not make use of
second-order quantification ∃X. The two-variable fragment of FO, denoted by FO2, allows
only for two first-order variables, x and y (which, however, can be quantified and reused
arbitrarily often). Moreover, formulas from EMSO, the existential fragment of MSO, are of
the form ∃X1 . . . ∃Xn.ϕ where ϕ ∈ FO. Accordingly, EMSO2 is the set of EMSO formulas
whose first-order kernel is in FO2.

STACS 2018
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The expressive power of all these fragments heavily depends on the set of binary predicates
among {→,C,≤} that are actually allowed. For a logic C ∈ {MSO,EMSO,EMSO2,FO,FO2}
and a set R ⊆ {→,C,≤}, let C[R] be the logic C restricted to the binary predicates from
R (however, we always allow for equality, i.e., formulas of the form x = y). In particular,
MSO = MSO[→,C,≤]. As the transitive closure of a binary relation is definable in terms of
second-order quantification, MSO[→,C,≤] and MSO[→,C] have the same expressive power
(over MSCs). On the other hand, MSO[≤] is strictly less expressive [6].

I Example 4. Suppose P = {p, q, r} and Σ = {a, b, c}. The (mutual exclusion) formula
¬∃x.∃y.(c(x) ∧ c(y) ∧ x ‖ y), where x ‖ y is defined as ¬(x ≤ y) ∧ ¬(y ≤ x), is in FO2[≤]. It
is not satisfied by the MSC from Figure 1, as the two c-labeled internal events are parallel.

Let us turn to the relative expressive power of CFMs and logic. We say that CFMs and
a logic C are expressively equivalent if,

for every CFM A, there exists a sentence ϕ ∈ C such that L(A) = L(ϕ), and
for every sentence ϕ ∈ C, there exists a CFM A such that L(A) = L(ϕ).

Now, the Büchi-Elgot-Trakhtenbrot theorem can be stated as follows:

I Theorem 5 ([8, 9, 26]). If |P | = 1, then CFMs (i.e., finite automata) and MSO are
expressively equivalent.

Unfortunately, when several processes are involved, MSO is too expressive to be captured
by CFMs, unless one restricts the logic:

I Theorem 6 ([6]). CFMs and EMSO[→,C] are expressively equivalent.

3 Two-Variable Logic and CFMs

The logic EMSO[→,C] is not very convenient as a specification language, as it does not
allows us to talk, explicitly, about the order of an MSC. It should be noted that CFMs
and MSO are expressively equivalent if one restricts to MSCs that are channel-bounded
[17, 11, 19]. Our main result allows one to include ≤ in the unbounded case, too, though we
have to restrict to two first-order variables:

I Theorem 7. CFMs and EMSO2[→,C,≤] are expressively equivalent. More precisely:
1. Given a CFM A, we can effectively construct a sentence ϕA ∈ EMSO2[→,C,≤] of

polynomial size such that L(A) = L(ϕA).
2. Given a sentence ϕ ∈ EMSO2[→,C,≤], we can effectively construct a CFM Aϕ with

22O(|ϕ|+|P | log |P |) states (per process) such that L(Aϕ) = L(ϕ).

Translating a CFM into an EMSO2 formula is standard: Second-order variables represent
an assignment of transitions to events. The first-order kernel then checks whether this guess
is consistent with the definition of an accepting run.

Before dwelling on the involved proof of the converse translation, i.e., Theorem 7(2), we
start with some comments. The CFM Aϕ is inherently nondeterministic (for the definition of
a deterministic CFM, cf. [12]). Already for FO2, this is unavoidable: CFMs are in general not
determinizable, as witnessed by an FO2-definable language in [12, Proposition 5.1]. Note that
the number of states of Aϕ is, in fact, independent of the number of letters from Σ that do not
occur in the formula. This is why Theorem 7(2) mentions only |ϕ| rather than |Σ|. Actually,
the doubly exponential size of Aϕ is necessary, even for FO2[→] or FO2[≤] sentences and a
small number of processes. The following can be shown using known techniques [14, 28]:
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I Theorem 8. (i) Assume |P | = 1 and |Σ| = 2. For all n ∈ N, there is a sentence
ϕ ∈ FO2[→] of size O(n2) such that no CFM with less than 22n states recognizes L(ϕ).
(ii) Assume |P | = 2 and |Σ| = n with n ≥ 2. There is a sentence ϕ ∈ FO2[≤] of size O(n)
such that no CFM with less than 22n−1 states on every process recognizes L(ϕ).

The rest of this paper is devoted to the proof of Theorem 7(2). In a first step, we translate
the given formula into Scott normal form (cf. [13]):

I Lemma 9 (Scott Normal Form). Every sentence from EMSO2[→,C,≤] is effectively equiva-
lent to a linear-size sentence of the form ∃X1 . . . ∃Xm.ψ where ψ = ∀x.∀y.ϕ∧

∧`
i=1 ∀x.∃y.ϕi ∈

FO2[→,C,≤] with ϕ,ϕ1, . . . , ϕ` quantifier-free.

As the class of languages accepted by CFMs is closed under projection, it remains to deal
with the first-order part ψ. Note that ψ contains free occurrences of second-order variables
X1, . . . , Xm. To account for an interpretation of these variables, we extend the alphabet Σ
towards the alphabet Σ′ = Σ× {0, 1}m of exponential size. When an event e is labeled with
(a, b1, . . . , bm) ∈ Σ′, we consider that e ∈ Xi iff bi = 1.

As the class of languages accepted by CFMs is closed under intersection, too, the proof of
Theorem 7(2) comes down to the translation of the formulas of the form ∀x.∀y.η or ∀x.∃y.η
where η is a quantifier-free formula with free variables among X1, . . . , Xm, x, y. Notice that,
given an MSC M ∈ MSC(P,Σ′) and events e and f in M , whether M,x 7→ e, y 7→ f |= η

holds or not only depends on the labels of e and f , and their relative position. This is
formalized below in terms of types.

Types. Let M = ((wp)p∈P ,C) ∈ MSC(P,Σ′) be an MSC. Towards the definition of the
type of an event, we define another binary relation � = < \ (→ ∪ C). Let Ω be the set
of relation symbols {=,→,C, ‖ ,→−1,C−1,�,�−1}. Given an event e ∈ E and a relation
symbol ./ ∈ Ω, we let E(e, ./) = {f ∈ E | e ./ f}. In particular, E(e,�−1) = {f ∈ E |
f < e ∧ ¬(f → e) ∧ ¬(f C e)}. Notice that all these sets form a partition of E, i.e.,
E =

⊎
./∈Ω E(e, ./) (some sets may be empty, though). The ./-type and the type of an event

e ∈ E are respectively defined by

type./M (e) = {λ(f) | f ∈ E(e, ./)} ⊆ P × Σ′ and typeM (e) =
(
type./M (e)

)
./∈Ω .

By TP,Σ′ =
∏
./∈Ω 2P×Σ′ , we denote the (finite) set of possible types. Thus, we actually deal

with functions type./M : E → 2P×Σ′ and typeM : E → TP,Σ′ .

I Example 10. Consider Figure 1 and the distinguished event e. Suppose a, b, c ∈ Σ′.
The sets E(e, ./), which form a partition of the set of events, are indicated by the colored
areas. Note that, since e is a receive event, E(e,C) = ∅. Moreover, type→M (e) = type=

M (e) =
type→−1

M (e) = {(p, a)} and type�
−1

M (e) = {(p, a), (p, c), (r, a), (q, a), (q, b)}.

In fact, it is enough to know the type of every event to (effectively) evaluate ψ. To
formalize this, let η be a quantifier-free formula with free variables among X1, . . . , Xm, x, y.
Assume that we are given M ∈ MSC(P,Σ′) and two events e and f that are labeled with
(p, σ), (p′, σ′) ∈ P × Σ′, respectively, where σ = (a, b1, . . . , bm) and σ′ = (a′, b′1, . . . , b′m). Let
./ ∈ Ω be the unique relation such that e ./ f . To decide whether M,x 7→ e, y 7→ f |= η, we
rewrite η into a propositional formula JηK./(p,σ),(p′,σ′) that can be evaluated to true or false:
Replace the formulas p(x), a(x), p′(y), a′(y), x ∈ Xi with bi = 1, and y ∈ Xi with b′i = 1 by
true. All other unary predicates become false (we consider z ∈ Xi to be unary). Formulas
z @ z′ with z, z′ ∈ {x, y} and @ ∈ {=,→,C,≤} can be evaluated to true or false based on
the assumption that x ./ y. By an easy induction, we obtain:

STACS 2018
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I Lemma 11. For all η ∈ {ϕ,ϕ1, . . . , ϕ`}, M ∈MSC(P,Σ′), and events e of M :
M,x 7→ e |= ∃y.η iff JηK./λ(e),(p′,σ′) is true for some ./ ∈ Ω and (p′, σ′) ∈ type./M (e).
M,x 7→ e |= ∀y.η iff JηK./λ(e),(p′,σ′) is true for all ./ ∈ Ω and (p′, σ′) ∈ type./M (e).

Therefore, we start by constructing a CFM Atypes that “labels” each event with its
type. Formally, Atypes runs on extended MSCs, whose events have additional labels from
the finite alphabet TP,Σ′ . More generally, given a finite alphabet Γ, it will be convenient
to consider a Γ-extended MSC from MSC(P,Σ′ × Γ), in the obvious way, as a pair (M,γ)
where M ∈MSC(P,Σ′) and γ is a function from the set of events E to Γ.

I Theorem 12. There is a CFM Atypes over P and Σ′ × TP,Σ′ with 2|Σ′|·2O(|P | log |P |) states
such that L(Atypes) = {(M, typeM ) |M ∈MSC(P,Σ′)}.

The proof of Theorem 12 is given in Section 4. Before this, we show that Theorem 12
(together with Lemmas 9 and 11) implies Theorem 7(2).

Proof of Theorem 7(2). We first convert the given sentence ξ ∈ EMSO2[→,C,≤] into the
linear-size Scott normal form ∃X1 . . . ∃Xm.ψ where ψ = ∀x.∀y.ϕ∧

∧`
i=1 ∀x.∃y.ϕi (Lemma 9).

According to Lemma 11, the CFM for ψ is obtained from Atypes by restricting the tran-
sition relation: We keep a transition of process p with label (σ, (τ./)./∈Ω) ∈ Σ′ × TP,Σ′ if
JϕK./(p,σ),(p′,σ′) is true for all ./ ∈ Ω and (p′, σ′) ∈ τ./, and for all 1 ≤ i ≤ n, JϕiK./(p,σ),(p′,σ′) is
true for some ./ ∈ Ω and (p′, σ′) ∈ τ./. Moreover, the new transition label will just be σ (the
type is projected away). Finally, we project the extended alphabet Σ′ = Σ× {0, 1}m to Σ.
The resulting CFM Aξ is equivalent to the given sentence ξ. J

4 CFM Atypes Checking the Type of Events

We obtain Atypes as the product of CFMs A./ over P and Σ′ × 2P×Σ′ such that L(A./) =
{(M, type./M ) |M ∈MSC(P,Σ′)}. Thus, it only remains to construct A./, for all ./ ∈ Ω. The
cases ./ ∈ {=,→,C,→−1,C−1} are straightforward.

I Lemma 13. There is a CFM A�−1 over P and Σ′ × 2P×Σ′ with 2O(|P×Σ′|) states such
that L(A�−1) = {(M, type�

−1

M ) |M ∈MSC(P,Σ′)}.

Proof sketch. Consider Figure 1 and suppose a, b, c ∈ Σ′. At the time of reading event e,
the CFM A�−1 should deduce type�

−1

M (e) = {(p, a), (p, c), (r, a), (q, a), (q, b)}. To do so, it
collects all labelings from P ×Σ′ that it has seen in the past, i.e., type�

−1

M (e)∪ type→−1

M (e)∪
typeC

−1

M (e). Naively, one would then just remove the labels (p, a) and (q, b) of the predecessors
f and g of e. However, this leads to the wrong result, since both (p, a) and (q, b) are contained
in type�

−1

M (e). In particular, there is another (q, b)-labeled event in E(e,�−1). The solution
is to count the number of occurrences of each label up to 2. When reading e, the CFM will
have seen (p, a) and (q, b) at least twice so that it can safely conclude that both are contained
in type�

−1

M (e). J

We then obtain A� by symmetry. To complete the proof of Theorem 12, we construct
below the CFM A‖ such that L(A‖) = {(M, type‖M ) |M ∈MSC(P,Σ′)}.

For all p, q ∈ P with p 6= q and a ∈ Σ′, we define

L0
p,q,a =

{
(M,γ) ∈MSC(P,Σ′ × {0, 1}) | ∀e ∈ Ep :

(
γ(e) = 0 =⇒ (q, a) 6∈ type‖M (e)

)}
,

L1
p,q,a =

{
(M,γ) ∈MSC(P,Σ′ × {0, 1}) | ∀e ∈ Ep :

(
γ(e) = 1 =⇒ (q, a) ∈ type‖M (e)

)}
.
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I Lemma 14. For all p, q ∈ P with p 6= q and a ∈ Σ′, there are CFMs A0
p,q,a and A1

p,q,a over
P and Σ′×{0, 1} with 22O(|P | log |P |) states such that L(A0

p,q,a) = L0
p,q,a and L(A1

p,q,a) = L1
p,q,a.

Before proving Lemma 14, we explain how to derive the CFM A‖. Consider an extended
MSC (M, τ) ∈ MSC(P,Σ′ × TP,Σ′). For all p, q ∈ P with p 6= q and a ∈ Σ′, define
γM,τ
p,q,a : E → {0, 1} by γM,τ

p,q,a(e) = 1 iff e ∈ Ep and (q, a) ∈ τ‖ assuming τ(e) = (τ./)./∈Ω. From
the CFMs A0

p,q,a and A1
p,q,a, we easily derive a CFM Ap,q,a over P and Σ′ ×TP,Σ′ such that

(M, τ) ∈ L(Ap,q,a) iff (M,γM,τ
p,q,a) ∈ L0

p,q,a ∩ L1
p,q,a. We obtain A‖ as the intersection of the

CFMs Ap,q,a.

Construction of A0
p,q,a. Let (M,γ) ∈MSC(P,Σ′×{0, 1}) be an MSC. We can easily check

that (M,γ) ∈ L0
p,q,a iff there is a path ν in M (i.e., a path in the directed graph (E,→∪C))

such that all events e on process p with γ(e) = 0 and all events f such that λ(f) = (q, a) are
on ν. Therefore, the CFM A0

p,q,a will try to guess such a path ν. This path is represented
by a token moved along the MSC. Initially, exactly one process has the token. At each event,
the automaton may choose to pass along the token to the next event of the current process,
or (if the event is a write) to send the token to another process. Formally, (non)-possession
of the token is represented by two states, stoken and stoken, and movements of the token from
one process to another by messages. All global states are accepting. Notice that A0

p,q,a has
only two states per process. Process p may read an event labeled 0 only if it has the token,
and process q may read a’s only if it has the token. Clearly, A0

p,q,a has an accepting run on
(M,γ) iff (M,γ) ∈ L0

p,q,a.

Construction of A1
p,q,a. Let M = ((wp)p∈P ,C) be an MSC. For e ∈ E and F ⊆ E, let

‖p(e) = {f ∈ Ep | f ‖ e} and ‖p(F ) = {e ∈ Ep | e ‖ f for some f ∈ F}. Moreover, given
e ∈ E, define ↓p(e) = {f ∈ Ep | f < e} and ↑p(e) = {f ∈ Ep | e < f}. An interval in M is a
(possibly empty) finite set of events {e1, . . . , ek} such that e1 → · · · → ek. For all e, f ∈ Ep,
we denote by [e, f ] the interval {g ∈ Ep | e ≤ g ≤ f}.

I Remark. For all e ∈ Eq (recall that p 6= q), the sets ↓p(e), ‖p(e), and ↑p(e) are intervals
(possibly empty) of events on process p, such that Ep = ↓p(e) ] ‖p(e) ] ↑p(e).

The idea is that A1
p,q,a will guess a set of intervals covering all 1-labeled events on

process p, and check that, for each interval I, there exists an event f such that λ(f) = (q, a)
and I = ‖p(f). We first show that it will be sufficient for A1

p,q,a to guess two sequences of
disjoint intervals:

I Lemma 15. Let M = ((wp)p∈P ,C) ∈MSC(P,Σ′) and F = {f ∈ E | λ(f) = (q, a)}. There
exist subsets F1, F2 ⊆ F such that the following hold:
‖p(F1) ∪ ‖p(F2) = ‖p(F ).
For i ∈ {1, 2}, the intervals in ‖p(Fi) are pairwise disjoint, and not adjacent: if f, f ′ ∈ Fi
and f 6= f ′, then ‖p(f) ∪ ‖p(f ′) is not an interval.

Proof. We first construct a set F ′ ⊆ F by iteratively removing redundant events from F ,
i.e., until there remains no event f such that ‖p(f) ⊆ ‖p(F ′ \ {f}). Now, consider three
events f, f ′, f ′′ ∈ F ′ such that f < f ′ < f ′′. If ‖p(f) ∪ ‖p(f ′′) is an interval, we have
‖p(f ′) ⊆ ‖p(f) ∪ ‖p(f ′′), a contradiction with f, f ′, f ′′ ∈ F ′.

Therefore, for each event f ∈ F ′, there is at most one event f ′ ∈ F ′ such that f < f ′ and
‖p(f) ∪ ‖p(f ′) is an interval. We deduce that the set F ′ can be divided into two sets F1 and
F2 satisfying the requirements of the lemma. J
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So, A1
p,q,a will proceed as follows. It will guess the sets F1, F2, ‖p(F1) and ‖p(F2), that

is, label some events on process q with “F1” or “F2”, and some events on process p with “F1”
and/or “F2”. This labeling must be such that on process q, only events initially labeled a
may be labeled “F1” or “F2” (the sets guessed for F1 and F2 contain only events labeled a),
and that on process p, all events initially labeled 1 must be labeled either “F1”, “F2”, or
both (the sets guessed for ‖p(F1) and ‖p(F2) cover all events labeled 1 on process p). Then,
for each i ∈ {1, 2}, A1

p,q,a will check condition Ci: for each non-empty maximal interval
I of events marked Fi on process p, there exists an event f marked Fi on process q such
that I = ‖p(f). The CFM A1

p,q,a will check C1 and C2 with two copies of a CFM Aparallel
defined below. But first, notice that if A1

p,q,a has an accepting run on M then M ∈ L1
p,q,a.

Conversely, if M ∈ L1
p,q,a, then if A1

p,q,a guesses correctly the sets F1, F2, ‖p(F1) and ‖p(F2),
it accepts.

The MSC language Lparallel. Define the language Lparallel of extended MSCs (M, ζ) ∈
MSC(P,Σ′ × {0, 1}) with ζ : E → {0, 1} such that

for each non-empty maximal interval I of 1-labeled events on process p, there exists
exactly one 1-labeled event f on process q such that ‖p(f) = I,
and conversely, for all 1-labeled events f on process q, there exists a non-empty maximal
interval I of 1-labeled events on process p such that ‖p(f) = I.

We show below how to construct a CFM Aparallel for the language Lparallel. Notice that A1
p,q,a

can check condition Ci (i ∈ {1, 2}) by running Aparallel on the MSC (M, ζ) where the events
labeled 1 by ζ are those labeled Fi by A1

p,q,a.

We can decompose this problem one last time. Let Π (respectively, Πp,q) be the set
of process sequences π = p1 . . . pn (respectively, with p1 = p and pn = q) such that n ≥ 1
and pi 6= pj for i 6= j. For π = p1 . . . pn ∈ Π and e, f ∈ E, we write e  π f if there exist
events e = e1, f1, e2, f2, . . . , en, fn = f such that, for all i, we have ei, fi ∈ Epi

, ei →∗ fi, and
fi C ei+1. For all events e ∈ E such that {f ∈ E | f  π e} (respectively, {f ∈ E | e π f})
is non-empty, we let

predπ(e) = max{f ∈ E | f  π e} and succπ(e) = min{f ∈ E | e π f} .

This is well-defined since all events in {f ∈ E | f  π e} (respectively, {f ∈ E | e π f}) are
on the same process, hence are ordered. Note that, if π = p consists of a single process, then,
for all e ∈ Ep, we have predπ(e) = e = succπ(e). Moreover, notice that ≤ =

⋃
π∈Π  π.

Let Lintervals be the set of MSCs (M, ζ) where the mapping ζ : E → {0, 1} defines (non-
empty maximal) intervals [e1, e

′
1], . . . , [ek, e′k] of 1-labeled events on process p and a

sequence of 1-labeled events f1 < · · · < fk on process q, such that, for all 1 ≤ i ≤ k, we
have ↓p(ei) ⊆ ↓p(fi) and ↑p(e′i) ⊆ ↑p(fi). This is illustrated in Figure 2.
Let Lleft be the set of all MSCs in Lintervals such that, for all 1 ≤ i ≤ k and π ∈ Πp,q, if
predπ(fi) is defined, then predπ(fi) < ei.
Let Lright be the set of all MSCs in Lintervals such that, for all 1 ≤ i ≤ k and π ∈ Πq,p, if
succπ(fi) is defined, then e′i < succπ(fi).

Note that Lparallel ⊆ Lintervals. The converse inclusion does not hold in general, since the
intervals in MSCs from Lintervals may be too large. However, we have:

I Lemma 16. Lparallel = Lleft ∩ Lright.
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Figure 2 Constructions of Aintervals and Aparallel.

Proof. Let (M, ζ) ∈ Lparallel and i ∈ {1, . . . , k}. By definition, [ei, e′i] = ‖p(fi). Since [ei, e′i]
is non-empty, we have ↓p(ei) = ↓p(fi) and ↑p(e′i) = ↑p(fi). Hence, (M, ζ) ∈ Lleft ∩ Lright.

Now, let (M, ζ) ∈ Lleft ∩ Lright. Since (M, ζ) ∈ Lintervals, we have ‖p(fi) ⊆ [ei, e′i] for all i.
Assume that there is e ∈ [ei, e′i] \ ‖p(fi). For instance e ∈ ↓p(fi). Then, there exists π ∈ Πp,q

such that e π fi. Hence e ≤ predπ(fi), a contradiction with (M, ζ) ∈ Lleft. J

A CFM for Lparallel. The last piece of the puzzle is a CFM Aparallel such that L(Aparallel) =
Lparallel. It is built as the product (intersection) of CFMs Aintervals, Aleft, and Aright.

I Lemma 17. There is a CFM Aintervals with a constant number of states such that we have
L(Aintervals) = Lintervals.

Proof. Again, we implement a sort of token passing, which is illustrated in Figure 2. The
token starts on process p iff the first p-event is labeled 0; otherwise, it must start on q.
Similarly, the token ends on process p iff the last p-event is labeled 0; otherwise, it must end
on q. Process p reads 0’s when it holds the token, and 1’s when it does not. Moreover, after
sending the token, process p must read some 1-labeled events. When sent by p (respectively q),
the token must reach q (respectively p) before returning to p (respectively q). Finally, process
q reads only 0-labeled events when it does not hold the token. Moreover, process q checks
that, within every maximal interval where it holds the token, there is exactly one 1-labeled
event.

It is easy to check that (M, ζ) ∈ Lintervals iff there exists a path along which the token is
passed and satisfying the above conditions. J

We now show that there exists a CFM Aleft that accepts an MSC (M, ζ) ∈ Lintervals iff
(M, ζ) ∈ Lleft. The idea is that Aleft guesses a coloring of the intervals of marked events
such that checking predπ(fi) < ei can be replaced with checking that predπ(fi) is not in an
interval with the same color as [ei, e′i]. We need to prove that such a coloring exists, and
that the colors associated with the predπ(fi) can be computed by the CFM.

I Lemma 18. Let (M, ζ) ∈ Lleft, let [e1, e
′
1], . . . , [ek, e′k] be the sequence of maximal intervals

of 1-labeled events on process p, and f1 < · · · < fk the corresponding events labeled 1 on
process q. There exists a coloring χ : {1, . . . , k} → {1, . . . , |Πp,q| + 1} such that, for all
i, j ∈ {1, . . . , k} and π ∈ Πp,q, predπ(fj) ∈ [ei, e′i] implies χ(i) 6= χ(j).

Proof. We write i  j when there exists π ∈ Πp,q such that predπ(fj) ∈ [ei, e′i]. Notice
that if i  j, then i < j (otherwise, we would have ei ≤ predπ(fj) < fj < fi, hence, ei ≤
predπ(fj) ≤ predπ(fi), a contradiction with (M, ζ) ∈ Lleft). So we can define χ by successively
choosing colors for 1, . . . , k: For all j, it suffices to choose a color χ(j) ∈ {1, . . . , |Πp,q|+ 1}
distinct from the at most |Πp,q| colors of indices i < j such that i j. J
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I Lemma 19. Let Θ be a finite set. There exists a (deterministic) CFM with |Θ|O(|P |!)

states recognizing the set of doubly extended MSCs (M, θ, ξ) such that, for all events e, ξ(e)
is the partial function from Π to Θ such that ξ(e)(π) = θ(predπ(e)).

Proof. The CFM stores the label ξ(e) of an event e in its state, and includes it in the
message if e is a send event. At an event e on process u, the CFM checks that ξ(e)(u) = θ(e).
Moreover, the CFM checks that:

If e has no →-predecessor and no C-predecessor, then ξ(e)(π) is undefined for all π 6= u.
If e has one →-predecessor f but no C-predecessor, then ξ(e)(π) = ξ(f)(π) for π 6= u.
If e has one C-predecessor g on process r, but no →-predecessor, then ξ(e)(πru) =
ξ(g)(πr), and ξ(e)(π) is undefined if π 6= u and π does not end with ru.
If e has one →-predecessor f and one C-predecessor g on process r, then ξ(e)(πru) =
ξ(g)(πr), and ξ(e)(π) = ξ(f)(π) if π 6= u and π does not end with ru. J

I Lemma 20. There is a CFM Aleft with 22O(|P | log |P |) states such that we have L(Aleft) ∩
Lintervals = Lleft.

Proof. Let (M, ζ) ∈ Lintervals with [e1, e
′
1], . . . , [ek, e′k] the non-empty maximal intervals of

1-labeled events on process p, and let f1 < · · · < fk be the corresponding 1-labeled events
on process q. We can slightly modify Aintervals so that on input (M, ζ), it guesses a coloring
χ : {1, . . . , k} → {1, . . . , |Πp,q|+ 1}, and labels each event in [ei, e′i] with χ(i). The color of
the upcoming interval [ei, e′i] is passed along with the token, so that at each fi, the CFM
has access to the color χ(i) (see Figure 2).

We can then compose that automaton with the CFM from Lemma 19, to compute, at
each fi and for all π ∈ Πp,q such that predπ(fi) is defined, the value ζ(predπ(fi)) and the color
associated with predπ(fi). The CFM Aleft then checks that for all i and π, either predπ(fi) is
undefined, or ζ(predπ(fi)) = 0, or the color associated with predπ(fi) is different from χ(i).

Suppose (M, ζ) ∈ L(Aleft) ∩ Lintervals. Then, for all i and π, predπ(fi) cannot be in an
interval colored χ(i). In particular, this implies predπ(fi) /∈ [ei, e′i]. Since ↑p(e′i) ⊆ ↑p(fi) and
predπ(fi) /∈ ↑p(fi), we deduce that predπ(fi) < ei and (M, ζ) ∈ Lleft. Conversely, suppose
(M, ζ) ∈ Lleft. Then, by Lemma 18, there exists a run in which the coloring guessed along
the token passing is such that Aleft accepts. J

Finally, we obtain Aparallel as the product (intersection) of Aintervals, Aleft, and the “reversal”
(or mirror) Aright of Aleft, which recognizes Lright. In fact, it is easy to see that CFMs are
closed under reversal languages, in which both the process and the edge relations are inverted.

I Lemma 21. There is a CFM Aparallel with 22O(|P | log |P |) states such that L(Aparallel) =
Lparallel.

5 Conclusion

We showed that every EMSO2 formula over MSCs can be effectively translated into an
equivalent CFM of doubly exponential size, which is optimal. At the heart of our construction
is a CFM Atypes of independent interest, which “outputs” the type of each event of an MSC.
In particular, Atypes can be applied to other logics such as propositional dynamic logic (PDL),
which combines modal operators and regular expressions [10]. It has been shown in [5] that
every PDL formula can be translated into an equivalent CFM. We can extend this result
by adding a modality 〈‖〉 to PDL, which “jumps” to some parallel event. For example, the
formula ¬E(CS ∧ 〈‖〉CS) says that no two parallel events access a critical section. Note that
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[5] considers infinite MSCs. However, it is easy to see that all our constructions can be
extended to infinite MSCs.

A major open problem is whether every sentence from FO[→,C,≤], with arbitrarily
many variables, is equivalent to some CFM. To the best of our knowledge, the question is
even open for the logic FO[≤]. Generally, it would be worthwhile to identify large classes of
acyclic graphs of bounded degree such that all FO- or FO2-definable languages (including
the transitive closure of the edge relation) are “recognizable” (e.g., by a graph acceptor [25]).
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Abstract
Approximating the stationary probability of a state in a Markov chain through Markov chain
Monte Carlo techniques is, in general, inefficient. Standard random walk approaches require
Õ(τ/π(v)) operations to approximate the probability π(v) of a state v in a chain with mixing
time τ , and even the best available techniques still have complexity Õ(τ1.5/π(v)0.5); and since
these complexities depend inversely on π(v), they can grow beyond any bound in the size of the
chain or in its mixing time. In this paper we show that, for time-reversible Markov chains, there
exists a simple randomized approximation algorithm that breaks this “small-π(v) barrier”.
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1 Introduction

We investigate the problem of approximating efficiently a single entry of the stationary
distribution of an ergodic Markov chain. This problem has two main motivations. First,
with the advent of massive-scale data, even complexities linear in the size of the input
are often excessive [19]; therefore computing explicitly the entire stationary distribution,
e.g. via the power method [10], can be simply infeasible. As an alternative one can then
resort to approximating only individual entries of the vector, in exchange for a much lower
computational complexity [13, 20]. In fact, if such a complexity is low enough one could
efficiently “sketch” the whole vector by quickly getting a fair estimate of its entries. Second,
in many practical cases one is really interested in just a few entries at a time. A classic
example is that of network centralities, many of which are stationary distributions of an
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ergodic Markov chain [4]. Indeed, the problem of approximating the Personalized PageRank
score of a few nodes in a graph has been repeatedly addressed in the past [5, 6, 16, 15].

In this paper we seek for efficient algorithms for approximating the stationary probability
π(v) of some target state v in the state space of a discrete-time ergodic Markov chain.
Besides the motivations above, the problem arises in estimating heat kernels and graph
diffusions, testing the conductance of graphs and chains, developing local algorithms, and has
applications in machine learning; see [3, 12] for a thorough discussion. We adopt a simple
model where with a single operation one can either (i) simulate one step of the chain or
(ii) retrieve the transition probability between a pair of states. Although recent research
has provided encouraging results, existing algorithms suffer from a crucial bottleneck: to
guarantee a small relative error in the approximation of π(v), they incur a cost that grows
with 1/π(v) itself (basically because estimating π(v) via repeated sampling requires 1/π(v)
samples). This is a crucial issue since in general there is no lower bound on π(v); even worse,
if the state space has n states, then most states have mass π(v) = O( 1

n ), and one can easily
design chains where they have mass exponentially small in n. In general, then, the cost of
existing algorithms can blow up far beyond O(n) for almost all input states v. It is thus
natural to ask if the dependence of the complexity on π(v) is unavoidable. Unfortunately,
one can easily show that Ω(τ/π(v)) operations can be necessary to estimate π(v) within any
constant multiplicative factor if one makes no assumption on the chain (see Appendix 5.2).
To drop below this complexity barrier one must then necessarily look at special classes of
Markov chains.

We present an algorithm that breaks this “small-π(v) barrier” for time-reversible Markov
chains. Time-reversible chains are a well-known subclass of Markov chains which lie at the
heart of the celebrated Metropolis-Hastings algorithm [11] and are equivalent to random
walks on weighted undirected graphs [14]. Formally, given any ε, δ > 0 and any state v
in a time-reversible chain, our algorithm with probability 1 − δ returns a multiplicative
(1± ε)-approximation of π(v) by using Õ(τ‖π‖−1) operations, where τ is the mixing time of
the chain, ‖ · ‖ is the Euclidean norm and Õ(·) hides polynomials in ε−1, ln(δ−1), ln(‖π‖−1).
The complexity is independent of π(v), and for all but a vanishing fraction of states in the
chain improves by factors at least

√
n or

√
τ over previous algorithms. The heart of our

algorithm is a randomized scheme for approximating the sum of a nonnegative vector by
sampling its entries with probability proportional to their values. This scheme requires
Õ(‖π‖−1) samples if π is the distribution over the vector entries, which generalizes the O(

√
n)

algorithm of [17] and is provably optimal. We prove that our algorithm for estimating π(v)
is essentially optimal as a function of τ , n and ‖π‖; in fact one cannot do better even under
a stronger computational model where all transition probabilities to/from all visited states
are known. Finally, we show the number of distinct states visited by our algorithm may be
further reduced, provided such a number satisfies some concentration hypotheses. This is
useful if visiting a new state is expensive (e.g. if states are users in a social network). All
our algorithms are simple to implement, require no tuning, and experimentally they appear
faster than existing alternatives already for medium-sized chains.

The rest of the paper is organized as follows. Subsection 1.1 pins down definitions and
notation; Subsection 1.2 formalizes the problem; Subsection 1.3 discusses related work;
Subsection 1.4 summarizes our results. Section 2 presents our vector sum approximation
algorithm. Section 3 presents our approximation algorithm for π(v). The proofs of our lower
bounds (Theorem 3 and Theorem 5), the pseudocode of our algorithms, and our experimental
results can be found in the full version of this paper [7].
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1.1 Preliminaries
A discrete-time, finite-state Markov chain is a sequence of random variables X0, X1, . . . taking
value over a set of states V = {1, . . . , n}, such that for all i ≥ 1 and all u0, . . . , ui ∈ V

with Pr(X0 = u0, . . . , Xi−1 = ui−1) > 0 we have Pr(Xi = ui|X0 = u0, . . . , Xi−1 = ui−1) =
Pr(Xi = ui|Xi−1 = ui−1). Denote by P = [puu′ ] the transition matrix of the chain, so
that puu′ = Pr(Xi = u′|Xi−1 = u). We assume the chain is ergodic, and thus has a limit
distribution that is independent from the distribution of X0; the limit distribution then
coincides with the stationary distribution π. Thus π is the unique distribution vector such
that for any distribution vector π0:

π = πP = lim
t→∞

π0Pt (1)

We denote by π(u) the stationary probability, or mass, of u, and we always denote by v the
target state whose mass is to be estimated. For any V ′ ⊆ V we let π(V ′) denote

∑
u∈V ′ π(u).

We also assume the chain is time-reversible, i.e. that for any pair of states u and u′ we have:

π(u)puu′ = π(u′)pu′u (2)

We denote by τ the standard 1
4 -mixing time of the chain. In words, τ is the smallest integer

such that after τ steps the total variation distance between π and the distribution of Xτ

is bounded by 1
4 , irrespective of the initial distribution. Formally, τ := min{t : d(t) ≤ 1

4},
where

d(t) := max
π0
‖π0Pt − π‖TV = max

π0

1
2‖π0Pt − π‖1 (3)

After τ steps, the distribution of Xt converges to π exponentially fast; that is, if t = ητ with
η ≥ 1, then ‖π0Pt − π‖TV ≤ 2−η. In the rest of the paper, ‖ · ‖ always denotes the `2 norm.
One may refer to [14] for a detailed explanation of the notions recalled here.

Unless necessary, we drop multiplicative factors depending only on ε, δ (see below)
from the asymptotic complexity notation. Furthermore, we use the tilde notation to hide
polylogarithmic factors, i.e. we denote O(f · poly(log(f))) by Õ(f).

1.2 Problem formulation
Consider now a discrete-time, finite-state, time-reversible, ergodic Markov chain on n states.
The chain is initially unknown and can be accessed via two operations (also called queries):

step(): accepts in input a state u, and returns state u′ with probability puu′
probe(): accepts in input a pair of states u, u′, and returns puu′

These queries are the de facto model of previous work. step() is used in [5, 12, 6, 16, 15, 3]
to simulate the walk, assuming each step costs O(1). probe() is used in [16, 15, 3] to access
the elements of the transition matrix, assuming again one access costs O(1). Here, too, we
assume step() and probe() as well as all standard operations (arithmetics, memory access, . . . )
cost O(1). This includes set insertion and set membership testing; in case their complexity
is ω(1), our bounds can be adapted correspondingly. The problem can now be formalized
as follows. The algorithm is given in input a triple (v, ε, δ) where v is a state in the state
space of the chain and ε, δ are two reals in (0, 1). It must output a value π̂(v) such that, with
probability 1− δ, it holds (1− ε)π(v) ≤ π̂(v) ≤ (1 + ε)π(v). The complexity of the algorithm
is counted by the total number of operations it performs. Obviously we seek for an algorithm
of minimal complexity.

STACS 2018
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A final remark. We say state u has been visited if u = v or if u has been returned by
a step() call. In line with previous work, we adopt the following “locality” constraint: the
algorithm can invoke probe() and step() only on visited states.

1.3 Related work
Two recent works address precisely the problem of estimating π(v) in Markov chains. The key
differences with our paper are that they consider general (i.e. not necessarily time-reversible)
chains, and that we aim at a small relative error for any π(v) and not only for large π(v).

[12] gives a local approximation algorithm based on estimating return times via truncated
random walks. Given any ∆ > 0, if π(v) ≥ ∆ the algorithm with probability 1−δ outputs
a multiplicative εZ(v)-approximation of π(v), where Z(v) is a “local mixing time” that
depends on the structure of the chain. The cost is Õ(ln(1/δ)/ε3∆) step() calls. If one
wants a multiplicative (1± ε)-approximation of π(v) for a generic v, the cost becomes
Õ(τ/π(v)) step() calls since one must wait for the walks to hit v after having mixed.
[3] gives an algorithm to approximate `-step transition probabilities based on coupling
a local exploration of the transition matrix P with simulated random walks. Given
any ∆ > 0, if the probability to be estimated is ≥ ∆ then with probability 1 − δ

the algorithm gives a multiplicative (1± ε)-approximation of it at an expected cost of
Õ(`1.5

√
d ln(1/δ) / ε∆0.5) calls to both step() and probe(), for a uniform random choice

of v in the chain, where d is the density of P. To estimate π(v) for a generic v one must
set ` = τ and ∆ = π(v), and since if the chain is irreducible then d = Ω(1), the bound
stays at Õ(τ1.5/π(v)0.5). This does not contradict our lower bound of Appendix 5.2, since
their model allows for probing transition probabilities even between unvisited states.

Similar results are known for specific Markov chains, and in particular for PageRank
(note that in PageRank τ = O(1)). [5, 6] give an algorithm for approximating the PageRank
π(v) of the nodes v having π(v) ≥ ∆, at the cost of Õ(1/∆) step() calls; again, if one desires
a multiplicative (1± ε)-approximation of π(v), the cost becomes Õ(1/π(v)). [16] gives an
algorithm, with techniques similar to [3], for estimating the Personalized PageRank π(v) of a
node v; if one aims at a multiplicative (1± ε)-approximation of π(v), the algorithm makes
Õ(d 0.5/π(v)0.5) step() and probe() calls where d is the average degree of the graph. Similar
bounds can be found in [15] for Personalized PageRank on undirected graphs.

Summarizing, existing algorithms require either Õ(τ/π(v)) or Õ(τ1.5/π(v)0.5) step() and
probe() calls to ensure a (1± ε)-approximation of π(v) for a generic state v. Note that the
complexity and approximation guarantees of these algorithms depend on knowledge of τ ; our
algorithms are no exception, and we prove our bounds as a function of τ .

Finally, for the problem of estimating the sum of a nonnegative n-entry vector x by
sampling its entries xi, with probability πi = xi/

∑
i xi, the only algorithm existing to date

is that of [17]. That algorithm takes O(
√
n) samples independently of π, while ours needs

O(
√
n) samples only in the worst case, i.e. if π is (essentially) the uniform distribution.

1.4 Our results
Our first contribution is SumApprox, a randomized algorithm for estimating the sum γ of
a nonnegative vector x, assuming one can sample its entries according to the probability
distribution π = x/γ. Formally, we prove:

I Theorem 1. Given any δ, ε ∈ (0, 1), SumApprox(ε, δ) with probability at least 1− δ returns
a multiplicative (1± ε)-approximation of γ by taking O

(
‖π‖−1ε−3(ln 1

δ )3/2) samples.
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SumApprox is extremely simple, yet it improves on the state-of-the-art O(
√
n) algorithm

of [17]. We prove Ω
(
‖π‖−1) samples are necessary, too, to get a fair estimate of γ.

We then employ SumApprox to build MassApprox, a randomized algorithm for approxi-
mating π(v). Random-walk-based sampling and time reversibility are the ingredients that
allow one to make the connection. We prove:

I Theorem 2. Given any δ, ε ∈ (0, 1) and any state v in a time-reversible Markov chain,
MassApprox(ε, δ, v) with probability (1− δ) returns a multiplicative (1± ε) approximation of
π(v) using Õ(τ‖π‖−1ε−3(ln 1

δ )3/2) = Õ(τ‖π‖−1) elementary operations and calls to step()
and probe().

Previous algorithms work also for general (i.e. non-reversible) chains; but on the n−o(n) states
with mass π(v) = O(1/n), their complexity becomes at least Õ(τn) [12] or Õ(τ1.5√n) [3].
In fact, π(v) can be arbitrarily small (even exponentially small in n and τ) for almost all
states in the chain, so for almost all states the complexity of previous algorithms blow up
while that of MassApprox remains unchanged: since ‖π‖−1 ≤

√
n for any π, the complexity

of MassApprox is at most Õ(τ
√
n).

Next, we show that MassApprox is optimal as a function of τ , n and ‖π‖, up to small
factors. In fact, no algorithm can perform better even if equipped with an operation neigh(u)
that returns all incoming and outgoing transition probabilities of u. Formally, we prove:

I Theorem 3. For any function ν(n) ∈ Ω(1/
√
n) ∩O(1) there is a family of time-reversible

chains on n states where (a) ‖π‖ = Θ(ν(n)), and (b) there is a target state v such that, to
estimate its mass π(v) within any constant multiplicative factor with constant probability,
any algorithm requires Ω(τ‖π‖−1/ lnn) neigh() calls where τ is the mixing time of the chain.

Although bounding time complexity is our primary goal, in some scenarios one wants to
bound the footprint, i.e. the number of distinct states visited. Obviously, the footprint
of MassApprox is bounded by its complexity (Theorem 2). We give a second algorithm,
FullMassApprox, whose footprint can be smaller than that of MassApprox depending on τ, n,
and ‖π‖. More precisely, we prove a footprint bound that is conditional on the concentration
of the footprint itself (see Subsection 3.1 for the intuition behind it).

I Theorem 4. Let Nv,T be the number of distinct states visited by a random walk of T steps
starting from v. Assume for a function τ̄ of the chain we have Pr[Nv,T /∈ Θ(E[Nv,T ])] =
o
(

τ̄
E[Nv,T ] ). Then, given any δ, ε ∈ (0, 1), with probability (1−δ) one can obtain a multiplicative

(1± ε)-approximation of π(v) by visiting O(f(ε, δ)(τ lnn+
√
τ̄n)) distinct states.

If in Theorem 4 we have τ̄ = τ , then FullMassApprox is essentially optimal too. Formally:

I Theorem 5. For any function τ(n) ∈ Ω(lnn) ∩O(n) there is a family of time-reversible
chains on n states where (a) the mixing time is τ = Θ(τ(n)), and (b) there is a target state
v such that, to estimate its mass π(v) within any constant multiplicative factor with constant
probability, any algorithm requires Ω(

√
τn/ lnn) neigh() calls.

2 Estimating sum by weighted sampling

In this section we analyse the following problem. We are given a vector of nonnegative
reals γu indexed by the elements u of a set V . The vector is unknown, including its length,
but we can draw samples from V according to the distribution π where u has probability
γu/

∑
u∈V γu. The goal is to approximate the vector sum γ =

∑
u∈V γu. We describe a

STACS 2018
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simple randomized algorithm, SumApprox, which proceeds by repeatedly drawing samples
and checking for repeats (i.e. a draw that yields an element already drawn before). The
key intuition is the following: at any instant, if S ⊆ V is the subset of elements drawn so
far, then the next draw is a repeat with probability

∑
u∈S γu/γ. By drawing a sequence of

samples we can thus flip a sequence of binary random variables, each one telling if a draw is
a repeat, whose expectation is known save for the factor 1/γ. If the sum of these random
variables is sufficiently close to its expectation, one can then get a good approximation of γ
by simply computing a ratio. The code of SumApprox is listed below.

Algorithm SumApprox(ε, δ).
1: S ← ∅ . distinct elements drawn so far
2: wS ← 0 .

∑
u∈S γu for the current S

3: w ← 0 . cumulative sum of
∑

u∈S γu so far
4: r ← 0 . number of repeats so far
5: kε,δ ← d 2+4.4ε

ε2 ln 3
δ
e . halting threshold on the number of repeats

6: while r < kε,δ do
7: w ← w + wS
8: (u, γu)← sample drawn from distribution π

9: if u ∈ S then . detect collision
10: r ← r + 1
11: else
12: S ← S ∪ {u}
13: wS ← wS + γu

14: return w/r . estimate of γ

We prove:

I Theorem 6. SumApprox(ε, δ) with probability at least 1− 2δ
3 returns an estimate γ̂ such

that |γ̂ − γ| < εγ.

Proof. We make use of a martingale tail inequality originally from [9] and stated (and
proved) in the following form as Theorem 2.2 of [1], p. 1476:

I Theorem 7 ([1], Theorem 2.2). Let (Z0, Z1, . . .) be a martingale with respect to the filter
(Fi). Suppose that Zi+1 − Zi ≤M for all i, and write Vt =

∑t
i=1 V ar(Zi|Fi−1). Then for

any z, v > 0 we have

Pr
[
Zt ≥ Z0 + z, Vt ≤ v for some t

]
≤ exp

[
− z2

2(v +Mz)

]
Let us plug into the formula of Theorem 7 the appropriate quantities from SumApprox:

Let Xi be the (i + 1)th sample (i.e. (Xi, γXi) is the pair (u, γu) drawn at the (i + 1)th
invocation of line 8).
Let Fi be the event space generated by X0, . . . , Xi, so that for any random variable Y ,
with E[Y |Fi] we mean E[Y |X0, . . . , Xi] and with V ar[Y |Fi] we mean V ar[Y |X0, . . . , Xi].
Let χi = 1[Xi ∈

⋃i−1
j=0{Xj}] be the indicator variable of a repeat on the (i+ 1)th sample.

Let Pi =
∑
u∈∪i−1

j=0{Xj}
γu
γ be the probability of a repeat on the (i + 1)th sample as a

function of all the (distinct) samples up to the ith, i.e. Pi = E[χi|Fi−1] ≤ 1.
Let Zi =

∑i
j=0(χj − Pj); it is easy to see that (Zi)i≥0 is a martingale with respect

to the filter (Fi)i≥0, since Zi is obtained by adding to Zi−1 the indicator variable χi
and subtracting Pi i.e. its expectation in Fi−1. More formally, E[Zi|Fi−1] = E[Zi−1 +
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χi − Pi|Fi−1], and since Zi−1 and Pi are completely determined by X0, . . . , Xi−1, the
right-hand term is simply Zi−1 + (E[χi|Fi−1]− Pi) = Zi−1. Note also that Z0 = 0.
Let M = 1, noting that |Zi+1 − Zi| = |χi+1 − Pi+1| ≤ 1 for all i.

Finally, note that V ar(Zj |Fj−1) = V ar(χj |Fj−1) (as Zj = Zj−1 + χj − Pj and, again, Zj−1
and Pj are completely determined by X0, . . . , Xj−1). Since V ar(χj |Fj−1) = Pj(1−Pj) ≤ Pj ,
we have Vi =

∑i
j=1 V ar(Zj |Fj−1) ≤

∑i
j=1 Pj . Theorem 7 then yields the following:

I Lemma 8. For all z, v > 0 we have

Pr
[
Zi ≥ z,

i∑
j=1

Pj ≤ v for some i
]
≤ exp

[
− z2

2(v + z)

]
(4)

Recall now SumApprox. Note that
∑i
j=1 Pj and Zi are respectively the value of wγ and of

r − w
γ just after the while loop has been executed for the (i + 1)-th time. Note also that,

when SumApprox returns, r = kε,δ. Therefore the event that, when SumApprox returns,
w
r ≤ γ(1 − ε) i.e. wγ ≤ r(1 − ε) ≤ (1 − ε)kε,δ corresponds to the event that Zi ≥ εr = εkε,δ

and
∑i
j=1 Pj ≤ (1− ε)kε,δ. Invoking Lemma 8 with z = εkε,δ and v = (1− ε)kε,δ:

Pr
[w
r
≤ γ(1− ε)

]
≤ exp

[
−

ε2k2
ε,δ

2(εkε,δ + (1− ε)kε,δ)

]
= exp

[
− ε2kε,δ

2

]
(5)

which is smaller than δ/3 since clearly kε,δ > 2
ε2 ln 3

δ . Consider instead the event that, when
SumApprox returns, wr ≥ γ(1 + ε) i.e. wγ ≥ r(1 + ε) = kε,δ(1 + ε). This is the event that
Zi ≤ −εkε,δ, or equivalently −Zi ≥ εkε,δ. Note that Lemma 8 still holds if we replace Zi
with −Zi, as (−Zi)i≥0 too is obviously a martingale with respect to the filter (Fi)i≥0, with
−Z0 = 0. Let then i0 ≤ i be the smallest time such that −Zi0 ≥ εkε,δ. Since |Zj −Zj−1| ≤ 1,
it must be −Zi0 < εkε,δ+1. Also, since

∑i
j=0 χj is nondecreasing with i, then

∑i0
j=0 χj ≤ kε,δ.

It follows that
∑i0
j=1 Pj = −Zi0 +

∑i0
j=0 χj ≤ εkε,δ + 1 + kε,δ = (1 + ε)kε,δ + 1. Invoking

again Lemma 8 with z = εkε,δ and v = (1 + ε)kε,δ + 1, we obtain:

Pr
[w
r
≥ γ(1 + ε)

]
≤ exp

[
−

ε2k2
ε,δ

2((1 + 2ε)kε,δ + 1)

]
(6)

Note that 1
kε,δ

< ε2

2+4.4ε < 0.2ε since ε ≤ 1; so 2((1 + 2ε) + 1
kε,δ

) < 2 + 4.4ε, and since
kε,δ ≥ 2+4.4ε

ε2 ln 3
δ the right-hand term is at most δ

3 . Finally, by a simple union bound the
probability that |γ̂ − γ| ≥ εγ is at most 2 δ3 , and the proof of Theorem 6 is complete. J

I Theorem 9. SumApprox(ε, δ) draws at most d45‖π‖−1ε−3(ln 3
δ )3/2e samples with probability

at least 1− δ
3 .

Proof. We show that the probability that s = d45‖π‖−1ε−3(ln 3
δ )3/2e draws yield less than

kε,δ repeats is less than δ
3 . Let p̄ = 5

18‖π‖ε(ln
3
δ )−1/2. We consider two cases.

Case 1: ∃u ∈ V with π(u) > p̄. Let then Csu be the random variable counting the
number of times u appears in s draws. Since if Csu > kε,δ then u causes at least kε,δ
repeats, the probability that SumApprox needs more than s draws is upper bounded by
Pr[Csu ≤ kε,δ]. Now E[Csu] = sπ(u) > sp̄ > 45 5

18
1
ε2 ln 3

δ = 12.5
ε2 ln 3

δ ≥ 1.7( 6.4
ε2 ln 3

δ + 1) ≥
1.7d 2+4.4ε

ε2 ln 3
δ e = 1.7kε,δ, therefore Csu ≤ kε,δ implies Csu < 1

1.7E[Csu] < (1 − 0.41)E[Csu].
Since Csu is a sum of independent binary random variables, the bounds of Appendix 5.1 give
Pr[Csu ≤ kε,δ] < exp

(
− 1

20.412E[Csu]
)
< exp

(
− 0.5 · 0.412 · 12.5

ε2 ln 3
δ

)
< exp

(
− 1.05 ln 3

δ

)
< δ

3 .
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Case 2: π(u) ≤ p̄ for all u ∈ V . Let then s̄ = dp̄−1e, let S̄ be the set of distinct elements in
the first s̄ draws, and let w(s̄) =

∑
u∈S̄ π(u). First we show that E[w(s̄)] ≥ 4

9 s̄‖π‖
2. Write

E[w(s̄)] =
∑
u∈V π(u)(1− (1− π(u))s̄). Since for all x ∈ [0, 1] and k ≥ 1 it holds (1− x)k ≤

(1 + kx)−1, by setting x = π(u) and k = s̄ we obtain 1− (1− π(u))s̄ ≥ 1− (1 + s̄π(u))−1 =
s̄π(u)(1 + s̄π(u))−1. Moreover note that p̄−1 ≥ 18

5 = 3.6 and thus dp̄−1e ≤ 5
4 p̄
−1. Therefore

s̄π(u) ≤ dp̄−1ep̄ ≤ 5
4 for all u, and thus s̄π(u)(1 + s̄π(u))−1 ≥ s̄π(u) 1

1+ 5
4

= 4
9 s̄π(u). Therefore

E[w(s̄)] ≥ 4
9 s̄
∑
u∈V π(u)2 = 4

9 s̄‖π‖
2. Now we consider two cases. First, suppose the event

w(s̄) ≥ 0.4E[w(s̄)] takes place. For i = s̄+ 1, . . . , s let χi be the indicator random variable of
the event that the i-th draw is an element of S̄, and let Cs =

∑s
i=s̄+1 χi. Clearly SumApprox

witnesses at least Cs repeats in the last s− s̄ draws, and thus overall. We shall then bound
Pr[Cs < kε,δ]. First, since by hypothesis the total mass of S̄ is w(s̄) ≥ 0.4E[w(s̄)], we also
have E[χi] ≥ 0.4E[w(s̄)] ≥ 1.6

9 s̄‖π‖
2. Therefore E[Cs] =

∑s
i=s̄+1 E[χi] ≥ 1.6

9 (s − s̄)s̄‖π‖2.
Now note that s − s̄ > 10s̄, therefore E[Cs] ≥ 16

9 s̄
2‖π‖2. Finally, since s̄ = dp̄−1e ≥

18
5 ‖π‖

−1ε−1(ln 3
δ )1/2, it holds E[Cs] ≥ ( 18

5 )2 16
9

1
ε2 ln 3

δ > 23 1
ε2 ln 3

δ > 3.14kε,δ. It follows that
the event Cs < kε,δ implies Cs < 1

3.14E[Cs] < (1− 0.68)E[Cs]. By the concentration bounds
of Appendix 5.1, the probability of the latter is Pr[Cs < kε,δ] ≤ exp

(
− 1

2 0.682 E[Cs]
)
<

exp
(
− 1

2 0.682 23 1
ε2 ln 3

δ

)
< exp

(
−5 ln 3

δ

)
< δ

243 . The second case corresponds to the event
w(s̄) < 0.4E[w(s̄)] = (1 − 0.6)E[w(s̄)], of which we shall bound the probability. Let χs̄u
be the indicator variable of the event u ∈ S̄, so w(s̄) =

∑
u∈V χ

s̄
u π(u). Since π(u) ≤ p̄

for all u, we can write w(s̄) = p̄
∑
u∈V χ

s̄
u p̄
−1π(u) so that the coefficients p̄−1π(u) are in

[0, 1]. Clearly, the χs̄u are non-positively correlated. We can thus apply the bounds of
Appendix 5.1 and get Pr[w(s̄) < 0.4E[w(s̄)]] ≤ exp

(
− 0.5 · 0.62 p̄−1E[w(s̄)]

)
. By replacing

the definitions and bounds for E[w(s̄)], s̄ and p̄−1 from above, we get Pr[w(s̄) < 0.4E[w(s̄)]] <
exp
(
− 2.88 ln ( 3

δ )
)
< δ

23 . Again by a union bound, the probability that SumApprox draws
more than s samples is less than δ

243 + δ
23 <

δ
3 . J

We remark that the previous existing algorithm for the sum estimation problem [17] needs
knowledge of n = |V | and uses O(

√
nε−7/2 log(n)(log 1

δ + log 1
ε + log logn)) samples. SumAp-

prox is simpler, oblivious to n, and gives more general bounds. It is also asymptotically
faster unless π is (essentially) the uniform distribution.

Finally, we show that SumApprox is essentially optimal, by proving Ω(‖π‖−1) samples are
in general necessary to estimate γ even if n is known in advance. This extends to arbitrary
distributions the Ω(

√
n) lower bound given by [17] for the uniform distribution.

I Theorem 10. For any function ν(n) ∈ Ω(n− 1
2 ) ∩ O(1) there exist vectors x = γπ =

(γ1, . . . , γn) with ‖π‖ = Θ(ν(n)) such that Ω(‖π‖−1) samples are necessary to estimate γ
within constant multiplicative factors with constant probability, even if n is known.

Proof. Let k ∈ Θ(ν(n)−2) with 1 ≤ k ≤ n
2 . Consider the two vectors x = (γ1, . . . , γn) and

x′ = (γ′1, . . . , γ′n) defined as follows:

γj = 1 : j ≤ k, γj =
√
k/n : j > k

γ′j = 1 : j ≤ 2k γ′j =
√
k/n : j > 2k

Now let γ =
∑n
i=1 γi and γ′ =

∑n
i=1 γ

′
i. One can check that γ ≤ 2k and |γ − γ′| ≥ k

2 . Hence,
to obtain an estimate γ̂ of γ with γ̂ ≤ 5

4γ, one must distinguish x from x′. Note that the
norm of π = x/γ is in Θ(1/

√
k) = Θ(ν(n)), as requested. Now, for each one of x and x′ in

turn, pick a permutation of {1, . . . , n} uniformly at random and apply it to the entries of
the vector. Suppose then we sample o(‖π‖−1) = o(

√
k) entries from x. We shall see that,

with probability 1− o(1), we cannot distinguish x from x′. First, note that the total mass
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of the entries with value
√
k/n is at most 1/

√
k. Hence the probability of drawing any of

those entries with o(
√
k) samples is o(1), and we can assume all draws yield entries having

value 1. Since there are O(k) such entries in total, the probability of witnessing any repeat
is also o(1), and we can assume no repeat is witnessed. Furthermore, because of the random
permutation, the indices of samples are distributed uniformly over {1, . . . , n} (recall that we
actually sample from the index set {1, . . . , n}, so we could use the distribution of the indices
to distinguish x from x′). The same argument applies to x′, so drawing o(

√
k) samples from

x′ yields exactly the same distribution and the two vectors are indistinguishable. To adapt
the construction to larger approximation factors, set γ′j = 1 : j ≤ ηk for η large enough. J

3 Approximating the stationary distribution

In this section we address the problem of approximating π(v). Such a problem can in fact be
reduced to the sum estimation problem of Section 2 by drawing states via random walks.
The crux is determining how long the walks must be in order for the samples to come from a
distribution close enough to π, so that the approximation guarantees of SumApprox transfer
directly to our estimate of π(v).

Consider a random walk of length t+ 1 that starts at v. Obviously we can simulate such a
walk by setting u0 = v and then invoking step(ui) to obtain the state ui+1, for i = 0, . . . , t−1.
Crucially, using the time-reversibility of the chain, for any visited state u we can obtain the
ratio γu between π(u) and π(v) using O(1) operations. Formally, let γv = π(v)/π(v) = 1,
and in general let γu = π(u)/π(v). Note that:

γui+1 = π(ui+1)
π(v) = π(ui+1)

π(ui)
· π(ui)
π(v) = π(ui+1)

π(ui)
· γui (7)

The time-reversibility of the chain (see Equation 2) implies π(ui+1)
π(ui) = pui,ui+1

pui+1,ui
= probe(ui,ui+1)

probe(ui+1,ui) ,
hence we can compute γui+1 with O(1) operations if we know γui . But then we can keep
track of γu for any u visited so far, starting with γu0 = 1 and computing γui+1 by Equation 7
the first time ui+1 is visited.

Suppose now to pick t large enough so that the chain reaches its stationary distribution,
i.e. ut ∼ π irrespective of v. One is then drawing state u, as well as its associate weight γu,
with probability π(u). Now if we let γ =

∑
u∈V γu, then π(u) = γuγ

−1 and in particular
π(v) = γ−1. Therefore approximating π(v) amounts to approximating γ; more formally, for
any ε ∈ (0, 1), if γ̂ is a (1± ε

2 )-approximation of γ then γ̂−1 is a (1± ε)-approximation of
π(v). We can therefore reduce to the sum approximation problem of Section 3: compute
with probability (1− δ) a (1± ε)-approximation of γ, assuming we can draw pairs (u, γu)
according to π. The only problem is that by simulating the chain we can only come close
to (but not exactly on) the stationary distribution π. We must then tie the approximation
guarantees of SumApprox to the length t of the random walks, or better to the distance
‖π′ − π‖TV between π and the distribution π′ from which ut is drawn. Formally, we show:

I Lemma 11. There exists some constant c > 0 such that the following holds. Choose
any δ, ε ∈ (0, 1), and suppose we draw the pairs (u, γu) from a distribution π′ such that
‖π − π′‖TV ≤

( ε‖π‖
ln(3/δ)

)c. Then SumApprox( ε2 , δ) with probability at least 1 − δ returns a
multiplicative (1± ε)-approximation of γ by taking at most d720‖π‖−1ε−3(ln 3

δ )3/2e samples.

Proof. Let us start with the bound on the number of samples. Recall the proof of Theorem 9,
and note that the whole argument depends on π but not on the values γu. Indeed, π alone
determines the probability of repeats and thus controls the distribution of the number of

STACS 2018



18:10 On Approximating the Stationary Distribution of Time-reversible Markov Chains

samples drawn by SumApprox. Hence, by Theorem 9 SumApprox( ε2 , δ) takes more than
d45‖π′‖−18ε−3(ln 3

δ )3/2e = d360‖π′‖−1ε−3(ln 3
δ )3/2e samples with probability less than δ

3 .
Now ‖π − π′‖ ≤ 2‖π − π′‖TV ≤ 2

( ε‖π‖
ln(3/δ)

)c ≤ ‖π‖2(ln 3)−c, which for c ≥ 15 is bounded by
1
2‖π‖. Then, since ‖π

′‖ ≥ ‖π‖− ‖π− π′‖, we have ‖π′‖−1 ≤ 2‖π‖−1 and the bound above is
in turn bounded by d720‖π‖−1ε−3(ln 3

δ )3/2e.
Let us now see the approximation guarantees. Recall the proof of Theorem 6. We want

to show again that Pr[|w(s)
r − γ| ≥

ε
2γ] ≤ 2δ

3 . However, now the samples are drawn according
to π′ instead of π. Let then P ′j =

∑
u∈∪j−1

h=0{Xh}
π′(u) and Z ′i =

∑i
j=0(χj − P ′j); in a nutshell,

P ′j and Z ′i are the analogous of Pj and Zi under π′. It is immediate to check that Lemma 8
holds with Z ′i and P ′j in place of Zi and Pj . Let now w′(i) = γ

∑i
j=1 P

′
j . Note that

∑i
j=1 P

′
j

and Z ′i are respectively the value of w
′(i)
γ and of r − w′(i)

γ just after line 9 has been executed
for the (i+ 1)-th time. Therefore, the argument following Lemma 8 holds if we put w′(i) in
place of the value taken by w after the (i+ 1)-th execution of line 9. Hence the same bounds
hold, and SumApprox( ε2 , δ) ensures Pr[|w

′(s)
r − γ| ≥ ε

2γ] ≤ δ
3 where s is the total number of

draws. Now note that SumApprox does not return w′(s)
r , but w(s)

r where w(i) = γ
∑i
j=1 Pj

is the value of w in SumApprox after line 9 has been executed for the (i+ 1)-th time. We
shall now make |w(s)

r −
w′(s)
r | ≤

ε
2γ; by the triangle inequality we will then be done. First of

all, by the definition of w(s) and w′(s) we have∣∣∣w(s)
r
− w′(s)

r

∣∣∣ = γr−1
∣∣∣ s∑
j=1

Pj −
s∑
j=1

P ′j

∣∣∣ ≤ γr−1
s∑
j=1

∣∣Pj − P ′j∣∣ (8)

Now note that |Pj −P ′j | ≤ ‖π − π′‖TV, since Pj and P ′j are the probability of the same event
under respectively π and π′. Therefore the right-hand side of Equation 8 is bounded by
γr−1s ‖π − π′‖TV. Now, when SumApprox( ε2 , δ) terminates r = k ε

2 ,δ
≥ 4 2+2.2ε

ε2 ln 3
δ , and by

hypothesis ‖π − π′‖TV ≤
( ε‖π‖

ln(3/δ)
)c. Therefore:∣∣∣w(s)

r
− w′(s)

r

∣∣∣ ≤ γs ε2

4(2 + 2.2ε) ln( 3
δ )

( ε‖π‖
ln( 3

δ )

)c
≤ γ s ‖π‖ ε3+c

8 ln( 3
δ )1+c (9)

Finally, recall from above that with probability 1− 3
δ we have s ≤ d720‖π‖−1ε−3(ln 3

δ )3/2e.
In this case the equation above yields |w(s)

r −
w′(s)
r | ≤ γ · 721εc ln( 3

δ )0.5−c, which is smaller
than ε

2γ for c ≥ 1
2 + ln 1442

ln ln 3 ≈ 78. A simple union bound completes the proof. J

We are now ready to prove Theorem 2. Pick t = τ c ln(‖π‖−1ε−1 ln 3
δ )/ ln 2, where c is the

constant of Lemma 11 and τ is the mixing time of the chain. Simulate the walk for t steps
starting from v, and let π′ be the distribution of the final state. By the properties of the
mixing time (see Section 1.1) it holds ‖π − π′‖TV ≤ 2−c ln(‖π‖−1ε−1 ln 3

δ )/ ln 2 ≤
( ε‖π‖

ln(3/δ)
)c and

therefore by Lemma 11 we obtain a (1± ε) approximation of γ. By choosing ε small enough
we can obtain a (1 ± ε′) approximation of π(v) for any desired ε′. The total number of
operations performed is clearly bounded by t = τ c ln(‖π‖−1ε−1 ln 3

δ )/ ln 2 times the number
of samples taken by SumApprox, and by substituting this value in the bound of Theorem 1
we obtain Theorem 2.

3.1 Reducing the footprint
In this section we describe FullMassApprox, the algorithm behind the bounds of Theorem 5.
FullMassApprox is derived from MassApprox as follows. First, instead of performing a new
walk of length t from v for each sample, the algorithm performs one long random walk of
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length T and takes one sample every t steps. The correctness guarantees do not change,
since although the samples do not come all from the same distribution, they are still drawn
from a distribution sufficiently close to π. Second, after checking if the current draw yields a
repeat, the algorithm includes in the set S not only the draw but also all other states visited
so far. Again, this does not affect the guarantees, since we do not need the set S to be built
on independent samples. However, this makes the mass of S grow potentially faster, so we
can hope to get more repeats and decrease the total number of samples.

The concentration hypothesis. Before continuing to the proof of Theorem 5, let us provide
some intuition behind the concentration hypothesis. Suppose the walk runs for T = kτ̄ steps
for some τ̄ = τ poly(log(‖π‖−1)). Such a process can be seen as a coupon collector over k
rounds, where a subset of at most τ̄ states is collected (i.e. visited) at each round. Now,
if we pick τ̄ ′ ≤ τ̄ with τ̄ ′ = τ poly(log(‖π‖−1)), then in each round the τ̄ − τ̄ ′ central steps
are essentially independent of other rounds (more formally, the correlation is O(poly(n)−1)).
Each round is then in large part independent of the others; the issue is that the states
visited within a single round are correlated. Such a correlation is responsible for the factor
τ̄ in the concentration hypothesis and amounts for the (intuitive) fact that conditioning
on the outcome of one step of the walk does not affect the distribution of those steps
that are more than τ̄ steps away. We note that the concentration bounds of [8] give
Pr[
∑T
i=1 fi /∈ (1± ε̄)E[

∑T
i=1 fi]] < 2 exp−Ω

(
ε̄2E[

∑T
i=1 fi]/τ

)
where fi ∈ [0, 1] is a function of

state Xi; however we could not use them to prove the concentration hypothesis of Theorem 4.
Let us now delve into the proof.

Proof. Observe the random walk performed by FullMassApprox. Clearly if τ̄ = Ω(n) then
the walk visits O(τ lnn+

√
τ̄n) distinct states, and the theorem holds unconditionally. Let

us then assume τ̄ = o(n). We disregard the first T0 = Θ(τ lnn) steps of the walk, which of
course yield at most T0 distinct states, and focus on the last T steps, which we denote by
X1, . . . , XT (one may thus plug T + T0 in place of T in the concentration hypothesis). Let
πi denote the distribution of state Xi, i = 1, . . . , T . Since T0 = Θ(τ lnn), then we can make
‖πi − π‖TV ≤ 1

poly(n) . One can adapt the proof of Lemma 11 to FullMassApprox, using the
hypothesis ‖π − πi‖TV ≤

( ε‖π‖
ln(3/δ)

)c for all i ≥ 1. This changes the bounds of the lemma
only by constant multiplicative factors. We can thus focus on proving the bound on the
number of states visited by the walk. In the analysis we assume Xi ∼ π, but again the same
asymptotic bounds hold if ‖πi − π‖TV ≤ 1

poly(n) . Let Sv,t = ∪ti=1{Xi}, let Nv,t = |Sv,t|, and
let Mv,t =

∑
u∈Sv,t π(u). For brevity we simply write St, Nt,Mt.

The crux is to show that Mt, the aggregate mass of St, grows basically as N2
t /t. Formally

we prove that, for any ε, δ, q > 0, if Pr[Nt ≥ q] ≥ 1 − δ then Pr[Mt ≥ q2 ε
4tn ] ≥ 1 − ε − δ.

First, for any λ > 0 let Vλ = {u ∈ V : π(u) < λ
n}. Clearly Pr[Xi ∈ Vλ] =

∑
u∈Vλ π(u) < λ.

Therefore the number of steps Jt(λ) the chain was on a state of Vλ satisfies E[Jt(λ)] < tλ. Now,
by Markov’s inequality Pr[Jt(λ) > q

2 ] < 2tλ
q , and setting λ = ε q2 t we obtain Pr[Jt(λ) > q

2 ] < ε.
Since by hypothesis Pr[Nt < q] < δ, by a union bound we get Pr[Nt ≥ q, Jt(λ) < q

2 ] ≥ 1−δ−ε.
But if Nt ≥ q and Jt(λ) < q

2 then St contains at least q
2 distinct states with individual mass

at least εq
2tn , and thus Mt ≥ q

2
εq

2tn = q2 ε
4tn .

Now choose t such that E[Nt] = Ω(
√
nτ̄); note that E[Nt] = Ω(τ̄) since τ̄ = o(n). By

plugging E[Nt] into the concentration bound for Nt we can then make Pr[Nt < (1− ε̄)E[Nt]]
arbitrarily small for any ε̄ > 0. Let then q = (1− ε̄)E[Nt]. By the bounds of the previous
paragraph, for any δ > 0 with probability 1− δ − ε̄ we have Mt ≥ q2 ε̄

4tn = Ω(nτ̄) ε̄
4tn = Ω( τ̄t ).

Conditioned on the event that Mt = Ω( τ̄t ), any sample drawn after t steps is a repeat with
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probability Ω( τ̄t ). If we then draw Θ( tτ̄ ) samples, which require Θ(t) steps, we witness an
expected Ω(1) samples, which can be made larger than kε,δ by appropriately increasing t.
Again by the concentration bounds on Nt, the total number of states visited can be made
O(2E[Qt]) = O(

√
nτ̄) = Õ(

√
nτ) with probability arbitrarily close to 1 by appropriately

increasing t. J

4 Conclusions

We have given improved, optimal algorithms for approximating the stationary probability of a
given state in a time-reversible Markov chain, and for approximating the sum of nonnegative
real vectors by weighted sampling. Although time-reversible chains are of clear relevance,
extending our results to other classes of Markov chains is an intriguing open question. We
have also shown that the footprint of our algorithms in terms of number of distinct states
visited is tied to the concentration of the number of distinct states visited by the chain;
investigating such a concentration is thus an obvious line of future research.

References
1 Noga Alon, Ori Gurel-Gurevich, and Eyal Lubetzky. Choice-memory tradeoff in allocations.

The Annals of Applied Probability, 20(4):1470–1511, 2010.
2 Anne Auger and Benjamin Doerr, editors. Theory of Randomized Search Heuristics: Foun-

dations and Recent Developments, volume 1. World Scientific Publishing Co., Inc., 2011.
3 Siddhartha Banerjee and Peter Lofgren. Fast bidirectional probability estimation in Markov

models. In Proc. of NIPS, pages 1423–1431, 2015.
4 Phillip Bonacich and Paulette Lloyd. Eigenvector-like measures of centrality for asymmetric

relations. Social Networks, 23(3):191–201, 2001.
5 Christian Borgs, Michael Brautbar, Jennifer T. Chayes, and Shang-Hua Teng. A sub-

linear time algorithm for pagerank computations. In Anthony Bonato and Jeannette
C. M. Janssen, editors, Algorithms and Models for the Web Graph - 9th International
Workshop, WAW 2012, Halifax, NS, Canada, June 22-23, 2012. Proceedings, volume
7323 of Lecture Notes in Computer Science, pages 41–53. Springer, 2012. doi:10.1007/
978-3-642-30541-2_4.

6 Christian Borgs, Michael Brautbar, Jennifer T. Chayes, and Shang-Hua Teng. Multiscale
matrix sampling and sublinear-time PageRank computation. Internet Mathematics, 10(1-
2):20–48, 2014.

7 Marco Bressan, Enoch Peserico, and Luca Pretto. On approximating the stationary distri-
bution of time-reversible Markov chains. CoRR, abs/1801.00196, 2018.

8 Kai-Min Chung, Henry Lam, Zhenming Liu, and Michael Mitzenmacher. Chernoff-
Hoeffding bounds for Markov chains: Generalized and simplified. In Proc. of STACS,
pages 124–135, 2012.

9 David A. Freedman. On tail probabilities for martingales. The Annals of Probability,
3(1):100–118, 1975.

10 Gene H. Golub and Charles F. Van Loan. Matrix Computations. Matrix Computations.
Johns Hopkins University Press, 2012.

11 Wilfred K. Hastings. Monte Carlo sampling methods using Markov chains and their appli-
cations. Biometrika, 57(1):97–109, 1970.

12 Christina E. Lee, Asuman Ozdaglar, and Devavrat Shah. Computing the stationary distri-
bution, locally. In Proc. of NIPS, pages 1376–1384, 2013.

13 Christina E. Lee, Asuman E. Ozdaglar, and Devavrat Shah. Solving systems of linear
equations: Locally and asynchronously. CoRR, abs/1411.2647, 2014.

http://dx.doi.org/10.1007/978-3-642-30541-2_4
http://dx.doi.org/10.1007/978-3-642-30541-2_4


M. Bressan, E. Peserico, and L. Pretto 18:13

14 David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov chains and mixing times.
American Mathematical Society, 2009.

15 Peter Lofgren, Siddhartha Banerjee, and Ashish Goel. Bidirectional PageRank estimation:
from average-case to worst-case. In Proc. of WAW, pages 164–176, 2015.

16 Peter A. Lofgren, Siddhartha Banerjee, Ashish Goel, and C. Seshadhri. FAST-PPR: Scaling
personalized PageRank estimation for large graphs. In Proc. of ACM KDD, pages 1436–
1445, 2014.

17 Rajeev Motwani, Rina Panigrahy, and Ying Xu. Estimating sum by weighted sampling. In
Proc. of ICALP, pages 53–64, 2007.

18 Alessandro Panconesi and Aravind Srinivasan. Randomized distributed edge coloring via an
extension of the Chernoff–Hoeffding bounds. SIAM Journal on Computing, 26(2):350–368,
1997.

19 Ronitt Rubinfeld and Asaf Shapira. Sublinear time algorithms. SIAM Journal on Discrete
Mathematics, 25(4):1562–1588, 2011.

20 Nitin Shyamkumar, Siddhartha Banerjee, and Peter Lofgren. Sublinear estimation of a
single element in sparse linear systems. In 2016 Annual Allerton Conference on Commu-
nication, Control, and Computing (Allerton), pages 856–860, 2016.

5 Appendix

5.1 Probability bounds
This appendix provides Chernoff-type probability bounds that are repeatedly used in our
analysis; these bounds can be found in e.g. [2], and can be derived from [18].

Let X1, . . . , Xn be binary random variables. We say that X1, . . . , Xn are non-positively
correlated if for all I ⊆ {1, . . . , n} we have:

Pr[∀i ∈ I : Xi = 0] ≤
∏
i∈I

Pr[Xi = 0] (10)

Pr[∀i ∈ I : Xi = 1] ≤
∏
i∈I

Pr[Xi = 1] (11)

The following lemma holds:

I Lemma 12. Let X1, . . . , Xn be independent or, more generally, non-positively correlated
binary random variables. Let a1, . . . , an ∈ [0, 1] and X =

∑n
i=1 aiXi. Then, for any ε > 0,

we have:

Pr[X < (1− ε)E[X]] < e−
ε2
2 E[X] (12)

Pr[X > (1 + ε)E[X]] < e−
ε2

2+εE[X] (13)

Note that Lemma 12 applies if X1, . . . , Xn are indicator variables of mutually disjoint events,
or if they can be partitioned into independent families {X1, . . . , Xi1}, {Xi1+1, . . . , Xi2}, . . . of
such variables.

5.2 A lower bound for non-time-reversible Markov chains
I Lemma 13. For any functions τ(n) = ω(1) and p(n) = o( 1

n ) there exists a family of
ergodic non-time-reversible Markov chains on n states having mixing time τ = Θ(τ(n)), and
containing a state v with π(v) = Θ(p(n)) such that any algorithm needs Ω( τ

π(v) ) calls to
step() to estimate π(v) within constant multiplicative factors with constant probability.
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Proof. Consider a chain with state space {u} ∪ {u1, . . . , un−1} and the following transition
probabilities (we assume n large enough to set in [0, 1] any quantity where needed). For u,
set puu = 1− (n−1)p(n)

τ(n) , and puui = p(n)
τ(n) for all i = 1, . . . , n− 1. For all i = 1, . . . , n− 1, set

puiui = 1− 1
τ(n) and puiu = 1

τ(n) . The chain is clearly ergodic. Note that (n−1)p(n)
τ(n) = o( 1

τ(n) )
and therefore the expected time to leave u is asymptotically larger than the expected time to
leave any of the ui. One can then check that (i) π(ui) = Θ(p(n)), and (ii) the mixing time
is τ = Θ(τ(n)) (essentially, the expected time to leave the ui). Pick any ui as target state
v. Suppose now to alter the chain as follows: pick some uj 6= v and set pujv = 1. The new
stationary probability of v would then be roughly 2π(v). However one cannot distinguish
between the two chains with constant probability with less than Ω( τ

π(v) ) step() calls. Indeed,
to distinguish between them one must at least visit uj (and then perform e.g. probe(uj , v)).
Since u is the only state leading to uj with positive probability, one must invoke step(u)
until it returns uj . But puuj = p(n)

τ(n) , hence one needs Ω( τ(n)
p(n) ) = Ω( τ

π(v) ) calls in expectation.
The construction can be adapted to any constant approximation factor by adding more
transitions towards v. J
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1 Introduction

The constraint satisfaction problem (CSP) is a declarative paradigm for expressing computa-
tional problems. An instance of the CSP consists of a number of variables to which we need
to assign values from some domain. Some subsets of the variables are constrained in that
they are not permitted to take all values in the product of their domains. The scope of a
constraint is the set of variables whose values are limited by the constraint, and the constraint
relation is the set of permitted assignments to the variables of the scope. A solution to a
CSP instance is an assignment of values to variables in such a way that every constraint is
satisfied, i.e. every scope is assigned to an element of the constraint relation.

The CSP has proved to be a useful technique for modelling in many important application
areas from manufacturing to process optimisation, for example planning and scheduling
optimisation [31], resource allocation [29], job shop problems [14] and workflow manage-
ment [32]. Hence much work has been done on describing useful classes of constraints [3] and
implementing efficient algorithms for processing constraints [7]. Many constraint solvers use a
form of backtracking where successive variables are assigned values that satisfy all constraints.
In order to mitigate the exponential complexity of backtracking some form of pre-processing
is always performed. These pre-processing techniques identify values that cannot be part
of any solution in an effective way and then propagate the effects of removing these values
throughout the problem instance. Of key importance amongst these pre-processing algorithms
are the relatives of arc consistency propagation including generalised arc consistency (GAC)
and singleton arc consistency (SAC). Surprisingly there are large classes [17, 23, 13, 28] of
the CSP for which GAC or SAC are decision procedures: after establishing consistency if
every variable still has a non-empty domain then the instance has a solution.

More generally, these results fit into the wider area of research aiming to identify sub-
problems of the CSP for which certain polynomial-time algorithms are decision procedures.
Perhaps the most natural ways to restrict the CSP is to limit the constraint relations that
we allow or to limit the structure of (the hypergraph of) interactions of the constraint scopes.
A set of allowed constraint relations is called a constraint language. A subset of the CSP
defined by limiting the scope interactions is called a structural class.

There has been considerable success in identifying tractable constraint languages, recently
yielding a full classification of the complexity of finite constraint languages [9, 33]. Techniques
from universal algebra have been essential in this work as the complexity of a constraint
language is characterised by a particular algebraic structure [11]. The two most important
algorithms for solving the CSP over tractable constraint languages are local consistency and
the few subpowers algorithm [10, 27], which generalises ideas from group theory. A necessary
and sufficient condition for solvability by the few subpowers algorithm was identified in [27, 4].
The set of all constraint languages decided by local consistency was later described by Barto
and Kozik [2] and independently by Bulatov [8]. Surprisingly, all such languages are in fact
decided by establishing singleton arc consistency [28].

A necessary condition for the tractability of a structural class with bounded arity is that
it has bounded treewidth modulo homomorphic equivalence [26]. In all such cases we decide
an instance by establishing k-consistency, where k is the treewidth of the core. It was later
shown that the converse holds: if a class of structures does not have treewidth k modulo
homomorphic equivalence then it is not solved by k-consistency [1], thus fully characterising
the strength of consistency algorithms for structural restrictions. Both language-restricted
CSPs and CSPs of bounded treewidth are monotone in the sense that we can relax (remove
constraints from) any CSP instance without affecting its membership in such a class.



C. Carbonnel, D. Cohen, M. Cooper, and S. Živný 19:3

Since our understanding of consistency algorithms for language and structural classes is
so well advanced there is now much interest in so called hybrid classes, which are neither
definable by restricting the language nor by limiting the structure. For the binary CSP, one
popular mechanism for defining hybrid classes follows the considerable success of mapping
the complexity landscape for graph problems in the absence of certain induced subgraphs or
graph minors. Here, hybrid (binary) CSP problems are defined by forbidding a fixed set of
substructures (patterns) from occurring in the instance [15]. This framework is particularly
useful in algorithm analysis, since it allows us to identify precisely the local properties of a
CSP instance that make it impossible to solve via a given polynomial-time algorithm. This
approach has recently been used to obtain a pattern-based characterisation of solvability by
arc consistency [23], a detailed analysis of variable elimination rules [16] and various novel
tractable classes of CSP [20, 19].

Singleton arc consistency is a prime candidate to study in this framework since it is one of
the most prominent incomplete polynomial-time algorithms for CSP and the highest level of
consistency (among commonly studied consistencies) that operates only by removing values
from domains. This property ensures that enforcing SAC cannot introduce new patterns,
which greatly facilitates the analysis. It is therefore natural to ask for which patterns,
forbidding their occurrence ensures that SAC is a sound decision procedure. In this paper
we make a significant contribution towards this objective by identifying five patterns which
define classes of CSPs decidable by SAC. All five classes are monotone, and we show that only
a handful of open cases separates us from an essentially full characterisation of monotone
CSP classes decidable by SAC and definable by a forbidden pattern. Some of our results rely
on a novel proof technique which follows the trace of a successful run of the SAC algorithm
to dynamically identify redundant substructures in the instance and construct a solution.

The structure of the paper is as follows. In Section 2 we provide essential definitions and
background theory. In Section 3 we state the main results. The rest of the paper includes
some of the proofs. All remaining proofs are provided in the long version [12].

2 Preliminaries

CSP. A binary CSP instance is a triple I = (X,D,C), where X is a finite set of variables, D
is a finite domain, each variable x ∈ X has its own domain of possible values D(x) ⊆ D, and
C = {R(x, y) | x, y ∈ X,x 6= y}, where R(x, y) ⊆ D2, is the set of constraints. We assume,
without loss of generality, that each pair of variables x, y ∈ X is constrained by a constraint
R(x, y). (Otherwise we set R(x, y) = D(x) ×D(y).) We also assume that (a, b) ∈ R(x, y)
if and only if (b, a) ∈ R(y, x). A constraint is trivial if it contains the Cartesian product
of the domains of the two variables. By deleting a constraint we mean replacing it with a
trivial constraint. The projection I[X ′] of a binary CSP instance I on X ′ ⊆ X is obtained
by removing all variables in X\X ′ and all constraints R(x, y) with {x, y} 6⊆ X ′. A partial
solution to a binary CSP instance on X ′ ⊆ X is an assignment s of values to variables in
X ′ such that s(x) ∈ D(x) for all x ∈ X ′ and (s(x), s(y)) ∈ R(x, y) for all constraints R(x, y)
with x, y ∈ X ′. A solution to a binary CSP instance is a partial solution on X.

An assignment (x, a) is called a point. If (a, b) ∈ R(x, y), we say that the assignments
(x, a), (y, b) (or more simply a, b) are compatible and that ab is a positive edge, otherwise a, b
are incompatible and ab is a negative edge. For simplicity of notation we can assume that
variable domains are disjoint, so that using a as a shorthand for (x, a) is unambiguous. We
say that a ∈ D(x) has a support at variable y if ∃b ∈ D(y) such that ab is a positive edge.
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The constraint graph of a CSP instance with variables X is the graph G = (X,E) such
that (x, y) ∈ E if R(x, y) is non-trivial. The degree of a variable x in a CSP instance is the
degree of x in the constraint graph of the instance.

Arc Consistency. A domain value a ∈ D(x) is arc consistent if it has a support at every
other variable. A CSP instance is arc consistent (AC) if every domain value is arc consistent.

Singleton Arc Consistency. Singleton arc consistency is stronger than arc consistency (but
weaker than strong path consistency [30]). A domain value a ∈ D(x) in a CSP instance I
is singleton arc consistent if the instance obtained from I by removing all domain values
b ∈ D(x) with a 6= b can be made arc consistent without emptying any domain. A CSP
instance is singleton arc consistent (SAC) if every domain value is singleton arc consistent.

Establishing Consistency. Domain values that are not arc consistent or not singleton arc
consistent cannot be part of a solution so can safely be removed. For a binary CSP instance
with domain size d, n variables and e non-trivial constraints there are O(ed2) algorithms
for establishing arc consistency [6] and O(ned3) algorithms for establishing singleton arc
consistency [5]. These algorithms repeatedly remove inconsistent values from domains.

SAC decides a CSP instance if, after establishing singleton arc consistency, non-empty
domains for all variables guarantee the existence of a solution. SAC decides a class of CSP
instances if SAC decides every instance from the class.

Neighbourhood Substitutability. If a, b ∈ D(x), then a is neighbourhood substitutable by b
if there is no c such that ac is a positive edge and bc a negative edge: such values a can be
deleted from D(x) without changing the satisfiability of the instance since a can be replaced
by b in any solution [25]. Similarly, removing neighbourhood substitutable values cannot
destroy (singleton) arc consistency.

Patterns. In a binary CSP instance each constraint decides, for each pair of values in D,
whether it is allowed. Hence a binary CSP can also be defined as a set of points X × D
together with a compatibility function that maps each edge, ((x, a), (y, b)) with x 6= y, into
the set {negative, positive}. A pattern extends the notion of a binary CSP instance by
allowing the compatibility function to be partial. A pattern P occurs (as a subpattern) in an
instance I if there is mapping from the points of P to the points of I which respects variables
(two points are mapped to points of the same variable in I if and only if they belong to the
same variable in P ) and maps negative edges to negative edges, and positive edges to positive
edges. A set of patterns occurs in an instance I if at least one pattern in the set occurs in I.

We use the notation CSP(P ) for the set of binary instances in which P does not occur
as a subpattern. A pattern P is SAC-solvable if SAC decides CSP(P ). It is worth observing
that CSP(P ) is closed under the operation of establishing (singleton) arc consistency. A
pattern P is tractable if CSP(P ) can be solved in polynomial time.

Points (x, a) and (x, b) in a pattern are mergeable if there is no point (y, c) such that ac
is positive and bc is negative or vice versa. For each set of patterns there is an equivalent set
of patterns without mergeable points which occur in the same set of instances.

A point (x, a) in a pattern is called dangling if there is at most one b such that ab is a
positive edge and no c such that ac is a negative edge. Dangling points are redundant when
considering the occurrence of a pattern in an arc consistent CSP instance.
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Figure 1 All degree-3 irreducible monotone patterns solved by SAC must occur in at least one of
these patterns.

A pattern is called irreducible if it has no dangling points and no mergeable points [20].
When studying algorithms that are at least as strong as arc consistency, a classification with
respect to forbidden sets of irreducible patterns is equivalent to a classification with respect
to all forbidden sets of patterns. For this reason classifications are often established with
respect to irreducible patterns even if only classes definable by forbidding a single pattern
are considered [20, 23], as we do in the present paper.

3 Results

Call a class C of CSP instances monotone if deleting any constraint from an instance I ∈ C
produces another instance in C. For example, language classes and bounded treewidth classes
are monotone. An interesting research direction is to study those monotone classes defined by
a forbidden pattern which are solved by singleton arc consistency, both in order to uncover
new tractable classes and to better understand the strength of SAC.

We call a pattern monotone if when forbidden it defines a monotone class. Monotone
patterns can easily be seen to correspond to exactly those patterns in which positive edges
only occur in constraints which have at least one negative edge.

Consider the monotone patterns Q1 and Q2 shown in Figure 1, patterns R5, R8 shown
in Figure 2, and pattern R7- shown in Figure 3.

I Theorem (Main). The patterns Q1, Q2, R5, R8, and R7- are SAC-solvable.

In order to prove the SAC-solvability of Q1, R8 and R7- we use the same idea of following
the trace of arc consistency and argue that the resulting instance is not too complicated.
While the same idea is behind the proofs of all three patterns, the technical details differ.

In the remaining two cases we identify an operation that preserves SAC and satisfiability,
does not introduce the pattern and after repeated application necessarily produces an
equivalent instance which is solved by SAC. In the case of R5, the operation is simply
removing any constraint. In the case of Q2, the operation is BTP-merging [19].
I Remark. The full version of this paper [12] tells us that any monotone and irreducible
pattern solvable by SAC must occur in at least one of the patterns shown in Figures 1 and 2.
By this analysis, we have managed to reduce the number of remaining cases to a handful.
Our main result shows that some of these are SAC-solvable. In particular, the patterns Q1,
Q2, R5, and R8 are maximal in the sense that adding anything to them would give a pattern
that is either non-monotone or not solved by SAC.
I Remark. We point out that certain interesting forbidden patterns, such as BTP [21],
NegTrans [22], and EMC [23] are not monotone. On the other hand, the patterns T1, . . . ,T5
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Figure 4 The set of tractable 2-constraint irreducible patterns.

shown in Figure 4 are monotone. Patterns T1, . . . ,T5 were identified in [20] as the maximal
irreducible tractable patterns on two connected constraints. We show in [12] that T1 is not
solved by SAC. Our main result implies (since R8 contains T4 and T5) that both T4 and T5
are solved by SAC. It can easily be shown, from Lemma 12 and [20, Lemma 25], that T2
is solved by SAC, and we provide in [12] a simple proof that T3 is solved by SAC as well.
Hence, we have characterised all 2-constraint irreducible patterns solvable by SAC.

I Remark. Observe that Q1 does not occur in any binary CSP instance in which all degree
3 or more variables are Boolean. This shows that 2-SAT is a strict subset of CSP(Q1).
This class is incomparable with language-based generalisations of 2-SAT, such as the class
ZOA [18], since in CSP(Q1) degree-2 variables can be constrained by arbitrary constraints.
Indeed, instances in CSP(Q1) can have an arbitrary constraint on the pair of variables x, y,
where x is of arbitrary degree and of arbitrary domain size if for all variables z /∈ {x, y}, the
constraint on the pair of variables x, z is of the form (x ∈ S) ∨ (z ∈ Tz) where S is fixed (i.e.
independent of z) but Tz is arbitrary. R8 and R7- generalise T4 and CSP(T4) generalises
ZOA [20], so CSP(R8) and CSP(R7-) are strict generalisations of ZOA.

4 Notation for the Trace Technique

Given a singleton arc consistent instance I, a variable x and a value v ∈ D(x), we denote by
Ixv the instance obtained by assigning x to v (that is, setting D(x) = {v}) and enforcing
arc consistency. To avoid confusion with the original domains, we will use Dxv(y) to denote
the domain of the variable y in Ixv. For our proofs we will assume that arc consistency has
been enforced using a straightforward algorithm that examines the constraints one at a time
and removes the points that do not have a support until a fixed point is reached. We will be
interested in the trace of this algorithm, given as a chain of propagations:

(Pxv) : (x→ y0), (x1 → y1), (x2 → y2), . . . , (xp → yp)

where xi → yi means that the algorithm has inferred a change in the domain of yi when
examining the constraint R(xi, yi). We define a map ρ : (Pxv) 7→ 2D that maps each
(xi → yi) ∈ (Pxv) to the set of values that were removed from Dxv(yi) at this step. Without
loss of generality, we assume that the steps (xi → yi) such that the pruning of ρ(xi → yi)
from Dxv(yi) does not incur further propagation are performed last.

We denote by S(Pxv) the set of variables that appear in (Pxv). Because I was (singleton)
arc consistent before x was assigned, we have S(Pxv) = {x} ∪ {yi | i ≥ 0}. We rename the
elements of S(Pxv) as {pi | i ≥ 0} where the index i denotes the order of first appearance
in (Pxv). Finally, we use SI

(Pxv) to denote the set of inner variables, that is, the set of all
variables pj ∈ S(Pxv) for which there exists pr ∈ S(Pxv) such that (pj → pr) ∈ (Pxv).
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Figure 5 The occurence of Q1 in the proof of Lemma 1.

5 Tractability of Q1

Consider the pattern Q1 shown in Figure 1. Let I ∈ CSP(Q1) be a singleton arc consistent
instance, x be any variable and v be any value in the domain of x. Our proof of the SAC-
decidability of CSP(Q1) uses the trace of the arc consistency algorithm to determine a subset
of variables in the vicinity of x such that (i) the projection of Ixv to this particular subset is
satisfiable, (ii) those variables do not interact too much with the rest of the instance and (iii)
the projections of Ixv and I on the other variables are almost the same. We then use these
three properties to show that the satisfiability of I is equivalent to that of an instance with
fewer variables, and we repeat the operation until the smaller instance is trivially satisfiable.

The following lemma describes the particular structure of Ixv around the variables whose
domain has been reduced by arc consistency. Note that a non-trivial constraint in I can be
trivial in Ixv because of domain changes.

I Lemma 1. Consider the instance Ixv. Every variable pi ∈ SI
(Pxv) is in the scope of at most

two non-trivial constraints, which must be of the form R(pj , pi) and R(pi, pr) with j < i,
(pj → pi) ∈ (Pxv) and (pi → pr) ∈ (Pxv).

Proof. The claim is true for p0 = x as every constraint incident to x is trivial. Otherwise,
let pi ∈ SI

(Pxv) be such that pi 6= x. Let pj , j < i be such that (pj → pi) occurs first in
(Pxv). Because pi ∈ SI

(Pxv) and we assumed that the arc consistency algorithm performs the
pruning that do not incur further propagation last, we know that there exists ci ∈ ρ(pj → pi)
and pr ∈ S(Pxv) with (pi → pr) ∈ (Pxv) such that the pruning of ci from Dxv(pi) allows the
pruning of some ar ∈ ρ(pi → pr) from the domain of pr. It follows that (ci, ar) ∈ R(pi, pr),
(vi, ar) /∈ R(pi, pr) for any vi ∈ Dxv(pi) and (vj , ci) /∈ R(pj , pi) for any vj ∈ Dxv(pj).
Moreover, ar was a support for ci at pr when ci was pruned so we know that pj 6= pr.

For the sake of contradiction, let us assume that there exists a constraint R(pi, l) with
l /∈ {pj , pr} that is not trivial. In particular, there exist ai, bi ∈ Dxv(pi) and al ∈ Dxv(l) such
that (ai, al) ∈ R(pi, l) but (bi, al) /∈ R(pi, l). Furthermore, ar was removed by arc consistency
when inspecting the constraint R(pi, pr) so (ai, ar) /∈ R(pi, pr). Ixv is arc consistent so there
exists some aj ∈ Dxv(pj) such that (aj , bi) ∈ R(pj , pi), and since ci ∈ ρ(pj → pi) we have
(aj , ci) /∈ R(pj , pi). At this point we have reached the desired contradiction as Q1 occurs on
(pi, pj , pr, l) with pi being the middle variable (see Figure 5). J

Given a subset S of variables, an S-path between two variables y1 and y2 is a path
R(y1, x2), R(x2, x3), . . . , R(xk, y2) of non-trivial constraints with k ≥ 2 and x2, . . . , xk ∈ S.
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I Lemma 2. Consider the instance Ixv. There is no (SI
(Pxv))-path between two variables in

X\SI
(Pxv) and there is no cycle of non-trivial constraints in Ixv[SI

(Pxv)].

Proof. Let y1, y2 ∈ X\SI
(Pxv) and assume for the sake of contradiction that a (SI

(Pxv))-
path R(y1, x2), R(x2, x3), . . . , R(xk−1, y2) exists. Let pi ∈ {x2, . . . , xk−1} be such that i is
minimum. Since pi is in the scope of two non-trivial constraints in this path, it follows from
Lemma 1 that pi is in the scope of exactly two non-trivial constraints, one of which is of
the form R(pj , pi) with j < i and (pj → pi) ∈ (Pxv). It follows from (pj → pi) ∈ (Pxv) that
pj ∈ SI

(Pxv) and hence pj is not an endpoint of the path, and then j < i contradicts the
minimality of i. The second part of the claim follows from the same argument, by considering a
cycle as a (SI

(Pxv))-path R(x1, x2), R(x2, x3), . . . , R(xk−1, x1) with x1 ∈ (SI
(Pxv)) and defining

pi as the variable among {x1, . . . , xk−1} with minimum index. J

I Lemma 3. Ixv has a solution if and only if Ixv[X\SI
(Pxv)] has a solution.

Proof. The “only if” implication is trivial, so we focus on the other direction. Suppose that
there exists a solution φ to Ixv[X\SI

(Pxv)]. Let Y be a set of variables initialized to X\SI
(Pxv).

We will grow Y with the invariants that (i) we know a solution φ to Ixv[Y ], and (ii) there is
no (X\Y )-path between two variables in Y (which is true at the initial state by Lemma 2).

If there is no non-trivial constraint between X\Y and Y then Ixv is satisfiable if and only
if Ixv[X\Y ] is. By construction X\Y ⊆ SI

(Pxv) and by Lemma 2 we know that Ixv[X\Y ] has
no cycle of non-trivial constraints. Because Ixv[X\Y ] is arc consistent and acyclic it has a
solution [24], and we can conclude that in this case Ixv has a solution.

Otherwise, let pi ∈ X\Y be such that there exists a non-trivial constraint between pi and
some variable pr ∈ Y . By (ii), this non-trivial constraint must be unique (with respect to pi)
as otherwise we would have a (X\Y )-path between two variables in Y . By arc consistency,
there exists ai ∈ Dxv(pi) such that (ai, φ(pr)) ∈ R(pi, pr); because this non-trivial constraint
is unique, setting φ(pi) = ai yields a solution to Ixv[Y ∪ {pi}]. Because any (X\(Y ∪ {pi}))-
path between two variables in Y ∪ {pi} would extend to a (X\Y )-path between Y variables
by going through pi, we know that no such path exists. Then Y ← Y ∪ {pi} satisfies both
invariants, so we can repeat the operation until we have a solution to the whole instance or
all constraints between Y and X\Y are trivial. In both cases Ixv has a solution. J

I Lemma 4. I has a solution if and only if I[X\SI
(Pxv)] has a solution.

Proof. Again the “only if” implication is trivial so we focus on the other direction. Let
us assume for the sake of contradiction that I[X\SI

(Pxv)] has a solution but I does not. In
particular this implies that Ixv does not have a solution, and then by Lemma 3 we know that
Ixv[X\SI

(Pxv)] has no solution either. We define Z as a subset of X\SI
(Pxv) of minimum size

such that Ixv[Z] has no solution. Observe that Ixv[Z] can only differ from I[Z] by having
fewer values in the domain of the variables in S(Pxv). Let φ be a solution to I[Z] such that
φ(y) ∈ Dxv(y) for as many variables y as possible. Because φ is not a solution to Ixv[Z], there
exists pr ∈ Z ∩ S(Pxv) and pj ∈ SI

(Pxv) such that (pj → pr) ∈ (Pxv) and φ(pr) ∈ ρ(pj → pr)
(recall that ρ(pj → pr) is the set of points removed by the AC algorithm in the domain of pr

at step (pj → pr)). By construction, pj /∈ Z.
First, let us assume that there exists a variable y ∈ Z, y 6= pr such that there is no

ar ∈ Dxv(pr) with (φ(y), ar) ∈ R(y, pr). This implies, in particular, that φ(y) /∈ Dxv(y). We
first prove that R(y, pr) and R(pj , pr) are the only possible non-trivial constraints involving
pr in Ixv. If there exists a fourth variable z such that R(pr, z) is non-trivial in Ixv, then there
exist ar, br ∈ Dxv(pr) and az ∈ Dxv(z) such that (ar, az) ∈ R(pr, z) but (br, az) /∈ R(pr, z).
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Figure 6 Some positive and negative edges between y, z, pj and pr. The positive edges (φ(y), ar)
and (φ(z), φ(pr)) are omitted for clarity; br is any value in Dxv(pr) that is not compatible with φ(y).

By assumption we have (φ(y), ar) /∈ R(y, pr) and (φ(y), φ(pr)) ∈ R(y, pr). Finally, br

has a support aj ∈ Dxv(pj) and φ(pr) ∈ ρ(pj → pr) so we have (aj , ar) ∈ R(pj , pr) but
(aj , φ(pr)) /∈ R(pj , pr). This produces Q1 on (pr, y, pj , z) with pr being the middle variable.
Therefore, we know that R(y, pr) and R(pj , pr) are the only possible non-trivial constraints
involving pr in Ixv. However, in this case the variable pr has only one incident non-trivial
constraint in Ixv[Z], and hence Ixv[Z] has a solution if and only if Ixv[Z\pr] has one. This
contradicts the minimality of Z, and for the rest of the proof we can assume that for every
y ∈ Z there exists some ar 6= φ(pr) such that ar ∈ Dxv(pr) and (φ(y), ar) ∈ R(y, pr).

Now, let y ∈ Z be such that y 6= pr and |{b ∈ Dxv(pr) | (φ(y), b) ∈ R(y, pr)}| is minimum.
By the argument above, there exists ar ∈ Dxv(pr) such that (φ(y), ar) ∈ R(y, pr) and
ar 6= φ(pr). By hypothesis setting φ(pr) = ar would violate at least one constraint in I[Z], so
there exists some variable z ∈ Z, z 6= y such that (φ(z), ar) /∈ R(z, pr). Furthermore, by arc
consistency of Ixv there exists aj ∈ Dxv(pj) such that (aj , ar) ∈ R(pj , pr). Recall that we
picked pj in such a way that φ(pr) ∈ ρ(pj → pr), and so we have (aj , φ(pr)) /∈ R(pj , pr). We
summarize what we have in Figure 6. Observe that unless Q1 occurs, for every br ∈ Dxv(pr)
such that (φ(y), br) /∈ R(y, pr) we also have (φ(z), br) /∈ R(z, pr). However, recall that
(φ(y), ar) ∈ R(y, pr) so φ(z) is compatible with strictly fewer values in Dxv(pr) than φ(y).
This contradicts the choice of y. It follows that setting φ(pr) = ar cannot violate any
constraint in I[Z], which is impossible by our choice of φ - a final contradiction. J

I Theorem 5. CSP(Q1) is solved by singleton arc consistency.

Proof. Let I ∈ CSP(Q1) be singleton arc consistent. Pick any variable x and value v ∈ D(x).
By singleton arc consistency the instance Ixv does not have any empty domains. By Lemma 4,
I has a solution if and only if I[X\SI

(Pxv)] has one. Because I[X\SI
(Pxv)] is singleton arc

consistent as well and SI
(Pxv) 6= ∅ we can repeat the procedure until X\SI

(Pxv) is empty, at
which point we may conclude that I has a solution. J

6 Tractability of R8 and R7-

Q1 and R8 (Figure 2) are structurally dissimilar, but the idea of using Ixv and the trace of
the arc consistency algorithm to extract variables from I without altering satisfiability works
in the case of R8 as well. We define a star to be a non-empty set of constraints whose scopes



C. Carbonnel, D. Cohen, M. Cooper, and S. Živný 19:11

•
•

•
•
• •

•

�
�
�
�
�

�

�

�

�
�
�
� •

•
•
• •

�
�
�
�
�

�

�

�

�
�
�
�

Figure 7 The patterns M̂ (left) and V2 (right).

all intersect. The centers of a star are its variables of highest degree (every star with three or
more variables has a unique center). The following lemma is the R8 analog of Lemma 1; the
main differences are a slightly stronger prerequisite (no neighbourhood substitutable values)
and that arc consistency leaves stars of non-trivial constraints instead of paths.

I Lemma 6. Let I = (X,D,C) ∈ CSP(R8) be singleton arc consistent. Let x ∈ X, v ∈ D(x)
and consider the instance Ixv. After the removal of every neighbourhood substitutable value,
every connected component of non-trivial constraints that intersect with S(Pxv) is a star with
a center in S(Pxv).

In the proof of SAC-solvability of Q1, only inner variables are extracted from the instance.
The above lemma suggests that in the case of R8 it is more convenient to extract all variables
in S(Pxv), plus any variable that can be reached from those via a non-trivial constraint.

I Lemma 7. Let I = (X,D,C) ∈ CSP(R8) be singleton arc consistent. Let x ∈ X, v ∈ D(x)
and consider the instance Ixv. There exists a partition (X1, X2) of X such that

S(Pxv) ⊆ X1;
∀(x, y) ∈ X1 ×X2, R(x, y) is trivial;
Every connected component of non-trivial constraints with scopes subsets of X1 is a star.

I Theorem 8. CSP(R8) is solved by singleton arc consistency.

Our proof of the SAC-solvability of R7- (Figure 3) follows a similar reasoning, with two
main differences. First, branching on just any variable-value pair (as we did for Q1 and R8)
may lead to a subproblem that is not solved by arc consistency. However, once the right
assignment is made the reward is much greater as all constraints involving a variable whose
domain has been reduced by arc consistency must become trivial except at most one.

Finding out which variable we should branch on is tricky. Our proof works by induction,
and the ideal starting point is a substructure corresponding to a particular pattern M̂
(Figure 7). However, M̂ is an NP-hard pattern [15] so it may not occur at all in the instance.
To handle this problem we define a weaker pattern V2 (Figure 7), whose absence implies
SAC-solvability (because it is a sub-pattern of T4), and we show that if the induction started
from V2 breaks then M̂ must occur somewhere - a win-win situation.

I Lemma 9. Let I = (X,D,C) ∈ CSP(R7-) be singleton arc consistent. Let x ∈ X be such
that M̂ occurs on (y, x, z) with x the middle variable and v be the value in D(x) that is the
meet point of the two positive edges. Then every constraint whose scope contains a variable
in S(Pxv) is trivial in Ixv, except possibly R(y, z).

I Lemma 10. Let I = (X,D,C) ∈ CSP(M̂) ∩ CSP(R7-) be singleton arc consistent. Let
x ∈ X be such that V2 occurs on (y, x, z) with x the middle variable and v be the value in
D(x) that is the meet point of the two positive edges. Then every constraint whose scope
contains a variable in S(Pxv) is trivial in Ixv, except possibly R(y, z).
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Figure 8 (a) The pattern V− and (b) the associated broken-triangle pattern (BTP).

I Theorem 11. CSP(R7-) is solved by singleton arc consistency.

7 Tractability of Q2 and R5

For our last two proofs of SAC-decidability, we depart from the trace technique. Our
fundamental goal, however, remains the same: find an operation which shrinks the instance
without altering satisfiability, introducing the pattern or losing singleton arc consistency. For
Q2 this operation is BTP-merging [19] and for R5 it is removing constraints.

Consider the pattern V− shown in Figure 8(a). We say that V− occurs at point a or at
variable x if a ∈ D(x) is the central point of the pattern in the instance. The pattern V− is
known to be tractable since all instances in CSP(V−) satisfy the joint-winner property [22].
However, we show a slightly different result, namely that singleton arc consistency is sufficient
to solve instances in which V− only occurs at degree-2 variables.

I Lemma 12. Instances in which V− only occurs at degree-2 variables are solved by singleton
arc consistency.

Two values a, b ∈ D(x) are BTP-mergeable [19] if there are not two other distinct variables
y, z 6= x such that ∃c ∈ D(y), ∃d ∈ D(z) with ad, bc, cd positive edges and ac, bd negative
edges as shown in Figure 8(b). The BTP-merging operation consists in merging two BTP-
mergeable points a, b ∈ D(x): the points a, b are replaced by a new point c in D(x) such that
for all other variables w 6= x and for all d ∈ D(w), cd is a positive edge if at least one of ad, bd
was a positive edge (a negative edge otherwise). BTP-merging preserves satisfiability [19].

I Lemma 13. Let P be a pattern in which no point occurs in more than one positive edge.
Then the BTP-merging operation cannot introduce the pattern P in an instance I ∈ CSP(P).

Since Q2 has no point which occurs in more than one positive edge, we can deduce from
Lemma 13 that Q2 cannot be introduced by BTP-merging. We then combine this property
with Lemma 12 by proving that V− can only occur at degree-2 variables in any instance of
CSP(Q2) with no BTP-mergeable values.

I Theorem 14. CSP(Q2) is solved by singleton arc consistency.

That only leaves R5. Removing constraints cannot introduce R5 because it is a monotone
pattern, so we can apply repeatedly the following lemma to obtain our last result.

I Lemma 15. If the pattern R5 does not occur in a singleton arc consistent binary CSP
instance I, then removing any constraint leaves the satisfiability of I invariant.
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I Theorem 16. CSP(R5) is solved by singleton arc consistency.

Note that Lemma 15 is technically true for all SAC-solvable patterns (not only R5); this
is simply the only case where we are able to prove it directly.

8 Conclusion

We have established SAC-solvability of five novel classes of binary CSPs defined by a forbidden
pattern, three of which are generalisations of 2SAT. For monotone patterns (defining classes
of CSPs closed under removing constraints), there remains only a relatively small number of
irreducible patterns whose SAC-solvability is still open. In addition to settling the remaining
patterns, a possible line of future work is to study sets of patterns or partially-ordered
patterns [23] that give rise to SAC-solvable (monotone) classes of CSPs.
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Abstract
In the classical firing squad problem, an unknown number of nodes represented by identical
finite state machines is arranged on a line and in each time unit each node may change its state
according to its neighbors’ states. Initially all nodes are passive, except one specific node located
at an end of the line, which issues a fire command. This command needs to be propagated to all
other nodes, so that eventually all nodes simultaneously enter some designated “firing" state.

A natural extension of the firing squad problem, introduced in this paper, allows each node
to postpone its participation in the squad for an arbitrary time, possibly forever, and firing is
allowed only after all nodes decided to participate. This variant is highly relevant in the context
of decentralized distributed computing, where processes have to coordinate for initiating various
tasks simultaneously.

The main goal of this paper is to study the above variant of the firing squad problem under the
assumptions that the nodes are infinite state machines, and that the inter-node communication
links can be changed arbitrarily in each time unit, i.e., are defined by a dynamic graph. In this
setting, we study the following fundamental question: what connectivity requirements enable a
solution to the firing squad problem?

Our main result is an exact characterization of the dynamic graphs for which the firing squad
problem can be solved. When restricted to static directed graphs, this characterization implies
that the problem can be solved if and only if the graph is strongly connected. We also discuss
how information on the number of nodes or on the diameter of the network, and the use of
randomization, can improve the solutions to the problem.
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1 Introduction

Many distributed algorithms assume a synchronous networked system, in which computation
is divided into synchronized rounds that are communication closed layers: any message sent
at some round can be received only at that round. In this model it is typically assumed that
each execution of an algorithm is started by all nodes simultaneously, i.e., at the same round.
For instance, most of synchronous consensus algorithms (eg., [21, 12, 23]), as well as many
distributed algorithms for dynamic networks (eg., [16, 17]) require synchronous starts.

In this paper, we justify this assumption of synchronous starts for dynamic networks
with no central control that monitors the node activities, but with sufficient connectivity
assumptions. Specifically, we study a generalization of the associated synchronization
problem, classically referred to as the firing squad problem. This generalization considers
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a communication network of unknown size, in which messages are delivered along a set of
edges which may change in each round. All nodes are initially passive, and a node becomes
active upon receiving a start signal at an unpredictable time. We stress that receiving a
message from an active node is not necessarily considered as a start signal. The goal is
then to guarantee that the nodes synchronize by firing - i.e., entering a designated state for
the first time - simultaneously if and only if all nodes are eventually active. Formally, the
following must be satisfied:
FS1 (Validity): A node fires if and only if all nodes have received start signals.
FS2 (Simultaneity): All the nodes that fire, fire at the same round.

As a basic synchronization abstraction, the fulfillment of FS1 and FS2 above can be used
in various types of situations to guarantee simultaneity: for distributed initiation (to force
nodes to begin some computation in unison), in real-time processing (where nodes have to
carry out some external actions simultaneously), or for distributed termination (to guarantee
that nodes complete their computation at the same round). Another typical scenario that
requires FS1 and FS2 is when some algorithm needs to be executed several times in a row,
and the i+ 1-st execution should be started simultaneously, after all nodes terminated the
i-th execution (see e.g., [5]).

It is easy to see that when the communication graph is permanently complete, the firing
squad problem can be solved in one round after all nodes are active. At the opposite scenario,
the problem is clearly unsolvable if some node is permanently isolated. This demonstrates a
strong correlation between the solvability and complexity of the firing squad problem, and
the connectivity of the network. The primary aim of this paper is to explore this relation.

The firing squad problem was originally studied in the context of automata theory (eg.,
[18, 19]). This model considers a finite but unknown number n of nodes which are connected
in a line (or in some other specific topologies in more recent works – see eg., [8]). Nodes are
identical finite state machines (whose number of states is independent of n), and at each
time unit each node changes its state according to the states of its neighbors on the line. A
start signal is given to a node located at one end of the line - the “general" - and then is
propagated to the rest of the nodes so that all nodes have eventually to fire simultaneously.
It should be noted that the above model assumes diffusive start signals, for which the timing
of start signals is not arbitrary: upon the receipt of a message from an active node, a passive
node becomes active, i.e., receiving such a message is considered as a start signal. The main
challenges in this model are to reduce the number of states of the finite state machine and
the time required to reach the firing state.

A natural question raised at this point is then the following: considering that nodes
are no longer restricted to be finite state machines, but possess a full computational power
(equivalent to that of a Turing machine), what are the connectivity properties that are needed
to solve the firing squad problem?

It should be noted that the firing squad problem has also been studied in the context
of fault tolerant distributed computations (eg., [3, 12, 7]), and more recently in the context
of self-stabilization (eg., see [10]). This model also assumes that each node has a full
computational power, but otherwise the setting of the problem is different: Nodes are
connected by a complete graph, and thus the number of nodes n is given. At most f nodes
may be faulty, for various types of Byzantine faults. This implies a permanent complete
connectivity between the non-faulty nodes, and arbitrary connectivity of all other links.
Besides, due to the unpredictable behavior of faulty nodes, the simultaneity condition and to
a larger extent the validity condition in this model ought to be drastically weakened: eg., it
is only required that all non-faulty nodes eventually fire simultaneously. Finally, the study of
the problem is strictly limited to diffusive start signals.
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Contribution. In this paper we consider a set of an unknown number n of nodes possessing
full computational power. Nodes have distinct identities which are not mutually known, but
otherwise they run identical codes (in some precise sense that is discussed later). The inter-
node communication is modeled by a dynamic graph, i.e., at each round, nodes communicate
along directed edges of an arbitrary communication graph which may change continually
and unpredictably from one round to the next. Communication is done by having each node
broadcast at each round a message along the unknown set of its outgoing edges in this round.
We examine various connectivity properties that hold, not necessary round by round, but
globally over finite periods of consecutive rounds. In particular, these properties do not imply
any stability of the links, as opposed to the failure model of at most f faulty nodes that
guarantees a stable clique of size n− f , or several models of dynamic networks in distributed
computing (eg., see [16, 1, 22]) that assume the existence of a stable spanning tree in the
network over every T consecutive rounds.

The main contribution of this paper is a characterization of the connectivity properties
that enable to solve the firing squad problem in dynamic (and hence also in static) graphs.
On the positive side, we show that if the dynamic graph is guaranteed to be connected within
each period of T consecutive rounds, where the constant T is given, then the problem is
solvable in time which is at most linear in the (unknown) network size. On the negative
side, we show that under the sole assumption that such a constant T exists but is unknown,
the problem becomes unsolvable. Moreover, the problem remains unsolvable in this case
even when the number of nodes in the network is given and even in the restricted model of
diffusive start signals. The above results imply that the firing squad problem is solved for a
static directed graph if and only if it is strongly connected.

Our solution is obtained by combining two basic procedures: the first implements local
virtual clocks whose values cannot exceed the diameter of the dynamic graph unless all nodes
are active, and the second collects the identities of all nodes in the network. The idea is
then that a node fires when the value of its virtual clock is sufficiently large compared to the
number of active nodes it has heard of so far.

We also show that if an upper bound D on the diameter of the dynamic graph is given,
then the problem is solvable in time linear in D. This solution is applicable to anonymous
networks, where nodes have no identities, and it uses much shorter messages. We conclude by
showing that when a polynomial bound on the network size is given, the use of randomization
can substantially reduce messages size while preserving a linear time complexity.

For space consideration, some proofs are omitted in this version.

2 The Model

2.1 Distributed computations in the dynamic graphs model
We consider a networked system with a fixed set of n nodes. Nodes have unique identifiers,
and the set of identifiers is denoted by V . The identities of the nodes are not mutually known,
and the network size n is unknown as well. Nodes may also ignore their own identities, in
which case the network is said to be anonymous. Furthermore, nodes run identical programs,
i.e., programs do not depend on node identities (see the discussion in Section 5).

Computation proceeds in synchronized rounds, which are communication closed in the
sense that no node receives messages in round t that are sent in a round different from t. In
round t (t = 1, 2 . . . ), each node attempts to send messages to all nodes, receives messages
from some nodes, and finally goes to its next state and proceeds to round t+ 1. The round
number t is used for a reference, but is unknown to the nodes.
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In every run of an algorithm, each node u is initially passive: it is part of the network,
but sends only heartbeats – that we call null messages – and does not change its state.
Then it either becomes active by receiving a unique start signal at the beginning of some
round su > 1, or remains passive forever – in which case we let su = +∞. A run is active if
all nodes are eventually active.

Upon the receipt of its start signal, node u sets up its local variables (with its initial
state) and starts executing its program. For any of its local variables xu, the value of xu at
the beginning of round t is denoted by xu(t). Thus xu(t) is undefined for t < su.

Communications that occur at round t are modeled by a directed graph G(t) = (V,Et)
that may change from round to round. We assume a self-loop at each node in all the graphs
G(t) since any node can communicate with itself instantaneously.

The sequence of directed graphs G = (G(t))t∈N is called a dynamic graph [4]. It can be
decided ahead of time, by an online adversary, or endogenously as in influence systems [6].
Similarly, the way start signals are generated is left totally arbitrary: a node may receive an
external start signal coming from outside, or it may receive a start signal relayed by some
active node. In particular, there may be more than one external start signal in the network,
and start signals may be not correlated to the dynamic graph.

A run of a firing squad algorithm is entirely determined by the dynamic graph G =
(G(t))t∈N and by the list S = (su)u∈V of rounds at which nodes become active. We denote
by G∗(t) = (V,E∗t ) the directed graph of edges in Et connecting two nodes which are active
in round t. The sets of u’s incoming neighbors (in-neighbors for short) in the directed
graphs G(t) and G∗(t) are denoted by Inu(t) and In∗u(t), respectively.

Let D be a set of dynamic graphs. We say that an algorithm A solves the firing squad
problem for D if for each G ∈ D and each scheduling of start signals S, the run of A defined
by G and S satisfies FS1 and FS2. The firing squad problem is solvable for D if there is an
algorithm that solves it for D.

2.2 Paths and broken paths in a dynamic graph

Let us first recall that the product of two directed graphs G1 = (V,E1) and G2 = (V,E2),
denoted G1 ◦G2, is the directed graph with the set of nodes V and with an edge (u, v) if
there exists w ∈ V such that (u,w) ∈ E1 and (w, v) ∈ E2.

For any dynamic graph G and any integers t′ > t > 1, we let G(t : t′) = G(t) ◦ · · · ◦G(t′).
By convention, G(t : t) = G(t), and G(t : t′) is the directed graph with only a self-loop at
each node when t′ < t. We also use the notation G(I) instead of G(t : t′) when I is the
integer interval [t, t′].

We now fix a run of a firing squad algorithm, with the dynamic graph G and the
scheduling of start signals S which, as above, determine the dynamic graph G∗. The sets
of u’s in-neighbors in G(t : t′) and in G∗(t : t′) are denoted by Inu(t : t′) and In∗u(t : t′),
respectively, or by Inu(I) and In∗u(I) for short when I = [t, t′].

Let t and t′ be two positive integers such that t′ > t; a v∼u path in the interval [t, t′] is
any sequence P = (v0 = v, v1, . . . , vm = u) with m = t′ − t+ 1 and (vk, vk+1) is an edge of
G(t + k) for each k = 0, . . . ,m − 1. Hence there exists a v∼u path in the interval [t, t′] if
and only if v ∈ Inu(t : t′). The path P is said to be broken if one of its edges (vk, vk+1) is
not in G∗(t+ k).
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2.3 Delayed connectivity of a dynamic graph
Let us recall that a directed graph is strongly connected if for each pair of nodes u, v there is
a directed path from u to v. For c > 1, c strong connectivity is then defined by (see, e.g., [9]):

I Definition 1. Let G = (V,E) be a directed graph and let c < |V | be a positive integer.
We say that G is c strongly connected if G remains strongly connected whenever less than
c nodes are removed from G.

Note that a directed graph is strongly connected if and only if it is 1 strongly connected.

I Definition 2. A dynamic graph G is continuously c strongly connected if each directed
graph G(t) is c strongly connected.

Next we extend the above definition to bounded-length intervals of dynamic graphs.

I Definition 3. Let c, T be two positive integers. The dynamic graph G is c connected
with delay T if for every positive integer t, the directed graph G(t : t+ T − 1) is c strongly
connected. When c = 1, we use the abbreviation connected with delay T .

Finally, we present our weakest connectivity assumption for dynamic graphs.

I Definition 4. A dynamic graph G is said to be eventually connected if for any positive
integer t, there exists t′ > t such that G(t : t′) is strongly connected.

Using the connectivity properties of dynamic graphs defined above, we then characterize
the connectivity properties that enable solutions to the firing squad problem. For a positive
integer T , DT denotes the set of dynamic graphs which are connected with delay T . The
union DB =

⋃∞
T=1DT is the set of dynamic graphs with bounded delay connectivity and DE

denotes the set of eventually connected dynamic graphs. The relations among the above sets
of dynamic graphs are thus given by the strict inclusions

D1 ⊂ D2 ⊂ · · · ⊂ DT ⊂ DT+1 ⊂ · · · ⊂ DB ⊂ DE .

In the next sections, we show that the firing squad problem is not solvable for DB (and hence
also for DE), but for each positive integer T , it is solvable for DT .

3 Bounded Delay Connectivity is not Enough

In this section we show that the firing squad problem is not solvable for the set DB of
the dynamic graphs with bounded delay connectivity, even if the network size, n, is given.
Specifically, we show that for this set of dynamic graphs, the validity condition FS1 can be
achieved if and only if n is given, and the firing squad problem (i.e., FS1 plus FS2) cannot
be solved even if n is given.

Interestingly, these two impossibility results still hold for the original model of diffusive
start signals and when all communication graphs are bidirectional.

I Proposition 5. For the set of dynamic graphs with bounded delay connectivity DB, the
validity condition FS1 can be achieved if the network size n is given, but cannot be achieved
if it is given that the network size is either n or n+ 1.

Next we show that there is no algorithm that solves the firing squad problem for DB,
even if the number of nodes in the dynamic graph is given. This demonstrates that adding
the simultaneity condition FS2 to the validity condition FS1 makes the problem strictly
harder and that the knowledge of the size of the network does not help in the sole context of
bounded delay connectivity.
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I Theorem 6. The firing squad problem is not solvable for the set DB of dynamic graphs
with bounded delay connectivity, even if the size of the network n is given.

Proof. By contradiction, suppose that there is an algorithm A solving the firing squad
problem in any dynamic graph with n nodes and with bounded delay connectivity, and let V
be a set of n > 1 nodes.

Let u, v be two distinct nodes in V , and for x ∈ {v, u} let Gx be the graph consisting of
a complete graph over V \ {x} plus the self loop (x, x). Let further I = (V,EI) denote the
directed graph with only a self-loop at each node, i.e., EI = {(v, v) : v ∈ V }.

We consider the run of A in which all nodes are active in the first round, and with the
dynamic graph consisting of alternating sequence of directed graphsG = (Gu, Gv, Gu, Gv, . . . ).
Clearly, G ∈ DB , and thus by FS1-2, all nodes fire at the same round tF .

Now assume that G(tF ) = Gu (the case G(tF ) = Gv is similar). From the viewpoint of u,
G is indistinguishable up to round tF from the dynamic graph G1 that is similar to G except
at round tF where G1(tF ) = I. Hence u also fires at round tF with the dynamic graph G1.
Since G1 ∈ DB , all other nodes also fire at round tF with G1. Using a similar argument, we
get that from the viewpoint of v, G1 is indistinguishable up to round tF from the dynamic
graph G2 that is similar to G1 except at round tF − 1, in which G2(tF − 1) = I. Hence with
G2, all nodes fire at round tF as well.

By repeating this argument tF times, we show that all nodes fire at round tF in the
run of A with start signals all received in the first round, and the dynamic graph GtF =
(I, . . . , I, Gv, Gu, Gv, Gu, . . . ). From the viewpoint of any node v 6= u, the latter run is
indistinguishable up to round tF from the run with the same dynamic graph GtF and where
all nodes are active from round one except node u which is passive forever. All nodes other
than u fire at round tF , violating FS1 - a contradiction. J

4 Firing with a Bounded Diameter

As a first step towards our main positive result, which solves the firing squad problem in
dynamic graphs that are c connected with delay T , we present a solution in the case that a
finite bound on the diameter of the dynamic graph is given. We start with some definitions.

Let G = (G(t))t∈N be a dynamic graph. The distance from node v to node w at time t,
denoted dt(v, w), is defined as the minimum positive integer δ such that there is a v∼w path
in the interval [t, t+ δ − 1]. If for any t′ > t there is no v∼w path in the interval [t, t′], then
conventionally dt(v, w) = +∞.

The diameter of the dynamic graph G is then defined as the minimum positive integer d
such that for any positive integer t, the directed graph G(t : t+ d− 1) is complete, or infinity
if there is no such integer, namely diam(G) = supt>1, v,w∈V 2 dt(v, w).

Let D be a set of dynamic graphs, and assume that a finite bound D on the diameters of
the dynamic graphs in D is given. Then a solution to the firing squad problem is enabled by
using local virtual clocks whose values may reach D only if all nodes are active. Moreover, if
some virtual clock is set to D, then all virtual clocks are set to D at the same round. The
corresponding algorithm, denoted AD, does not use identifiers, and the computation and
storage capabilities of the nodes do not grow with the network size. More precisely, its time
complexity is in O(D) and it uses only O(log(D)) bits per message.

Notation. In the pseudo-codes of all our algorithms, M∗u denotes the multiset of non-null
messages received by u in the current round. Thus M∗u at round t is the multiset of messages
sent to u by the nodes in In∗u(t). If non-null messages are vectors of some size, then M∗u (i)

denotes the multiset of the i-th entries of the messages in M∗u .
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Algorithm 1: Algorithm AD, firing with diameter at most D.
Initialization:
1: ru ∈ N, initially 0

In each round t do:
2: send 〈ru〉 to all processes and receive one message from each in-neighbor
3: if at least one received message is null then
4: ru ← 0
5: else
6: ru ← 1 + minr∈M∗

u
(r)

7: end if
8: if ru > D then
9: Fire
10: end if

We begin the correctness proof of the algorithm AD by two useful lemmas about the way
the virtual clocks ru’s evolve, whatever the connectivity properties of dynamic graphs are.

I Lemma 7. Assume that t < t′ and su 6 t′. Then ru(t′) is defined and:
1. If there exists a broken path ending at u in the interval [t, t′ − 1], then ru(t′) 6 t′ − t− 1.
2. Otherwise, for every v ∈ Inu(t : t′ − 1) it holds that rv(t) is defined and ru(t′) 6

rv(t) + t′ − t.

I Lemma 8. For every node u and at every round t > smax = maxv∈V (sv) of an active run,
we have ru(t) > t− smax. Moreover, if t > smax + 1 and Inu(smax : t− 1) contains a node v
such that sv = smax, then ru(t) = t− smax.

From the two above lemmas, we can prove the correctness of the algorithm AD:

I Theorem 9. The algorithm AD solves the firing squad problem for any set of dynamic
graphs with diameters at most D. Moreover, all nodes in an active run of the algorithm fire
exactly D rounds after all nodes have become active and use messages of size O(logD).

Observe that the diameter of any connected dynamic graph with n nodes is at most n− 1.
Thus one immediate spinoff of Theorem 9 is the following corollary, which when an upper
bound N on the network size is given, provides a solution to the firing squad problem that
uses messages of size O(log(N)).

I Corollary 10. If nodes have an upper bound N of the network size, the firing squad problem
can be solved in any continuously strongly connected dynamic graph in N rounds after all
nodes have become active using only O(log(N)) bits per message.

5 Firing with T Delayed Connectivity

We now present the algorithm Bc,T that show that it solves the firing squad problem in
linear time for dynamic graphs that are c connected with delay T while no bound on the
diameter or the size of the network is given.

The algorithm Bc,T uses the same virtual clocks ru as the previous algorithm AD.
Moreover, each node u collects the identities of the active nodes which u had heard of in a
variable HOu. Then node u fires when its virtual clock ru is large enough compared to the
size of its HOu set.
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Algorithm 2: Algorithm Bc,T , firing with T delayed connectivity.
Initialization:
1: ru ∈ N, initially 0
2: HOu ⊆ V , initially {u}

In each round t do:
3: send 〈ru, HOu〉 to all processes and receive one message from each in-neighbor
4: if at least one received message is null then
5: ru ← 0
6: else
7: ru ← 1 + minr∈M∗

u
(1) (r)

8: end if
9: HOu ← ∪HO∈M∗

u
(2)HO

10: if |HOu| 6
⌈

c
T

(ru + 2)
⌉
− 2c then

11: Fire
12: end if

A similar idea was first used in [14], and also later in early stopping consensus al-
gorithms [11, 13] and in the counting algorithm of [16], but with different virtual clocks. This
technique requires distinct node identifiers and long messages since each node u broadcasts
HOu in each round.

The following lemma is needed for the analysis of the algorithm Bc,T .

I Lemma 11. If G = (V,E) is c strongly connected, then for any non-empty subset S ⊆ V ,
the following holds:

|Γin(S) \ S| > min(c, |S|) (1)

where Γin(S) denotes the set of in-neighbors of S in G, and S = V \ S.

It can be shown that the converse of Lemma 11 also holds. Moreover, the set Γout(S) of
out-neighbors of S can be substituted for Γin(S) in Lemma 11 since any directed graph G is
c strongly connected if and only if its transpose GT is. Using this out-variant of Lemma 11
and an easy induction, we check that the diameter of a dynamic graph that is c connected
with delay T is bounded by T

⌊
1 + n−2

c

⌋
.

The correctness proof of the algorithm Bc,T then relies on the following key technical
lemma.

I Lemma 12. In each run of the algorithm Bc,T on a dynamic graph G which is c connected
with delay T , for each node u and each round t > su, it holds that ru(t) and HOu(t) are
defined and

|HOu(t)| > min
(

(1− 2c) + c

T
(ru(t) + 2) , n

)
. (2)

Proof. If t = 1, then su = 1, HOu(t) = {u}, ru(t) = 0, and the lemma holds.
So assume now that t > 2, and let a, b ∈ N satisfy t = aT + b with 1 6 b 6 T . We split

the interval [1, t− 1] into a+ 1 sub-intervals Ia, Ia−1, . . . , I1, I0 as follows:
1. if b = 1, then I0 is the empty interval, else I0 = [t− b+ 1, t− 1];
2. for 0 < i 6 a, we set Ii = [t− b− iT + 1, t− b− (i− 1)T ].
We check that |I0| = b−1 < T , and |Ii| = T for i > 0. All the intervals Ii are thus non-empty,
except I0 that is empty if and only if b = 1.

Then by induction, we construct a sequence of at most a+ 2 sets of nodes S−1, S0, . . . , Sk
as follows:



B. Charron-Bost and S. Moran 20:9

1. S−1 = {u}.
2. Suppose that S−1, . . . , Si, −1 6 i 6 a, are constructed.

a. If i = a, then the construction stops.
b. Otherwise, −1 6 i 6 a− 1. We let Hi+1 = G

(
Ii+1

)
and we distinguish three cases.

i. i > 0 and Hi+1 contains no edge (w, v) such that w 6∈ Si and v ∈ Si. Then the
construction stops.

ii. Hi+1 contains an edge (w, v) such that w 6∈ Si and v ∈ Si, and there exists a w∼v
broken path in Ii+1. Then the construction stops.

iii. Otherwise, we let Si+1 = Inu(t−b−(i+1)T +1 : t−1) = Inu(Ii+1∪· · ·∪I0), which
is the union of Si and of the set of Si’s in-neighbors in the directed graph Hi+1.
In particular, if u has no proper in-neighbor in H0 = G(I0) (eg., if b = 1), then
S0 = {u}.

Let us observe that S−1 ⊆ S0, and the sequence
(
Si
)

06i6k is increasing. More precisely,
using the T delayed c connectivity of G and Lemma 11, we obtain that for every index i,
1 6 i 6 k, if Si 6= V , then |Si| − |Si−1| > c. By an easy induction, then we obtain the
following lower bound on |Sk|.

I Claim 13. If Sk 6= V , then the cardinality of Sk is at least c k + 1.

Because of the way HOu is updated (line 9 of the algorithm), we check the following
claim by induction.

I Claim 14. HOu(t) contains every set Si for −1 6 i 6 k, and in particular Sk ⊆ HOu(t).

We now distinguish the following three exhaustive cases:
Construction terminated by (a): Since clearly ru(t) 6 t− 1 = aT + b− 1, we have

(1− 2c) + c

T
(ru(t) + 2) 6 (ac+ 1) + c

T
(b+ 1− 2T ) 6 ac+ 1 .

Moreover by Claims 13 and 14, it holds that |HOu(t)| > |Sk| > ac+ 1. Hence

|HOu(t)| > (1− 2c) + c

T
(ru(t) + 2) ,

which shows the lemma in this case.
Construction terminated by (b.i): In this case, 0 6 k 6 a − 1 and so the interval Ik+1 is

defined and is of length T . Since G is connected with delay T , this implies that Sk = V .
It follows that HOu(t) = V and the lemma trivially follows.

Construction terminated by (b.ii): We first observe that Sk 6= V . Thus by Claims 13 and 14,
|HOu(t)| > |Sk| > ck + 1. Also, observe that the assumed w∼v broken path in Ik+1 can
be extended to a w∼u broken path in the interval Ik+1∪· · ·∪I0 = [t−b−(k+1)T+1, t−1].
Since b 6 T , this implies by Lemma 7.1 that ru(t) 6 (k + 2)T − 2 or equivalently that
k > ru(t)+2

T − 2. Thus we get

|HOu(t)| > ck + 1 > c

(
ru(t) + 2

T
− 2
)

+ 1 = (1− 2c) + c

T
(ru(t) + 2) ,

which proves the lemma in this case. J

I Theorem 15. The algorithm Bc,T solves the firing squad problem for every set of dynamic
graphs that are c connected with delay T . Moreover, in any active run all nodes fire in less
than

⌈
T
c (n− 1)

⌉
+ T rounds after all nodes have become active and they use messages of

size O(n logn).
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Proof. Let us first consider a run of the algorithm in which there is a node v that is never
active. Then no node ever receives a non-null message from v, and so for any node u
that is active at round t, we have |HOu(t)| 6 n − 1. This implies by Lemma 12 that
|HOu(t)| >

⌈
c
T (ru(t) + 2)

⌉
− 2c , and hence u does not fire at round t. We conclude that no

node ever fires in this run.

Let us now consider an active run of the algorithm. First, observe that by the first claim
in Lemma 8 and the fact that the cardinality of each set HOu is at most n, the condition in
line 10 eventually holds at each node u.

Moreover, because of the initialization and update rules for the HO variables (lines 2
and 9), a node v 6= u is in HOu(t+ 1) if and only if there exists a v∼u non-broken path in
some non-empty interval [s, t]. Since u ∈ In∗u(su), this shows that

HOu(t+ 1) ⊆
⋃
s>su

In∗u(s : t) . (3)

Let t0 be the first round at which the condition in line 10 holds at some node, and let u
denote one such node, i.e.,

|HOu(t0 + 1)| 6
⌈ c
T

(ru(t0 + 1) + 2)
⌉
− 2c . (4)

From Lemma 12, we deduce that HOu(t0 + 1) = V . In particular, HOu(t0 + 1) contains
the latest activated nodes. Let v denote one such node, i.e., sv = smax. By (3), there is a
v∼u non-broken path in some interval [s, t0] with s > su. It follows that s > sv. Thereby
t0 > smax and v ∈ In∗u(smax : t0). This implies, by Lemma 8, that

ru(t0 + 1) = rv(t0 + 1) = t0 + 1− smax = min
w∈V

rw(t0 + 1) .

Using Lemma 12 again, we get that for every node w ∈ V , HOw(t0 + 1) = V . Therefore the
inequality (4) holds for all nodes in round t0 + 1, and by the definition of t0 this is the first
round in which this inequality holds for all nodes. Hence all nodes fire simultaneously at the
end of round t0. J

The only operations in the algorithm Bc,T that involve the node identities are performing
the union and extracting the cardinalities of the sets HOu. Since the decisions made by the
algorithm are determined only by the cardinalities of the sets HOu and not by the actual
values of the identities in these sets, it is clear that the sequences of operations performed by
each node in a specific run are independent of these values.

A close examination of the proof of Theorem 15, shows that each node actually computes
the set V , and so its cardinality. As a byproduct, the algorithm Bc,T thus solves the
problem of counting the network size despite asynchronous starts in any model of dynamic
graphs that are c connected with delay T , and in particular in the model of continuously
strongly connected dynamic graphs. This should be compared with the impossibility result
by Wattenhofer [24] which states that if passive nodes do not transmit any signal, then
counting is impossible with asynchronous starts.

6 Bound on the Network Size and Randomization

In this section we show that if a polynomial bound N on the network size n is given, then
randomization may reduce the message size in our firing squad algorithm Bc,T without
degrading its linear time complexity. Similarly to Bc,T , our randomized algorithm for the
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firing squad problem actually estimates the size of the network, and thus as a byproduct,
provides a solution to the approximate counting problem for the case of asynchronous starts.
In this sense, it generalizes the randomized approximate counting algorithm of [16], which
assumes that all nodes start simultaneously.

First observe that by Corollary 10, if we use N as an upper bound on the diameter of the
network, then the AN algorithm in Section 4 solves the firing squad problem within O(N)
rounds using messages of size O(log(N)). When N is significantly larger than the network
size n, this solution is thus not satisfactory regarding its time complexity.

For the sake of simplicity, we present our randomized firing squad algorithm in the case
c = T = 1 , i.e., for dynamic graphs that are continuously strongly connected, but the
generalization to the case of c connectivity with delay T is straightforward. The algorithm,
denoted RN,η, depends on two parameters N and η, where N is a positive integer and η
is any real number in [ 0, 1/2 ). For this algorithm, it is assumed that the dynamic graph,
and the start signals sv, are managed by an oblivious adversary, which has no access to the
outcomes of the random choices made by the algorithm.

The algorithm works as follows: upon becoming active, each node u generates ` inde-
pendent random numbers Y (1)

u , . . . , Y
(`)
u , where ` depends on N and η, and the distribution

of each Y (i)
u is exponential with rate 1. At each round, any active node u first broadcasts the

smallest value of the Y (i)
v ’s it has heard of for each index i ∈ {1, . . . , `}, and then computes

from the minimum values it received so far an estimation nu of the number of nodes it heard
of. Node u fires when the value of its clock ru is sufficiently large compared to nu.

Using Cramér-Chernoff’s bounds [2], we show that with high probability, the value of nu
at the end of round t provides a good approximation of the number of active nodes that u has
heard of so far. This implies, via Lemma 12, that if nu < 2ru/3 then with high probability
node u has heard of all other nodes (yielding the condition nu < 2ru/3 for node u to fire in
line 14). As for the algorithm Bc,T , we conclude that with high probability, no node ever fires
in a non-active run, and all nodes fire at the same round of any active run. More precisely,
we choose ` =

⌈
243 · (ln 4N2 − ln η)

⌉
to guarantee a final probability of at least 1 − η for

these successful active and non-active runs.
The size of the messages used by the algorithm can be limited, at the price of higher

storage capacity at the nodes, by using a rounded and range-restricted calculations as in [20].
Specifically, we round down each Y (i)

u to the next smaller integer power of 13/12, denoted Y (i)
u .

Then the resulted approximate value nu of nu satisfies nu 6 nu 6 13
12nu, which guarantees

that with high probability, nu is also a good approximation of the number of active nodes
that u has heard of so far.

By the definition of the exponential distribution, it is not hard to see that the random
variables Y (i)

u are all within the range [η/(4`N), ln(4`N/η)] with high probability, namely

Pr
[
∀u ∈ V, ∀i, Y (i)

u ∈ [η/(4`N), ln(4`N/η)]
]
> 1− η/2 , (5)

which allows us to ignore runs in which the randomized variables Y (i)
u are not in the above

range. The number of distinct variables Y (i)
u in that range is O(log(Nη−1)), hence each such

variable can be represented using O (log log(N/η)) bits. This leads to messages length in
O (log(N/η) · log log(N/η)) bits.

We note, however, that the implied calculations require exponentially higher storage
capacities: computing nu (line 14 of algorithm RN,η) must be done with the ` exact values of
the variables Y (i)

u , and exact representation of numbers occurring in the implied calculations
may require Ω(`Nη−1) bits.

STACS 2018
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Algorithm 3: The randomized algorithm RN,η, firing with continuous strong connectivity.
Initialization:
1: ru ∈ N, initially 0
2: Y u =

(
Y

(1)
u , . . . , Y

(`)
u

)
∈ R` with ` =

⌈
243 · (ln 4N2 − ln η)

⌉
, initially rounded and range-

restricted approximation of independent random numbers with exponential distribution of rate 1.
3: nu ∈ N, initially 0

In each round t do:
4: send 〈ru, Y u〉 to all processes and receive one message from each in-neighbor
5: if at least one received message is null then
6: ru ← 0
7: else
8: ru ← 1 + minr∈M∗

u
(1) (r)

9: end if
10: for i = 1, . . . , ` do
11: Y

(i)
u ← min

Y
(i)∈M∗

u
(i+1)

(
Y

(i)
)

12: end for
13: nu ← `/

∑`

i=1 Y
(i)
u

14: if nu < 2 ru/3 then
15: fire
16: end if

The correctness proof of the algorithm with the approximate random variables Y (i)
u is

valid for all runs in which the exact random variables are in the range (5), and this range
restriction is violated with probability of at most η/2.

I Theorem 16. In any dynamic graph that is continuously strongly connected and with at
most N nodes, the algorithm RN,η solves the firing squad problem with probability at least
1−η. Moreover, in any active run, with probability at least 1−η, all nodes fire simultaneously
in less than 2n rounds after the last nodes have become active.

7 Conclusion and Further Research

In this paper we studied the firing squad problem in a network of an unknown number of
nodes with full computational power, thus extending the original model which assumes that
nodes are finite state machines. We focused on a natural extension of the problem in which
start signals are left arbitrary, i.e., are no more supposed to be propagated by the nodes in
the network.

We modeled the inter-node communication by a dynamic graph, and presented a tight
relation between the solvability of the firing squad problem and the connectivity of the
dynamic graph. Specifically, we introduced the notion of delayed connectivity, and showed
that the firing squad problem is solvable if and only if the dynamic graph is connected with
delay T , for some given constant T . Our solution uses messages of super-linear size, and
we showed that additional information on the diameter or on the size of the network can
substantially reduce the message size.

Combining our positive and negative results, we get that when nodes are infinite state
machines, the firing squad problem is solvable for arbitrary timing of start signals if and only
if it is solvable when restricted to diffusive start signals. An interesting question is whether
this equivalence in terms of solvability is still valid in the original model of the firing squad
problem, where nodes are finite state machines. It can be shown that this is the case when
the topology is a line or a circuit, but it is not clear whether this holds for other topologies.
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Possible extensions of this work involve other variations of the model of computation.
For instance, it is interesting to determine under what conditions the firing squad problem
is solvable in an anonymous network where nodes have limited storage capabilities and
communicate through finite bandwith channels as in [15]. Our randomized algorithm provides
an efficient Monte Carlo solution for this problem, in the case of a continuously strongly
connected network and a polynomial upper bound on the size of the network. Another open
question concerns the role of leaders in a dynamic network: does the existence of a leader
could be useful for achieving or improving solutions to the firing squad problem?
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Abstract
The complexity of Iterated Matrix Multiplication is a central theme in Computational Complexity
theory, as the problem is closely related to the problem of separating various complexity classes
within P. In this paper, we study the algebraic formula complexity of multiplying d many 2× 2
matrices, denoted IMMd, and show that the well-known divide-and-conquer algorithm cannot be
significantly improved at any depth, as long as the formulas are multilinear.

Formally, for each depth ∆ ≤ log d, we show that any product-depth ∆ multilinear formula
for IMMd must have size exp(Ω(∆d1/∆)). It also follows from this that any multilinear circuit of
product-depth ∆ for the same polynomial of the above form must have a size of exp(Ω(d1/∆)).
In particular, any polynomial-sized multilinear formula for IMMd must have depth Ω(log d), and
any polynomial-sized multilinear circuit for IMMd must have depth Ω(log d/ log log d). Both these
bounds are tight up to constant factors.

Our lower bound has the following consequences for multilinear formula complexity.
1. Depth-reduction: A well-known result of Brent (JACM 1974) implies that any formula

of size s can be converted to one of size sO(1) and depth O(log s); further, this reduction
continues to hold for multilinear formulas. On the other hand, our lower bound implies that
any depth-reduction in the multilinear setting cannot reduce the depth to o(log s) without a
superpolynomial blow-up in size.

2. Separations from general formulas: Shpilka and Yehudayoff (FnTTCS 2010) asked
whether general formulas can be more efficient than multilinear formulas for computing mul-
tilinear polynomials. Our result, along with a non-trivial upper bound for IMMd implied by
a result of Gupta, Kamath, Kayal and Saptharishi (SICOMP 2016), shows that for any size
s and product-depth ∆ = o(log s), general formulas of size s and product-depth ∆ cannot
be converted to multilinear formulas of size sO(1) and product-depth ∆, when the underlying
field has characteristic zero.
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1 Introduction

Algebraic Complexity theory is the study of the complexity of those computational problems
that can be phrased as computing a multivariate polynomial f(x1, . . . , xN ) ∈ F[x1, . . . , xN ]
over elements x1, . . . , xN ∈ F. Many central algorithmic problems such as the Determinant,
Permanent, Matrix product etc. can be cast in this framework. The natural computational
models that we consider in this setting are models such as Algebraic circuits, Algebraic
Branching Programs (ABPs), and Algebraic formulas (or just formulas), all of which use the
natural algebraic operations of F[x1, . . . , xN ] to compute the polynomial f . These models
have by now been the subject of a large body of work with many interesting upper bounds
(i.e. circuit constructions) as well as lower bounds (i.e. impossibility results). (See, e.g. the
surveys [23, 22] for an overview of many of these results.)

Despite this, many fundamental questions remain unresolved. An important example of
such a question is that of proving lower bounds on the size of formulas for the Iterated Matrix
Multiplication problem, which is defined as follows. Given d n× n matrices M1, . . . ,Md, we
are required to compute (an entry of) the product M1 · · ·Md; we refer to this problem as
IMMn,d. Proving superpolynomial lower bounds on the size of formulas for this problem is
equivalent to separating the power of polynomial-sized ABPs from polynomial-sized formulas,
which is the algebraic analogue of separating the Boolean complexity classes NL and NC1.

A standard divide-and-conquer algorithm yields the best-known formulas for IMMn,d.

More precisely, for any ∆ ≤ log d, this approach yields a formula of product-depth1 ∆ and
size nO(∆d1/∆) for IMMn,d and choosing ∆ = log d yields the current best formula upper
bound of nO(log d), which has not been improved in quite some time. On the other hand,
separating the power of ABPs and formulas is equivalent to showing that IMMn,d does not
have formulas of size poly(nd).

The Iterated Matrix Multiplication problem has many nice features that render its
complexity an interesting object to study. For one, it is the algebraic analogue of the
Boolean reachability problem, and thus any improved formula upper bounds for IMMn,d

could lead to improved Boolean circuit upper bounds for the reachability problem, which
would resolve a long-standing open problem in that area. For another, this problem has strong
self-reducibility properties, which imply that improving on the simple divide-and-conquer
approach to obtain formulas of size no(log d) for any d would lead to improved upper bounds
for all D > d; this implies that the lower-degree variant is no easier than the higher-degree
version of the problem, which can be very useful (e.g. for homogenization [16]). Finally, the
connection to the Reachability problem imbues IMMn,d with a rich combinatorial structure
via its graph theoretic interpretation, which has been used extensively in lower bounds for
depth-4 arithmetic circuits [6, 9, 12, 10, 11].

We study the formula complexity of this problem in the multilinear setting, which restricts
the underlying formulas to only compute multilinear polynomials at intermediate stages of
computation. Starting with the breakthrough work of Raz [15], many lower bounds have been
proved for multilinear models of computation [18, 19, 17, 5]. Further, it is known by a result of
Dvir, Malod, Perifel and Yehudayoff [5] that multilinear ABPs are in fact superpolynomially
more powerful than multilinear formulas. Unfortunately, however, this does not imply any
non-trivial lower bound for Iterated Matrix Multiplication (see the Related Work section

1 The product-depth of an arithmetic circuit or formula is the maximum number of product gates on a
path from output to input. If the product-depth of a circuit or formula is ∆, then its depth can be
assumed to be at least 2∆− 1 and at most 2∆ + 1.
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below), and as far as we know, it could well be the case that there are multilinear formulas
that beat the divide-and-conquer approach in computing this polynomial.

Here, we are able to show that this is not the case for the problem of multiplying 2× 2
matrices (and by extension c× c matrices for any constant c) at any product-depth. Our
main theorem is the following (stated more formally as Theorem 9 later).

I Theorem 1. For ∆ ≤ log d, any product-depth ∆ multilinear formula that computes
IMM2,d must have size 2Ω(∆d1/∆).

This lower bound strengthens a result of Nisan and Wigderson [13] who prove a similar
lower bound in the more restricted set-multilinear setting.

Our result is also qualitatively different from the previous lower bounds for multilinear
formulas since IMM2,d does in fact have polynomial-sized formulas of product-depth O(log d)
(via the divide-and-conquer approach), whereas we show a superpolynomial lower bound for
product-depth o(log d). This observation leads to interesting consequences for multilinear
formula complexity in general, which we now describe.

Depth Reduction: An important theme in Circuit complexity is the interplay between
the size of a formula or circuit and its depth [3, 24, 26, 1, 25]. In the context of algebraic
formulas, a result of Brent [3] says that any formula of size s can be converted into
another of size sO(1) and depth O(log s). Further, the proof of this result also yields the
same statement for multilinear formulas.
Can the result of Brent be improved? Theorem 1 implies that the answer is no in the
multilinear setting (Corollary 12). More precisely, since the IMM2,d polynomial (over O(d)
variables) has formulas of size poly(d) and depth O(log d) but no formulas of size dO(1)

and depth o(log d) (by Theorem 1), we see that any multilinear depth-reduction procedure
that reduces the depth of a size-s formula to o(log s) must incur a superpolynomial blow-
up in size. This strengthens a result of Raz and Yehudayoff [19], whose results imply that
any depth-reduction of multilinear formulas to depth o(

√
log s/ log log s) should incur a

superpolynomial blow-up in size. It is also an analogue in the algebraic setting of some
recent results proved for Boolean circuits [20, 21].
Multilinear vs. general formulas: Shpilka and Yehudayoff [23] ask the question of
whether general formulas can be more efficient at computing multilinear polynomials
than multilinear formulas. This is an important question, since we have techniques for
proving lower bounds for multilinear formulas, whereas the same question for general
formulas (or even depth-3 formulas over large fields) remains wide open.
We are able to make progress towards this question here by showing a separation
between the two models for small depths when the underlying field has characteristic zero
(Corollary 13). We do this by using Theorem 1 in conjunction with a (non-multilinear)
formula upper bound for IMM2,d over fields of characteristic zero due to Gupta et al. [7].
In particular, the result of Gupta et al. [7] implies that for any depth ∆, the polynomial
IMM2,d has formulas of product depth ∆ and size 2O(∆d1/2∆), which is considerably
smaller than our lower bound in the multilinear case for small ∆. From this, it follows
that for any size parameter s and product-depth ∆ = o(log s), general formulas of size
s and product-depth ∆ cannot be converted to multilinear formulas of size sO(1) and
product-depth ∆. Improving our result to allow for ∆ = O(log s) would resolve the
question entirely.

Related Work. The multilinear formula model has been the focus of a large body of work
on Algebraic circuit lower bounds. Nisan and Wigderson [13] proved some of the early
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results in this model by showing size lower bounds for small-depth set-multilinear2 circuits
computing IMM2,d. They showed that any product-depth ∆ circuit for IMM2,d must have
a size of 2Ω(d1/∆) matching the upper bound from the divide-and-conquer algorithm for
∆ = o(log d/ log log d). Our lower bounds for multilinear formulas imply similar lower bounds
for multilinear circuits of product-depth ∆.

Raz [15] proved the first superpolynomial lower bound for multilinear formulas by showing
an nΩ(logn) lower bound for the n× n Determinant and Permanent polynomials. This was
further strengthened by the results of Raz [14] and Raz and Yehudayoff [18] to a similar
lower bound for an explicit polynomial family that has polynomial-sized multilinear circuits.
In particular, these results show the tightness of the depth-reduction procedure for algebraic
circuits in the multilinear setting [26, 18].

Similar polynomial families were also used in the work of Raz and Yehudayoff [19] to prove
exponential lower bounds for multilinear constant-depth circuits. By proving a tight lower
bound for depth-∆ circuits computing an explicit polynomial (similar to the construction of
Raz [14]), Raz and Yehudayoff [19] showed superpolynomial separations between multilinear
circuits of different depths.

In particular, the result of Raz and Yehudayoff [19] implies that the polynomial families
of [14, 18], which have formulas of size nO(logn), cannot be computed by formulas of size
less than some s(n) = nω(logn) if the product-depth ∆ = o(logn/ log logn). This yields the
superpolynomial separation between formulas of size s and depth o(

√
log s/ log log s) alluded

to above. Unfortunately, these polynomials also have nearly optimal formulas of depth just
O(logn) = O(

√
log s), so they cannot be used to obtain the optimal size s vs depth o(log s)

separation we obtain here.

Dvir et al. [5] showed that there is an explicit polynomial on n variables that has
multilinear ABPs of size poly(n) but no multilinear formulas of size less than nΩ(logn).

One might hope that this yields a superpolynomial lower bound for multilinear formulas
computing IMMN,d for some N, d but this unfortunately does not seem to be the case. The
reason for this is that while any polynomial f on n variables that has an ABP of size poly(n)
can be reduced via variable substitutions to IMMN,d for N, d = nO(1), this reduction might
substitute different variables in the IMMN,d polynomial by the same variable x of f and in
the process destroy multilinearity.

Gupta et al. [7] showed the surprising result that general (i.e. non-multilinear) formulas
of depth-3 can beat the divide-and-conquer approach for computing IMMn,d, when the
underlying field has characteristic zero. Their result implies that, in this setting, IMMn,d

has product-depth 1 formulas of size nO(
√
d), as opposed to the nO(d)-sized formula that

is obtained from the traditional divide-and-conquer approach. Using the self-reduction
properties of IMMn,d, this can be easily seen to imply the existence of nO(∆d1/2∆)-sized
formulas of product-depth ∆. This construction uses the fact that the formulas are allowed
to be non-multilinear. Our result shows that this cannot be avoided.

2 Set-multilinear circuits are further restrictions of multilinear circuits. A set-multilinear circuit for
IMMn,d is defined by the property that each intermediate polynomial computed must be a linear
combination of monomials that contain exactly one variable from each matrix Mi (i ∈ S), for some
choice of S ⊆ [d].
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Figure 1 The directed acyclic graph Gd that defines the polynomial IMMd with its labeling.

2 Preliminaries

2.1 Basic setup
Unless otherwise stated, let F be an arbitrary field. Let d ∈ N be a growing integer parameter.
We define X(1), . . . , X(d) to be disjoint sets of variables where each X(i) = {x(i)

j,k | j, k ∈ [2]}
is a set of four variables that we think of forming a 2× 2 matrix. Let X =

⋃
i∈[d]X

(i).
A polynomial P ∈ F[X] is called multilinear if the degree of P in each variable x ∈ X

is at most 1. We define the multilinear polynomial IMMd ∈ F[X] as follows. Consider
the matrices M (1), . . . ,M (d) where the entries of M (i) are the variables of X(i) arranged in
the obvious way. Define the matrix M = M (1) · · ·M (d); the entries of M are multilinear
polynomials over the variables in X. We define IMMd = M(1, 1) +M(1, 2), i.e. the sum of
the (1, 1)th and (1, 2)th entries of M . Note, in particular, that the polynomial IMMd does
not depend on the variables x(1)

2,1 and x(1)
2,2.

This is a slight variant of the Iterated Matrix Multiplication polynomial seen in the
literature, as it is usually defined to be either the matrix entry M(1, 1) or the trace M(1, 1) +
M(2, 2). Our results can easily be seen to hold for these variants, but we deal with the
definition above for some technical simplicity.

Another standard way of defining the polynomial IMMd is via graphs. Define the edge-
labelled directed acyclic graph Gd = (V,E, λ) as follows: the vertex set V is defined to be the
disjoint union of vertex sets V (0), . . . , V (d) where V (i) = {v(i)

1 , v
(i)
2 }. The edge set E is the

set of all possible edges from some set V (i) to V (i+1) (for all i < d). The labelling function
λ : E → X is defined by λ((v(i)

j , v
(i+1)
k )) = x

(i+1)
j,k . See Figure 1 for a depiction of this graph.

Given a path π in the graph Gd, λ(π) is defined to be the product of all labels of edges
in π. In this notation, IMMd can be seen to be the following.

IMMd =
∑

paths π from v
(0)
1

to v(d)
1 or v(d)

2

λ(π) =
∑

π1,...,πd∈{1,2}

x
(1)
1,π1

x(2)
π1,π2

· · ·x(d)
πd−1,πd

(1)

2.2 Multilinear formulas and circuits
We refer the reader to the standard resources (e.g. [23, 22]) for basic definitions related to
algebraic circuits and formulas. Having said that, we do make a few remarks.

All the gates in our formulas and circuits will be allowed to have unbounded fan-in.
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The size of a formula or circuit will refer to the number of gates (including input gates)
in it, and depth of the formula or circuit will refer to the number of gates on the longest
path from an input gate to output gate.
Further, the product-depth of the formula or circuit (as in [18]) will refer to the maximum
number of product gates on a path from an input gate to the output gate. Note that the
product depth of a formula or circuit can be assumed to be within a factor of two of the
overall depth (by collapsing sum gates if necessary).

Multilinear circuits and formulas. An algebraic formula F (resp. circuit C) computing a
polynomial from F[X] is said to be multilinear if each gate in the formula (resp. circuit)
computes a multilinear polynomial 3. Moreover, a formula F is said to be syntactic multilinear
if for each multiplication gate Φ of F with children Ψ1, . . . ,Ψt, we have Supp(Ψi)∩Supp(Ψj) =
∅ for each i 6= j, where Supp(Φ) denotes the set of variables that appear in the subformula
rooted at Φ. Finally, for ∆ ≥ 1, we say that a multilinear formula (resp. circuit) is a (ΣΠ)∆Σ
formula (resp. circuit) if the output gate is a sum gate and along any path, the sum and
product gates alternate, with each product gate appearing exactly ∆ times and the bottom
gate being a sum gate. We can define (ΣΠ)∆,ΣΠΣ,ΣΠΣΠ formulas and circuits similarly.

For a gate Φ in a syntactically multilinear formula, we define a set of variables Vars(Φ)
in a top-down fashion as follows.

I Definition 2. Let C be a syntactically multilinear formula computing a polynomial on
the variable set X. For the output gate Φ, we define Vars(Φ) = X. If Φ is a sum gate with
children Ψ1, . . . ,Ψk and Vars(Φ) = S ⊆ X, then for each 1 ≤ i ≤ k, Vars(Ψi) = S. If Φ is a
product gate with children Ψ1, . . .Ψk and Vars(Φ) = S ⊆ X, then Vars(Ψi) = Supp(Ψi) for
1 ≤ i ≤ k − 1 and Vars(Ψk) = S \

(
∪k−1
i=1 Vars(Ψi)

)
.

It is easy to see that Vars(·) satisfies the properties listed in the following proposition.

I Proposition 3. For each gate Φ in a syntactically multilinear formula C, let Vars(Φ) be
defined as in Definition 2 above.
1. For any gate Φ in C, Supp(Φ) ⊆ Vars(Φ).
2. If Φ is a sum gate, with children Ψ1,Ψ2, . . . ,Ψk, then ∀i ∈ [k], Vars(Ψi) = Vars(Φ).
3. If Φ is a product gate, with children Ψ1,Ψ2, . . . ,Ψk, then Vars(Φ) = ∪ki=1Vars(Ψi) and

the sets Vars(Ψi) (i ∈ [k]) are pairwise disjoint.

We will use the following structural results that convert general multilinear circuits (resp.
formulas) to (ΣΠ)∆Σ circuits (resp. formulas).

I Lemma 4 (Raz and Yehudayoff [19], Claims 2.3 and 2.4). For any multilinear formula F of
product depth at most ∆ and size at most s, there is a syntactic multilinear (ΣΠ)∆Σ formula
F ′ of size at most (∆ + 1)2 · s computing the same polynomial as F .

I Lemma 5 (Raz and Yehudayoff [19], Lemma 2.1). For any multilinear circuit C of product
depth at most ∆ and size at most s, there is a syntactic multilinear (ΣΠ)∆Σ formula F of
size at most (∆ + 1)2 · s2∆+1 computing the same polynomial as C.

We will also need the following structural result.

3 It is important to note that any multilinear polynomial can be computed by a non-multilinear formula
(resp. circuit) as well.
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I Lemma 6 (Raz, Shpilka and Yehudayoff [17], Claim 5.6). Let F be a syntactic multilinear
formula computing a polynomial f and let Φ be any gate in F computing a polynomial g.
Then f can be written as f = Ag + B, where A ∈ F[X \ Vars(Φ)], B ∈ F[X] and B is
computed by replacing Φ with a 0 in F .

A standard divide-and-conquer approach (see [2, Proposition 3.10]) yields the best-known
multilinear formulas/circuits for IMMd for all depths. (A proof sketch is presented in [4].)

I Lemma 7. For each ∆ ≤ log d,4 IMMd is computed by a syntactic multilinear (ΣΠ)∆

circuit C∆ of size at most dO(1) · 2O(d1/∆) and a syntactic multilinear (ΣΠ)∆ formula F∆ of
size at most 2O(∆d1/∆).

We will show that the above bounds are nearly tight in the multilinear setting. If we
remove the multilinear restriction on (ΣΠ)∆Σ formulas computing IMMd, we can get better
upper bounds, as long as the underlying field has characteristic zero.

I Lemma 8 (follows from [7]). Let F be a field of characteristic zero. For each ∆ ≤ log d,
IMMd has a (ΣΠ)∆Σ formula F∆ of size at most 2O(∆d1/(2∆)).

A proof sketch for the above lemma is presented in the full version [4].

3 Lower bounds for multilinear formulas and circuits computing IMMd

The main theorem of this section is the following lower bound.

I Theorem 9. Let d ≥ 1 be a growing parameter and fix any ∆ ≤ log d. Any syntactic
multilinear (ΣΠ)∆Σ formula for IMMd must have a size of 2Ω(∆d1/∆).

By applying Theorem 9 and Lemmas 4, 5, we get the following (immediate) corollaries.

I Corollary 10. Let d ≥ 1 be a growing parameter and fix any ∆ ≤ log d/ log log d. Any
multilinear circuit of product-depth at most ∆ for IMMd must have a size of 2Ω(d1/∆).

In particular, any polynomial-sized multilinear circuit for IMMd must have product-depth
Ω(log d/ log log d).

I Corollary 11. Let d ≥ 1 be a growing parameter and fix any ∆ ≤ log d. Any multilinear
formula of product depth at most ∆ for IMMd must have size 2Ω(∆d1/∆). In particular, any
polynomial-sized multilinear formula for IMMd must have product-depth Ω(log d).

As the product-depth of a formula is at most its depth, Lemma 7, Corollary 11 imply:

I Corollary 12 (Tightness of Brent’s depth-reduction for multilinear formulas). For each d ≥ 1,
there is an explicit polynomial Fd on O(d) variables such that Fd has a multilinear formula
of size dO(1), but any multilinear formula of depth o(log d) for Fd must have a size of dω(1).

Choosing parameters carefully, we also obtain the following.

I Corollary 13 (Separation of multilinear formulas and general formulas over zero characteristic).
Let F be a field of characteristic zero. Let s ∈ N be any growing parameter and ∆ ∈ N be
such that ∆ ≤ o(log s). There is an explicit multilinear polynomial Fs,∆ that has a (ΣΠ)∆Σ
formula of size s, but any (ΣΠ)∆Σ multilinear formula for Fs,∆ must have a size of sω(1).

4 All our logarithms will be to base 2.
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Proof. We choose the polynomial Fs,∆ to be IMMd for suitable d and then simply apply
Corollary 11 and Lemma 8 to obtain the result. Details follow.

Say ∆ = log s
f(s) for some f(s) = ω(1). By Lemma 8, for any d, IMMd has a product-depth

∆ formula of size s(d,∆) = 2O(∆d1/2∆); we choose d so that s(d,∆) = s. It can be checked
that for d = Θ(f(s))2∆, this is indeed the case.

Having chosen d as above, we define Fs,∆ = IMMd. Clearly, Fs,∆ has a (non-multilinear)
formula of product-depth ∆ and size at most s. On the other hand, by Theorem 9, any
multilinear product-depth ∆ formula for IMMd must have size at least 2Ω(∆d1/∆) = sΩ(d1/2∆) =
sΩ(f(s)) = sω(1), which proves the claim.

It can also be proved similarly that for d as chosen above, IMMd in fact has no multilinear
formulas of size sO(1) and product-depth up to (2− ε)∆ for any absolute constant ε. J

4 Proof of Theorem 9

Our proof follows a two-step argument as in [15, 19] (see the exposition in [23, Section 3.6]).

Step 1 – The product lemma. The first step is a “product-lemma” for multilinear formulas.
Formally, define a polynomial f ∈ F[X] to be a t-product polynomial if we can write f as
f1 · · · ft , where we can find a partition of X into non-empty sets Xf

1 , . . . , X
f
t such that fi

is a multilinear polynomial from F[Xf
i ].5 We say that Xf

i is the set ascribed to fi in the
t-product polynomial f . We use Vars(fi) (with a slight abuse of notation)6 to denote Xf

i .
We drop f from the superscript if f is clear from the context.

We define f ∈ F[X] to be r-simple if f = L1 · · ·Lr′ ·G, where r′ ≤ r, is an (r′+1)-product
polynomial where L1, . . . , Lr′ are polynomials of degree at most 1, the sets Xf

1 , . . . , X
f
r′

ascribed to these linear polynomials satisfy
∣∣∣⋃i≤r′ Xf

i

∣∣∣ ≥ 400r. We prove the following.

I Lemma 14. Let ∆ ≤ log d. Assume that f ∈ F[X] can be computed by a syntactic
multilinear (ΣΠ)∆Σ formula F of size at most s. Then, f is the sum of at most s many
t-product polynomials and at most s many t-simple polynomials for t = Ω(∆d1/∆).

While our proof (presented in the full version [4]) of this lemma is motivated by earlier
work [23, 8, 19], we give slightly better parameters, which is crucial for proving tight lower
bounds for formulas. In particular, [19, Claim 5.5] yields the above but with t = Ω(d1/∆).

Step 2 – Rank measure and the hard polynomial. The second step is to show that any
such decomposition for IMMd must have many terms. Our proof of this step is inspired by
the proof of the multilinear formula lower bound of Raz [15] for the determinant and also
the slightly weaker lower bound of Nisan and Wigderson [13] for IMMd in the set-multilinear
case. Following [15], we define a suitable random restriction ρ, of the IMMd polynomial by
assigning variables from the set X to Y ∪ Z ∪ {0, 1}, where Y and Z are disjoint sets of new
variables. As the restriction sets distinct variables in X to distinct variables in Y ∪ Z or
constants, it preserves multilinearity.

Having performed the restriction, we consider the partial derivative matrix of the restricted
polynomial, which is defined as follows. Let g ∈ F[Y ∪Z] be a multilinear polynomial. Define

5 Note that we do not need fi to depend non-trivially on all (or any) of the variables in Xf
i .6 Vars(·) is used to describe variables ascribed to gates in a circuit as well as to denote variables ascribed

to polynomials.
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Algorithm 1 Sampling algorithm S.
1: Choose π uniformly at random from {1, 2}d. Define π(0) = 1.
2: Choose a uniformly at random from {0, 1}d. Let A = {i | ai = 1}.
3: for i ∈ [d] do
4: Let bi = 0 if π(i− 1) = π(i) and 1 if π(i− 1) 6= π(i).
5: end for
6: for i = 1 to d do
7: if i 6∈ A then
8: Choose ρ|X(i) such thatM (i) is I if bi = 0 and E if bi = 1. (In particular, all variables

are set to constants from {0, 1}.)
9: else if i ∈ A and i is the jth smallest element of A for odd j then
10: Fix

ρ(x(i)
u,v) =


ydj/2e if u = π(i− 1) and v = π(i),
1 if u = π(i− 1) and v = π(i),
0 otherwise.

11: else
12: Now, i ∈ A and i is the jth smallest element of A for even j. We fix

ρ(x(i)
u,v) =


zj/2 if u = π(i− 1) and v = π(i),
1 if u = π(i− 1) and v = π(i),
0 otherwise.

13: end if
14: end for

the 2|Y |×2|Z| matrixM(Y,Z)(g) such that rows and columns are labelled by distinct multilinear
monomials in Y and Z respectively and the (m1,m2)th entry of M(Y,Z)(g) is the coefficient
of the monomial m1 ·m2 in g.

Our restriction is defined to have the following two properties.
1. The rank of M(Y,Z)(g) is equal to its maximum possible value (i.e. min{2|Y |, 2|Z|}) with

probability 1 where g is the restricted version of IMMd.
2. On the other hand, let f be either a t-product or a t-simple polynomial, and let f ′ denote

its restriction under ρ. Then, the rank of M(Y,Z)(f ′) is small with high probability.

Now, if IMMd has a (ΣΠ)∆Σ formula F of small size, then it is a sum of a small number
of t-product and t-simple polynomials by Lemma 14 and hence by a union bound, we will
be able to find a restriction under which the partial derivative matrices of each of these
polynomials have a small rank. By the subadditivity of rank, this will imply that M(Y,Z)(g)
will itself have low rank, contradicting the first property of our restriction.

To make the above precise, we first define our restrictions. Let Ỹ = {y1, . . . , yd} and
Z̃ = {z1, . . . , zd} be two disjoint sets of variables. A restriction ρ is a function mapping the
set X to Ỹ ∪ Z̃ ∪ {0, 1}. We consider the following process for sampling a random restriction.

Recall that M (i) is the 2 × 2 matrix whose (u, v)th entry is x(i)
u,v. Let I and E denote

the standard 2× 2 identity matrix and the 2× 2 flip permutation matrix respectively. For
a ∈ {1, 2}, we use a to denote the other element of the set.

We give a procedure S for sampling a random restriction ρ : X → Ỹ ∪ Z̃ ∪ {0, 1} in
Algorithm 1. Based on the output ρ of S, we define the (random) sets Y = Ỹ ∩ Img(ρ) and
Z = Z̃ ∩ Img(ρ). Let m = m(ρ) = min{|Y |, |Z|}.
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X1 X2 X3 X4 X5 X6 X7 X8 X9
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Figure 2 Effect of ρ on IMM9 when the sampling algortithm S yields π = (2, 2, 1, 1, 1, 2, 2, 1, 1)
and a = (1, 0, 1, 0, 1, 0, 1, 0, 1). Thus, IMM9|ρ in this case yields us (1 + y1z1)(1 + y2z2)(1 + y3).

I Observation 15. The restriction ρ satisfies the following.
1. |Y | = d|A|/2e and |Z| = b|A|/2c. Hence, |Z| ≤ |Y | ≤ |Z|+ 1 and m = |Z|.
2. Distinct variables in X cannot be mapped to the same variable in Y ∪ Z.
3. Only the variables of the form x

(i)
π(i−1),π(i) can be set to variables in Y ∪ Z by ρ. The rest

are set to constants.

Note that b is distributed uniformly over {0, 1}d. Given a polynomial f ∈ F[X], the
restriction ρ yields a natural polynomial f |ρ ∈ F[Y ∪ Z] by substitution. Note, moreover,
that if f is multilinear then so is f |ρ since distinct variables in X cannot be mapped to the
same variable in Y ∪ Z (Observation 15).

I Lemma 16. Let us assume that ρ is sampled as above. Then we have the following:
1. rank(M(Y,Z)(IMMd|ρ)) = 2m with probability 1.
2. If f ∈ F[X] is any t-product polynomial, then for some absolute constant ε > 0,,

Pr[rank(M(Y,Z)(f |ρ)) ≥ 2m−εt] ≤ 1
2Ω(t) .

3. If f ∈ F[X] is any r-simple polynomial, then for some absolute constant δ > 0,
Pr[rank(M(Y,Z)(f |ρ)) ≥ 2m−δr] ≤ 1

2Ω(r) .

Given Lemmas 14 and 16, we can finish the proof of Theorem 9 as follows.

Proof of Theorem 9 assuming Lemma 16. Assume that IMMd is computed by a syntactic
mulitlinear (ΣΠ)∆Σ formula F of size at most s. By Lemma 14, we get that f can be
expressed as a sum of at most 2s many summands, say f1, f2, . . . , fs and g1, g2, . . . , gs, where
each summand fi is a t-product polynomial and each summand gj is a t-simple polynomial
for t = Ω(∆d1/∆).

For each i ∈ [s], Lemma 16 implies that Pr[rank
(
M(Y,Z)(fi|ρ)

)
≥ 2m−εt] ≤ 1

2Ω(t) and
Pr[rank

(
M(Y,Z)(gi|ρ)

)
≥ 2m−δt] ≤ 1

2Ω(t) , where ε and δ are absolute constants.
Thus, unless s ≥ 2Ω(t), we see by a union bound that there exists a ρ such that for each

i ∈ [s], rank
(
M(Y,Z)(fi|ρ)

)
≤ 2m−εt and rank

(
M(Y,Z)(gi|ρ)

)
≤ 2m−δt. For such a ρ, we have

rank(M(Y,Z)(F |ρ)) ≤ 2m ·
(
s

2εt + s
2δt
)
< 2m unless s ≥ 2Ω(t).

From Lemma 16, we also know that for any choice of ρ in the sampling algorithm S,
we have rank(M(Y,Z)(IMMd|ρ)) ≥ 2m. In particular, since F computes IMMd, we must have
s ≥ 2Ω(t) = 2Ω(∆d1/∆). J

Proof of Lemma 16.

Part 1: IMMd has high rank. Let π ∈ {1, 2}d and a ∈ {0, 1}d be arbitrary. Note that in
our sampling algorithm, ρ,A, b are completely determined given π and a.

Let us now examine the effect of ρ on IMMd. We take the graph theoretic view of the
polynomial IMMd as given in Section 2.1.
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Figure 2 illustrates how this restriction affects the variables labelling the edges of the graph
Gd defined in Section 2.1. By substituting according to ρ in (1), we get that IMMd(X)|ρ =∏m
i=1 (1 + yizi) if |A| = 2m and

∏m
i=1 (1 + yizi) · (1 + ym+1) if |A| = 2m+ 1, where m = |Z|.

For any S ⊆ [m], let ZS (resp., YS) denote the monomial
∏
i∈S zi (resp.,

∏
i∈S yi). Now

consider the matrix M(Y,Z)(IMMd|ρ) . We will simply useM to denote this matrix. For the
sake of simplicity let us assume that |A| = 2m. (The case when |A| = 2m + 1 is similar.)
Let the rows and columns ofM be labelled by the subsets of [m] and letM(S, T ) be the
coefficient of YS ·ZT in IMMd|ρ. It is easy to see thatM(S, T ) = 0 if S 6= T and 1 otherwise.
That is,M is the Identity matrix of size 2m × 2m and hence it has full rank.7 C

Part 2: t-product polynomials have low rank. We now prove that for a t-product polyno-
mial f , rank(M(Y,Z)(f |ρ)) is small w.h.p.

Let f be a t-product polynomial, i.e. f = f1f2 . . . ft. Let χ : X → [t] be a coloring
function, which assigns colors to all the variables in X, so that χ−1(i) = Xf

i , where X
f
i is

the variable set ascribed to fi. That is, all the variables ascribed to fi are assigned color i
under the coloring function. To prove the lemma, we first show that, with high probability
(over the choice of π), a constant fraction of the t colors appear along the path defined by
π, i.e. along (π(0), π(1)), (π(1), π(2)), . . . , (π(d− 1), π(d)). Given such a multi-colored path,
we then show that with a high probability, over the choice of a, many of the colors have an
imbalance. A color is said to have an imbalance under ρ if more variables from X of that
color are mapped to the Y variables than the Z variables or vice versa. We then appeal to
arguments similar to those in [15, 19, 5] to conclude that the imbalance results in a low rank.

Variable coloring, t-product polynomials and imbalance. We start with some notation.
Given a string π ∈ {1, 2}d, let the path defined by π be the following sequence of pairs
(π(0), π(1)), (π(1), π(2)), . . . , (π(d− 1), π(d)) (we call it a path since these pairs correspond
naturally to the edges of a path in the graph Gd defined in Section 2.1). We say that a color
γ ∈ [t] appears in layer ` ∈ [d] if there exist u, v ∈ {1, 2} such that γ = χ(x(`)

u,v).
Let C0 = ∅ and let Ci = Ci−1 ∪ {χ(x(i)

u,v) | u, v ∈ {1, 2}} for i ∈ [d], i.e., Ci contains all
the distinct colors appearing in layers {1, 2 . . . , i}. Therefore, |Cd| = t. We will also define
O2i+1 to be all the colors appearing in odd numbered layers up to 2i+1, i.e. O2i+1 = O2i−1∪
{χ(x(2i+1)

u,v ) | u, v ∈ {1, 2}}. Similarly, we define E2i = E2i−2 ∪ {χ(x(2i)
u,v ) | u, v ∈ {1, 2}}.

Let C0
π = ∅ and Ciπ = Ci−1

π ∪ {χ(x(i)
(π(i−1),π(i)))}, i.e. C

i
π contains all the distinct colors

appearing along the path defined by π up to layer i. We first observe a property of Cdπ stated
in the claim below.

I Claim 17. If |Cd| = t, then Prπ[|Cdπ| ≤ t/100] ≤ 1/2Ω(t) .

We will assume the claim and finish the proof of Part 2 of Lemma 16. The above claim
shows that a lot of colors appear on the uniformly random path π with high probability.
Using this, we will now show that a constant fraction of these colors also exhibit an imbalance
with a high probability. Using the multiplicativity of the rank, we will then show that the
imbalance for a large number of factors results in the low rank of the matrix MY,Z(f |ρ).

We will say that π is good if |Cdπ| > t/100. Let L = t/100. The above claim shows that a
random π is good with high probability. In what follows, we condition on picking a good
π. Let a ∈ {0, 1}d be chosen uniformly at random as in the sampling algorithm. Let ρ be
defined as in the sampling algorithm for π, a.

7 If |A| = 2m+ 1 thenM has a 2m × 2m sized Identity matrix as a submatrix.
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Let γ ∈ Cdπ be a color that appears along π. Let πγ be the elements along the path
defined by π with color γ, i.e. πγ = {(π(i − 1), π(i)) | χ(x(i)

(π(i−1),π(i))) = γ}. Let ρ(πγ) =
{ρ(x(i)

(π(i−1),π(i))) | (π(i−1), π(i)) ∈ πγ}∩(Y ∪Z) . A color γ ∈ [t] is said to have an imbalance
w.r.t. ρ if ||ρ(πγ) ∩ Y | − |ρ(πγ) ∩ Z|| ≥ 1.

It is easy to see that if |ρ(πγ)| is odd, then γ has an imbalance w.r.t. ρ. Note that the former
event is equivalent to the event that

⊕
i∈Pγ ai equals 1 where Pγ = {i | (π(i−1), π(i)) ∈ πγ}.

Hence for any γ ∈ Cdπ, Pr[γ has an imbalance with respect to ρ along π] = 1/2. Further, as
|Cdπ| ≥ L and the events corresponding to distinct γ ∈ Cdπ are mutually independent, the
Chernoff bound gives Pr[≤ L/4 colors have an imbalance w.r.t. ρ along π] ≤ 1/2Ω(L). C

Assuming Claim 17 we are now done. The proof of Claim 17 can be found in [4].

Imbalance implies low rank. Let us recall that f = f1f2 . . . ft is a t-product polynomial
that is defined over the disjoint variable partition X = X1∪X2∪· · ·∪Xt such that |Xi| ≥ 1 for
all i ∈ [t]. The following lemma (see, e.g., [19]) will be useful in bounding rank(M(Y,Z)(f |ρ)).

I Lemma 18 ([19], Proposition 2.5). Let g = g1g2 · · · gt be a t-product polynomial over the set
of variables Y ∪Z where Vars(gi) = Yi∪Zi. Then rank(M(Y,Z)(g)) =

∏
i∈[t] rank(M(Yi,Zi)(gi)).

From Lemma 18, we get that rank(M(Y,Z)(f |ρ)) =
∏t
i=1 rank(M(Yi,Zi)(fi|ρ)) where

Yi = Y ∩ {ρ(x)|x ∈ Xi} and Zi = Z ∩ {ρ(x)|x ∈ Xi} . For all i ∈ [t], from the definition
it is clear that the rank of the matrix M(Yi,Zi)(fi|ρ) is upper bounded by 2min{|Yi|,|Zi|} ≤
2(|Yi|+|Zi|)/2. Let us note that these disjoint partitions in the t-product polynomial correspond
to the colors in the coloring χ with all variables in Xi colored i. Hence if color i has
imbalance w.r.t. ρ, then rank(M(Yi,Zi)(fi|ρ)) ≤ 2min{|Yi|,|Zi|} ≤ 2(|Yi|+|Zi|−1)/2. Thus,
rank(M(Y,Z)(f |ρ)) ≤

∏t
i=1 2(|Yi|+|Zi|−1)/2 = 2((|Y |+|Z|)/2)−(`/2) ≤ 2m−(`−1)/2 where ` is the

number of colors that have imbalance w.r.t. ρ. From the above discussion, we can infer that
Prπ[rank (MY,Z(f |ρ)) ≥ 2m−(t/1000)] ≤ Prπ[` ≤ t/400] ≤ 1

2Ω(t) .

Part 3: r-simple polynomials have low rank. Here we prove that if f ∈ F[X] is any r-simple
polynomial, then for some absolute constant δ > 0, Pr[rank(M(Y,Z)(f |ρ)) ≥ 2m−δr] ≤ 1

2Ω(r) .
As f is an r-simple polynomial we know that f =

(∏r′

i=1 Li

)
·G, where r′ ≤ r, Lis are

linear polynomials, ∀i ∈ [r′] Xi is the set of variables ascribed to Li and Xr′+1 is the set of
variables ascribed to G. Moreover, | ∪r′i=1 Xi| ≥ 400r.

To prove the above statement we set up some notation. Let f |ρ =
(∏r′

i=1 Li|ρ
)
·G|ρ . Let

Yi = {ρ(x) | x ∈ Xi} ∩ Y and Zi = {ρ(x) | x ∈ Xi} ∩ Z for each i ∈ [r′]. Let Y ′ = ∪r′i=1Yi
and Z ′ = ∪r′i=1Zi. Also, let Y ′′ = Y \ Y ′ and Z ′′ = Z \ Z ′. Let U denote ∪r′i=1Xi and let
U |ρ = (∪r′i=1Yi) ∪ (∪r′i=1Zi).

In the following claim we show that if U is a large set to begin with then with high
probability (over the restriction ρ defined by the sampling algorithm), U |ρ is also large.

I Claim 19. If |U | ≥ 400r, then Pr[|U |ρ| ≤ 4r] ≤ 1
2Ω(r) .

We first finish the proof of Part 3 of Lemma 16 assuming this claim.
We say that a restriction ρ is good if we get |U |ρ| ≥ 4r. In what follows we will

condition on the event that we have a good ρ. For a restriction ρ, for each i ∈ [r′], we
can write Li|ρ(Yi, Zi) as L′i|ρ(Yi)+ L′′i |ρ(Zi) as Lis are linear polynomials. Therefore we get∏r′

i=1 Li|ρ(Y ′, Z ′) =
∑
S⊆[r′]

∏
i∈S L

′
i|ρ(Yi) ·

∏
j∈[r′]\S L

′′
j |ρ(Zj).
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Let LS denote the polynomial
∏
i∈S L

′
i|ρ(Yi)·

∏
j∈[r′]\S L

′′
j |ρ(Zj). Note that for all S ⊆ [r′],

rank
(
M(Y ′,Z′)(LS)

)
is at most 1. Therefore, by the subadditivity of matrix rank, we get that

rank
(
M(Y ′,Z′)

(∏r′

i=1 Li|ρ(Y ′, Z ′)
))
≤ 2r′ ≤ 2r . We can now bound rank

(
M(Y,Z) (f |ρ)

)
.

rank
(
M(Y,Z) (f |ρ)

)
2(|Y |+|Z|)/2 =

rank
(
M(Y,Z)

(∏r′

i=1 Li|ρ ·G|ρ
))

2(|Y |+|Z|)/2

=
rank

(
M(Y ′,Z′)

(∏r′

i=1 Li|ρ
))

2(|Y ′|+|Z′|)/2 ·
rank

(
M(Y ′′,Z′′) (G|ρ)

)
2(|Y ′′|+|Z′′|)/2

≤ 2r

2|U |ρ|/2
· 1 ≤ 2r

22r = 1
2r .

where the second equality follows from Lemma 18. Therefore, we have rank
(
M(Y,Z) (f |ρ)

)
≤

2(|Y |+|Z|)/2/2r ≤ 2m+(1/2)−r for any good ρ.
As Claim 19 tells us that ρ is good with probability 1− 1/2Ω(r), we are done. C
Assuming Claim 19 (proof in [4]) we are done with the proof of Part 3 of Lemma 16. J
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Abstract
We consider a range of simply stated dynamic data structure problems on strings. An update
changes one symbol in the input and a query asks us to compute some function of the pattern
of length m and a substring of a longer text. We give both conditional and unconditional lower
bounds for variants of exact matching with wildcards, inner product, and Hamming distance
computation via a sequence of reductions. As an example, we show that there does not exist an
O(m1/2−ε) time algorithm for a large range of these problems unless the online Boolean matrix-
vector multiplication conjecture is false. We also provide nearly matching upper bounds for most
of the problems we consider.
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1 Introduction

The search for lower bounds provides one of the greatest challenges in computer science.
Progress in finding better truly unconditional lower bounds continues in slow but steady
steps. There appears however, in the short term at least, to be no realistic prospect of
finding unconditional lower bounds which are polynomial in the size of the input. One of
the most exciting discoveries in recent years has been that such polynomial lower bounds
can be given for a range of problems in P conditional on the hardness of a small set of well
known and conjectured to be hard problems [2, 3, 13, 10, 1, 14]. These include the Strong
Exponential Time Hypothesis (SETH), 3-SUM and online Boolean matrix-vector product
(OMv).
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22:2 Upper and Lower Bounds for Dynamic Data Structures on Strings

In this paper we study the hardness of a number of simply stated dynamic string problems
and show both conditional lower bounds based on the OMv conjecture (see Conjecture 14
for a precise statement) as well as unconditional lower bounds. We will also give new upper
bounds which in many cases will nearly match our new conditional lower bounds. Each
problem will have the following form.

I Problem 1. Consider a text T of length n and a pattern P of length m. An update
to the pattern (or text) is a pair (j, σ) which indicates that the letter at index j in the
pattern (or text) is to be substituted with the letter σ. The task is to develop a dynamic data
structure on P and T that maintains the following queries: Given a position i of T , output
f(P, T [i, . . . , i+m− 1]).

Unless stated otherwise, we allow updates to both the pattern P and the text T . The dif-
ferent functions f we will consider are Hamming distance (DynHD), inner product (DynIP)
and exact matching with wildcards (DynEM). These functions have formed the core of pat-
tern matching with errors and wildcards for many years and have been extensively studied in
both the standard offline pattern matching setting and to a lesser extent online and stream-
ing. To the best of our knowledge, this is the first exploration of the complexity of pattern
matching with errors and wildcards as a fully dynamic data structure problem.

By way of preparation, in Lemmas 4 and 5 we give O(
√
m logm) query and update

times for exact inner product, exact matching with wildcards, and for dynamic Hamming
distance over constant-sized alphabets, as well as O(m3/4 log1/4m)-time algorithm for dy-
namic Hamming distance over polynomial-size alphabets. These algorithms are derived via a
lazy rebuilding scheme. We then show in Theorem 15 that there does not exist an O(m1/2−ε)
time solution to any of these problems unless the online Boolean matrix-vector conjecture is
false. The lower bound for dynamic exact matching with wildcards is particularly interesting
as it is exponentially higher than the known O(logm) time complexity for dynamic exact
matching without wildcards.

Our conditional lower bound also extends to (1+ε)-approximate DynIP, DynIP modulo
2 and remarkably, to DynHD modulo 2 with a ternary input alphabet. This latter result
is in stark contrast to the complexity of DynHD modulo 2 with a binary input alphabet
which we show in Lemma 13 can be solved in O(logm/ log logm) query and update time.

We complement all these lower bounds with a set of unconditional lower bounds derived
via reductions from different 2d-dynamic range counting problems. First we show that
DynIP is at least hard as weighted 2d-range counting. As a result our lower bound of
Ω((logm/ log logm)2) for DynIP matches the highest unconditional lower bound known
for any dynamic data structure problem. We then go on to show Ω((log1/2m/ log logm)3)
unconditional lower bounds for DynHD over binary alphabets, DynIP modulo 2 over binary
alphabets and DynHD modulo 2 over ternary alphabets. These lower bounds are derived
from a recent breakthrough in the complexity of the unweighted version of 2d-range counting.
To finish our unconditional lower bounds we then show Ω(logm/ log logm) unconditional
lower bounds for DynHD modulo 2 over binary alphabets, DynEM and (1+ε)-approximate
DynIP.

As our final set of dynamic problems, we move on to consider (1 + ε)-approximate
DynHD for which we do not have matching conditional lower bounds, despite its superficial
similarity to approximate DynIP. Unlike for approximate DynIP and exact DynHD, in
Section 4 we show markedly different upper bounds for approximate DynHD depending on
whether updates may occur in only the pattern and text or in both. For the former case we
derive O(ε−c polylog m) time algorithms via Johnson-Lindenstrauss sketching. The exact
value of c depends on the size of the input alphabet and in fact for some update operations
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Table 1 Update/query time bounds for DynEM, DynHD, and DynIP for a text T of length
m ≤ n ≤ 2m and a pattern P of length m. For the conditional lower bounds, δ > 0 is an arbitrary
constant. Bounds for (1 + ε)-approximate DynHD are not shown (see Section 4 for details).

Mode Alphabet Upper bounds Cond. lower bounds Uncond. lower bounds

D
yn

E
M

exact polynom. O(
√
m logm) Ω(m1/2−δ) Ω(logm/ log logm)

D
yn

IP

exact polynom. O(
√
m logm) Ω(m1/2−δ) Ω((logm/ log logm)2)

mod 2 {0, 1} O(
√
m logm) Ω(m1/2−δ) Ω((log1/2 m/ log logm)3)

approx. polynom. O(
√
m logm) Ω(m1/2−δ) Ω(logm/ log logm)

D
yn

H
D exact constant O(

√
m logm) Ω(m1/2−δ) Ω((log1/2 m/ log logm)3)

polynom. O(m3/4 log1/2 m) Ω(m1/2−δ) Ω((log1/2 m/ log logm)3)

mod 2 {0, 1} O(logm/ log logm) — Ω(logm/ log logm)
{0, 1, 2} O(

√
m logm) Ω(m1/2−δ) Ω((log1/2 m/ log logm)3)

the running time dependency on logm is completely removed. For the latter case with
updates in both the pattern and text, our upper bound is O(ε−2√m polylog m) time. It is
an interesting and open question whether there exist matching conditional lower bounds for
these versions of approximate DynHD as well. We give a summary of the results in Table 1.

2 Related work

In the dynamic setting we consider with single character updates, the most closely related
previous work considers the problem of dynamic exact matching. In [8] an O(log logm)
time algorithm was shown for dynamic exact matching when updates are only permitted in
the text [8]. In [5] a more general data structure was developed supporting insertion and
deletion of characters and movements of arbitrary large blocks of text. This was improved in
a succession of papers culminating in the work [19] who give a data structure that supports,
amongst other properties, concatenation, splitting and equality testing in O(logm) update
and O(1) query time. The same data structure solves, for example, the dynamic exact
matching problem without wildcards problem in O(logm) time. At the expense of O(log2m)
updates this latter work also supports finding occurrences of a specified pattern P in O(|P |)
time. A separate line of work has considered the static data structure problem of text
indexing for approximate matching [11, 7, 17, 12, 21, 12, 9].

3 Upper bounds for DynHD, DynIP, and DynEM

In this section we show upper bounds for DynIP, DynHD, and DynEM problems. Recall
that a query i asks for f(P, T [i, . . . , i+m−1]). For DynIP we define f(P, T [i, . . . , i+m−1])
to be equal to the inner product of P and T [i, . . . , i + m − 1], for DynHD the Hamming
distance between P and T [i, . . . , i+m− 1]. In the DynEM problem we assume that P and
T are strings over Σ∩{?}, where Σ is an integer alphabet and ? is a special wildcard symbol
that matches any letter in Σ. We define f(P, T [i, . . . , i + m − 1]) to be equal to zero if P
matches T [i, . . . , i+m− 1] and the number of mismatching positions otherwise. We define
n to be the length of the text, and m to be the length of the pattern, n ≥ m.

We will in fact present a general solution for dynamic string problems where f can be
represented in a particular form. DynIP, DynHD and DynEM will seen as special cases.
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The restriction is simply that f(P, T [i, . . . , i+m− 1]) =
∑j=m
j=1 g(P [j], T [i+ j − 1]), where

the function g can be evaluated in constant time. This functional form is closely related
to the idea of local distance functions that were key to the development of fast streaming
pattern matching algorithms [16]. We first show that our string problems do indeed satisfy
the stated requirements.

I Lemma 2. If f is inner product, Hamming distance, or exact matching with wildcards,
then there exists a function g such that f(P, T [i, . . . , i+m−1]) =

∑j=m
j=1 g(P [j], T [i+j−1]),

where the function g can be evaluated in constant time.

Proof. If f is inner product, we put g(Pj , Ti+j−1) = Pj · Ti+j−1. In the case of Hamming
distance, we define g(Pj , Ti+j−1) = 0 if Pj = Ti+j−1 and gj(Pj , Ti+j−1) = 1 otherwise.

For DynEM we assume that wildcards are represented by the value 0. It is not hard to see
that we can take g(Pj , Ti+j−1) to be the characteristic function of (Pj − Ti+j−1)2PjTi+j−1 > 0
and indeed this observation is the basis for one of the fastest offline exact matching with
wildcards algorithms [15]. The key property we use is that either (a) if one of Pj and
Ti+j−1 is a wildcard or Pj = Ti+j−1 then g(Pj , Ti+j−1) = 0, or (b) Pj 6= Ti+j−1 and then
g(Pj , Ti+j−1) > 0. It follows that f(P, T [i, . . . , i + m − 1]) equals zero if and only if P and
T [i, . . . , i+m− 1] match. J

We now show a solution for all dynamic string problems defined by a function f that
can be represented in the form above. We consider the most general update model, where
we are allowed to update both the text and the pattern.

I Theorem 3. Let T be a text of length n, and P be a pattern of length m. Assume
f can be represented as f(P, T [i, . . . , i + m − 1]) =

∑j=m
j=1 g(Pj , Ti+j−1), where g can be

computed in constant time, and the values f(P, T [1, . . . ,m]), f(P, T [2, . . . ,m + 1]), . . . ,
f(P, T [n−m+ 1, . . . , n]) can be computed in T (n) time and S(n) space. We can then solve
the corresponding dynamic string problem in O(

√
T (n)) worst case update/query time using

O(S(n) + n) space.

Proof. Let us first show a solution with O(
√
T (n)) amortised time. We start by computing

values A[1] = f(P, T [1, . . . ,m]), . . . , A[n −m + 1] = f(P, T [n −m + 1, . . . , n]) in O(T (n))
time and S(n) space. At all times, we maintain a list of updates U that have occurred
since the last moment we recomputed the values A[i]. Suppose that the size of U is at most
d
√
T (n)e and a query i arrives. We can then compute A′[i] = f(P, T [i, . . . , i+m− 1]) from

A[i] and U in the following way. We initialise A′[i] = A[i], and consider each update in
order. Suppose that an update change letters in a position k of P or T [i, . . . , i+m− 1], and
let P ′k and T ′i+k−1 be the updated letters. We remember P ′k and T ′i+k−1, and set

A′[i]← A′[i]− g(Pk, Ti+k−1) + g(P ′k, T ′i+k−1)

Since g can be evaluated in constant time, this step takes constant time as well. Therefore,
the time to perform each query is O(

√
T (n)). When the size of U reaches d

√
T (n)e, we

apply the updates in U to T and P , empty U , and recompute the values A[i] from scratch.
The amortised cost of an update is therefore O(

√
T (n)).

We can de-amortise the solution in a standard way. Namely, we restart the computation
of the values A[i] each d

√
T (n)/2e updates, and run Θ(

√
T (n)) steps of the computation

per each of the d
√
T (n)/2e subsequent updates. While the computation is not over, we

use the previously computed values f(P, T [1, . . . ,m]), . . . , f(P, T [n −m + 1, . . . , n]) to an-
swer queries. As before, we will need to correct the value of the function g in at most
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d
√
T (n)/2e positions. Note that apart from the space we need for computing the values

f(P, T [1, . . . ,m]), f(P, T [2, . . . ,m + 1]), . . . , f(P, T [n −m + 1, . . . , n]), we need only O(n)
space. J

Let us first assume that m ≤ n ≤ 2m, later we will show how to extend the solution to
a general value of n when the updates occur only in the text.

I Lemma 4. For a text T of length m ≤ n ≤ 2m, and a pattern P of length m, problem
DynHD can be solved in O(

√
m logm) query/update time for constant-size alphabets, and in

O(m3/4 log1/4m) query/update time for polynomial-size alphabets. Both solutions use O(m)
space.

Proof. If the alphabet is binary, the values f(P, T [1, . . . ,m]),. . . , f(P, T [n−m+ 1, . . . , n])
can be computed by running the FFT algorithm twice. Recall that the FFT algorithm
computes the inner product for each alignment of two strings. By running the FFT algorithm
on P and T for the first time, we obtain, for each i, the number of positions j such that
P [j] = T [i+ j] = 1. By running it for the second time on the copies P and T where each bit
is flipped, we obtain, for each i, the number of positions j such that P [j] = T [i+ j] = 0. We
can then compute the values f(P, T [1, . . . ,m]), . . . , f(P, T [n−m+ 1, . . . , n]) in linear time.
For this algorithm, T (n) = O(n logn) = O(m logm). For alphabets of constant size |Σ|,
we run the FFT algorithm |Σ| times, once for each letter a ∈ Σ, on the copies of P and T
where a is replaced with 1 and all letters in Σ \ {a} are replaced with 0. T (n) = O(m logm)
as well. For polynomial-size alphabets, T (n) = O(n

√
n logn) = O(m

√
m logm) and S(n) =

O(n) = O(m) bounds were shown independently by Abrahamson [4] and Kosaraju [24] in
1987. The claim immediately follows from Lemma 2 and Theorem 3. J

I Lemma 5. For a text T of length m ≤ n ≤ 2m, and a pattern P of length m, problems
DynIP and DynEM can be solved in O(

√
m logm) query/update time using O(m) space.

Proof. For both problems, T (n) = O(n logn) = O(m logm) and S(n) = O(n) = O(m).
For inner product, this is a direct corollary of the FFT algorithm. The bound for exact
matching with wildcards was demonstrated in [18, 15]. The claim follows from Lemma 2
and Theorem 3. J

We now extend our solution to a general value of n in the case where only updates to
the text are allowed. In this case there is also an additional cost of computing the full set
of solutions before the first query or update is performed which we omit from the following
theorem.

I Theorem 6. For a text T of length n ≥ m, and a pattern P of length m, problem
DynHD can be solved in O(

√
m logm) query/update time for constant-size alphabets, and

in O(m3/4 log1/4m) query/update time for polynomial-size alphabets. Both solutions use
O(n) space. Problems DynIP and DynEM can be solved in O(

√
m logm) query/update

time using O(n) space.

Proof. We first partition T into blocks of length 2m overlapping by m positions (the last
block may be shorter). Note that for each i a string T [i, . . . , i+m− 1] is a substring of one
of such blocks, and each position of T belongs to at most two blocks. It follows that if we
have a solution for an m-length block with update time tu, query time tq, and space S, then
we have a solution for T with update time O(tu), query time tq, and space O( nm · S). The
claim follows from Lemmas 4 and 5. J

STACS 2018



22:6 Upper and Lower Bounds for Dynamic Data Structures on Strings

4 Upper bounds for dynamic approximate Hamming distance

In this section we develop algorithms for an approximate version of DynHD, which we refer
to as DynApproxHD. In this problem a query i must return a (1+ε)-approximation of the
Hamming distance between P and T [i, . . . , i+m− 1], where ε > 0 is a parameter of the al-
gorithm. Unlike the other problems we have considered, the complexity of DynApproxHD
appears to have a strong dependence on whether updates are permitted only in the pattern
or text or in both. At one extreme, when updates are only permitted in the pattern and the
input alphabet is binary, we show in Theorem 9 a data structure that takes O(1/ε) update
and O(1/ε2) query time. However if updates can occur in both the pattern and the text,
then the complexity increases dramatically to be at least that of exact DynIP, DynEM and
DynHD over binary alphabets.

In Section 3 we showed that the DynHD problem can be solved in O(m1/2 log1/2m)
query/update time for constant-size alphabets, and in O(m3/4 log1/4m) query/update time
for polynomial-size alphabets. We start our exploration of the complexity of DynApproxHD
by showing that this dependence on the alphabet size is almost completely removed in this
approximate setting. The solution we give is deterministic and is based on the mapping idea
of Karloff [23].

I Lemma 7 ([23]). Let Σ be the alphabet of P and T . There exists Θ((1/ε2) log2 n) de-
terministic mappings mapj : Σ→ {0, 1} such that a (1 + ε)-approximation of the Hamming
distance between P and T at a particular alignment can be given by a normalised aver-
age of the Hamming distances between mapj(P ) = mapj(P1) . . .mapj(Pn) and mapj(T ) =
mapj(T1) . . .mapj(Tn) at this alignment. Each mapping can be stored as a look-up table that
permits to compute each mapj(Pk) or mapj(Tk) in O(1) time.

I Corollary 8. For a text T of length m ≤ n ≤ 2m, and a pattern P of length m, the Dyn-
ApproxHD problem over polynomial-size alphabets can be solved in O((1/ε2)

√
m·polylog m)

query/update time and O((1/ε2)m log2m) space.

Proof. We consider Karloff’s mappings mapj . For each j, we run our DynHD solution
for constant-size alphabets (Lemma 4) on mapj(P ) and mapj(T ). The claim immediately
follows. J

We now present several randomised solutions for DynApproxHD in two special update
models where we are allowed to update either only the text or only the pattern. We first
assume a binary input alphabet, and then show how to extend our solutions to constant-size
and then later polynomial-size alphabets as well.

I Theorem 9. For a text T of length n ≥ m, and a pattern P of length m, there is a
randomised data structure for the DynApproxHD problem over a constant-sized alphabet
with
(a) O(1/ε) update time, O(1/ε2) query time, and O((1/ε2) · n) space if only updates to the

pattern are allowed;
(b) O((1/ε) · polylog n) update time and O((1/ε2) · polylog n) query time using O((1/ε2) ·

n polylog n) space if only updates to the text are allowed.
Each answer is correct with constant probability.

Proof. Let us first assume the input alphabet is of constant size. We will make use of
the sparse Johnson-Lindenstrauss transform by Kane and Nelson [22] defined by a random
Θ(1/ε2) × n matrix M such that its entries are from {−1, 0, 1}, and each of its columns
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contains Θ(1/ε) non-zero entries. The result of a transform, which we call a sketch, is
defined to be equal to M · x. Kane and Nelson showed how to choose a distribution on
such matrices such that, with constant probability, the appropriately scaled square of the
L2 norm of the difference of the sketches of two strings gives a (1 + ε)-approximation of
Hamming distance.

(a) During the preprocessing step we compute the sketch of P and of eachm-length substring
of T . When an update to P arrives, we update its sketch in a naive way in O(1/ε) time.
When a query i arrives, we can compute a (1 + ε)-approximation of the Hamming
distance between P and T by computing the L2 norm of the difference of the sketches
of P and T [i, . . . , i+m− 1]. Since the sketches are the vectors of length 1/ε2, this can
be done in O(1/ε2) time.

(b) For this model, we will need a sketch that gives (1 + ε)-approximation of Hamming
distance with error probability Θ(1/ logm). This can be achieved by repeating the
scheme Θ(log logm) times. During the preprocessing, we first compute Θ(log logm)
sketches for each 2k-length substring of the pattern P , where k = 1, 2, . . . , logm. We
then compute Θ(log logm) sketches for each substring T [i · 2k + 1, . . . , (i + 1) · 2k].
We call such substrings of T canonical. When an update (i, σ) arrives, we need to
fix the sketches of O(logm) canonical substrings (since Ti belongs to O(logm) such
substrings), which can be done in O((1/ε) logm log logm) time. A query i can be
answered in O((1/ε2) logm log logm) time: First, we partition T [i, . . . , i + m − 1] into
O(logm) canonical substrings S1, . . . , Sk. Secondly, we compute a (1+ε)-approximation
of the Hamming distance between each Si and the corresponding substring of P using
the sketches. Finally, we sum up all approximations to obtain the answer. Since the
probability to error on each pair of substrings is Θ(1/ logm), the total error probability
is constant by the union bound.

Both algorithms can be extended to work for any constant sized alphabet by expanding
the input alphabet in unary. That is we replace the letter i with a binary vector 0 . . . 010 . . . 0,
where the set bit is in the i-th position. J

I Corollary 10. For a text T of length n ≥ m, and a pattern P of length m, and ε > 1/n,
there is a randomised data structure for the DynApproxHD problem over polynomial-size
alphabets with
(a) O((1/ε3) · polylog n) update time, O((1/ε4) · polylog n) query time, and O((1/ε4) ·

n polylog n) space if only updates to the pattern are allowed;
(b) O((1/ε4) · polylog n) update time, O((1/ε4) · polylog n) query time, and O((1/ε4) ·

n polylog n) space if only updates to the text are allowed.
Each answer is correct with constant probability.

Proof. We reduce the alphabet to binary by applying Karloff’s mappings. There are
Θ((1/ε2) log2 n) mappings, and to compute the Hamming distance between P and T [i, . . . , i+
m−1] we need to compute the Hamming distance for each pairmapj(P ) andmapj(T [i, . . . , i+
m − 1]). To achieve constant error probability, we run Θ(log((1/ε) logn)) = polylog n in-
stances of the algorithm for text-only or pattern-only updates (Theorem 9). (We note that
we will achieve (1+ε)2-approximation, which is (1+ε′)-approximation for ε′ = 2ε+ε2.) J

5 Lower bounds

In this section we demonstrate conditional and unconditional lower bounds for different
variants of DynEM, DynIP, and DynHD. The conditional lower bounds are derived from
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OMv

DynHD modulo 2
(ternary alphabet)

DynHD

DynIP modulo 2
(binary alphabet) (1 + ε)-approx. DynIP

DynIP

DynEM

Figure 1 Reductions between OMv and different variants of DynEM, DynIP, and DynHD.

the hardness of a well-known problem, online Boolean matrix-vector product (OMv). Fig. 1
summarises the reductions we use.

5.1 Reductions between DynIP, DynHD and DynHD modulo 2
Before we get to our main lower bounds results we will first establish the relationship between
some of the dynamic string problems we consider.

I Lemma 11. DynHD is at least as hard as DynIP over binary alphabets.

Proof. We map the input alphabet of the text and the pattern separately. Take an instance
of DynIP where the input alphabet is binary. In order to transform it into an instance of
DynHD each 1 in the pattern or text is mapped to the string 111 in the DynHD instance.
Similarly, a 0 in the pattern is mapped to the string 010 and a 0 in the text is mapped to
the string 100. This transformation ensures that any two symbols that align in the DynIP
instance will give Hamming distance 2 in the DynHD instance except when two 1s align.
In this case the Hamming distance will be 0. We can therefore infer the inner product from
the Hamming distance: The inner product will be equal to the length of the pattern minus
the Hamming distance divided by two. J

We will later show both conditional and unconditional lower bounds not only for DynIP
but also for DynIP modulo 2. The following two lemmas will lead to perhaps our most
surprising result which is that DynHD modulo 2 over ternary alphabets is exponentially
harder to solve than DynHD modulo 2 over a binary alphabet. It is worth emphasising
by way of contrast that in the standard offline pattern matching setting, the asymptotic
complexity of computing the Hamming distance at all alignments of a pattern and text is
identical for any constant sized input alphabet.

I Lemma 12. DynHD modulo 2 over a ternary alphabet is at least as hard as DynIP
modulo 2 over a binary alphabet.

Proof. We again map the input alphabet of the text and pattern separately. Take an
instance of DynIP modulo 2 where the input alphabet is binary. Each 1 in the pattern is
mapped to the string 22 and each 0 in the pattern is mapped to the string 01. Each 1 in
the text is mapped to the string 11 and each 0 in the text is mapped to the string 02. This
transformation ensures that any two symbols that align in the DynIP modulo 2 instance
will give Hamming distance 1 in the DynHD modulo 2 instance except for when two 1s align
in the DynIP modulo 2 instance when the resulting Hamming distance is 2. Therefore, the
inner product modulo 2 is equal to the length of the pattern minus the Hamming distance
modulo 2. J
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However, DynHD modulo 2 over a binary alphabet is much easier than DynHD modulo
2 over a ternary alphabet.

I Lemma 13. For a binary text T of length n ≥ m, and a binary pattern P of length m

the DynHD modulo 2 problem can be solved in O(logm/ log logm) update/query time using
O(n) space. There is a matching unconditional lower bound for update/query time as well.

Proof. As before, we divide the text T into 2m-length blocks overlapping by m positions.
We will show that for each block DynHD modulo 2 can be solved in O(logm/ log logm)
update/query time using O(m) space, hence giving the claim.

Consider a 2m-length block of T . In order to answer a query at alignment i for DynHD
modulo 2 we need only to sum, modulo 2, the number of 1s in the pattern and the corres-
ponding substring of the text T [i, . . . , i + m − 1]. This can be seen via a simple proof by
induction as follows. As the base case consider two strings of length 1 and let all arithmetic
be over Z2. In this case the Hamming distance is the sum of the Hamming weights of the
two strings. For the inductive step, extend each of these two strings by one bit and observe
that the new Hamming distance is the old Hamming distance before extending the strings
plus the sum of the two new bits over Z2.

The Hamming weight of the pattern can be maintained straightforwardly. We argue
that answering queries for the Hamming weight of substrings of the block is equivalent to
the prefix sum problem modulo 2. To reduce from this problem to prefix sum we need only
observe that we can compute the number of 1s in T [i, . . . , i+m−1] by subtracting the prefix
sum up to index i− 1 from the prefix sum up to index i+m− 1. To reduce from prefix sum
to the DynHD modulo 2 problem we construct a text of length 2m with the first half all
zeros and the second half as a copy of the prefix sum array. Setting the pattern to all 1s we
can compute the prefix sum modulo 2 up to index i of its array of length m by performing
a query at index i of the text. It follows from the upper and lower bounds of [28] that the
complexity of DynHD modulo 2 over a binary alphabet is Θ(logm/ log logm). J

5.2 Conditional lower bounds
We will now give lower bounds for our dynamic string problems conditional on the hardness
of a well known problem. The OMv problem was introduced in [20] as a means to prove
conditional lower bounds for a number of dynamic problems. In this problem we are first
given an r × r Boolean matrix M . We then receive r vectors v1, . . . , vr, one by one. After
seeing each vector vi, we have to output the product Mvi (over the Boolean semi-ring)
before we receive the next vector. A naive algorithm can solve this problem using O(r3)
time in total with the current fastest solution taking O(r3/2Ω(

√
log r)) time [27]. The OMv

conjecture is as follows:

I Conjecture 14 (OMv Conjecture [20]). For any constant ε > 0, there is no O(r3−ε)-time
algorithm that solves the OMv problem with error probability of at most 1/3.

I Theorem 15. Assuming the OMv conjecture, there does not exist an algorithm running in
O(m1/2−ε) for the maximum of query and update time for DynEM, DynIP, and DynHD.
The same lower bound holds for DynIP modulo 2, for (1 + ε)-approximate DynIP, and for
DynHD modulo 2 over ternary alphabets. The same lower bound holds even when updates
are permitted only in the pattern or only in the text.

Proof. We first give a reduction from the online Boolean matrix-vector multiplication prob-
lem to DynEM. We create a text T of length 2m = 2r2 from the matrixM by concatenating
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the r rows of M one after another and filling the rest of T with the symbol 1 repeated r2

times. Now consider a single Boolean matrix vector productMvi. The pattern P has length
m = r2. Its first r symbols are a copy of the vector vi but with all 0s replaced by the wild-
card symbol ? and all 1s replaced by the symbol 0. The remaining r2 − r symbols are set
to the wildcard symbol ?. To perform a Boolean matrix vector multiplication we perform
m exact match with wildcard queries at indices 1, r + 1, 2r + 1, . . . , (r − 1)r + 1. If a query
i returns a match then Mvi[j] = 0 and Mvi[j] = 1 otherwise. If follows that any algorithm
for DynEM running in O(m1/2−ε) for the maximum of query and update time implies an
O(r3−ε)-time algorithm that solves the online Boolean matrix-vector multiplication problem,
thereby contradicting the OMv conjecture.

DynIP and DynHD are at least as hard as DynIP modulo 2, so it suffices to show the
lower bound for the latter. We give a similar reduction from OMv but this time with an
extra randomisation step. We create a text T of length 2m = 2r2 from the matrix M by
concatenating the r rows of M one after another and filling the rest of T with the symbol 0
repeated r2 times. Now consider a single Boolean matrix vector product Mvi. We create a
pattern P of length m = r2 with the first r symbols being a copy of vi and the remaining
r2 − r symbols set to 0. We now flip each set bit in P with probability 1/2 and compute
inner product modulo 2 queries at indices 1, r + 1, 2r + 1, . . . , (r − 1)r + 1. If Mvi[j] = 0
then an inner product query j will always return 0. If Mvi[j] = 1 then the inner product
query will return 1 with probability 1/2. This gives a probability of at least 1/2 of giving the
correct answer for each Mvi[j]. We amplify the probabilities by repeating the randomised
procedure O(logm) times using the fact that we have one-sided error at each iteration. It
then follows that there does not exist an algorithm running in O(m1/2−ε) for the maximum
of query and update time for DynIP modulo 2 unless the OMv conjecture is false.

The lower bound for (1 + ε)-approximate DynIP follows from the same reduction with
the arithmetic performed over the reals rather than modulo 2 and without the randomisation
step. This is because a (1 + ε)-approximation must be able to distinguish zero and non-zero
inner products which is sufficient for our reduction from OMv.

The lower bound for DynHD modulo 2 over a ternary alphabet now follows from
Lemma 12.

If updates are only allowed in the text then we derive the same lower bound as before by
modifying our reductions. Let us take the reduction from the online Boolean matrix-vector
multiplication problem to DynIP modulo 2 as an example. The other lower bounds follow
analogously. We create a pattern P of length m = r2 from the matrix M by concatenating
the r rows of M one after another. The text is of length 2m = 2r2 and will be all 0s except
for the substring T [r2 − r + 1, . . . , r2]. In order to perform a single Boolean matrix vector
product Mvi the substring is updated so that T [r2 − r + 1, . . . , r2] = vi and we then flip
each set bit in T with probability 1/2. We then compute inner product queries modulo 2
at indices 1, r+ 1, 2r+ 1, . . . , (r− 1)r+ 1 which give the correct answer for each query with
probability at least 1/2. We can amplify the probability as before giving us the desired lower
bound. J

Our lower bound also holds for DynIP modulo c for any c ≥ 2.

I Corollary 16. Let integer c ≥ 2. Assuming the OMv conjecture, there does not exist
an algorithm running in O(m1/2−ε) for the maximum of query and update time for DynIP
modulo c.

Proof. Let the input alphabet be binary as before and perform the same randomised reduc-
tion from OMv as in the proof of Theorem 15. If the inner product equals 0 then we always
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give the correct answer. If the inner product is greater than 0 then after flipping the set bits,
the inner product modulo c is greater than 0 with probability that tends asymptotically to
c−1
c . We can then amplify the probabilities to ensure that every value in the matrix-vector

product is correct with constant probability as before. J

5.3 Unconditional lower bounds
In this section we will give unconditional lower bounds for all the problems we have con-
sidered except DynApproxHD. Although these bounds are necessarily much lower than
the conditional lower bounds we gave previously, they nonetheless match in many cases the
limits of what is known unconditionally for any dynamic data structure.

We first show lower bounds for the DynIP and the DynHD problems by reduction from
the dynamic weighted range counting problem. In this problem, we are given a r×r grid D.
The points in the grid are assigned integer weights, and at any moment there can be at most
r non-zero weights wi. For our problem r = m1/3. Updates may change the weight of a point
and a query (i, j) asks for

∑
x≤i,y≤j Dx,y. In [25] Larsen gave an Ω((log r/ log log r)2) lower

bound for the maximum of query and update time for dynamic weighted range counting.
This lower bound does not hold however in the unweighted case (where the weights are in
{0, 1}) and giving an ω(log r) lower bound for this situation remained an important open
problem for a number of years. Recently in [26] a new Ω((log1/2 r/ log log r)3) lower bound
was given for this unweighted range counting problem which also holds over F2.

I Theorem 17. The DynIP problem has an unconditional Ω((logm/ log logm)2) lower
bound for the maximum of query and update time for polynomial-size alphabets. DynHD
over binary alphabets, DynIP modulo 2 over binary alphabets and DynHD modulo 2 over
ternary alphabets have an Ω((log1/2m/ log logm)3) lower bound.

Proof. We give a reduction from dynamic range counting to DynIP. We take an instance
of the problem for r = m1/3 and create a text T of length 2m and a pattern P of length m.
The text has all symbols set to 0 except Tm−m1/3+1,. . . , Tm that are set to w1, . . . , wm1/3

respectively. For each of the m2/3 different possible queries to D, a subset of the wi’s will
be included in the query. We create a pattern P so that Pjm1/3+i−1 = 1 if weight wi is
included in the range for query j and Pjm1/3+i−1 = 0 otherwise.

To perform a range counting query, we need to align the relevant substring of the pattern
of length m1/3 with T [m−m1/3 + 1, . . . ,m] and perform an inner product query. Our lower
bounds then follow from the lower bounds for the weighted and F2 versions of dynamic range
counting and Lemmas 11 and 12. J

Finally, we give lower bounds for the DynEM and the (1 + ε)-approximate DynIP
problems by reduction from the dynamic range emptiness problem. In this problem, the
set-up is exactly like in the unweighted dynamic range counting problem above, and a query
(i, j) asks if

∑
x≤i,y≤j Dx,y = 0. In [6], Alstrup et al. showed a Ω(log r/ log log r) lower

bound for this problem.

I Theorem 18. Both the DynEM and the (1 + ε)-approximate DynIP problems have
unconditional Ω(logm/ log logm) lower bounds for the maximum of query and update time.

Proof. Consider an instance of two dimensional range emptiness on D for r = m1/3. We
take an instance of this problem and create a text T of length 2m and a pattern P of
length m. The text has all values set to 0 except Tm−m1/3+1, . . . , Tm set to w1,. . . ,wm1/3

respectively. For each of the m2/3 different possible queries to D in the dynamic range
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emptiness problem, a subset of the wi’s will be included in the query. We create a pattern P
so that Pjn1/3+i−1 = 0 if weight wi is included in the range for query j and Pjn1/3+i−1 = ?
otherwise. If an exact match with wildcards query returns True then we know that all the
weights in the corresponding range are 0. If it returns False then we know the range is not
empty. We therefore have reduced from two dimensional range emptiness to DynEM giving
an Ω(logm/ log logm) lower bound for DynEM.

For the (1 + ε)-approximate dynamic inner product problem we must be able to distin-
guish an inner product of zero from all other values. We therefore use the same reduction
from the proof of Theorem 17 but this time only report whether the approximate inner
product is greater than zero. The result of this query is sufficient to determine the an-
swer to a range emptiness query and we therefore derive the same Ω(logm/ log logm) lower
bound. J
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Abstract
In this paper we propose models of combinatorial algorithms for the Boolean Matrix Multiplic-
ation (BMM), and prove lower bounds on computing BMM in these models. First, we give a
relatively relaxed combinatorial model which is an extension of the model by Angluin (1976), and
we prove that the time required by any algorithm for the BMM is at least Ω(n3/2O(

√
log n)). Sub-

sequently, we propose a more general model capable of simulating the "Four Russian Algorithm".
We prove a lower bound of Ω(n7/3/2O(

√
log n)) for the BMM under this model. We use a special

class of graphs, called (r, t)-graphs, originally discovered by Rusza and Szemeredi (1978), along
with randomization, to construct matrices that are hard instances for our combinatorial models.
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1 Introduction

Boolean matrix multiplication (BMM) is one of the core problems in discrete algorithms,
with numerous applications including triangle detection in graphs [9], context-free grammar
parsing [14], and transitive closure etc. [6, 7, 10]. Boolean matrix multiplication can be
naturally interpreted as a path problem in graphs. Given a layered graph with three layers
A,B,C and edges between layers A and B and between B and C, compute the bipartite
graph between A and C in which a ∈ A and c ∈ C are joined if and only if they have a
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common neighbor. If we identify the bipartite graph between A and B with its A×B boolean
adjacency matrix P and the graph between B and C with its B × C boolean adjacency
matrix Q then the desired graph between A and C is just the boolean product P ×Q.

Boolean matrix multiplication is the combinatorial counterpart of integer matrix multiplic-
ation. Both involve the computation of n2 output values, each of which can be computed in a
straightforward way in time O(n) yielding a O(n3) algorithm for both problems. One of the
celebrated classical results in algorithms is Strassen’s discovery [12] that by ordinary matrix
multiplication has truly subcubic algorithms, i.e. algorithms that run in time O(nω) for some
ω < 3, which compute the n2 entries by computing and combining carefully chosen (and
highly non-obvious) polynomial functions of the matrix entries. Subsequent improvements
[5, 15, 8] have reduced the value of ω.

One of the fascinating aspects of BMM is that, despite its intrinsic combinatorial nature,
the asymptotically fastest algorithm known is obtained by treating the boolean entries as
integers and applying fast integer matrix multiplication. The intermediate calculations
done for this algorithm seemingly have little to do with the combinatorial structure of the
underlying bipartite graphs. There has been considerable interest in developing "combin-
atorial" algorithms for BMM, that is algorithms where the intermediate computations all
have a natural combinatorial interpretation in terms of the original problem. Such interest is
motivated both by intellectual curiosity, and by the fact that the fast integer multiplication
algorithms are impractical because the constant factor hidden in O(·) is so large.

The straightforward n3 algorithm has a straightforward combinatorial interpretation:
for each pair of vertices a, c check each vertex of B to see whether it is adjacent to both
a and c. The so-called Four Russian Algorithm by Arlazarov, Dinic, Kronrod, Faradzhev
[13] solves BMM in O(n3/ log2(n)) operations, and was the first combinatorial algorithm
for BMM with complexity o(n3). Overt the past 10 years, there have been a sequence of
combinatorial algorithms [3, 4, 17] developed for BMM, all having complexities of the form
O(n3/(logn)c) for increasingly large constants c. The best and most recent of these, due
to Yu [17] has complexity Ô(n3/ log4 n) (where the Ô notation suppresses poly(log log(n))
factors. (It should be noted that the algorithm presented in each of these recent papers is for
the problem of determining whether a given graph has a triangle; it was shown in [16] that a
(combinatorial) algorithm for triangle finding with complexity O(n3/ logc n) can be used as
a subroutine to give a (combinatorial) algorithm for BMM with a similar complexity.)

While each of these combinatorial algorithms uses interesting and non-trivial ideas, each
one saves only a polylogarithmic factor as compared to the straightforward algorithm, in
contrast with the algebraic algorithms which save a power of n. The motivating question
for the investigations in this paper is: Is there a truly subcubic combinatorial algorithm for
BMM? We suspect that the answer is no.

In order to consider this question precisely, one needs to first make precise the notion of a
combinatorial algorithm. This itself is challenging. To formalize the notion of a combinatorial
algorithm requires some computation model which specifies what the algorithm states are,
what operations can be performed, and what the cost of those operations is. If one examines
each of these algorithms one sees that the common feature is that the intermediate information
stored by the algorithm is of one of the following three types (1): for some pair of subsets
(X,Y ) with X ⊆ A and Y ⊆ B, the submatrix (bipartite subgraph) induced by P on X × Y
has some specified monotone property (such as, every vertex in X has a neighbor in Y ), (2)
for some pair of subsets (Y, Z) with Y ⊆ B and Z ⊆ C, the bipartite subgraph induced by Q
on Y × Z has some specific monotone property, or (3) for some pair of subsets (X,Z) with
X ⊆ A and Z ⊆ C, the bipartite subgraph induced by P ×Q on X × Z has some specific
monotone property.
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If one accepts the above characterization of the possible information stored by the al-
gorithm, we are still left with the problem of specifying the elementary steps that the
algorithm is permitted to make to generate new pieces of information, and what the computa-
tional cost is. The goal in doing this is that the allowed operations and cost function should
be such that they accurately reflect the cost of operations in an algorithm. In particular,
we would like that our model is powerful enough to be able to simulate all of the known
combinatorial algorithms with running time no larger than their actual running time, but not
so powerful that it allows for fast (e.g. quadratic time) algorithms that are not implementable
on a real computer. We still don’t have a satisfactory model with these properties.

This paper takes a step in this direction. We develop a model which captures some of
what a combinatorial algorithm might do. In particular our model is capable of efficiently
simulating the Four Russian algorithm, but is sufficiently more general. We then prove a
superquadratic lower bound in the model: Any algorithm for BMM in this model requires
time at least Ω(n7/3/2O(

√
log n)).

Unfortunately, our model is not strong enough to simulate the more recent combinatorial
approaches. Our hope is that our approach provides a starting point for a more comprehensive
analysis of the limitation of combinatorial algorithms.

One of the key features of our lower bound is the identification of a family of "hard
instances" for BMM. In particular, we use tripartite graphs on roughly 3n vertices that have
almost quadratic number a pairs of vertices from the first and the last layers connected
by a single (unique) path via the middle layer. These graphs are derived from (r, t)-graphs
of Rusza and Szemeredi [11], which are dense bipartite graphs on 2n vertices that can be
decomposed into linear number of disjoint induced matchings. More recently, Alon, Moitra
Sudakov [1] provides strengthening of Rusza and Szemeredi’s construction although they lose
in the parameters that are most relevant for us.

1.1 Combinatorial models
The first combinatorial model for BMM was given by Angluin [2]. For the product of P ×Q,
the model allows to take bit-wise OR (union) of rows of the matrix Q to compute the
individual rows of the resulting matrix PQ. The cost in this model is the number of unions
taken. By a counting argument, Angluin [2] shows that there are matrices P and Q such that
the number of unions taken must be Ω(n2/ logn). This matches the number of unions taken
by the Four Russian Algorithm, and in that sense the Four Russian Algorithm is optimal.

If the cost of taking each row union were counted as n, the total cost would become
Θ(n3/ logn). The Four Russian Algorithm improves this time to O(n3/ log2 n) by leveraging
“word-level parallelism” to compute each row union in time O(n/ logn).

A possible approach to speed-up the Four Russian Algorithm would be to lower the cost
of each union operation even further. The above analysis ignores the fact that we might be
taking the union of rows with identical content multiple times. For example if P and Q are
random matrices (as in the lower bound of Angluin) then each row of the resulting product
is an all-one row. Such rows will appear after taking an union of merely O(logn) rows from
Q. An entirely naive algorithm would be taking unions of an all-one row with n possible
rows of Q after only few unions. Hence, there would be only O(n logn) different unions to
take for the total cost of O(n2 · poly(logn)). We could quickly detect repetitions of unions
by maintaining a short fingerprint for each row evaluated.

Our first model takes repetitions into account. Similarly to Angluin, we focus on the
number of unions taken by the algorithm but we charge for each union differently. The
natural cost of a union of rows with values u, v ∈ {0, 1}n counts the cost as the minimum
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of the number of ones in u and v. This is the cost we count as one could use sparse set
representation for u and v. In addition to that if unions of the same rows (vectors) are taken
multiple times we charge all of them only ones, resp. we charge the first one the proper cost
and all the additional unions are for a unit cost. As we have argued, on random matrices P
and Q, BMM will cost O(n2 logn) in this model. Our first lower bound shows that even in
this model, there are matrices for which the cost of BMM is almost cubic.

I Theorem 1 (Informal statement). In the row-union model with removed repetitions the cost
of Boolean matrix multiplication is Ω(n3/2O(

√
log n)).

The next natural operation one might allow to the algorithm is to divide rows into pieces.
This is indeed what the Four Russians Algorithm and many other algorithms do. In the Four
Russian Algorithm, this corresponds to the “word-level parallelism”. Hence we might allow
the algorithm to break rows into pieces, take unions of the pieces, and concatenate the pieces
back. In our more general model we set the cost of the partition and concatenation to be a
unit cost, and we only allow to split a piece into continuous parts. More complex partitions
can be simulated by performing many two-sided partitions and paying proportionally to the
complexity of the partition. The cost of a union operation is again proportional to the smaller
number of ones in the pieces, while repeated unions are charged for a unit cost. In this model
one can implement the Four Russian Algorithm for the cost O(n3/ log2 n), matching its usual
cost. In the model without partitions the cost of the Four Russian Algorithm is Θ(n3/ logn).

In this model we are able to prove super-quadratic lower bound when we restrict that all
partitions happen first, then unions take place, and then concatenations.

I Theorem 2 (Informal statement). In the row-union model with partitioning and removed
repetitions the cost of Boolean matrix multiplication is Ω(n7/3/2O(

√
log n)).

Perhaps, the characteristic property of “combinatorial” algorithms is that from the run of
such an algorithm one can extract a combinatorial proof (witness) for the resulting product.
This is how we interpret our models. For given P and Q we construct a witness circuit that
mimics the work of the algorithm. The circuit operates on rows of Q to derive the rows of
the resulting matrix PQ. The values flowing through the circuit are bit-vectors representing
the values of rows together with information on which union of which submatrix of Q the
row represents. The gates can partition the vectors in pieces, concatenate them and take
their union. For our lower bound we require that unions take place only after all partitions
and before all concatenations. This seems to be a reasonable restriction since we do not have
to emulate the run of an algorithm step by step but rather see what it eventually produces.
Also allowing to mix partitions, unions and concatenations in arbitrary order could perhaps
lead to only quadratic cost on all matrices. We are not able to argue otherwise.

The proper modeling of combinatorial algorithms is a significant issue here: one wants a
model that is strong enough to capture known algorithms (and other conceivable algorithms)
but not so strong that it admits unrealistic quadratic algorithms. We do not know how to
do this yet, and the present paper is intended as a first step.

1.2 Our techniques
Central to our lower bounds are graphs derived from (r, t)-graphs of Rusza and Szemeredi
[11]. Our graphs are tripartite with vertices split into parts A,B,C, where |A| = |C| = n

and |B| = n/3. The key property of these graphs is that there are almost quadratically many
pairs (a, c) ∈ A× C that are connected via a single (unique) vertex from B. In terms of the
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corresponding matrices P and Q this means that in order to evaluate a particular row of
their product we must take a union of very specific rows in Q. The number of rows in the
union must be almost linear. Since Q is dense this might lead to an almost cubic cost for
the whole algorithm provided different vertices in A are connected to different vertices in B
so we take different unions.

This is not apriori the case for the (r, t)-derived graph but we can easily achieve it by
removing edges between A and B at random, each independently with probability 1/2. The
neighborhoods of different vertices in A will be very different then. We call such a graph
diverse (see a later section for a precise definition). It turns out that for our lower bound we
need a slightly stronger property, not only that we take unions of different rows of Q but also
that the results of these unions are different. We call this stronger property unhelpfulness.

Using unhelpfulness of graphs we are able to derive the almost cubic lower bound on
the simpler model. Unhelpfulness is a much more subtle property than diversity, and we
crucially depend on the properties of our graphs to derive it.

Next we tackle the issue of lower bounds for the partition model. This turns out to be a
substantially harder problem, and most of the proof is deferred to the full version of this
paper. One needs unhelpfulness on different pieces of rows (restrictions to columns of Q),
that is making sure that the result of union of some pieces does not appear (too often) as a
result of union of another pieces. This is impossible to achieve in full generality. Roughly
speaking what we can achieve is that different parts of any witness circuit cannot produce
the same results of unions.

The key lemma that formalizes it (Lemma 11) shows that the results of unions obtained
for a particular interval of columns in Q can be used at most O(logn) times on average in
the rest of the circuit. This is a property of the graph which we refer to as that the graph
admitting only limited reuse. This key lemma is technically complicated and challenging to
prove (albeit elementary). Putting all the pieces together turns out to be also quite technical.
We provide extensive overview in Section 4.

2 Notation and preliminaries

For any integer k ≥ 1, [k] = {1, . . . , k}. For a vertex a in a graph G and a subset S of
vertices of G, Γ(a) are the neighbors of a in G, and ΓS(a) = Γ(a) ∩ S. (To emphasize which
graph G we mean we may write ΓS,G(a).) A subinterval of C = {c1, c2, . . . , cn} is any set
K = {ci, ci+1, . . . , cj}, for some 1 ≤ i ≤ j ≤ |C|. By minK we understand i and by maxK
we mean j. For a subinterval K = {ci, ci+1, . . . , ci+`−1} of C and a vector v ∈ {0, 1}`, K �v
denotes the set {cj ∈ K; vj−i+1 = 1}. For a vector v ∈ {0, 1}n, v �K= vi, vi+1, . . . , vi+`−1.
For a binary vector v, |v| denotes the number of ones in v.

2.1 Matrices
We will denote matrices by calligraphic letters P,Q,R. All matrices we consider are binary
matrices. For integers i, j, Pi is the i-th row of P and Pi,j is the (i, j)-th entry of P. Let
P be an nA × nB matrix and Q be an nB × nC matrix, for some integers nA, nB , nC . We
associate matrices P,Q with a tripartite graph G. The vertices of G is the set A ∪B ∪ C
where A = {a1, . . . , anA

}, B = {b1, . . . , bnB
} and C = {c1, . . . , cnC

}. The edges of G are
(ai, bk) for each i, k such that Pi,k = 1, and (bk, cj) for each k, j such that Qk,j = 1. In this
paper we only consider graphs of this form. Sometimes we may abuse notation and index
matrix P by vertices of A and B, and similarly Q by vertices from B and C. For a set of
indices S ⊆ B, row(QS) =

∨
i∈S Qi is the bit-wise Or of rows of Q given by S.
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2.2 Model
Circuit. A circuit is a directed acyclic graph W where each node (gate) has in-degree either
zero, one or two. The degree of a gate is its in-degree, the fan-out is its out-degree. Degree
one gates are called unary and degree two gates are binary. Degree zero gates are called
input gates. For each binary gate g, left(g) and right(g) are its two predecessor gates. A
computation of a circuit proceeds by passing values along edges, where each gate processes
its incoming values to decide on the value passed along the outgoing edges. The input gates
have some predetermined values. The output of the circuit is the output value of some
designated vertex or vertices.

Witness. Let P and Q be matrices of dimension nA × nB and nB × nC , resp., with
its associated graph G. A witness for the matrix product P × Q is a circuit consisting
of input gates, unary partition gates, binary union gates and binary concatenation gates.
The values passed along the edges are triples (S,K, v), where S ⊆ B identifies a set of
rows of the matrix Q, the subinterval K ⊆ C identifies a set of columns of Q, and v is
the restriction row(QS) �K of row(QS) to the columns of K. Each input gate outputs
({b}, C,Qb) for some assigned b ∈ B. A partition gate with an assigned subinterval K ′ ⊆ C
on input (S,K, v) outputs undefined if K ′ 6⊆ K and outputs (S,K ′, v′) otherwise, where
v′ ∈ {0, 1}|K′| is such that for each j ∈ [|K ′|], v′j = vj+min K′−min K . A union gate on
inputs (SL,KL, vL) and (SR,KR, vR) from its children outputs undefined if KL 6= KR, and
outputs (SL ∪ SR,KL, vL ∪ vR) otherwise. A concatenation gate, on inputs (SL,KL, vL) and
(SR,KR, vR) where minKL ≤ minKR, is undefined if maxKL + 1 < minKR or SL 6= SR
or maxKL > maxKR and outputs (SL,KL ∪ KR, v

′) otherwise, where v′ is obtained by
concatenating vL with the last (maxKR −maxKL) bits of vR.

It is straightforward that whether a gate is undefined depends solely on the structure of
the circuit but not on the actual values of P or Q. We will say that the circuit is structured
if union gates do not send values into partition gates, and concatenation gates do not send
values into partition and union gates. Such a circuit first breaks rows of Q into parts,
computes union of compatible parts and then assembles resulting rows using concatenation.

We say that a witness W is a correct witness for P ×Q if W is structured, no gate has
undefined output, and for each a ∈ A, there is a gate in W with output (ΓB(a), C, v) for
v = row(QΓB(a)).

Cost. The cost of the witness W is defined as follows. For each union gate g with inputs
(SL,KL, vL) and (SR,KR, vR) and an output (S,K, v) we define its row-class to be class(g) =
{v, vL, vR}. If T is a set of union gates fromW , class(T ) = {{u, v, z}, {u, v, z} is the row-class
of some gate in T}. The cost of a row-class {u, v, z} is min{|u|, |v|, |z|}. The cost of T is∑
{u,v,z}∈class(T )min{|u|, |v|, |z|}. The cost of witness W is the number of gates in W plus

the cost of the set of all union gates in W .
We can make the following simple observation.

I Proposition 3. If W is a correct witness for P ×Q, then for each a ∈ A, there exists a
collection of subintervals K1, . . . ,K` ⊆ C such that C =

⋃
i Ki and for each i ∈ [`], there is

a union gate in W which outputs (ΓB(a),Ki, row(QΓB(a)) �Ki
).

Union and resultant circuit. One can look at the witness circuit from two separate angles
which are captured in the next definitions. A union circuit over a universe B is a circuit with
gates of degree zero and two where each gate g is associated with a subset set(g) of B so that
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for each binary gate g, set(g) = set(left(g))) ∪ set(right(g)). For integer ` ≥ 1, a resultant
circuit is a circuit with gates of degree zero and two where each gate g is associated with a
vector row(g) from {0, 1}` so that for each binary gate g, row(g) = row(left(g))∨row(right(g)),
where ∨ is a coordinate-wise Or.

For a vertex a ∈ A and a subinterval K = {ci, ci+1, . . . , ci+`−1} of C, a union witness for
(a,K) is a union circuit W over B with a single output gate gout where set(gout) = ΓB(a)
and for each input gate g of W , set(g) = {b} for some b ∈ B connected to a.

Induced union witness. LetW be a correct witness for P×Q. Pick a ∈ A and a subinterval
K ⊆ C. Let there be a union gate g in W with output (ΓB(a),K, row(QΓB(a)) �K). An
induced union witness for (a,K) is a union circuit over B whose underlying graph consists of
copies of the union gates that are predecessors of g, and a new input gate for each input or
partition gate that feeds into one of the union gates. They are connected in the same way as
in W . For each gate g in the induced witness we let set(g) = S whenever its corresponding
gate in W outputs (S,K ′, v) for some K ′ and v. From the correctness of W it follows that
each such K ′ = K and the resulting circuit is a correct union witness for (a,K).

2.3 (r, t)-graphs
We will use special type of graphs for constructing matrices which are hard for our com-
binatorial model of Boolean matrix multiplication. For integers r, t ≥ 1, an (r, t)-graph is a
graph whose edges can be partitioned into t pairwise disjoint induced matchings of size r.
Somewhat counter-intuitively as shown by Rusza and Szemeredi [11] there are dense graphs
on n vertices that are (r, t)-graphs for r and t close to n.

I Theorem 4 (Rusza and Szemerédi [11]). For all large enough integers n, for δn =
1/2Θ(

√
log n) there is a (δnn, n/3)-graph Gr,t

n .

A more recent work of Alon, Moitra Sudakov [1] provides a construction of a (r, t)-graphs
on n vertices with rt = (1− o(1))

(
n
2
)
and r = n1−o(1). The graphs of Rusza and Szemerédi

are sufficient for us.
Let Gr,t

n be the graph from the previous theorem and letM1,M2, . . . ,Mn/3 be the disjoint
induced matchings of size δnn. We define a tripartite graph Gn as follows: Gn has vertices
A = {a1, . . . , an}, B = {b1, . . . , bn/3} and C = {c1, . . . , cn}. For each i, j, k such that
(i, j) ∈Mk there are edges (ai, bk) and (bk, cj) in Gn. The following immediate lemma states
one of the key properties of Gn.

I Lemma 5. If (i, j) ∈Mk in Gr,t
n then there is a unique path between ai and cj in Gn.

For the rest of the paper, we will fix the graphs Gn. Additionally, we will also use a
graph G̃n which is obtained from G by removing each edge between A and B independently
at random with probability 1/2. (Technically, G̃n is a random variable.) When n is clear
from the context we will drop the subscript n.

Fix some large enough n. Let P be the n× n/3 adjaceny matrix between A and B in
G and Q be the n/3× n adjacency matrix between B and C in G. The adjacency matrix
between A and B in G̃ will be denoted by P̃. (P̃ is also a random variable.) The adjacency
matrix between B and C in G̃ is Q.

We say that c is unique for a ∈ A if there is exactly one b ∈ B such that (a, b) and (b, c)
are edges in G. The previous lemma implies that on average a has many unique vertices c in
Gn, namely δnn/3. For S ⊆ C, let S[a] denote the set of vertices from S that are unique for
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a in G. E.g., C[a] are all vertices unique for a. Let βa(S) denote the set of vertices from
B that are connected to a and some vertex in S[a]. Notice, |βa(S)| = |S[a]|. Since βa(·)
and ·[a] depend on edges in graph G, to emphasise which graph we have in mind we may
subscript them by G: βa,G(·) and ·[a]G.

For the randomized graph G̃ we will denote by S[a]′
G̃

the set of vertices from S that are
unique for a in G and that are connected to a via B also in G̃. (Thus, vertices from S that
are not unique for a in G but became unique for a in G̃ are not included in S[a]′

G̃
.) Let

β′
a,G̃

(S) denotes βa(S[a]′
G̃

)

2.4 Diverse and unhelpful graphs
In this section we define two properties of G̃ that capture the notion that one needs to
compute many different unions of rows of Q to calculate P̃ × Q. The simpler condition
stipulates that neighborhoods of different vertices from A are quite different. The second
condition stipulates that not only the neighborhoods of vertices from A are different but also
the unions of rows from Q that correspond to these neighborhoods are different.

Let Gn and G̃n and P,Q, P̃ be as in the previous section. For integers k, ` ≥ 1, we say G̃
is (k, `)-diverse if for every set S ⊆ B of size at least `, no k vertices in A are all connected
to all the vertices of S.

I Lemma 6. Let c, d ≥ 4 be integers. The probability that G̃n is (c logn, d logn)-diverse is
at least 1− n−(cd/2) log n.

Proof. Let k = c logn and ` = d logn. G̃ is not (k, `)-diverse if for some set S ⊆ B of size
`, and some k-tuple of distinct vertices a1, . . . , ak ∈ A, each vertex ai is connected to all
vertices from S in G̃. The probability that all vertices of a given k-tuple a1, . . . , ak ∈ A are
connected to all vertices in S in G̃ is at most 2−k`. (The probability is zero if some ai is
not connected to some vertex from S in G.) Hence, the probability that there is some set
S ⊆ B of size `, and some k-tuple of distinct vertices a1, . . . , ak ∈ A where each vertex ai is
connected to all vertices from S in G̃ is bounded by:

(
n

c logn

)
·
(

n

d logn

)
· 2−cd log2 n ≤ n(c+d) log n · 2−cd log2 n ≤ 1

n(cd/2) log n

where the second inequality follows from c, d ≥ 4. J

For S ⊆ B, a ∈ A and a subinterval K ⊆ C, we say that S is helpful for a on K if
there exists a set S′ ⊆ β′

a,G̃
(K) such that |S| ≤ |S′| and C[a]G ∩ (K �row(QS)) = C[a]G ∩

(K �row(QS′ )). In other words, the condition means that row(Qs) and row(QS′) agree on
coordinates inK that correspond to vertices unique for a inG. This is a necessary precondition
for row(QS) �K= row(QS′) �K which allows one to focus only on the hard-core formed by the
unique vertices. In particular, if for some S′′ ⊆ Γ

B,G̃
(a) in G̃, row(QS) �K= row(QS′′) �K ,

then S′ = S′′ ∩ β′
a,G̃

(K) satisfies C[a]G ∩ (K �row(QS)) = C[a]G ∩ (K �row(QS′ )). (See the
proof below.)

For integers k, ` ≥ 1, we say G̃ is (k, `)-unhelpful on K if for every set S ⊆ B of size at
least `, there are at most k vertices in A for which S is helpful on K.

I Lemma 7. Let c, d ≥ 4 be integers. Let K = {ci, ci+1, . . . , ci+`−1} be a subinterval of C.
The probability that G̃n is (c logn, d logn)-unhelpful on K is at least 1− n−(cd/2) log n.
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Proof. Take any set S ⊆ B of size ` ≥ d logn and arbitrary vertices a1, . . . , ak ∈ A for
k = c logn. Consider row(QS) �K and some i ∈ [k]. Since edges between B and C are always
the same in G̃, row(QS) �K is always the same in G̃. If S is helpful on K for ai then there
exists Si ⊆ β′

a,G̃
(K) such that |Si| ≥ ` and C[a]G ∩ (K �row(QSi

)) = C[a]G ∩ (K �row(QS)).
It turns out that given ai, the possible Si is uniquely determined by row(QS) �K . Whenever
row(QS) �K has one in a position c that corresponds to a unique vertex of a in G, row(QSi

) �K
must have one there as well so the corresponding b must be in Si. Conversely, whenever
row(QS) �K has zero in a position c that corresponds to a unique vertex of a inG, row(QSi

) �K
must have zero there as well so the corresponding b is not in Si. The probability that
Si ⊆ β′

a,G̃
(K) is 2−|Si|.

Hence, the probability over choice of G̃ that S is helpful for ai on K is at most 2−`. For
different ai’s this probability is independent as it only depends on edges between ai and B.
Thus the probability that S is helpful for a1, . . . , ak is at most 2−`k.

There are at most
(

n
`

)
·
(

n
k

)
choices for the set S of size ` and a1, . . . , ak. Hence, the

probability that G̃ is not (c logn, d logn)-unhelpful on K is at most:
n∑

`=d log n

(
n

`

)
·
(
n

k

)
· 2−`k ≤

n∑
`=d log n

n` · nk · 2−`k

≤
n∑

`=d log n

2(`+k) log n−`k

≤
n∑

`=d log n

2−`k/2

≤
n∑

`=d log n

1
n(cd/2) log n

where the third inequality follows from c, d ≥ 4. J

3 Union circuits

Our goal is to prove the following theorem:

I Theorem 8. There is a constant c > 0 such that for all n large enough there are matrices
P ∈ {0, 1}n×n/3 and Q ∈ {0, 1}n/3×n such that any correct witness for P ×Q consisting of
only union gates has cost at least n3/2c

√
log n.

Here by consisting of only union gates we mean consisting of union gates and input gates.
Our almost cubic lower bound on the cost of union witnesses is an easy corollary to the
following lemma.

I Lemma 9. Let n be a large enough integer and G̃n be the graph from Section 2.3, and
P̃,Q be its corresponding matrices. Let W be a correct witness for P̃ ×Q consisting of only
union gates. Let P̃ have at least m ones. Let each row of Q have at least r ones. If G̃ is
(k, `)-unhelpful on C for some integers k, ` ≥ 1 then any correct witness for P̃ ×Q consisting
of only union gates has cost at least (mr/2k`)− nr/k.

Proof. Let W be a correct witness for P̃ × Q consisting of only union gates. For each
gate g of W with output (S,C, v), for some v, define set(g) = S. Consider a ∈ A. Let
ga be a gate of W such that set(ga) = Γ

B,G̃
(a) (which equals β′

a,G̃
(C)). Take a maximal
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set Da of gates from W , descendants of ga, such that for each g ∈ Da, |set(g)| ≥ `

and either |set(left(g))| < ` or |set(right(g))| < `, and furthermore for g 6= g′ ∈ Da,
{set(g), set(left(g)), set(right(g))} 6= {set(g′), set(left(g′)), set(right(g′))}.

Notice, if g 6= g′ ∈ Da then class(g) 6= class(g′). This is because for any sets S 6= S′ ⊆
set(ga), row(QS) 6= row(QS′). (Say, b ∈ S \ S′, then there is 1 in Qb which corresponds to a
vertex c unique for a. Thus, row(QS)c = 1 whereas row(QS′)c = 0.)

We claim that since Da is maximal, |Da| ≥ b|set(ga)|/2`c. We prove the claim. Assume
set(ga) ≥ 2` otherwise there is nothing to prove. Take any b ∈ set(ga) and consider
a path g0, g1, . . . , gp = ga of gates in W such that set(g0) = {b}. Since |set(g0)| = 1,
|set(ga)| ≥ 2` and set(gi−1) ⊆ set(gi), there is some gi with |set(gi)| ≥ ` and |set(gi−1)| < `.
By maximality of Da there is some gate g ∈ Da such that {set(g), set(left(g)), set(right(g))} =
{set(gi), set(left(gi)), set(right(gi))}. Hence, b is in set(left(g)) or set(right(g)) of size < `.
Thus

set(ga) ⊆
⋃

g∈Da; |set(left(g))|<`

set(left(g)) ∪
⋃

g∈Da; |set(right(g))|<`

set(right(g))

Hence, |set(ga)| ≤ 2` · |Da| and the claim follows.
For a given a, gates in Da have different row-classes. Since G̃ is (k, `)-unhelpful on C,

the same row-class can appear in Da only for at most k different a’s. (Say, there were
a1, a2, . . . , ak+1 vertices in A and gates g1 ∈ Da1 , . . . , gk+1 ∈ Dak+1 of the same row-class.
For each i ∈ [k + 1], set(gi) ⊆ Γ

B,G̃
(ai) = β′

ai,G̃
(C) and |set(gi)| ≥ `. The smallest set(gi)

would be helpful for a1, a2, . . . , ak+1 contradicting the unhelpfulness of G̃.) Since∑
a

|Da| ≥
∑

a

b|set(ga)|/2`c ≥ m

2` − n,

witness W contains gates of at least (m/2k`) − n/k different row-classes. Since, each Qb

contains at least r ones, the total cost of W is as claimed. J

Proof of Theorem 8. Let G̃n be the graph from Section 2.3, and P̃,Q be its corresponding
matrices. Let r = nδn. By Lemma 7, the graph G̃ is (5 logn, 5 logn)-unhelpful on C with
probability at least 1− 1/nlog n, and by Chernoff bound, P̃ contains at least nr/10 ones with
probability at least 1− exp(n). So with probability at least 1/2, P̃ has m ≥ nr/10 ones while
G̃ is (5 logn, 5 logn)-unhelpful on C. By the previous lemma, any witness for P̃ ×Q is of cost
(nr2/25 logn)− nr/5 logn. For large enough n, this is at least nr2/50 logn = n3δ2

n/50 logn,
and the theorem follows. J

4 Circuits with partitions

In this section, our goal is to prove the lower bound Ω(n7/3/2O(
√

log n)) on the cost of
a witness for matrix product when the witness is allowed to partition the columns of Q.
Namely:

I Theorem 10. For all n large enough there are matrices P ∈ {0, 1}n×n/3 and Q ∈
{0, 1}n/3×n such that any correct witness for P ×Q has cost at least Ω(n7/3/2O(

√
log n)).

Due to space limitations we provide only an overview of the proof. The proof builds on
ideas seen already in the previous part but also requires several additional ideas. Consider
a correct witness for P̃ × Q. We partition its union gates based on their corresponding
subinterval of C. If there are many vertices in A that use many different subintervals (roughly
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Ω(n4/3) in total) the lower bound follows by counting the total number of gates in the
circuit using diversity of G̃ (Lemma 13). If there are many vertices in A which use only
few subintervals (less than roughly O(n1/3) each) then these subintervals must be large on
average (about n2/3) and contain lots of vertices from C unique for their respective vertices
from A.

In this case we divide the circuit (its union gates) based on their subinterval, and we
calculate the contribution of each part separately. To do that we have to limit the amount of
reuse of a given row-class within each part, and also among distinct parts. Within each part
we limit the amount of reuse using a similar technique to Lemma 9 based on unhelpfulness
of the graph (Lemma 12). However, for distinct parts we need a different tool which we
call limited reuse. Limited reuse is somewhat different than unhelpfulness in the type of
guarantee we get. It is a weaker guarantee as we are not able to limit the reuse of a row-class
for each single gate but only the total reuse of row-classes of all the gates in a particular
part. On average the reuse is again roughly O(logn).

However, the number of gates in a particular part of the circuit might be considerably
larger than the number of gates we are able to charge for work in that part. In general, we
are only able to charge gates that already made some non-trivial progress in the computation
(as otherwise the gates could be reused heavily.) We overcome this obstacle by balancing the
size of the part against the number of chargeable gates in that part.

If the total number of gates in the part is at least n1/3-times larger than the total number
of chargeable gates, we charge the part for its size. Otherwise we charge it for work. Each
chargeable gates contributes by about n2/3 units of work or more, however this can be reused
almost n1/3-times elsewhere. Either way, approximately Ω(n7/3) of work must be done in
total. Now we present the actual proof.

The actual proof of the theorem builds on several key lemmas which we state next. Due
to space limitations, details of the proof are deferred to the full version of this paper. In
order to prove the theorem we need few more definitions. Let Gn and G̃n and P,Q, P̃ be as
in the Section 2.3. All witness circuits in this section are with respect to P̃ × Q (i.e., G̃n).
Let c0 and c1 be some constants that we will fix later.

The following definition aims to separate contribution from different rows within a
particular subcircuit. A witness circuit may benefit from taking a union of the same row
of Q multiple times to obtain a particular union. This could help various gates to attain
the same row-class. In order to analyze the cost of the witness we want to effectively prune
the circuit so that contribution from each row of Q is counted at most once. The following
definition captures this prunning.

Let W be a union circuit over B with a single vertex gout of out-degree zero (out-
put gate). The trimming of W is a map that associates to each gate g of W a sub-
set trim(g) ⊆ set(g) such that trim(gout) = set(gout) and for each non-input gate g,
trim(g) = trim(left(g))∪̇trim(right(g)). For each circuit W , we fix a canonical trimming that
is obtained from set(·) by the following process: For each b ∈ set(gout), find the left-most
path from gout to an input gate g such that b ∈ set(g), and remove b from set(g′) of every
gate g′ that is not on this path.

Given the trimming of a union circuit W we will focus our attention only on gates that
contribute substantially to the cost of the computation. We call such gates chargeable in the
next definition. For a vertex a ∈ A and a subinterval K ⊆ C, let W be a union witness for
(a,K) with its trimming. We say a gate g in W is (a,K)-chargeable if |trim(g) ∩ β′

a,G̃
(K)| ≥

c0 logn and trim(left(g)) ∩ β′
a,G̃

(K) and trim(right(g)) ∩ β′
a,G̃

(K) are both different from
trim(g) ∩ β′

a,G̃
(K). (a,K)-Chargeable descendants of g are (a,K)-chargeable gates g′ in W
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where trim(g′)∩β′
a,G̃

(K) ⊆ trim(g)∩β′
a,G̃

(K). Observe that the number of (a,K)-chargeable
descendants of a gate g is at most |trim(g) ∩ β′

a,G̃
(K)|+ 1− c0 logn.

From a correct witness for P̃ × Q, we extract some induced union circuit W for (a,K)
and some resultant circuit W ′. We say that a gate g from W is compatible with a gate g′
from W ′ if row(Qset(g)) �K= row(g′).

We want to argue that chargeable gates corresponding to gates of a given correct witness
have many different row-classes. Hence, we want to bound the number of gates whose result
is compatible with each other. This is akin to the notion of helpfulness. In the case of
helpfulness we were able to limit the repetition of the same row-class for individual gates
operating on the same subinterval of columns of Q. In addition to that we need to limit the
occurence of the same row-class for gates that operate on distinct subintervals. As opposed to
the simpler case of helpfulness, we will need to focus on the global count of row-classes that
can be reused elsewhere from gates operating on the same subinterval. The next definition
encapsulates the desired property of G̃.

For a, a′ ∈ A and subintervals K,K ′ of C, we say that (a,K) and (a′,K ′) are independent
if either a 6= a′ or K∩K ′ = ∅. A resultant circuitW ′ over {0, 1}` is consistent with Q, if there
exists a subinterval K ⊆ C of size `, such that for each input gate g of W ′, row(g) = Qb �K
for some b ∈ B. We say that G̃ admits only limited reuse if for any resultant circuit W ′ of
size at most n3 which is consistent with Q and any correct witness circuit W for P̃ × Q, the
number of gates in any induced union witnesses W1, . . . ,Ws for any pairwise independent
pairs (a1,K1), . . . , (as,Ks) that are chargeable and compatible with some gate in W ′ is at
most c1|W ′| logn.

We will show that with high probability G̃ admits only limited reuse.

I Lemma 11. Let c1 ≥ 7 and c0 ≥ 20 be constants. Let n be a large enough integer. Let G̃n

be the graph from Section 2.3, and P̃,Q be its corresponding matrices. The probability that
G̃ admits only limited reuse is at least 1− 1/n.

The next lemma lower bounds the contribution of chargeable gates to the total cost of
the witness. It is similar in spirit to Lemma 9 and its proof is similar. It focuses on union
gates dealing with a particular subinterval K ⊆ C.

I Lemma 12 (Partition version). Let G̃, P̃,Q,W be as above. Let r, k > 1 be integers and
` = c0 logn. Let K ⊆ C be a subinterval. Let R ⊆ B be such that for each b in R, Qb �K
has at least r ones. Let A′ ⊆ A be such that for each a ∈ A′, |R ∩ β′

a,G̃
(K)| ≥ 2`. Let

m =
∑

a∈A′ |R∩ β′
a,G̃

(K)|. If G̃ is (k, `)-unhelpful on K then there is a set D of union gates
in W such that
1. Each gate in D is (a,K)-chargeable for some vertex a ∈ A, and
2. The number of different row-classes of gates in D of cost ≥ r is at least m/4k`.

If the witness for P̃ × Q involves many subintervals for many vertices we will apply
the next lemma. By Proposition 3 each a ∈ A is associated with distinct subintervals
Ka,1, . . . ,Ka,`a

⊆ C, for some `a, such that C =
⋃

j∈[`a]Ka,j and there are union gates
ga,1, . . . , ga,`a

in W such that ga,j outputs (Γ
B,G̃

(a),Ka,j , va,j) for some va,j ∈ {0, 1}|Ka,j |.

I Lemma 13. Let W , `a’s, Ka,j’s, ga,j’s be as above. Let c, d ≥ 4 and `, r ≥ 1 be integers
where r is large enough. Let L = {a ∈ A, `a ≥ ` & |Γ

B,G̃
(a)| ≥ r}. If G̃ is (c logn, d logn)-

diverse then the size of W is at least r` · |L|/(2cd log2 n).

The proof of the main theorem that leverages these lemmas is given in the full version of
the paper.
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Abstract
In this paper, we prove that optimally solving an n × n × n Rubik’s Cube is NP-complete by
reducing from the Hamiltonian Cycle problem in square grid graphs. This improves the previous
result that optimally solving an n×n×n Rubik’s Cube with missing stickers is NP-complete. We
prove this result first for the simpler case of the Rubik’s Square – an n× n× 1 generalization of
the Rubik’s Cube – and then proceed with a similar but more complicated proof for the Rubik’s
Cube case. Our results hold both when the goal is make the sides monochromatic and when the
goal is to put each sticker into a specific location.
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1 Introduction

The Rubik’s Cube is an iconic puzzle in which the goal is to rearrange the stickers on the
outside of a 3 × 3 × 3 cube so as to make each face monochromatic by rotating 1 × 3 × 3
(or 3× 1× 3 or 3× 3× 1) slices. In some versions where the faces show pictures instead of
colors, the goal is to put each sticker into a specific location. The 3× 3× 3 Rubik’s Cube
can be generalized to an n× n× n cube in which a single move is a rotation of a 1× n× n

slice. We can also consider the generalization to an n× n× 1 figure. In this simpler puzzle,
called the n× n Rubik’s Square, the allowed moves are flips of n× 1× 1 rows or 1× n× 1
columns. These two generalizations were introduced in [3].

The overall purpose of this paper is to address the computational difficulty of optimally
solving these puzzles. In particular, consider the decision problem which asks for a given
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Figure 1 A single move in an example 6 × 6 Rubik’s Square.

puzzle configuration whether that puzzle can be solved in a given number of moves. We
show that this problem is NP-complete for the n× n Rubik’s Square and for the n× n× n

Rubik’s Cube under two different move models. These results close a problem that has been
repeatedly posed as far back as 1984 [1, 8, 5] and has until now remained open [7].

In Section 2, we formally introduce the decision problems regarding Rubik’s Squares and
Rubik’s Cubes whose complexity we will analyze. Then in Section 3, we introduce the variant
of the Hamiltonicity problem that we will reduce from – Promise Cubical Hamiltonian Path
– and prove this problem to be NP-hard. Next, we prove that the problems regarding the
Rubik’s Square are NP-complete in Section 4 by reducing from Promise Cubical Hamiltonian
Path. After that, we apply the same ideas in Section 5 to a more complicated proof of
NP-hardness for the problems regarding the Rubik’s Cube. Finally, we discuss possible next
steps in Section 6. Membership in NP, as well as other omitted proofs, can be found in the
full version of this paper [4].

2 Rubik’s Cube and Rubik’s Square problems

2.1 Rubik’s Square

We begin with a simpler model based on the Rubik’s Cube which we will refer to as the
Rubik’s Square. In this model, a puzzle consists of an n×n array of unit cubes, called cubies
to avoid ambiguity. Every cubie face on the outside of the puzzle has a colored (red, blue,
green, white, yellow, or orange) sticker. The goal of the puzzle is to use a sequence of moves
to rearrange the cubies such that each face of the puzzle is monochromatic in a different
color. A move consists of flipping a single row or column in the array through space via a
rotation in the long direction as demonstrated in Figure 1.

We are concerned with the following decision problem:

I Problem 1. The Rubik’s Square problem has as input an n× n Rubik’s Square config-
uration and a value k. The goal is to decide whether a Rubik’s Square in configuration C can
be solved in k moves or fewer.

Note that this type of puzzle was previously introduced in [3] as the n× n× 1 Rubik’s
Cube. In that paper, the authors showed that deciding whether it is possible to solve the
n × n × 1 Rubik’s Cube in a given number of moves is NP-complete when the puzzle is
allowed to have missing stickers (and the puzzle is considered solved if each face contains
stickers of only one color).
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Figure 2 A single slice rotation in an example 7 × 7 × 7 Rubik’s Cube.

2.2 Rubik’s Cube
Next consider the Rubik’s Cube puzzle. An n× n× n Rubik’s Cube is a cube consisting of
n3 unit cubes called cubies. Every face of a cubie that is on the exterior of the cube has a
colored (red, blue, green, white, yellow, or orange) sticker. The goal of the puzzle is to use a
sequence of moves to reconfigure the cubies in such a way that each face of the cube ends up
monochromatic in a different color. A move count metric is a convention for counting moves
in a Rubik’s Cube. Several common move count metrics for Rubik’s Cubes are listed in [9].
As discussed in [2], however, many common move count metrics do not easily generalize to
n > 3 or are not of any theoretical interest. In this paper, we will restrict our attention to
two move count metrics called the Slice Turn Metric and the Slice Quarter Turn Metric.
Both of these metrics use the same type of motion to define a move. Consider the subdivision
of the Rubik’s Cube’s volume into n slices of dimension 1× n× n (or n× 1× n or n× n× 1).
In the Slice Turn Metric (STM), a move is a rotation of a single slice by any multiple of 90◦.
Similarly, in the Slice Quarter Turn Metric (SQTM), a move is a rotation of a single slice by
an angle of 90◦ in either direction. An example SQTM move is shown in Figure 2.

We are concerned with the following decision problems:

I Problem 2. The STM/SQTM Rubik’s Cube problem takes as input a configuration
of a Rubik’s Cube together with a number k. The goal is to decide whether a Rubik’s Cube in
configuration C can be solved in at most k STM/SQTM moves.

2.3 Notation
Next we define some notation for dealing with the Rubik’s Cube and Rubik’s Square problems.

To begin, we need a way to refer to cubies and stickers. For this purpose, we orient the
puzzle to be axis-aligned. In the case of the Rubik’s Square we arrange the n× n array of
cubies in the x and y directions and we refer to a cubie by stating its x and y coordinates.
In the case of the Rubik’s Cube, we refer to a cubie by stating its x, y, and z coordinates.
To refer to a sticker in either puzzle, we need only specify the face on which that sticker
resides (e.g. “top” or “+z”) and also the two coordinates of the sticker along the surface of
the face (e.g. the x and y coordinates for a sticker on the +z face).

If n = 2a + 1 is odd, then we will let the coordinates of the cubies in each direction range
over the set {−a,−(a − 1), . . . ,−1, 0, 1, . . . , a − 1, a}. This is equivalent to centering the
puzzle at the origin. If, however, n = 2a is even, then we let the coordinates of the cubies in
each direction range over the set {−a,−(a− 1), . . . ,−1} ∪ {1, . . . , a− 1, a}. In this case, the
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coordinate scheme does not correspond with a standard coordinate sheme no matter how we
translate the cube. This coordinate scheme is a good idea for the following reason: under
this scheme, if a move relocates a sticker, the coordinates of that sticker remain the same up
to permutation and negation.

Next, we need a way to distinguish the sets of cubies affected by a move from each other.
In the Rubik’s Square, there are two types of moves. The first type of move, which we

will call a row move or a y move, affects all the cubies with some particular y coordinate.
The second type of move, which we will call a column move or an x move affects all the
cubies with some particular x coordinate. We will refer to the set of cubies affected by a row
move as a row and refer to the set of cubies affected by a column move as a column. In order
to identify a move, we must identify which row or column is being flipped, by specifying
whether the move is a row or column move as well as the index of the coordinate shared by
all the moved cubies (e.g. the index −5 row move is the move that affects the cubies with
y = −5).

In the Rubik’s Cube, each STM/SQTM move affects a single slice of n2 cubies sharing
some coordinate. If the cubies share an x (or y or z) coordinate, then we call the slice an x

(or y or z) slice. As with the Rubik’s Square, we identify the slice by its normal direction
together with its cubies’ index in that direction (e.g. the x = 3 slice). We will also refer to
the six slices at the boundaries of the Cube as face slices (e.g. the +x face slice).

A move in a Rubik’s Cube can be named by identifying the slice being rotated and the
amount of rotation. We split this up into the following five pieces of information: the normal
direction to the slice, the sign of the index of the slice, the absolute value of the index of
the slice, the amount of rotation, and the direction of rotation. Splitting the information up
in this way allows us not only to refer to individual moves (by specifying all five pieces of
information) but also to refer to interesting sets of moves (by omitting one or more of the
pieces of information).

To identify the normal direction to a slice, we simply specify x, y, or z; for example, we
could refer to a move as an x move whenever the rotating slice is normal to the x direction.
We will use two methods to identify the sign of the index of a moved slice. Sometimes we will
refer to positive moves or negative moves, and sometimes we will combine this information
with the normal direction and specify that the move is a +x, −x, +y, −y, +z, or −z move.
We use the term index-v move to refer to a move rotating a slice whose index has absolute
value v. In the particular case that the slice rotated is a face slice, we instead use the term
face move. We refer to a move as a turn if the angle of rotation is 90◦ and as a flip if
the angle of rotation is 180◦. In the case that the angle of rotation is 90◦, we can specify
further by using the terms clockwise turn and counterclockwise turn. We make the notational
convention that clockwise and counterclockwise rotations around the x, y, or z axes are
labeled according to the direction of rotation when looking from the direction of positive x,
y, or z.

We also extend the same naming conventions to the Rubik’s Square moves. For example,
a positive row move is any row move with positive index and an index-v move is any move
with index ±v.

2.4 Group-theoretic approach
An alternative way to look at the Rubik’s Square and Rubik’s Cube problems is through
the lens of group theory. The transformations that can be applied to a Rubik’s Square or
Rubik’s Cube by a sequence of moves form a group with composition as the group operation.
Define RSn to be the group of possible sticker permutations in an n× n Rubik’s Square and
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define RCn to be the group of possible sticker permutations in an n× n× n Rubik’s Cube.
Consider the moves possible in an n× n Rubik’s Square or an n× n× n Rubik’s Cube.

Each such move has a corresponding element in group RSn or RCn.
For the Rubik’s Square, let xi ∈ RSn be the transformation of flipping the column with

index i in an n× n Rubik’s Square and let yi be the transformation of flipping the row with
index i in the Square. Then if I is the set of row/column indices in an n× n Rubik’s Square
we have that RSn is generated by the set of group elements

⋃
i∈I{xi, yi}.

Similarly, for the Rubik’s Cube, let xi, yi, and zi in RCn be the transformations cor-
responding to clockwise turns of x, y, or z slices with index i. Then if I is the set of slice
indices in an n × n × n Rubik’s Cube we have that RCn is generated by the set of group
elements

⋃
i∈I{xi, yi, zi}.

Using these groups we obtain a new way of identifying puzzle configurations. Let C0 be a
canonical solved configuration of a Rubik’s Square or Rubik’s Cube puzzle. For the n× n

Rubik’s Square, define C0 to have top face red, bottom face blue, and the other four faces
green, orange, yellow, and white in some fixed order. For the n× n× n Rubik’s Cube, let C0
have the following face colors: the +x face is orange, the −x face is red, the +y face is green,
the −y face is yellow, the +z face is white, and the −z face is blue. Then from any element
of RSn or RCn, we can construct a configuration of the corresponding puzzle by applying
that element to C0. In other words, every transformation t ∈ RSn or t ∈ RCn corresponds
with the configuration Ct = t(C0) of the n× n Rubik’s Square or n× n× n Rubik’s Cube
that is obtained by applying t to C0.

Using this idea, we define a new series of problems:

I Problem 3. The Group Rubik’s Square problem has as input a transformation t ∈ RSn

and a value k. The goal is to decide whether the transformation t can be reversed by a
sequence of at most k transformations corresponding to Rubik’s Square moves. In other
words, the answer is “yes” if and only if the transformation t can be reversed by a sequence
of at most k transformations of the form xi or yi.

I Problem 4. The Group STM/SQTM Rubik’s Cube problem has as input a trans-
formation t ∈ RCn and a value k. The goal is to decide whether the transformation t can be
reversed by a sequence of at most k transformations corresponding with legal Rubik’s Cube
moves under move count metric STM/SQTM.

We can interpret these problems as variants of the Rubik’s Square or Rubik’s Cube
problems. For example, the Rubik’s Square problem asks whether it is possible (in a given
number of moves) to unscramble a Rubik’s Square configuration so that each face ends up
monochromatic, while the Group Rubik’s Square problem asks whether it is possible (in a
given number of moves) to unscramble a Rubik’s Square configuration so that each sticker
goes back to its exact position in the originally solved configuration C0. As you see, the
Group Rubik’s Square problem, as a puzzle, is just a more difficult variant of the puzzle:
instead of asking the player to move all the stickers of the same color to the same face, this
variant asks the player to move each stickers to the exact correct position. Similarly, the
Group STM/SQTM Rubik’s Cube problem as a puzzle asks the player to move each sticker
to an exact position. These problems can have practical applications with physical puzzles.
For example, some Rubik’s Cubes have pictures split up over the stickers of each face instead
of just monochromatic colors on the stickers. For these puzzles, as long as no two stickers
are the same, the Group STM/SQTM Rubik’s Cube problem is more applicable than the
STM/SQTM Rubik’s Cube problem (which can leave a face “monochromatic” but scrambled
in image).
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We formalize the idea that the Group version of the puzzle is a strictly more difficult
puzzle in the following lemmas:

I Lemma 2.1. If (t, k) is a “yes” instance to the Group Rubik’s Square problem, then
(t(C0), k) is a “yes” instance to the Rubik’s Square problem.

I Lemma 2.2. If (t, k) is a “yes” instance to the Group STM/SQTM Rubik’s Cube problem,
then (t(C0), k) is a “yes” instance to the STM/SQTM Rubik’s Cube problem.

At this point it is also worth mentioning that the Rubik’s Square with SQTM move model
is a strictly more difficult puzzle than the Rubik’s Square with STM move model:

I Lemma 2.3. If (C, k) is a “yes” instance to the SQTM Rubik’s Cube problem, then it
is also a “yes” instance to the STM Rubik’s Cube problem. Similarly, if (t, k) is a “yes”
instance to the Group SQTM Rubik’s Cube problem, then it is also a “yes” instance to the
Group STM Rubik’s Cube problem.

3 Hamiltonicity variants

To prove the problems introduced above hard, we need to introduce several variants of the
Hamiltonian cycle and path problems.

It is shown in [6] that the following problem is NP-complete.

I Problem 5. A square grid graph is a finite induced subgraph of the infinite square lattice.
The Grid Graph Hamiltonian Cycle problem asks whether a given square grid graph with no
degree-1 vertices has a Hamiltonian cycle.

Starting with this problem, we prove that the following promise version of the grid graph
Hamiltonian path problem is also NP-hard.

I Problem 6. The Promise Grid Graph Hamiltonian Path problem takes as input a square
grid graph G and two specified vertices s and t with the promise that any Hamiltonian path
in G has s and t as its start and end respectively. The problem asks whether there exists a
Hamiltonian path in G.

The above problem is more useful, but it is still inconvenient in some ways. In particular,
there is no conceptually simple way to connect a grid graph to a Rubik’s Square or Rubik’s
Cube puzzle. It is the case, however, that every grid graph is actually a type of graph called
a “cubical graph”. Cubical graphs, unlike grid graphs, can be conceptually related to Rubik’s
Cubes and Rubik’s Squares with little trouble.

So what is a cubical graph? Let Hm be the m dimensional hypercube graph; in particular,
the vertices of Hm are the bitstrings of length m and the edges connect pairs of bitstrings
whose Hamming distance is exactly one. Then a cubical graph is any induced subgraph of
any hypercube graph Hm.

Notably, when embedding a grid graph into a hypercube, it is always possible to assign the
bitstring label 00 . . . 0 to any vertex. Suppose we start with Promise Grid Graph Hamiltonian
Path problem instance (G, s, t); then by embedding G into a hypercube graph, we can
reinterpret this instance as an instance of the promise version of cubical Hamiltonian path:

I Problem 7. The Promise Cubical Hamiltonian Path problem takes as input a cubical graph
whose vertices are length-m bitstrings l1, l2, . . . , ln with the promise that (1) ln = 00 . . . 0 and
(2) any Hamiltonian path in the graph has l1 and ln as its start and end respectively. The
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problem asks whether there exists a Hamiltonian path in the cubical graph. In other words,
the problem asks whether it is possible to rearrange bitstrings l1, . . . , ln into a new order such
that each bitstring has Hamming distance one from the next.

First, we reduce from the Grid Graph Hamiltonian Cycle problem to the Promise Grid
Graph Hamiltonian Path problem.

I Lemma 3.1. The Promise Grid Graph Hamiltonian Path problem (Problem 6) is NP-hard.

Second, we reduce from the Promise Grid Graph Hamiltonian Path problem to the
Promise Cubical Hamiltonian Path problem.

I Theorem 3.2. The Promise Cubical Hamiltonian Path problem (Problem 7) is NP-hard.

4 (Group) Rubik’s Square is NP-complete

4.1 Reductions
To prove that the Rubik’s Square and Group Rubik’s Square problems are NP-complete, we
reduce from the Promise Cubical Hamiltonian Path problem of Section 3.

Suppose we are given an instance of the Promise Cubical Hamiltonian Path problem
consisting of n bitstrings l1, . . . , ln of length m (with ln = 00 . . . 0). To construct a Group
Rubik’s Square instance we need to compute the value k indicating the allowed number of
moves and construct the transformation t ∈ RSs.

The value k can be computed directly as k = 2n− 1.
The transformation t will be an element of group RSs where s = 2(max(m, n) + 2n).

Define ai for 1 ≤ i ≤ n to be (x1)(li)1 ◦ (x2)(li)2 ◦ · · · ◦ (xm)(li)m where (li)1, (li)2, . . . , (li)m

are the bits of li. Also define bi = (ai)−1 ◦ yi ◦ ai for 1 ≤ i ≤ n. Then we define t to be
a1 ◦ b1 ◦ b2 ◦ · · · ◦ bn.

Outputting (t, k) completes the reduction from the Promise Cubical Hamiltonian Path
problem to the Group Rubik’s Square problem. To reduce from the Promise Cubical
Hamiltonian Path problem to the Rubik’s Square problem we simply output (Ct, k) =
(t(C0), k). These reductions clearly run in polynomial time.

4.2 Intuition
The key idea that makes this reduction work is that the transformations bi for i ∈ {1, . . . , n}
all commute. This allows us to rewrite t = a1 ◦ b1 ◦ b2 ◦ · · · ◦ bn with the bis in a different
order. If the order we choose happens to correspond to a Hamiltonian path in the cubical
graph specified by l1, . . . , ln, then when we explicitly write the bis and a1 in terms of xjs and
yis, most of the terms cancel. In particular, the number of remaining terms will be exactly k.
Since we can write t as a combination of exactly k xjs and yis, we can invert t using at most
k xjs and yis. In other words, if there is a Hamiltonian path in the cubical graph specified
by l1, . . . , ln, then (t, k) is a “yes” instance to the Group Rubik’s Square problem.

In order to more precisely describe the cancellation of terms in t, we can consider just one
local part: bi ◦ bi′ . We can rewrite this as (ai)−1 ◦ yi ◦ ai ◦ (ai′)−1 ◦ yi′ ◦ ai′ . The interesting
part is that ai ◦ (ai′)−1 will cancel to become just one xj . Note that

ai ◦ (ai′)−1 = (x1)(li)1 ◦ (x2)(li)2 ◦ · · · ◦ (xm)(li)m ◦ (x1)−(li′ )1 ◦ (x2)−(li′ )2 ◦ · · · ◦ (xm)−(li′ )m ,

which we can rearrange as

(x1)(li)1−(li′ )1 ◦ (x2)(li)2−(li′ )2 ◦ · · · ◦ (xm)(li)m−(li′ )m .
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Figure 3 Applying b2 to C0 step by step (only top face shown).

Next, if bi and bi′ correspond to adjacent vertices li and li′ , then (li)j − (li′)j is zero for all j

except one for which (li)j − (li′)j = ±1. Thus the above can be rewritten as (xj)1 or (xj)−1

for some specific j. Since xj = (xj)−1 this shows that (ai1)−1 ◦ ai2 simplifies to xj for some j.
This intuition is formalized in the following sequence of results.

I Lemma 4.1. The transformations bi all commute.

I Theorem 4.2. If l1, . . . , ln is a “yes” instance to the Promise Cubical Hamiltonian Path
problem, then (t, k) is a “yes” instance to the Group Rubik’s Square problem.

I Corollary 4.3. If l1, . . . , ln is a “yes” instance to the Promise Cubical Hamiltonian Path
problem, then (Ct, k) is a “yes” instance to the Rubik’s Square problem.

4.3 Coloring of Ct

In order to show the other direction of the proof, it will be helpful to consider the coloring of
the stickers on the top and bottom faces of the Rubik’s Square. In particular, if we define
b = b1 ◦ · · · ◦ bn (so that t = a1 ◦ b), then it will be very helpful for us to know the colors of
the top and bottom stickers in configuration Cb = b(C0).

Consider for example the instance of Promise Cubical Hamiltonian Path with n = 5 and
m = 3 defined by l1 = 011, l2 = 110, l3 = 111, l4 = 100, l5 = 000. For this example, C0 is an
s× s Rubik’s Square with s = 2(max(m, n) + 2n) = 30.

To describe configuration Cb, we need to know the effect of transformation bi. For
example, Figure 3 shows the top face of a Rubik’s Square in configurations C0, a2(C0),
(y2 ◦ a2)(C0), and b2(C0) = ((a2)−1 ◦ y2 ◦ a2)(C0) where a2 and y2 are defined in terms of
l2 = 110 as in the reduction.

The exact behavior of a Rubik’s Square due to bi is described by the following lemma:

I Lemma 4.4. Suppose i ∈ {1, . . . , n}, and c, r ∈ {1, . . . , s/2}. Then
1. if r = i and c ≤ m such that bit c of li is 1, then bi swaps the cubies in positions (c,−r)

and (−c, r) without flipping either;
2. if r = i and either c > m or c ≤ m and bit c of li is 0, then bi swaps the cubies in

positions (c, r) and (−c, r) and flips them both;
3. all other cubies are not moved by bi.

We can apply the above to figure out the effect of transformation b1 ◦ b2 ◦ · · · ◦ bn on
configuration C0. In particular, that allows us to learn the coloring of configuration Cb.

I Theorem 4.5. In Cb, a cubie has top face blue if and only if it is in position (c, r) such
that 1 ≤ r ≤ n and either |c| > m or |c| ≤ m and bit |c| of lr is 0.
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(a) The top face of Cb

for the example input
l1, . . . , ln.
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(b) The top face of Ct

for the example input
l1, . . . , ln.

Figure 4 The coloring of the Rubik’s Square for the example input l1, . . . , ln.

This concludes the description of Cb in terms of colors. The coloring of configuration Ct –
the configuration that is actually obtained by applying the reduction to l1, . . . , ln – can be
obtained from the coloring of configuration Cb by applying transformation a1.

Applying Theorem 4.5 to the previously given example, we obtain the coloring of the
Rubik’s Square in configuration Cb as shown in Figure 4a. Note that the n×m grid of bits
comprising l1, . . . , ln is actually directly encoded in the coloring of a section of the Rubik’s
Square. In addition, the coloring of the Rubik’s Square in configuration Ct is shown for the
same example in Figure 4b.

4.4 (Group) Rubik’s Square solution → Promise Cubical Hamiltonian
Path solution

In the full paper, [4], we prove the following theorem:

I Theorem 4.6. If (Ct, k) is a “yes” instance to the Rubik’s Square problem, then l1, . . . , ln
is a “yes” instance to the Promise Cubical Hamiltonian Path problem.

By Lemma 2.1, this immediately implies the following corollary:

I Corollary 4.7. If (t, k) is a “yes” instance to the Group Rubik’s Square problem, then
l1, . . . , ln is a “yes” instance to the Promise Cubical Hamiltonian Path problem.

4.5 Conclusion
Theorems 4.2 and 4.6 and Corollaries 4.3 and 4.7 show that the polynomial-time reductions
given are answer preserving. As a result, we conclude that

I Theorem 4.8. The Rubik’s Square and Group Rubik’s Square problems are NP-complete.

5 (Group) STM/SQTM Rubik’s Cube is NP-complete

5.1 Reductions
Below, we introduce the reductions used for the Rubik’s Cube case. These reductions very
closely mirror the Rubik’s Square case, and the intuition remains exactly the same: the bi

terms commute, and so if the input Promise Cubical Hamiltonian Path instance is a “yes”
instance then the bis can be reordered so that all but k moves in the definition of t will
cancel; therefore in that case t can be both enacted and reversed in k moves.

STACS 2018
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There are, however, several notable differences from the Rubik’s Square case. The first
difference is that in a Rubik’s Cube, the moves xi, yi, and zi are all quarter turn rotations
rather than self-inverting row or column flips. One consequence is that unlike in the Rubik’s
Square case, the term ai does not have the property that (ai)−1 = ai. A second difference
is that in a Rubik’s Square, the rows never become columns or visa versa. In a Rubik’s
Cube on the other hand, rotation of the faces can put rows of stickers that were once aligned
parallel to one axis into alignment with another axis. To avoid allowing a solution of the
puzzle due to this fact in the absence of a solution to the input Promise Cubical Hamiltonian
Path instance, the slices in this construction which take the role of rows 1 through n in the
Rubik’s Square case and the slices which take the role of columns 1 through m in the Rubik’s
Square case will be assigned entirely distinct indices.

To prove that the STM/SQTM Rubik’s Cube and Group STM/SQTM Rubik’s Cube
problems are NP-complete, we reduce from the Promise Cubical Hamiltonian Path problem
of Section 3 as described below.

Suppose we are given an instance of the Promise Cubical Hamiltonian Path problem
consisting of n biststrings l1, . . . , ln of length m (with ln = 00 . . . 0). To construct a Group
STM/SQTM Rubik’s Square instance we need to compute the value k indicating the allowed
number of moves and construct the transformation t in RCs.

The value k can be computed directly as k = 2n− 1.
The transformation t will be an element of group RCs where s = 6n + 2m. Define ai for

1 ≤ i ≤ n to be (x1)(li)1 ◦ (x2)(li)2 ◦ · · · ◦ (xm)(li)m where (li)1, (li)2, . . . , (li)m are the bits of li.
Also define bi = (ai)−1 ◦ zm+i ◦ ai for 1 ≤ i ≤ n. Then we define t to be a1 ◦ b1 ◦ b2 ◦ · · · ◦ bn.

Outputting (t, k) completes the reduction from the Promise Cubical Hamiltonian Path
problem to the Group STM/SQTM Rubik’s Cube problem. To reduce from the Promise
Cubical Hamiltonian Path problem to the STM/SQTM Rubik’s Cube problem we simply
output (Ct, k) = (t(C0), k). As with the Rubik’s Square case, these reductions are clearly
polynomial-time reductions.

5.2 Promise Cubical Hamiltonian Path solution → (Group)
STM/SQTM Rubik’s Cube solution

The proof of this direction is not substantively different from the proof of the first direction
for the Rubik’s Square problems. The differences in these proofs are all minor details that
are only present to account for the differences (listed above) between the Rubik’s Square and
Rubik’s Cube reductions. See [4], the full paper, for details.

5.3 Coloring of Ct

As in the Rubik’s Square case, it is helpful for the second direction of the proof to know the
coloring of the Cube’s configuration. As before, we define b = b1 ◦ · · · ◦ bn (so that t = a1 ◦ b)
and determine the colors of the stickers in configuration Cb = b(C0).

Consider the example instance of Promise Cubical Hamiltonian Path with n = 5 and
m = 3 introduced in Section 4.3. For this example instance, the Rubik’s Cube configuration
produced by the reduction is an s× s× s Rubik’s Cube with s = 2m + 6n = 36. Furthermore,
the coloring of the stickers in Cb for this example is shown in Figure 5. Note that the n×m

grid of bits comprising l1, . . . , ln is actually directly encoded in the coloring of each face.
In the full paper, we formalize the general pattern of colors intuited from this example.
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Figure 5 The faces of Cb for the example input l1, . . . , ln. In this figure, the top and bottom
faces are the +z and −z faces, while the faces in the vertical center of the figure are the +x, +y,
−x, and −y faces from left to right.

5.4 (Group) STM/SQTM Rubik’s Cube solution → Promise Cubical
Hamiltonian Path solution: proof outline

In [4], the full paper, we prove the following:

I Theorem 5.1. If (Ct, k) is a “yes” instance to the STM Rubik’s Cube problem, then
l1, . . . , ln is a “yes” instance to the Promise Cubical Hamiltonian Path problem.

By Lemmas 2.2 and 2.3, this immediately implies the following corollary:

I Corollary 5.2. If (t, k) is a “yes” instance to the Group STM/SQTM Rubik’s Cube problem
or (Ct, k) is a “yes” instance to the STM/SQTM Rubik’s Cube problem, then l1, . . . , ln is a
“yes” instance to the Promise Cubical Hamiltonian Path problem.

The intuition behind the proof of Theorem 5.1 is similar to that used in the Rubik’s
Square case, but there is added complexity due to the extra options available in a Rubik’s
Cube. Most of the added complexity is due to the possibility of face moves (allowing rows of
stickers to align in several directions over the course of a solution). Below, we describe an
outline of the proof using several high-level steps.

Consider a hypothetical solution to the (Ct, k) instance of the STM Rubik’s Cube problem
consisting of a sequence of STM Rubik’s Cube moves m1, . . . , mk′ with k′ ≤ k such that
C ′ = (mk′ ◦ · · · ◦m1)(Ct) is a solved configuration of the Rubik’s Cube.

STACS 2018



24:12 Solving the Rubik’s Cube Optimally is NP-complete

Using the fact that the side-length of the cube is large compared to the number of allowed
moves, we prove the following preliminary facts:

There are no indices i ∈ {1, . . . , n} such that m1, . . . , mk′ contains exactly zero index-
(m + i) moves.
If m1, . . . , mk′ contains exactly one index-(m + i) move, then the sole index-(m + i) move
must be a counterclockwise z turn. In this case, call the move in question an O-move
(where O stands for “one”).
If m1, . . . , mk′ contains exactly two index-(m + i) moves, then the two index-(m + i)
moves must be a clockwise z turn and a z flip in some order. In this case, call the moves
in question T -moves (where T stands for “two”).
All O- and T -moves must occur at a time when faces +x, +y, −x, and −y all have zero
rotation and any move of z slice −(m + i) must occur at a time when these faces all have
rotation 180◦.

Next, we introduce a new concept, paired stickers, and use it to prove the following.
Suppose that j ∈ {1, 2, . . . , m} is a value such that li1 and li2 differ in bit j, and i1, i2 ∈
{1, . . . , n} are indices for which m1, . . . , mk′ contains an index-(m + i1) O-move and an
index-(m + i2) O-move. Then it must be the case that between these two moves there is
either at least one index-j move or at least one face move of faces +x, +y, −x, and −y

(which by the previous results actually requires at least two such face moves).
After that, we use a counting argument to significantly restrict the possible moves in

m1, . . . , mk′ . In particular, we classify the moves into several types and use the previous
results to bound the number of moves of each type. Adding these bounds together and
simplifying, we find that k′ ≥ k. Since we already know that k′ ≤ k, we learn that equality
must hold in each of our computed bounds. This immediately constrains the quantity of each
type of move even further. In particular, we learn that m1, . . . , mk′ consists of three types
of moves: O-moves, T -moves, and index-j moves for j ∈ {1, 2, . . . , m} (call these J-moves).
Furthermore, there is exactly one J-move between every consecutive pair of O-moves.

After the types of moves in m1, . . . , mk′ are restricted to this extent, several possibilites
that we previously had to consider are no longer relevent (i.e. there are no face moves). As a
consequence, the earlier results are actually strengthened and can be reapplied to learn even
more about the types of O-, T -, and J-moves in m1, . . . , mk′ .

Finally, by applying the idea of paired stickers to our now-highly-constrained sequence
of moves m1, . . . , mk′ , we are able to show that there are no T -moves in m1, . . . , mk′ . At
this point, we can conclude that m1, . . . , mk′ consists entirely of alternating O- and J-moves
with one O-move of an index-(m + i) slice for every i ∈ {1, . . . , n}. If three consecutive O-,
J-, and O-moves rotate index-(m + i1), index-j, and index-(m + i2) slices, then it must be
the case that li1 and li2 differ in bit j and in no other bit. Thus, if we consider all of the
O-moves in the order in which they occur, the corresponding elements i ∈ {1, . . . , n} in the
same order have the property that each bitstring li is at Hamming distance one from the
next. In other words, we have our desired result: that l1, . . . , ln is a “yes” instance to the
Promise Cubical Hamiltonian Path problem.

5.5 Conclusion
Sections 5.2 and 5.4 show that the polynomial-time reductions given are answer preserving.
As a result, we conclude that

I Theorem 5.3. The STM/SQTM Rubik’s Cube and Group STM/SQTM Rubik’s Cube
problems are NP-complete.
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6 Future work

In this paper, we resolve the complexity of optimally solving Rubik’s Cubes under move
count metrics for which a single move rotates a single slice. It could be interesting to consider
the complexity of this problem under other move count metrics.

Of particular interest are the Wide Turn Metric (WTM) and Wide Quarter Turn Metric
(WQTM), in which the puzzle solver can rotate any contiguous group of layers including a
face. These metrics correspond most directly to how one would physically solve a real-world
n× n× n Rubik’s Cube: by grabbing some number of layers (including a face) from the side
of the cube and rotating thm together. We can also consider the 1× n× n analogue of the
Rubik’s Cube with WTM move count metric: this would be a Rubik’s Square in which a
single move flips a contiguous sequence of rows or columns including a row or column at the
edge of the Square. Solving this toy model could help point us in the right direction for the
WTM and WQTM Rubik’s Cube problems. If the toy model resists analysis, it could be
interesting to consider this toy model with missing stickers.
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We study non-preemptive scheduling problems on identical parallel machines and uniformly
related machines under both resource constraints and general precedence constraints between
jobs. Our first result is an O(logn)-approximation algorithm for the objective of minimizing
the makespan on parallel identical machines under resource and general precedence constraints.
We then use this result as a subroutine to obtain an O(logn)-approximation algorithm for the
more general objective of minimizing the total weighted completion time on parallel identical
machines under both constraints. Finally, we present an O(logm logn)-approximation algorithm
for scheduling under these constraints on uniformly related machines. We show that these results
can all be generalized to include the case where each job has a release time. This is the first
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1 Introduction

Scheduling under resource constraints and scheduling under precedence constraints are both
well studied topics in scheduling theory and approximation algorithms. In the former, each
job has a resource requirement and there is a finite amount of resource; when jobs run in
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parallel their total resource requirement must not exceed the given resource capacity. In
the latter, a precedence relationship between jobs is given; if a job j has precedence over
another, say j′, then j must be completed before j′ can start. Both of these problems are
central to scheduling theory, and their approximability is well understood. They have (2 + ε)-
and (2− 1/m)-approximation algorithms, respectively, where m is the number of identical
machines. However, the approximability of the natural problem with the combination of
these constraints is still wide open. We study this problem, namely scheduling on parallel
machines under both resource and precedence constraints, and give the first non-trivial
approximation algorithms for several important versions of this problem.

The combination of these two constraints naturally models the computation in emerging
high performance computing systems. Power consumption is one of the central design
considerations for the next generation of exascale supercomputers [16]. These future systems
will have to run parallel computations within a 20 MW operating budget, but will be built
such that if all processors were used at full capacity the budget would be exceeded and the
system would fail catastrophically [10]. Therefore, exascale system software must schedule
parallel computations (with precedence constraints) on this hardware while respecting the
global power budget (a limited shared resource) and minimizing application runtime [18].
This critical problem for emerging supercomputers is a practical example of a scheduling
with simultaneous resource and precedence constraints.

We now define the problem formally. We are given a set J of n jobs to be scheduled on
m parallel machines. The schedule needs to be non-preemptive; i.e. each job, once assigned
to a machine at some point in time, must run to completion on the same machine without
interruption. Each job j ∈ J has a processing time pj ∈ Z≥0 and a resource requirement
sj ∈ Z≥0. There is a global resource capacity S ∈ Z≥0 which any feasible schedule must
respect. That is, the sum of the resource requirements of the jobs running on the m machines
at any point in time must be at most S. Moreover, we have precedence constraints given by
a partial order ≺ on the jobs such that if j ≺ j′ then j must complete before j′ can start.
We study both identical machines and uniformly related machines. The difference between
the two is the time it takes to process a job—on identical machines, it takes pj units of time
to complete job j ∈ J , regardless of the machine it runs on. In the case of uniformly related
machines, we are given as input a speed fi (0 < fi ≤ 1) associated with each machine i for
1 ≤ i ≤ m, and it takes pj/fi units of time to complete job j on machine i.

We also consider two different objectives. The first is minimizing the makespan, or
the final completion time of all jobs. This problem on identical machines is denoted as
P |res1, prec|Cmax in the standard scheduling notation introduced in [6]. Here P denotes
identical parallel machines, as opposed to uniformly related machines which is denoted by Q.
Also, the resource constraint, res1, indicates that we have a single resource, and prec stands
for the general precedence constraint. Cmax indicates that the objective is to minimize the
makespan. The other objective we consider is the more general goal of minimizing the total
weighted completion time. In this setting there is a set of weights {wj}j∈J associated with
the jobs, and the goal is to minimize

∑
j∈J wjCj where Cj is the completion time of job j in

the final schedule. Using the same notation, we denote this problem on identical machines as
P |res1, prec|

∑
j wjCj . Corresponding problems on uniformly related machines are denoted

as Q|res1, prec|Cmax and Q|res1, prec|
∑

j wjCj , respectively. Note that the minimum total
weighted completion time objective (

∑
j wjCj) is more general than the minimum makespan

objective (Cmax) in the presence of precedence constraints as one could transform a Cmax

objective into a
∑

j wjCj objective by simply setting all wj ’s to be 0 and adding a “last” job
j′ with pj′ = 0, sj′ = 0, and wj′ = 1 which depends on every other job.
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In addition, we consider these problems with release time constraints. In this case, we
have a release time rj ∈ Z≥0 associated with each job in the input such that j can only be
started after time rj . We add rj in the middle constraint section in the scheduling notation to
denote the problems with the additional release time constraint (e.g. P |res1, prec, rj |Cmax).

We have obtained, for the first time, approximation results for all these scheduling problems
with provable upper bounds. Our most general result is an O(logm logn)-approximation
for weighted completion time on uniformly related machines under resource and precedence
constraints with release times (Theorem 12), which makes substantial use of our new results
for more restricted models as well as new specialized linear programming schemes.

Related Work

One important class of problems is scheduling subject to only precedence constraints (e.g.
P |prec|Cmax, Q|prec|

∑
j wjCj). Almost all variants of these problems have been studied ex-

tensively. For the case of identical parallel machines and the minimum makespan objective (P |
prec|Cmax), Graham’s seminal list scheduling algorithm [7] gives a (2− 1/m)-approximation.
We will utilize this algorithm and explain some aspects of its analysis in Section 2.1. An al-
most matching (2−ε)-hardness of approximation result is obtained by Svensson [17] assuming
a stronger version of the Unique Game Conjecture. For the more general weighted completion
time objective (P |prec|

∑
j wjCj), Hall et al. [8] gave a 7-approximation which was later

improved to a 4-approximation by Munier, Queyranne and Schulz [12]. Very recently, Li
[11] obtained the current best ratio of (2 + 2 ln 2 + ε). Of course, all the hardness results for
minimizing makespan hold for minimizing the weighted total completion time; however, no
stronger hardness results are known for this apparently harder problem. For related machines
running at different speeds—Q|prec|

∑
j wjCj and Q|prec|Cmax—Chudak and Shmoys [3]

gave an O(logm)-approximation by grouping the machines into logm groups according to
their speed and treating the machines in each group as identical parallel machines. Li [11]
improved this ratio to O(logm/ log logm). On the negative side, Bazzi and Norouzi-Fard [2]
recently showed the problem is hard to approximate for any constant assuming the hardness
of an optimization problem on k-partite graphs.

Another overlapping set of problems is resource-constrained scheduling with one common
resource (e.g., P |res1|Cmax and Q|res1|

∑
j wjCj). Garey and Graham’s result in [5] implies a

(3−3/m)-approximation for P |res1|Cmax. Later, Niemeier and Wiese [13] gave the algorithm
with the current best approximation ratio of (2 + ε). Recently, Jansen et al. [9] provided
an AFPTAS for the problem. Since bin packing is a special case of this problem, a simple
reduction from the partition problem shows that no approximation with a ratio smaller than
3/2 is possible unless P = NP . Note that, in all the problems we consider here, preemption
is not allowed and the processing time of a job does not depend on the resource allocated to
the job.

There is a clear connection between resource constrained scheduling and packing problems,
such as bin packing and strip packing. In the case of unit processing times (pj = 1), for
example, P |res1, pj = 1|Cmax is the same as the bin packing problem where we pack different
sized items into bins of fixed size and try to minimize the number of bins used. In the strip
packing problem, we have a fixed width strip with one open end and a finite set of rectangles.
The goal is to fit all the rectangles in the strip minimizing the total height that the rectangles
reach. The correspondence between strip packing and resource constrained scheduling is
obvious. The width of the strip corresponds to the global resource limit and the widths
and the heights of the rectangles correspond to the resource requirement and the processing
time of the jobs respectively. In fact, we make use of this correspondence between the two
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problems in our algorithms. One difference between these two problems is that we can pack
as many small width rectangles as the width of the strip allows in the strip packing problem
whereas the number of jobs that can run in parallel is bounded by the number of machines
in the resource constrained scheduling problem.

Our Results and Techniques

We study identical parallel machines in Section 2. First, in Section 2.1, we consider the
objective of minimizing the makespan under both resource and precedence constraints, namely
the problem P |res1,prec|Cmax. We prove the following.

I Theorem 1. There is a 2 + 2 log(n+ 1)-approximation algorithm for P |res1, prec|Cmax.

To show this, we consider the two constraints separately and present a two-step algorithm
for minimizing the makespan. The first step produces an intermediate approximate schedule
satisfying only the precedence constraints with a loss of factor of 2 in the approximation. The
second step uses a divide and conquer algorithm (inspired by [1]) to stretch the intermediate
schedule so that it also satisfies the resource constraint. We generalize this result for the
version of the problem with release times.

I Theorem 7. There is a 2 + 4 log(n+ 1)-approximation algorithm for P |res1, prec, rj |Cmax.

In Section 2.2, we use the algorithm from Section 2.1 as a subroutine to obtain our first
main result:

I Theorem 8. There is an O(logn)-approximation algorithm for P |res1, prec, rj |
∑

j wjCj.

To obtain this result, we extend the general framework of [8], [15], and [3] with a novel
Linear Programming (LP) relaxation for P |res1, prec, rj |

∑
j wjCj . In this framework, we

divide the time horizon into geometrically increasing intervals. Using our new linear program,
we obtain the approximate completion interval for each job. Then we show that if we consider,
for each interval, the set of jobs completing in the same interval as a separate instance of
P |res1, prec, rj |Cmax problem and schedule them in a separate fragment using the makespan
minimizing algorithm we obtain in Section 2.1, the concatenation of these fragments also gives
a good approximation to the minimum total weighted completion time objective (

∑
j wjCj)

for the original instance. Our core technique is our time-interval-indexed LP where we
carefully incorporate the resource requirements into the LP to guarantee a reasonable total
resource requirement by the set of jobs completing in any given interval. This allows us to
bound the makespan given by our algorithm from Section 2.1 for each P |res1, prec, rj |Cmax

instance.
Finally, in Section 3, we build on our previous techniques to show that they can be

modified to work together with the methods in [3] to get an O(logm logn)-approximation
for scheduling on uniformly related machines subject to simultaneous resource, precedence,
and release times constraints with weighted completion time objective. In particular, we
state a simple generalization of the time-interval-indexed LP used in the previous section
without the resource LP constraints) to machines with different speeds. We use the LP
solution to get the approximate completion time intervals as we did for identical machines
setting as well as job to machine assignments. Then, we argue that the first step of our
two-step makespan minimizing algorithm can be replaced by the O(logm)-approximation
algorithm for Q|prec, rj |Cmax given in [3]. Moreover, the second step of our algorithm will
respect these job to machine assignments. If we begin with an optimal solution to the LP,
we show that these integral job to machine assignments are close enough to the fractional
assignments given by the LP solution.
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I Theorem 12. There is an O(logm logn)-approximation algorithm for Q|res1, prec, rj |∑
j wjCj.

These are the first algorithms with non-trivial approximation ratios for this class of
scheduling problems where a resource constraint and general precedence constraints need to
be satisfied together.

2 Identical Parallel Machines

2.1 The Minimum Makespan Objective
In this section, we present an O(logn)-approximation algorithm for the problem of minimizing
the makespan under both resource and precedence constraints.

I Theorem 1. There is a 2 + 2 log(n+ 1)-approximation algorithm for P |res1, prec|Cmax.

Given an instance (J ,m, {pj}j∈J , S, {sj}j∈J ,≺) of P |res1, prec|Cmax, we let OPT de-
note the makespan of a minimum makespan schedule of this instance. Our algorithm solves
the problem in two steps by handling its precedence and resource constraints separately. First,
we consider the corresponding P |prec|Cmax instance where we drop the resource requirement
(i.e. (J ,m, {pj}j∈J ,≺)). In his seminal work, Graham [7] presents an online machine-driven
list scheduling algorithm for this problem. His algorithm greedily considers the jobs in some
arbitrary extension of the partial order ≺ to a total order (i.e. a list). As soon as a machine
is idle, the algorithm schedules the next available job (i.e. all its predecessors are finished) in
the list on that machine. In the analysis, he uses two standard lower bounds for the value of
OPT :

I Lemma 2 (Load Bound). 1
m

∑
j∈J pj ≤ OPT .

I Lemma 3 (Chain Bound). max
C is a chain

∑
j∈C pj ≤ OPT .

The Load Bound is implied by the observation that a perfectly balanced schedule with no
idle time would have a makespan of 1

m

∑
j∈J pj . Also note that the total processing time of

any “chain” of precedence constraints such as j1 ≺ j2 ≺ · · · ≺ jk is a lower bound on the
makespan of any schedule. His analysis charges the time intervals where all the machines
are busy on the Load Bound and the time intervals where some machines are idle on the
Chain Bound. We run Graham’s list scheduling algorithm on our instance after we drop the
resource constraints and get an approximate intermediate schedule satisfying the precedence
constraints. Let LSJ denote the makespan of this schedule and LS(j) denote the completion
time of a job j ∈ J in it. Graham [7] shows this makespan is bounded by the sum of the
Load and the Chain Bounds LSJ ≤ 1

m

∑
j∈J pj + max

C is a chain

∑
j∈C pj ≤ 2 ·OPT .1

The schedule we get by running Graham’s list scheduling on the corresponding P |prec|
Cmax instance may violate the resource constraints of the original instance. In the second
step of the algorithm, we run a divide and conquer algorithm on this schedule to make it
satisfy the resource constraints without disturbing the precedences already satisfied after our
first step. We lose a factor of 2 in the approximation due to Graham’s algorithm and an
O(logn)-factor in the second step. In the rest of this section, we explain and analyze the
second step of the algorithm in detail.

1 In fact, [7] shows a slightly stronger bound of (2 − 1/m) OP T .
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Algorithm 1 DS(J,B,E) Divide and Schedule.
Input: A subset of jobs J ⊆ J and the beginning B and the end E times of J in the

schedule of the first step
Output: A makespan y for a feasible schedule of J
1: if J = ∅ then
2: return 0
3: end if
4: Jbef ← {j ∈ J | LS(j) < (B + E)/2}
5: Jmid ← {j ∈ J | LS(j)− pj < (B + E)/2 and LS(j) ≥ (B + E)/2}
6: Jaft ← {j ∈ J | LS(j)− pj ≥ (B + E)/2}
7: ybef ← DS(Jbef ,minj∈Jbef

LS(j)− pj ,maxj∈Jbef
LS(j))

8: Schedule Jbef according to DS(Jbef ,minj∈Jbef
LS(j)− pj ,maxj∈Jbef

LS(j)).
9: ymid ← NFDH(Jmid)

10: Schedule Jmid according to NFDH(Jmid) starting at ybef .
11: yaft ← DS(Jaft,minj∈Jaft

LS(j)− pj ,maxj∈Jaft
LS(j))

12: Schedule Jaft according to DS(Jaft,minj∈Jaft
LS(j) − pj ,maxj∈Jaft

LS(j)) starting at
ybef + ymid.

13: return ybef + ymid + yaft

Note that the total resource required to complete a job j ∈ J is its resource requirement
integrated over the time it takes to complete the job:

∫ pj

0 sj dt = sjpj . We denote this value
by RB(j). We define RB(J) for any subset J ⊆ J of jobs as the sum of the total resource
required for jobs in J (i.e. RB(J) =

∑
j∈J RB(j)). Our algorithm uses another lower bound

derived by comparing the resource available in a makespan and total resource required by all
jobs.

I Lemma 4 (Resource Bound). RB(J )/S ≤ OPT .

To incorporate the resource constraint into the schedule obtained in the first step, we run a
divide and conquer algorithm similar to the one employed by Augustine et al. [1] for strip
packing. This algorithm (Algorithm 1: DS) will need to use a subroutine for scheduling at
most m jobs J ⊆ J with resource constraints that have no precedence constraints among
them on m machines. We denote this subroutine by Next-Fit Decreasing-Height: NFDH(J)
and it guarantees a makespan that is bounded by NFDH(J) ≤ 2RB(J)/S + maxj∈J pj . A
simple greedy algorithm that schedules the jobs respecting their resource constraints in the
order of non-increasing processing time will have this guarantee. Next-Fit Decreasing-Height
algorithm for strip packing analyzed in [4] is one such algorithm when applied to scheduling
m jobs on m machines with resource constraints and no precedence constraints.

The algorithm is called with the following initial arguments: all jobs J , beginning time
B = 0, and end time E = LSJ , the makespan of the schedule obtained in the first step.
It takes the set of jobs Jmid scheduled to cross the mid time point LSJ /2 in the schedule
obtained in the first step. It schedules these jobs in a separate time fragment and concatenates
it with schedules obtained recursively on the jobs before, Jbef , and the jobs after, Jaft. We
need the following lemma to justify the initial condition required to call NFDH(Jmid).
Proofs of all the lemmas in the rest of the paper can be found in the full version of the paper.

I Lemma 5. The jobs in Jmid have no precedence constraints among them and 1 ≤ |Jmid| ≤
m.
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In any given level of the recursion tree, the total loss across all recursive calls in this
level is at most an additive factor of O(OPT ). Since the algorithm terminates in at
most dlogne levels, we get an O(logn) approximation. Lemma 6 proves this formally
and gives a bound on our initial call to Divide and Schedule algorithm: DS(J , 0, LSJ ) ≤
2RB(J )/S+LSJ log (|J |+ 1) ≤ (2+2 log(n+1))OPT . This completes the proof of Theorem
1.

I Lemma 6. DS(J,B,E) ≤ 2RB(J)/S + (E −B) log (|J |+ 1)

The first step of our algorithm can be extended to accommodate release times constraints:

I Theorem 7. There is a 2 + 4 log(n+ 1)-approximation algorithm for P |res1, prec, rj |Cmax.

In addition to resource and precedence constraints, each job j ∈ J now has a release time
rj such that j can only be started after time rj (P |res1, prec, rj |Cmax). Munier, Queyranne
and Schulz [12, 14] provide a 4-approximation for P |prec, rj |Cmax. We replace Graham’s list
scheduling in the first step of our algorithm with their 4-approximation algorithm to get a
similar bound for the problem with all three constraints. Note that, after the first step, we
obtain a schedule that satisfies the release times and precedence constraints. The second step
of our algorithm can easily be made to never schedule a job before its starting time in the
schedule from the first step (by forcing Jmid’s fragment to start at max{(E −B)/2, ybef}).

We note that an o(logn)-approximation is not possible using only the Load, Chain, and
Resource Bounds. The bottleneck is in the second step where we use divide-and-conquer.
The gap example in [1] for strip packing shows one needs stronger lower bounds on OPT
than “the area bound” (Resource Bound in our setting) and “the longest chain of rectangles
bound” (Chain Bound in our setting) for an o(logn) approximation. Their example can
easily be translated into a scheduling instance with m = logn machines. Setting m = logn
allows any solution to their example be interpreted as a scheduling solution because the
example has at most logn parallel precedence chains at any point. Also, the Load Bound
of the translated instance is at most Θ(1), where OPT = Ω(logn).2 Thus, for both the
makespan and the weighted completion time objectives, one needs stronger lower bounds on
OPT than any combination of the three bounds we use for a better approximation ratio.

2.2 The Minimum Weighted Completion Time Objective
In this section, we generalize our result by giving an O(logn)-approximation algorithm for
the minimum total weighted completion time objective. In addition to processing time pj ,
resource requirement sj , and release time rj , we now have a weight wj associated with
each job j ∈ J and our goal is to minimize the total weighted completion time

∑
j wjCj ,

where Cj is the completion time of j in the final schedule. This problem is denoted as
P |res1, prec, rj |

∑
j wjCj .

I Theorem 8. There is an O(logn)-approximation algorithm for P |res1, prec, rj |
∑

j wjCj.

We first reduce the problem of minimizing weighted completion time (
∑

j wjCj) to a set
of smaller problems with the objective of minimizing the makespan (Cmax). We then use our
O(logn)-approximation algorithm from Section 2.1 for the minimum makespan objective as
a subroutine on these problems. In the reduction, we use the general framework of Hall et al.

2 See [1] and their illustrations for a detailed description of the gap example.

STACS 2018



25:8 Approximation Algorithms for Scheduling with Resource and Precedence Constraints

[8] and Queyranne and Sviridenko [15] (see also, for example, [3] for an application of this
framework in uniformly related machines setup).

We start with a trivial upper bound 2L on the length of an optimal schedule, where L
= dlog(n·maxj∈J (rj +pj))e, and divide the time horizon into a set of geometrically increasing
intervals [1, 2], (2, 4], (4, 8], · · · , (2L−1, 2L]. For the problem with only precedence and release
time constraints (P |prec, rj |

∑
j wjCj), Hall et al. argue that for each job j, if we are given

the interval in which it completes in the optimal schedule, or the completion interval of j”,
we can get an approximate schedule based on this information [8]. All the jobs completing in
(2l−1, 2l] in the optimal schedule can be scheduled to start and complete in (2l+1, 2l+2] using
a makespan minimizing algorithm on this subset of jobs as a subroutine. This results in an
8-approximation for the weighted completion time objective. Since the completion intervals
in an optimal schedule are not known, Hall et al. use an LP relaxation to obtain approximate
values for the completion intervals [8]. The makespan of the makespan minimizing algorithm
they use for P |prec, rj |Cmax depends only on the Load Bound and the Chain Bound, which
are both easy to bound in the same LP where they get the completion intervals. However, in
our setting, we need stronger guarantees when obtaining the completion intervals with an
LP than prior work provides. In particular, we need the jobs completing in a given interval
to have a total resource requirement that is comparable to the resource available up to that
interval. In this way, we introduce the following linear programming relaxation for the P |
res1,prec, rj |

∑
j wjCj problem which ensures that we get a good estimate on the completion

interval of each job and simultaneously guarantees that the total resource requirement by
jobs completing in some interval is not “too much”. We let [a] denote the set {1, 2, · · · , a}
for a positive integer a.

min
∑
j∈J

wjCj s.t. (LPP )

m∑
i=1

L∑
t=1

xijt = 1, ∀j ∈ J ; (2.1)

pj ≤ Cj − rj , ∀j ∈ J ; (2.2)
pj ≤ Cj − Cj′ , ∀j′ ≺ j; (2.3)

L∑
t=1

2t−1
m∑

i=1
xijt ≤ Cj , ∀j ∈ J ; (2.4)

∑
j∈J

pj

l∑
t=1

xijt ≤ 2l, ∀i ∈ [m], l ∈ [L]; (2.5)

m∑
i=1

l∑
t=1

xijt ≤
m∑

i=1

l∑
t=1

xij′t, ∀j′ ≺ j, l ∈ [L]; (2.6)

∑
j∈J

pjsj

m∑
i=1

l∑
t=1

xijt ≤ 2lS, ∀l ∈ [L]; (2.7)

xijt ≥ 0, ∀i ∈ [m], j ∈ J , t ∈ [L]; (2.8)

In LPP , we have two sets of variables: a set of real valued variables for the completion times
of the jobs {Cj}j∈J and a set of decision variables {xijt}i∈[m],j∈J ,t∈[L] that take 0-1 values
in an integral solution with xijt = 1 implying that the job j completed on machine i in the
time interval (2t−1, 2t]. Constraint 2.1 says a job needs to complete on some machine and in
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some interval. Constraints 2.2 and 2.3 make sure that the completion times are not infeasible
with respect to release times and the precedence constraints. Constraint 2.4 says that the
completion time of a job needs to be later than the time point marking the start of the time
interval in which the job completes. Constraint 2.5 ensures that the total processing time of
the jobs completing on machine i in the first l intervals is at most the time point marking the
end of the lth interval. Constraint 2.6 ensures that a job j depending on another job j′ must
complete in j′’s completion interval or later. Finally, Constraint 2.7 is how we guarantee
that the total resource requirement of the jobs completing in the first l intervals is at most
the total amount of resource available in these intervals.

Let {x̃ijt} and {C̃j} be a solution to LPP . We now describe how to obtain the approximate
completion intervals from this fractional LP solution and the smaller problems with minimum
makespan objective by partitioning the set of jobs with respect to these completion intervals.
Let `1(j) be the first interval l where the sum of job j’s variables xijt across all machines
exceed 1/2 (i.e. minimum l s.t.

∑l
t=1

∑m
i=1 x̃ijt ≥ 1/2). Also, define `2(j) to be the

interval containing job j’s completion time (i.e. minimum l s.t. Cj ≤ 2l). We let `(j) =
max{`1(j), `2(j)}. Define, for each l ∈ [L], Jl = {j ∈ J : `(j) = l} ⊆ J to be the subset of
jobs that “complete” in the lth interval (jobs with `(j) = l). Note that the sets J1, J2, · · · , JL

are disjoint and they partition the set of jobs J .
Next, we consider each Jl as a separate instance of P |res1, prec|Cmax problem and run

our makespan minimizing algorithm from Section 2.1 on the smaller instance (Jl,m, {pj}j ,

S, {sj}j ,≺Jl
) where ≺Jl

⊆≺ is the subset of the precedence constraints that are between the
jobs in Jl.

I Lemma 9. Algorithm 1 in Section 2.1 on the instance (Jl,m, {pj}j∈Jl
, S, {sj}j∈Jl

,≺Jl
)

returns a feasible schedule of length (4 + 3 log(|Jl|+ 1))2l.

Using Lemma 9, we schedule, for each l ∈ [L], the jobs in Jl to start after (4 + 3 log(n+
1))(1 + 2 + 4 · · ·+ 2l−1) and complete before (4 + 3 log(n+ 1))(1 + 2 + 4 · · ·+ 2l).

I Lemma 10. The resulting schedule satisfies resource, precedence, and release time con-
straints.

The next lemma completes the proof of Theorem 8.

I Lemma 11. The resulting schedule has weighted completion time within 32 + 24 log(n+ 1)
factor of the LPP value

∑
j∈J wjC̃j.

3 Uniformly Related Machines

In this section, we describe our O(logn logm)-approximation algorithm for the problem
of scheduling jobs on uniformly related machines (i.e. machines running at different
speeds) under resource, precedence, and release time constraints. Again, the objective
is to minimize the more general total weighted completion time. This problem is denoted as
Q|res1, prec, rj |

∑
j wjCj .

I Theorem 12. There is an O(logm logn)-approximation algorithm for Q|res1, prec, rj |∑
j wjCj.

Now, we have a speed fi associated with each machine i ∈ [m] in the input and it takes
pj/fi amount of time to complete job j ∈ J on machine i ∈ [m]. We note that the Load,
Chain, and Resource Bounds do not only depend on the set of jobs anymore, but also on
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the job to machine assignments in a solution (in particular, an optimal solution). This is
because the processing time pj/fi of a job j now depends on the machine i to which it is
assigned. Note that this processing time does not change between machines running at the
same speed. Thus we will be more interested in the speed that a job is assigned to than
the particular machine. We let K be the number of distinct speeds and f1, f2, · · · , fK be all
the distinct speeds among all m machines. We also let mk be the number of machines with
speed fk for each k ∈ [K]. We start by solving a time-interval indexed linear program similar
to the one we used in Section 2.2 but incorporates the different machine speeds in the LP.

min
∑
j∈J

wjCj s.t. (LPQ)

K∑
k=1

L∑
t=1

xkjt = 1, ∀j ∈ J ; (3.1)

K∑
k=1

pj

fk

L∑
t=1

xkjt ≤ Cj − rj , ∀j ∈ J ; (3.2)

K∑
k=1

pj

fk

L∑
t=1

xkjt ≤ Cj − Cj′ , ∀j′ ≺ j; (3.3)

L∑
t=1

2t−1
K∑

k=1
xkjt ≤ Cj , ∀j ∈ J ; (3.4)

1
fkmk

∑
j∈J

pj

l∑
t=1

xkjt ≤ 2l, ∀k ∈ [K], l ∈ [L]; (3.5)

K∑
k=1

l∑
t=1

xkjt ≤
K∑

k=1

l∑
t=1

xkj′t, ∀j′ ≺ j, l ∈ [L]; (3.6)

∑
j∈J

K∑
k=1

pj

fk
sj

l∑
t=1

xkjt ≤ 2lS, ∀l ∈ [L]; (3.7)

xkjt ≥ 0, ∀k ∈ [K], j ∈ J , t ∈ [L]; (3.8)

Constraints and variables of LPQ are similar to the ones in LPP of Section 2.2. We still
have the real-valued completion time variables {Cj}j∈J . However, we are now interested
in the distinct speed group a job is assigned to rather than the particular machine. In this
way, we modify the decision variables as {xkjt}k∈[K],j∈J ,t∈[L] where the first index k now
indicates the speed group among the machines. In an integral solution, xkjt = 1 would
stand for the job j completing in the time interval (2t−1, 2t] on some machine with speed
fk. Since the processing time pj of a job j now depends on the speed it runs on, we replace
pj in the constraints by

∑K
k=1 pj/fk

∑L
t=1 xkjt which essentially is the average processing

time of j with respect to fractional speed assignments of j. We make the required change to
Constraints 2.2, 2.3, 2.5, and 2.7 to obtain corresponding Constraints 3.2, 3.3, 3.5, and 3.7.

Similar to what we did in the identical machine setting, our algorithm will partition the set
of jobs according to approximate completion intervals obtained from LPQ. Then it will obtain
a set of smaller Q|res1, prec, rj |Cmax instances from the original Q|res1, prec, rj |

∑
j wjCj

instance. We solve each minimum makespan instance again in two steps by considering
the Q|prec, rj |Cmax instance in the first step and handling the resources in the second step.
The bound on the makespan minimizing algorithm of Section 2.1 is analyzed in terms of
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Load, Chain, and Resource Bounds. However, as we have indicated above, we do not have
well-defined Load, Chain, and Resource Bounds in the case of machines running at different
speeds. In order to use and analyze a similar two-step algorithm, we use the solution to
LPQ to first fix job to machine speed assignments, then show that the Load, Chain, and
Resource Bounds under these assignments are comparable to the LPQ value. We adapt the
speed-based list scheduling algorithm of [3] as our first step for solving Q|prec, rj |Cmax and
finally we apply the Divide and Schedule procedure of Section 2.1 as our second step.

Let {x̃kjt} and {C̃j} be a solution to LPQ. We obtain “completion intervals” (`(j)’s)
for all the jobs and partition J by defining Jl for 1 ≤ l ≤ L in the same way as we did in
Section 2.2. We let `(j) = max{`1(j), `2(j)} where `1(j) is defined as the minimum l s.t.∑l

t=1
∑K

k=1 x̃kjt ≥ 1/2 and `2(j) as the minimum l s.t. C̃j ≤ 2l. We partition J by letting
Jl = {j ∈ J : `(j) = l} for each l ∈ [L].

Chudak and Shmoys [3] solve a similar LP without Constraint 3.7 to get an O(logm)
approximation for Q|prec, rj |

∑
j wjCj . They follow a similar framework by first giving a

makespan minimizing algorithm for Q|prec, rj |Cmax and then using it on Jl’s as a subroutine
to get the same result for the weighted completion time objective. We replace Graham’s list
scheduling for P |prec|Cmax with Chudak and Shmoys’ speed-based list scheduling algorithm
[3] for Q|prec, rj |Cmax in our first step. We now briefly discuss their speed-based list
scheduling algorithm, its analysis, and how to integrate it into our setup.

Their speed-based list scheduling algorithm uses a list to process the jobs greedily in the
order given by the list similar to Graham’s list scheduling. In addition, it uses a function f
mapping each job j to a speed f(j) ∈ {f1, f2, · · · fK}. As soon as a job finishes processing, all
idle machines are considered in some fixed order one by one. The algorithm considers each
machine with speed fk and schedules the first available job j in the list with f(j) = fk on
this machine, where a job is available if all its predecessors are completed. They analyze
this algorithm by considering the Load Bound of each speed group separately. They use
an argument similar to the analysis of Graham’s list scheduling by charging the busy time
intervals on the Load Bounds and idle intervals on the Chain Bound. They show that the
length of the makespan returned by this algorithm is at most the sum of the Load Bounds
for each speed group and the Chain Bound:

K∑
k=1

1
mk

∑
j:f(j)=fk

pj

f(j) + max
C is a chain

∑
j∈C

pj

f(j)

Note that the bound given above depends heavily on job to speed assignments f used by
the algorithm. Given the assignments of an optimal solution, the Load Bound of each speed
group and the Chain bound will be bounded by the optimal makespan length. This would
put the makespan of the algorithm within a factor K + 1 of the optimal solution length.
Since we do not have the optimal assignments, we now describe how to get approximate job
to speed assignments f by applying standard filtering techniques on the fractional solution
{x̃kjt} to LPQ. Consider a partition Jl and a job j ∈ Jl. Let αj =

∑K
i=1

∑l
t=1 x̃kjt and let

xkj =
∑l

t=1 x̃kjt/αj . Note αj ≥ 1/2 by definition of `(j) = l. Let the average processing
time of a job j in LPQ solution be pavg

j =
∑K

k=1(pj/fk)xkj . We define f(j) to be the speed
of the maximum capacity speed group among all speeds more than half the average speed
that j is assigned to in the fractional LPQ solution.3 Formally, let

3 Equivalently, since pj is a constant in the evaluation of f(j), we can define it to be the fk that maximizes
fkmk.
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f(j) = arg min
fk: pj/fk≤2pavg

j

pj

fkmk
.

Similar to [3], we show that the sum of the Load Bounds of all speed groups under these
job to speed assignments given by f is bounded by 4K · 2l:

I Lemma 13.
K∑

k=1

1
mk

∑
j∈Jl: f(j)=fk

pj

fk
≤ 4K · 2l.

Now we show that the total processing time of any chain in Jl under the assignments
given by f is also bounded:

I Lemma 14. For any chain C of precedence constraints from ≺Jl
, we have

∑
j∈C pj/f(j) ≤

4 · 2l.

Lemmas 13 and 14 show that the speed-based list scheduling algorithm we employ in
the first step returns a schedule of length O(K) · 2l on the smaller instance we get from the
partition Jl.

After getting the intermediate schedule from the first step of our algorithm, we run our
second step (Divide and Schedule) respecting job to machine assignments of the intermediate
schedule. Note that Jmid in DS has only one job per machine because jobs in Jmid all run in
parallel at some point in the intermediate schedule. Thus, we do not need any modification to
the NFDH subroutine to ensure the same job to machine assignments in the final schedule.

Next, we show that Resource Bound of the sub instance obtained from the partition Jl is
bounded by 4S · 2l under the same job to speed assignments f .

I Lemma 15. RB(Jl) ≤ 4S · 2l.

Our second step returns a schedule of length bounded by DS(J,B,E) ≤ 2RB(J)/S +
(E −B) log (|J |+ 1) where (E −B) is the length of the intermediate schedule obtained by
the first step. Lemmas 13, 14, and 15 prove that, for any l ∈ [L], this bound is at most
O(K logn) · 2l on the sub-instance obtained from the jobs in Jl.

As we did in Section 2.2, we schedule the jobs in Jl for each l ∈ [L] to start after
O(K logn)(1 + 2 + 4 · · ·+ 2l) and complete before O(K logn)(1 + 2 + 4 · · ·+ 2l + 2l+1). This
again gives us a feasible schedule as in Lemma 10 and, given that 2l−2 ≤ C̃j as in the proof
of Lemma 11, we have an O(K logn) approximation.

Finally using the preprocessing of Chudak and Shmoys [3], we can assume that we only
have K = logm distinct speed groups. This comes with a loss of an additional constant
factor on the approximation ratio of our algorithm for the minimum makespan objective.
We first discard all the machines with speed less than 1/m times the speed of the fastest
machine and then round down each remaining speed to the nearest power of 1/2. Discarding
slow machines only increases the optimal makespan by a factor of 2 because we discard no
more than m machines each of which is at most as fast as 1/m times the speed of the fastest
machine. This means the fastest machine can process the jobs of the discarded machines with
a loss of factor 2 in the length of the schedule. Similarly, we only lose another factor of 2 by
rounding down the speeds of the remaining machines. Since we have at most logm distinct
speeds after the preprocessing, the algorithm described above on each Q|res1, prec, rj |Cmax

sub-instance is an O(logm logn)-approximation with K = logm.
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Abstract
We study the Steiner Tree problem, in which a set of terminal vertices needs to be connected
in the cheapest possible way in an edge-weighted graph. This problem has been extensively
studied from the viewpoint of approximation and also parametrization. In particular, on one
hand Steiner Tree is known to be APX-hard, and W[2]-hard on the other, if parameterized by
the number of non-terminals (Steiner vertices) in the optimum solution. In contrast to this we
give an efficient parameterized approximation scheme (EPAS), which circumvents both hardness
results. Moreover, our methods imply the existence of a polynomial size approximate kernelization
scheme (PSAKS) for the considered parameter.

We further study the parameterized approximability of other variants of Steiner Tree, such
as Directed Steiner Tree and Steiner Forest. For neither of these an EPAS is likely to exist
for the studied parameter: for Steiner Forest an easy observation shows that the problem is
APX-hard, even if the input graph contains no Steiner vertices. For Directed Steiner Tree we
prove that computing a constant approximation for this parameter is W[1]-hard. Nevertheless, we
show that an EPAS exists for Unweighted Directed Steiner Tree. Also we prove that there
is an EPAS and a PSAKS for Steiner Forest if in addition to the number of Steiner vertices,
the number of connected components of an optimal solution is considered to be a parameter.
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1 Introduction

In this paper we study several variants of the Steiner Tree problem. In its most basic
form this optimization problem takes an undirected graph G = (V,E) with edge weights
w(e) ∈ R+

0 for every e ∈ E, and a set R ⊆ V of terminals as input. The non-terminals in
V \ R are called Steiner vertices. A Steiner tree is a tree in the graph G, which spans all
terminals in R and may contain some of the Steiner vertices. The objective is to minimize
the total weight

∑
e∈E(T ) w(e) of the computed Steiner tree T ⊆ G. This fundamental

optimization problem is one of the 21 original NP-hard problems listed by Karp [25] in
his seminal paper from 1972, and has been intensively studied since then. The Steiner
Tree problem and its variants have applications in network design, circuit layouts, and
phylogenetic tree reconstruction, among others (see survey [23]).

Two popular ways to handle the seeming intractability of NP-hard problems are to design
approximation [35] and parameterized [12] algorithms. For the former, an α-approximation is
computed in polynomial time for some factor α specific to the algorithm, i.e., the solution is
always at most a multiplicative factor of α worse than the optimum of the input instance.
The Steiner Tree problem, even in its basic form as defined above, is APX-hard [11], i.e.,
it is NP-hard to obtain an approximation factor of α = 96

95 ≈ 1.01. However a factor of
α = ln(4) + ε ≈ 1.39 can be achieved in polynomial time [5], which is the currently best
factor known for this runtime.

For parameterized algorithms, an instance is given together with a parameter p describing
some property of the input. The optimum solution is computed in time f(p) · nO(1), where f
is a computable function independent of the input size n. If such an algorithm exists, we
call the problem fixed-parameter tractable (FPT) for parameter p. A well-studied parameter
for the Steiner Tree problem is the number of terminals |R|. It is known since the
classical result of Dreyfus and Wagner [16] that the Steiner Tree problem is FPT for
this parameter, as the problem can be solved in time 3|R| · nO(1) if n = |V |. This can be
improved to 2|R| · nO(1) if the input graph is unweighted using the results of Björklund et
al. [2]. A somewhat complementary and less-studied parameter to the number of terminals
is the number of Steiner vertices in the optimum solution, i.e., p = |V (T ) \ R| if T is an
optimum Steiner tree. It is known [15] that Steiner Tree is W[2]-hard for parameter p and
therefore is unlikely to be FPT, in contrast to the parameter |R|. This parameter p has been
mainly studied in the context of unweighted graphs before. The problem remains W[2]-hard
in this special case and therefore the focus has been on designing parameterized algorithms
for restricted graph classes, such as planar or d-degenerate graphs [24, 33].

https://arxiv.org/abs/1710.00668v2
https://arxiv.org/abs/1710.00668v2
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In contrast to this, our question is: what can be done in the most general case, in which
the class of input graphs is unrestricted and edges may have weights? Our main result is
that we can overcome the APX-hardness of Steiner Tree on one hand, and on the other
hand also the W[2]-hardness for our parameter of choice p, by combining the two paradigms
of approximation and parametrization. This relatively new and growing area has gained
quite a bit of attention recently (see e.g., [3, 6, 8, 9, 10, 18, 20, 26, 27, 28, 29, 32, 34]). We
show that there is an efficient parameterized approximation scheme (EPAS), which for any
ε > 0 computes a (1 + ε)-approximation in time f(p, ε) · nO(1) for a computable function f
independent of n. Note that here we consider the approximation factor of the algorithm
as a parameter as well, which accounts for the “efficiency” of the approximation scheme
(analogous to an efficient polynomial time approximation scheme or EPTAS). In fact, as
summarized in the following theorem, our algorithm computes an approximation to the
cheapest tree having at most p Steiner vertices, even if better solutions with more Steiner
vertices exist.

I Theorem 1. There is an algorithm for Steiner Tree, which given an edge-weighted
undirected graph G = (V,E), terminal set R ⊆ V , ε > 0, and integer p, computes a
(1 + ε)-approximation to the cheapest Steiner tree T ⊆ G with p ≥ |V (T ) \ R| in time
2O(p2/ε4) · nO(1). 1

Many variants of the Steiner Tree problem exist, and we explore the applicability of
our techniques to some common ones. For the Directed Steiner Tree problem the aim is
to compute an arborescence, i.e., a directed graph obtained by orienting the edges of a tree so
that exactly one vertex called the root has in-degree zero (which means that all vertices are
reachable from the root). More concretely, the input consists of a directed graph G = (V,A)
with arc weights w(a) ∈ R+

0 for every a ∈ A, a terminal set R ⊆ V , and a specified terminal
r ∈ R. A Steiner arborescence is an arborescence in G with root r containing all terminals R.
The objective is to find a Steiner arborescence T ⊆ G minimizing the weight

∑
a∈A(T ) w(a).

This problem is notoriously hard to approximate: no O
(
log2−ε(n)

)
-approximation exists

unless NP ⊆ ZTIME(npolylog(n)) [22]. But even for the Unweighted Directed Steiner
Tree problem in which each arc has unit weight, a fairly simple reduction from the Set
Cover problem implies that no ((1 − ε) lnn)-approximation algorithm is possible unless
P = NP [13, 22]. At the same time, even Unweighted Directed Steiner Tree is
W[2]-hard for our considered parameter p [24, 30], just as for the undirected case. For this
reason, all previous results have focused on restricted inputs: Jones et al. [24] prove that
when combining the parameter p with the size of the largest excluded topological minor of
the input graph, Unweighted Directed Steiner Tree is FPT. They also show that if
the input graph is acyclic and d-degenerate, the problem is FPT for the combined parameter
p and d.

Our focus again is on general unrestricted inputs. We are able to leverage our techniques
to the unweighted directed setting, and obtain an EPAS, as summarized in the following
theorem. Here the cost of a Steiner arborescence is the number of contained arcs.

I Theorem 2. There is an algorithm for Unweighted Directed Steiner Tree, which
given an unweighted directed graph G = (V,A), terminal set R ⊆ V , root r ∈ R, ε > 0, and
integer p, computes a (1 + ε)-approximation to the cheapest Steiner arborescence T ⊆ G with
p ≥ |V (T ) \R| in time 2p2/ε · nO(1). 1

1 If the input to this optimization problem is malformed (e.g., if p is smaller than the number of Steiner
vertices of any feasible solution) then the output of the algorithm can be arbitrary (cf. [28])
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Can our techniques be utilized for the even more general case when arcs have weights?
Interestingly, in contrast to the above theorem we can show that in general the Directed
Steiner Tree problem most likely does not admit such approximation schemes, even when
allowing “non-efficient” runtimes of the form f(p, ε) · ng(ε) for any computable functions f
and g. This follows from the next theorem, since setting ε to any constant, the existence of
such a (1 + ε)-approximation algorithm would imply W[1] = FPT.

I Theorem 3. For any constant α, it is W[1]-hard to compute an α-approximation of the
optimum Steiner arborescence T for Directed Steiner Tree parameterized by |V (T ) \R|,
if the input graph is arc-weighted.

Other common variants of Steiner Tree include the Prize Collecting Steiner Tree
and Steiner Forest problems. The latter takes as input an edge-weighted undirected graph
G = (V,E) and a list {s1, t1}, . . . , {sk, tk} of terminal pairs, i.e., R = {si, ti | 1 ≤ i ≤ k}.
A Steiner forest is a forest F in G for which each {si, ti} pair is in the same connected
component, and the objective is to minimize the total weight of the forest F . For this variant
it is not hard to see that parametrizing by p = |V (F ) \R| cannot yield any approximation
scheme, as a simple reduction from Steiner Tree shows that the problem is APX-hard
even if the input has no Steiner vertices (cf. [17]). For the Prize Collecting Steiner
Tree problem, the input is again a terminal set in an edge-weighted graph, but the terminals
have additional costs. A solution tree is allowed to leave out a terminal but has to pay its
cost in return (cf. [35]). It is also not hard to see that this problem is APX-hard, even if
there are no Steiner vertices at all. These simple results show that our techniques to obtain
approximation schemes reach their limit quite soon: with the exception of Unweighted
Directed Steiner Tree, most common variants of Steiner Tree seem not to admit
approximation schemes for our parameter p. We are however able to generalize our EPAS
to Steiner Forest if we combine p with the number c of connected components in the
optimum solution. In fact, our main result of Theorem 1 is a corollary of the next theorem,
using only the first part of the above mentioned reduction from Steiner Tree. Due to
this, it is not possible to have a parameterized approximation scheme for the parameter c
alone, as such an algorithm would imply a polynomial time approximation scheme for the
APX-hard Steiner Tree problem. Hence the following result necessarily needs to combine
the parameters p and c.

I Theorem 4. There is an algorithm for Steiner Forest, which given an edge-weighted
undirected graph G = (V,E), a list {s1, t1}, . . . , {sk, tk} ⊆ V of terminal pairs, ε > 0, and
integers p, c, computes a (1 + ε)-approximation to the cheapest Steiner forest F ⊆ G with
at most c connected components and p ≥ |V (F ) \ R| where R = {si, ti | 1 ≤ i ≤ k}, in
time (2c)O((p+c)2/ε4) · nO(1). 1

A topic tightly connected to parameterized algorithms is kernelization. We here use the
framework of Lokshtanov et al. [28], who also give a thorough introduction to the topic.
Loosely speaking, a kernelization algorithm runs in polynomial time, and, given an instance
of a parameterized problem, computes another instance of the same problem, such that the
size of the latter instance is at most f(p) for some computable function f in the parameter p
of the input instance. The computed instance is called the kernel, and for an optimization
problem it must be possible to efficiently convert an optimum solution to the kernel into an
optimum solution to the input instance.

A fundamental result of parameterized complexity says that a problem is FPT if and only
if it has a kernelization algorithm [12]. This means that for our parameter p, most likely
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Steiner Tree does not have a kernelization algorithm, as it is W[2]-hard. For this reason,
the focus of kernelization results have previously again shifted to special cases. By a folklore
result, Steiner Tree is FPT for our parameter p if the input graph is planar (cf. [24]). Of
particular interest are polynomial kernels, which have size polynomial in the input parameter.
The idea is that computing the kernel in this case is an efficient preprocessing procedure for
the problem, such that exhaustive search algorithms can be used on the kernel. Suchý [33]
proved that Unweighted Steiner Tree parameterized by p admits a polynomial kernel if
the input graph is planar.

Our aspirations again are to obtain results for inputs that are as general as possible, i.e.,
on unrestricted edge-weighted input graphs. We prove that Steiner Tree has a polynomial
lossy (approximate) kernel, despite the fact that the problem is W[2]-hard: an α-approximate
kernelization algorithm is a kernelization algorithm that computes a new instance for which
a given β-approximation can be converted into an αβ-approximation for the input instance
in polynomial time. The new instance is now called a (polynomial) approximate kernel, and
its size is again bounded as a function (a polynomial) of the parameter of the input instance.

Just as for our parameterized approximation schemes in Theorems 1 and 4, we prove
the existence of a lossy kernel for Steiner Tree by a generalization to Steiner Forest
where we combine the parameter p with the number c of connected components in the
optimum solution. Also, our lossy kernel can approximate the optimum arbitrarily well:
we prove that for our parameter the Steiner Forest problem admits a polynomial size
approximate kernelization scheme (PSAKS), i.e., for every ε > 0 there is a (1+ε)-approximate
kernelization algorithm that computes a polynomial approximate kernel. An easy corollary
then is that Steiner Tree parameterized only by p also has a PSAKS, by setting c = 1 in
Theorem 5 and using the reduction from Steiner Tree to Steiner Forest as above.

I Theorem 5. There is a (1 + ε)-approximate kernelization algorithm for Steiner Forest,
which given an edge-weighted undirected graph G = (V,E), a list {s1, t1}, . . . , {sk, tk} ⊆ V

of terminal pairs, and integers p, c, computes an approximate kernel of size ((p+ c)/ε)2O(1/ε)
,

if for the optimum Steiner forest F ⊆ G, p ≥ |V (F ) \R| where R = {si, ti | 1 ≤ i ≤ k}, the
number of connected components of F is at most c, and ε > 0. 1

Analogous to approximation schemes, it is possible to distinguish between efficient and
non-efficient kernelization schemes: a PSAKS is size efficient if the size of the approximate
kernel is bounded by f(ε) · pO(1), where p is the parameter and f is a computable function
independent of p. Our bound on the approximate kernel size in Theorem 5 implies that we
do not obtain a size efficient PSAKS for either Steiner Forest or Steiner Tree. This is
in contrast to the existence of efficient approximation schemes for the same parameters in
Theorems 1 and 4. We leave open whether a size efficient PSAKS can be found in either case.
Interestingly, we also do not obtain any PSAKS for the Unweighted Directed Steiner
Tree problem, even though by Theorem 2 an EPAS exists. We leave open whether a PSAKS
can be found for this variant as well.

Used techniques. Our algorithms are based on the intuition that a Steiner tree containing
only few Steiner vertices but many terminals must either contain a large component induced by
terminals, or a Steiner vertex with many terminal neighbors forming a large star. A high-level
description of our algorithms for Unweighted Directed Steiner Tree and Steiner
Forest therefore is as follows. In each step a tree is found in the graph in polynomial
time, which connects some terminals using few Steiner vertices. We save this tree as part
of the approximate solution and then contract it in the graph. The vertex resulting from
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the contraction is declared a terminal and the process repeats for the new graph. Previous
results [24, 33] have also built on this straightforward procedure in order to obtain FPT
algorithms and polynomial kernels for special cases of Unweighted Directed Steiner
Tree and Unweighted Steiner Tree. In particular, in the unweighted undirected setting
it is a well-known fact (cf. [33]) that contracting an adjacent pair of terminals is always a safe
option, as there always exists an optimum Steiner tree containing this edge. However this
immediately breaks down if the input graph is edge-weighted, as an edge between terminals
might be very costly and should therefore not be contained in any (approximate) solution.

Instead we employ more subtle contraction rules, which use the following intuition. Every
time we contract a tree with ` terminals we decrease the number of terminals by `− 1 (as the
vertex arising from a contraction is a terminal). Our ultimate goal would be to reduce the
number of terminals to one—at this point, the edges that we contracted during the whole
run connect all the terminals. Decreasing the number of terminals by one can therefore be
seen as a “unit of work”. We will pick a tree with the lowest cost per unit of work done,
and prove that as long as there are sufficiently many terminals left in the graph, these
contractions only lose an ε-factor compared to the optimum. As soon as the number of
terminals falls below a certain threshold depending on the given parameter, we can use an
FPT algorithm computing the optimum solution in the remaining graph. This algorithm
is parametrized by the number of terminals, which now is bounded by our parameter. For
the variants of Steiner Tree considered in our positive results, such FPT algorithms can
easily be obtained from the ones for Steiner Tree [16, 2]. Adding this exact solution to
the previously contracted trees gives a feasible solution that is a (1 + ε)-approximation.

Each step in which a tree is contracted in the graph, can be seen as a reduction rule as
used for kernelization algorithms. Typically, a proof for a kernelization algorithm will define
a set of reduction rules and then show that the instance resulting from applying the rules
exhaustively has size bounded as a function in the parameter. To obtain an α-approximate
kernelization algorithm, additionally it is shown that each reduction rule is α-safe. Roughly
speaking, this means that at most a factor of α is lost when applying any number of α-safe
reduction rules.

Contracting edges in a directed graph may introduce new paths, which did not exist
before. Therefore, for the Unweighted Directed Steiner Tree problem, we need to
carefully choose the arborescence to contract. In order to prove Theorem 2 we show that
each contraction is a (1 +ε)-safe reduction rule. However, the total size of the graph resulting
from exhaustively applying the contractions is not necessarily bounded as a function of our
parameter. Thus we do not obtain an approximate kernel.

For Steiner Forest the situation is in a sense the opposite. Choosing a tree to contract
follows a fairly simple rule. On the downside however, the contractions we perform are
not necessarily (1 + ε)-safe reduction rules. In fact there are examples in which a single
contraction will lose a large factor compared to the optimum cost. We are still able to
show however, that after performing all contractions exhaustively, any β-approximation to
the resulting instance can be converted into a (1 + ε)β-approximation to the original input
instance. Even though the total size of the resulting instance again cannot be bounded in
terms of our parameter, for Steiner Forest we can go on to obtain a PSAKS. For this we
utilize a result of Lokshtanov et al. [28], which shows how to obtain a PSAKS for Steiner
Tree if the parameter is the number of terminals. This result can be extended to Steiner
Forest, and since our instance has a number of terminals bounded in our parameter after
applying all contractions, we obtain Theorem 5.
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Finally, to obtain our inapproximability result of Theorem 3, we use a reduction from the
Dominating Set problem. It was recently shown by Chen and Lin [8] that this problem does
not admit parameterized α-approximation algorithms for any constant α, if the parameter
is the solution size, unless W[1] = FPT. We are able to exploit this to also show that no
such algorithm exists for Directed Steiner Tree with edge weights, under the same
assumption.

All missing proofs of this paper are deferred to the full version of the paper [17].

Related work. As the Steiner Tree problem and its variants have been studied since
decades, the literature on this topic is huge. We only present a selection of related work here,
that was not yet mentioned above.

For planar graphs [4] it was shown that an EPTAS exists for Steiner Tree. For Steiner
Forest a 2-approximation can be computed in polynomial time on general inputs [1], but an
EPTAS also exists if the input is planar [19]. If the Unweighted Steiner Tree problem is
parametrized by the solution size, it is known [14] that no polynomial (exact) kernel exists,
unless NP ⊆ coNP/poly. If the input is restricted to planar or bounded-genus graphs it was
shown that polynomial kernels do exist for this parametrization [31]. It was later shown [33]
that for planar graphs this is even true for our parameter p. For the Directed Steiner
Tree problem it is a long standing open problem whether a polylogarithmic approximation
can be computed in polynomial time. It is known that an O(|R|ε)-approximation can
be computed in polynomial time [7], and an O

(
log2 n

)
-approximation in quasi-polynomial

time [7]. A recent result [21] considers generalizations of Directed Steiner Tree and
characterizes which of these problems are FPT and which are W[1]-hard for parameter |R|.

2 The weighted undirected Steiner forest and Steiner tree problems

In this section we describe an approximate polynomial time preprocessing algorithm that
returns an instance of Steiner Forest containing at most O

(
(p+ c)2/ε4) terminals if there

is a Steiner forest with at most p Steiner vertices and at most c connected components. We
can use this algorithm in two ways. Either we can proceed with a kernelization derived
from Lokshtanov et al. [28] and obtain a polynomial size lossy kernel (Theorem 5), or we
can run an exact FPT algorithm derived from Dreyfus and Wagner [16] on the reduced
instance, obtaining an EPAS running in single exponential time with respect to the parameters
(Theorems 1 and 4). In both cases we use the combined parameter (p, c).

We first rescale all weights so that every edge has weight strictly greater than 1. Then, in
each step of our algorithm we pick a star, add it to the solution, and contract the star in the
current graph. We repeat this procedure until the number of terminals falls below a specified
bound depending on ε, p, and c. To describe how we pick the star to be contracted in each
step, we need to introduce the ratio of a star. Let C be a set of edges of a star, i.e., all edges
of C are incident to a common vertex which is the center of the star, and denote by Q the
set of terminals incident to C. Provided |Q| ≥ 2, we define the ratio of C as w(C)/(|Q| − 1),
where w(C) =

∑
e∈C w(e). Note that we allow C to contain only a single edge if it joins two

terminals. Observe also that due to rescaling of edge weights each star has ratio strictly
greater than 1.

In every step, our algorithm contracts a star with the best available ratio (i.e., the lowest
ratio among all stars connecting at least two terminals). Due to the following lemma, a star
with the best ratio has a simple form: it consists of the cheapest i edges incident to its center
vertex and some terminal. As there are n possible center vertices and at most n incident
edges to each center, the best ratio star can be found in time O

(
n2).
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I Lemma 6. Let v be a vertex and denote by q1, q2, . . . the terminals adjacent to v, where
w(vq1) ≤ w(vq2) ≤ · · · , i.e., the terminals are ordered non-decreasingly by the weight of
the corresponding edge vqi. The star with the best ratio having v as its center has edge set
{vq1, vq2, . . . , vq`} for some `.

To analyse our algorithm we need to keep track of the different graphs resulting from each
contraction step t. Initially we set G0 to the input graph, and in each step t ≥ 0 we obtain a
new graph Gt+1 from Gt by contracting a set of edges Ct in Gt, such that Ct forms a star of
minimum ratio in Gt. That is, we obtain Gt+1 from Gt by identifying all vertices incident to
edges in Ct, removing all resulting loops, and among the resulting parallel edges we delete
all but the lightest one with respect to their weights. We also adjust the terminal pairs in a
natural way: let v be the vertex of Gt+1 resulting from contracting Ct. If Gt had a terminal
pair {s, t} such that s is incident to some edge of Ct while t is not, then we introduce the
terminal pair {v, t} for Gt+1. Also every terminal pair {s, t} of Gt for which neither s nor t
is incident to any edge of Ct is introduced as a terminal pair of Gt+1. Any terminal pair
for which both s and t are incident to edges of Ct is going to be connected by a path in the
computed solution, as it will contain Ct. Hence, such a terminal pair can be safely removed.

The algorithm stops contracting best-ratio stars when there are less than τ terminals left;
the exact value of τ depends on p, c, and the desired approximation factor and we specify
it later. If this happens in step t̃, the solution lifting algorithm takes a feasible solution F
of Gt̃ and returns the union of F and

⋃t̃
t=0 Ct. Such a solution is clearly feasible, since we

adapted the terminal pairs accordingly after each contraction.
For the purpose of analysis, we consider a solution in the current graph Gt that originates

from a solution of the original instance G0, but may contain edges that are heavier than
those in Gt. More concretely, denote by F ∗0 a solution in G0 with at most p Steiner vertices
and at most c components, i.e., F ∗0 is a Steiner forest containing every si-ti path. We remark
that F ∗0 may or may not be an optimum solution of G0. Given F ∗t for t ≥ 0, we modify this
solution to obtain a new feasible solution F ∗t+1 on the terminal pairs of Gt+1. Note that the
edges of the contracted star Ct might not be part of F ∗t . We still mimic the contraction of
the star in F ∗t : to obtain F ∗t+1 from F ∗t , we identify all leaves of Ct (which are terminals by
Lemma 6 and thus part of the solution F ∗t ) and possibly also the center v of Ct if it is in F ∗t .
This results in a vertex v′. We now want to delete edges incident to v′ in such a way that we
are left with an acyclic feasible solution. If we delete an inclusion-wise minimal feedback
edge set, we clearly get a feasible solution. Let Qt denote the set of terminals incident to Ct.
We choose a feedback edge set Dt for which every edge was incident to a vertex of Qt before
the contraction in F ∗t , i.e., an edge of Gt corresponding to an edge of Dt never connects two
Steiner vertices. Note that such an inclusion-wise minimal feedback edge set always exists: if
we delete all edges of F ∗t incident to Qt except Ct and then contract Ct, we get an acyclic
graph. See Figure 1 for an illustration.

The resulting graph is F ∗t+1, which now forms a forest connecting all terminal pairs
of Gt+1. Note that for each edge in F ∗t+1 there is a corresponding edge in Gt+1, which
however may be lighter in Gt+1, as from each bundle of parallel edges in Gt we keep the
lightest one, but this edge may not exist in F ∗t .

To show that our algorithm only loses an ε-factor compared to the cost of the solution
F ∗0 , we will compare the cost of the edges Ct contracted by our algorithm to the set
Dt = E(F ∗t+1) \ E(F ∗t ) of deleted edges of F ∗t . Note that there are at least |Qt| − c edges
in Dt, since we contracted Qt terminals in the forest F ∗t with at most c connected components
to obtain F ∗t+1, and a forest on n vertices and k components has n− k edges. We decrease
the number of vertices of F ∗t by at least |Qt| − 1 (one more if the center of the star with edge



P. Dvořák, A. E. Feldmann, D. Knop, T. Masařík, T. Toufar, and P. Veselý 26:9

· · · · · ·

v

Ct

F ∗t

v′ v′

F ∗t+1

Figure 1 An example of creating F ∗
t+1 from F ∗

t after a contraction Ct. Each edge in Ct (dashed)
may or may not be in F ∗

t . The thick edge cannot be in Dt because it is not incident to any terminal.

· · ·

s1

· · ·

s2

v

1 1 w 1 1w

0.5 0.5

w

F ∗

Figure 2 An example of a bad contraction. The numbers of terminals can be arbitrarily large and
the weight w can be arbitrarily small. The star centered at v has ratio 1 while every star centered
either at s1 or s2 has ratio slightly more than 1. By contracting the star centered at v we create a
cycle containing only edges of weight w. Thus, for a sufficiently small value of w the contraction
cannot be charged.

set Ct was a Steiner vertex present in F ∗t ), and we decrease the number of components by at
most c− 1. Note also that for any two time steps t 6= t′, the sets Dt and Dt′ , but also the
sets Ct and Ct′ , are disjoint. Thus if w(Ct) ≤ (1 + ε)w(Dt) for every t, then our algorithm
computes a (1 + ε)-approximation. Unfortunately, this is not always the case: there are
contractions for which this condition does not hold (see Figure 2) and we have to account for
them differently.

I Definition 7. If w(Ct) ≤ (1 + ε)w(Dt) we say that the contracted edge set Ct in step t is
good; otherwise Ct is bad. Moreover, if F ∗t has strictly more components than F ∗t+1, we say
that Ct is multiple-component, otherwise it is single-component.

Our goal is to show that the total weight of bad contractions is bounded by an ε-fraction
of the weight of F ∗0 . We start by proving that if the set Qt of terminals in Ct is sufficiently
large, then the contraction is good. We define λ := (1 + ε)(p+ c)/ε.

I Lemma 8. If |Qt| ≥ λ, then the contracted edge set Ct is good.

Proof of Lemma 8. For brevity, we drop the index t. Let r = w(C)/(|Q| − 1) be the ratio
of the contracted star, and let `′ be the number of deleted edges in D that connect two
terminals. Note that any such edge has weight at least r, since it spans a star with two
terminals, which has ratio equal to its weight, and since each edge in F ∗ (of which D is a
subset) can only be heavier than the corresponding edge in the current graph G.

Let u1, . . . , uq be the Steiner vertices adjacent to edges in D, and let `i be the number of
edges in D incident to one such Steiner vertex ui. Consider the star spanned by the `i edges
of D incident to ui. If `i ≥ 2, the ratio of this star is at least r, since its edges are at least as
heavy as the corresponding edges in G and the algorithm chose a star with the minimum
ratio in G. Thus, the weight of edges in D incident to ui is at least r(`i − 1). In the case
where `i = 1, the lower bound r(`i − 1) = 0 on the weight holds trivially.
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Any edge in D not incident to any Steiner vertex ui connects two terminals. Therefore,
we have `′ +

∑q
i=1 `i = |D| as any edge in D is incident to a terminal in Q and we thus do

not count any edge twice. Also recall that |D| ≥ |Q| − c. Since F contains at most p Steiner
vertices we have q ≤ p, and we obtain

w(D) ≥ r`′ +
q∑

i=1
r(`i − 1) = r

(
`′ +

q∑
i=1

`i − q

)
≥ r(|Q| − p− c) .

Finally, using |Q| ≥ λ we bound w(C) by (1 + ε)w(D) as follows:

(1 + ε)w(D) ≥ (1 + ε)r(|Q| − p− c) = r(|Q| − 1) + r
(
ε|Q| − (1 + ε)(p+ c) + 1

)
≥ w(C) + r

(
ε

(1 + ε)(p+ c)
ε

− (1 + ε)(p+ c)
)

= w(C) . J

Note that there may be a lot of contractions with |Q| < λ. However, we show that only
a bounded number of them is actually bad. The key idea is to consider contractions with
ratio in an interval ((1 + δ)i; (1 + δ)i+1] for some δ > 0 and integer i. Due to the rescaling
of weights every star belongs to an interval with i ≥ 0. The following crucial lemma of our
analysis shows that the number of bad single-component contractions in each such interval
is bounded in terms of p and ε, if δ is a function of ε. In particular, let δ :=

√
1 + ε − 1,

so that (1 + δ)2 = 1 + ε. We call an edge set C with ratio r in the i-th interval, i.e., with
r ∈ ((1 + δ)i; (1 + δ)i+1], an i-contraction, and define κ := (1 + δ)p/δ.

I Lemma 9. For any i the number of bad single-component i-contractions is at most κ.

Proof. Let us focus on bad single-component i-contractions only which we just call bad
i-contractions for brevity. Suppose for a contradiction that the number of bad i-contractions
is larger than κ. Let t̃ be the first step with a bad i-contraction, i.e., t̃ is the minimum
among all t for which w(Ct) > (1 + ε)w(Dt) and w(Ct)/(|Qt| − 1) ∈ ((1 + δ)i; (1 + δ)i+1].
The plan is to show that at step t̃ there is a “light” star in Gt̃ with ratio at most (1 + δ)i

and consequently the algorithm would do a j-contraction for some j < i. This leads to a
contradiction, since we assumed that in step t̃ the contraction has ratio in interval i. Note
that it is sufficient to find such a light star in F ∗

t̃
as for each edge in F ∗

t̃
there is an edge in

the graph Gt̃ between the same vertices of the same weight or even lighter.
We claim that for each step t in which the algorithm does a bad i-contraction there is an

edge et ∈ Dt with weight at most (1 + δ)i−1. We have w(Ct) > (1 + ε)w(Dt) as Ct is bad and
w(Ct) ≤ (1 + δ)i+1(|Qt| − 1) as the ratio of Ct is in interval i. Putting it together and using
the definition of δ we obtain w(Dt) < (1 + δ)i+1/(1 + ε) · (|Qt| − 1) = (1 + δ)i−1(|Qt| − 1).
Because Ct is single-component, we have |Dt| ≥ |Qt| − 1 and therefore there is an edge
et ∈ Dt with weight at most (1 + δ)i−1, which proves the claim.

Since edges between terminals have weight at least (1 + δ)i in step t (recall that each
such edge is a star with ratio equal to its weight), the edge et is incident to a Steiner vertex
in F ∗t (otherwise the algorithm would have chosen one of the edges between terminals to
contract). As Dt ∩Dt′ = ∅, the edges et and et′ for steps t 6= t′ with bad i-contractions are
distinct. Let S be the set of such light edges et. We have |S| > κ as there are more than κ
bad i-contractions.

Since the solution F ∗0 uses at most p Steiner vertices, also F ∗
t̃
contains at most p of them.

Therefore at t̃ there must be a Steiner vertex v in F ∗
t̃
incident to at least |S|/p > κ/p ≥

(1 + δ)/δ edges in S. Consider a star C with v as the center and with edges from S that are
incident to v; we have |C| ≥ (1+δ)/δ. The ratio of this star is at most |C|(1+δ)i−1/(|C|−1).
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Since |C|/(|C| − 1) ≤ (1 + δ) (by a routine calculation) we get that the ratio of C is at most
(1 + δ)i which is a contradiction to the assumption that the algorithm does an i-contraction
in step t̃. J

We also need a bound on number of bad multiple-component edge sets.

I Lemma 10. The number of steps t in which a bad multiple-component edge set Ct is
contracted is at most c− 1.

Proof. If Ct is a bad multiple-component edge set, F ∗t+1 must have at least one component
fewer than F ∗t . Since F ∗0 has at most c components, the bound follows. J

We remark that the proofs of Lemmas 9 and 10 do not use that the number of terminals
in a bad i-contraction is bounded by λ, as shown in Lemma 8. Instead we bound the
total weight of bad contractions in terms of λ. For this let j be the largest interval of any
contraction during the whole run of the algorithm, i.e., the ratio of every contracted star
is at most (1 + δ)j+1. As there are at most κ bad single-component contractions in each
interval and c bad multiple-component contractions and the interval size grows exponentially,
we can upper bound the total weight of bad contractions in terms of κ, c, λ and (1 + δ)j . We
can also lower bound the weight of w(F ∗0 ) in terms of (1 + δ)j and the lower bound τ on the
number of terminals in the graph. If τ is large enough then the total weight of edge sets Ct

of bad contractions is at most ε · w(F ∗0 ). These ideas are summarized in the next lemma.

I Lemma 11. Let j be the largest interval of any contraction during the whole run of the
algorithm and let WB be the total weight of edge sets Ct of bad contractions. Then, the
following holds.
1. WB ≤ (κ+ c) · λ · (1 + δ)j+2/δ .

2. w(F ∗0 ) ≥ (1 + δ)j · (τ − 2p− c).
3. If τ := (κ+ c) · λ · (1 + δ)2/(εδ) + 2p+ c then WB ≤ ε · w(F ∗0 ).

The above lemma can now be used to prove that all the contractions put together (by
scaling ε) form a (1 + ε)-approximate pre-processing procedure with respect to F ∗0 .

I Lemma 12. The algorithm outputs an instance with τ ∈ O
(
(p+ c)2/ε4) terminals and

(together with the solution lifting algorithm) it is a (1 + 2ε)-approximate polynomial time
pre-processing algorithm with respect to F ∗0 .

Note that in case the given p is smaller than the number of Steiner vertices in F ∗0 , or c
is smaller than the number of connected components in F ∗0 , the algorithm still outputs a
Steiner forest, but the approximation factor may be arbitrary. The last lemma can easily be
used to prove Theorems 1, 4 and 5.

3 The unweighted directed Steiner tree problem

In this section we provide an EPAS for the Unweighted Directed Steiner Tree problem,
in which each arc has unit weight. The idea behind our algorithm given in this section is
to reduce the number of terminals of the input instance via a set of reduction rules. That
is, we would like to reduce the input graph G to a graph H, and prove that the number of
terminals in H is bounded by a function of our parameter p and the desired approximation
ratio. On H we use the algorithm of Björklund et al. [2] to obtain an optimum solution.

Our first reduction rule represents the idea that a terminal in the immediate neighborhood
of the root can be contracted to the root. Observe that in this case our algorithm has to
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s s

Figure 3 An example of extended neighborhood of Steiner vertex s. The set N0
Ext(s) is depicted

on the left using full arcs, while the vertices connected by dotted arcs are not a part of this set. The
set N1

Ext(s) is depicted on the right using full arcs.

pay 1 for connecting such a terminal to the root, however, any feasible solution must connect
this terminal as well using at least one arc—this argument is formalized in Lemma 13.

I Reduction Rule R1. If there is an arc from the root r to a terminal v ∈ R, we contract
the arc (r, v), and declare the resulting vertex the new root.

I Lemma 13. Reduction Rule R1 is 1-safe and can be implemented in polynomial time.
Furthermore, there is a solution lifting algorithm running in polynomial time and returning a
Steiner arborescence if it gets a Steiner arborescence of the reduced graph as input.

The idea behind our next reduction rule is the following. Assume there is a Steiner vertex s
in the optimum arborescence T connected to many terminals with paths not containing any
other Steiner vertices. We can then afford to buy all these paths emanating from s together
with a path connecting the root to s. Formally, we say that a vertex u is a k-extended
neighbor of some vertex v, if there exists a directed path P starting in v and ending in u,
such that V (P ) \ {v} contains at most k Steiner vertices. Note that a vertex is always a
k-extended neighbor of itself for any k, and that each of the above terminals connected to s
in T is a 0-extended neighbor of s. We denote by Nk

Ext(v) the set of all k-extended neighbors
of v, and call it the k-extended neighborhood of v (see Figure 3). By the following observation
the Steiner vertex s of T lies in the p-extended neighborhood of the root r. Therefore there
is a path containing at most p Steiner vertices connecting r to s.

I Observation 14. Let G = (V,A) be a directed graph with root r ∈ R. Suppose there exists
a Steiner arborescence T ⊆ G with at most p Steiner vertices. It follows that V (T ) ⊆ Np

Ext(r).

In what follows we fix ε > 0. The second reduction rule contracts a path from r to a Steiner
vertex s in the p-extended neighborhood of r together with the 0-extended neighborhood of
s if this neighborhood is sufficiently large.

I Reduction Rule R2. If there exists a Steiner vertex s with
∣∣N0

Ext(s)
∣∣ ≥ p/ε and s ∈ Np

Ext(r),
so that there is an r → s path P containing at most p Steiner vertices, then we contract the
subgraph of G induced by N0

Ext(s) and P in G, and declare the resulting vertex the new root.

I Lemma 15. Reduction Rule R2 is (1 + ε)-safe and can be implemented in polynomial time.
Furthermore, there is a solution lifting algorithm running in polynomial time and returning a
Steiner arborescence if it gets a Steiner arborescence of the reduced graph as input.

Now we prove that if none of the above reduction rules is applicable and our algorithm
was provided with a correct value for parameter p, then the number of terminals in the
reduced graph can be bounded by p2/ε.

I Lemma 16. Let G be an instance of Directed Steiner Tree, and denote by H the
graph obtained from G by exhaustive application of Reduction Rules R1 and R2. Suppose
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that there exists a Steiner arborescence in G containing at most p Steiner vertices. It follows
that the remaining terminal set R of H has size less than p2/ε.

The last step of the algorithm is to compute an optimum solution in the graph H obtained
from the input graph G after exhaustively applying the two above reduction rules. From
the resulting arborescence in H we obtain an arborescence in G by running the solution
lifting algorithms for each reduction rule applied (in the reverse order); the existence and
correctness of the solution lifting algorithms for our reduction rules is provided by Lemmas 13
and 15.
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Abstract
In the list homomorphism problem, the input consists of two graphs G and H, together with a list
L(v) ⊆ V (H) for every vertex v ∈ V (G). The task is to find a homomorphism φ : V (G)→ V (H)
respecting the lists, that is, we have that φ(v) ∈ L(v) for every v ∈ V (H) and if u and v are
adjacent in G, then φ(u) and φ(v) are adjacent in H. If H is a fixed graph, then the problem
is denoted by LHom(H). We consider the reflexive version of the problem, where we assume
that every vertex in H has a self-loop. If is known that reflexive LHom(H) is polynomial-time
solvable if H is an interval graph and it is NP-complete otherwise [Feder and Hell, JCTB 1998].

We explore the complexity of the problem parameterized by the treewidth tw(G) of the input
graph G. If a tree decomposition of G of width tw(G) is given in the input, then the problem can
be solved in time |V (H)|tw(G) ·nO(1) by naive dynamic programming. Our main result completely
reveals when and by exactly how much this naive algorithm can be improved. We introduce a
simple combinatorial invariant i∗(H), which is based on the existence of certain decompositions
and incomparable sets, and show that this number should appear as the base of the exponent in
the best possible running time. Specifically, we prove for every non-interval reflexive graph H

that
If a tree decomposition of width tw(G) is given in the input, then the problem can be solved
in time i∗(H)tw(G) · nO(1).
Assuming the Strong Exponential-Time Hypothesis (SETH), the problem cannot be solved
in time (i∗(H)− ε)tw(G) · nO(1) for any ε > 0.

Thus by matching upper and lower bounds, our result exactly characterizes for every fixed H the
complexity of reflexive LHom(H) parameterized by treewidth.
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1 Introduction

It is well known that most NP-hard algorithmic graph problems can be solved significantly
more efficiently on graphs of bounded treewidth than on general graphs. A large number
of NP-hard problems are known to be fixed-parameter tractable (FPT) parameterized by
treewidth, that is, if the input instance contains a tree decomposition of width w of the
graph, then the problem can be solved in time f(w) · nO(1) for some computable function f
depending only on the width w. In recent years, there have been significant research efforts
to understand how complexity depends on treewidth and to determine the best possible
function f(w) that can appear in the running time. On the algorithmic side, new algorithms
with improved running times were obtained for a number of problems [6, 1, 25, 16]. On
the complexity side, conditional lower bounds were given that, in many cases, match the
running time of the best known algorithms, thereby giving a tight understanding of the
complexity of the problem parameterized by treewidth [21, 20, 6, 22, 5]. These lower bounds
are usually based on the Exponential-Time Hypothesis (ETH), which can be informally
stated as n-variable 3-Sat cannot be solved in time 2o(n), or on the Strong Exponential-Time
Hypothesis (SETH), which can be informally stated as n-variable m-clause Cnf-Sat cannot
be solved in time (2− ε)n ·mO(1) for any ε > 0.

As an exemplary result, let us consider the c-Coloring problem, where the task is
to color the vertices of the graph with c colors such that adjacent vertices receive distinct
colors. Using standard dynamic programming techniques, c-Coloring can be solved in
time ctw(G) · nO(1) if a tree decomposition of width tw(G) is given in the input. A result of
Lokshtanov et al. [20] showed that this running time is essentially optimal.

I Theorem 1 (Lokshtanov, Marx, and Saurabh [20]). Let c ≥ 3 be a fixed integer. Assuming
the SETH, the c-Coloring problem on a graph G with n vertices, given with its tree
decomposition of width tw(G), cannot be solved in time poly(n) · (c− ε)tw(G) for any ε > 0.

Homomorphisms. Given graphs G and H, a homomorphism from G to H is a mapping
φ : V (G) → V (H) such that if uv is an edge of G, then φ(u)φ(v) is an edge of H. (In
particular, if H has no loops, then this implies φ(u) 6= φ(v) whenever u and v are adjacent.)
For every fixed graph G, we can define the Hom(H) problem, where, given a graph G, the
task is to find a homomorphism from G to H. Now c-Coloring is equivalent to Hom(Kc),
where Kc is the clique on c vertices: it is easy to see that G is c-colorable if and only if
it has a homomorphism to Kc. Thus the Hom(H) family of problems form a far-reaching
generalization of the vertex coloring problem. A classic result of Hell and Nešetřil [17]
characterized the complexity of Hom(H): it is polynomial-time solvable if H is bipartite and
it is NP-complete for every nonbipartite H (see also [4, 18]).

What can we say about the complexity of Hom(H) parameterized by treewidth? It seems
to be a natural goal to try to obtain, for every H, the best possible base cH of the exponent
that can appear in the running time ctw(G)

H · nO(1). If H is the clique Kc, then we know
from Theorem 1 that cH = c, but what can we say about other graphs H? While this is a
very natural question, it appears to be very difficult and deep as well: while the hardness
of c-Coloring is well understood and can be easily exploited in hardness proofs such as
Theorem 1, the hardness of Hom(H) for nonbipartite H comes from a somewhat mysterious
combination of combinatorics and algebra [17, 4, 18, 23].

While we are unable at the moment to characterize the exact complexity of Hom(H)
parameterized by treewidth, we resolve a related question that is still of interest, but
apparently more tractable. The problem we study differs from the original question in two
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ways. First, we are considering the list version of the problem: in an input instance of the list
homomorphism LHom(H) problem, each vertex v of G is equipped with a list L(v) ⊆ V (H)
and the task is to find a homomorphism φ from G to H that respects these lists, that is,
φ(v) ∈ L(v) for every v ∈ V (G). List versions of homomorphism and coloring problems are
well studied [24, 7, 8, 13, 15, 12, 11, 14, 10, 9]. Typically, list versions are more robust than
the ordinary versions and hardness proofs are simpler to prove for them. Feder et al. [10]
characterized the polynomial-time solvable cases of LHom(H): now it is not sufficient that
H is bipartite, it has to be the complement of a circular arc graph, otherwise the problem
is NP-complete. Second, we consider the reflexive version of the homomorphism problem,
which means that we assume that every vertex of H has a self-loop attached to it. Thus even
if u and v are adjacent in G, it is still possible that φ(u) = φ(v) in a homomorphism φ from
G to H. In particular, now there is always a homomorphism φ from every G to H: let us
chose an arbitrary fixed vertex u ∈ V (H) and let φ(v) = u for every v ∈ V (G). However, it
remains a nontrivial question whether there is a homomorphism from G to H that respects
the lists L(v) of the vertices of G. Feder and Hell [9] showed that reflexive LHom(H) is
polynomial-time solvable if H is an interval graph, and NP-complete otherwise. In general,
the reflexive problem appears to have simpler structure and cleaner properties than the
irreflexive version, where bipartiteness and parity issues introduce technical complications.
We believe that it is reasonable to start with the reflexive problem as a prototype result.

Results. Our main result is exactly characterizing, for every fixed H, the complexity of
reflexive list homomorphism parameterized by treewidth. Similarly to the c-Coloring
problem, standard dynamic programming techniques give an algorithm with running time
|V (H)|tw(G) · nO(1) if a tree decomposition of width tw(G) is given (slightly more generally,
we can also say that if every list L(v) has size at most c, then the problem can be solved in
time ctw(G) ·nO(1)). However, unlike in the case of the c-Coloring problem, this algorithm is
not necessarily optimal: for some H, we can actually do better. We identify two algorithmic
ideas that can give improved algorithms:

Incomparable sets. Suppose that the list L(v) for some v ∈ V (G) contains two vertices
a, b ∈ V (H), such that every neighbor of a (including a itself) is also a neighbor of b.
It is easy to see that if there is a homomorphism φ from G to H with φ(v) = a, then
this can be modified to have φ(v) = b and it remains a valid homomorphism. In other
words, vertex a in the list L(v) is not necessary for the solution and can be removed
from the list. Thus after a simple preprocessing step, we can assume that every L(v) is
an incomparable set, that is, N [a] ⊆ N [b] does not hold for any two distinct a, b ∈ L(v).
This means that if we denote by i(H) the maximum size of an incomparable set in H,
then it can be assumed that every list has size at most i(H) and hence the problem can
be solved in time i(H)tw(G) · nO(1). As i(H) can be much less than |V (H)|, this running
time can be significantly faster than |V (H)|tw(G) · nO(1).
Decompositions. We identify a certain kind of decomposition that can be used to
simplify the problem. Formally, a decomposition is a partition (S,N,R) of the vertices of
H such that |S| ≥ 2, |N ∪R| > 0, N separates S and R, N induces a clique, and every
vertex of S is adjacent to every vertex of N . As we show later, such a decomposition
allows us to reduce LHom(H) to instances of LHom(H1) and LHom(H2), where H1 and
H2 are strict induced subgraphs of H.

We show that, in a formal sense, these two algorithmic ideas are sufficient to solve the
problem as fast as possible. First, if the graph H is undecomposable (that is, does not
have a decomposition as above), then the best possible running time is indeed of the form
i(H)tw(G) · nO(1). More generally, we define i∗(H) to be the maximum of i(H∗), taken over
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every undecomposable, connected, non-interval induced subgraph H∗ of H. Our main result
shows that i∗(H)tw(G) · nO(1) is the exact complexity of the problem.

I Theorem 2. Let H be a connected reflexive non-interval graph with k = i∗(H), and G be
a graph with n vertices and treewidth tw(G).
(a) The LHom(H) problem with instance (G,L) can be solved in time poly(n+ |H|) · ktw(G)

for any lists L, provided that G is given with its tree decomposition of width tw(G).
(b) There is no algorithm that solves LHom(H) for every G and L in time f(H) · poly(n+
|H|) · (k − ε)tw(G) for any computable function f and any ε > 0, unless the SETH fails.

Note that if H is a reflexive interval graph, then LHom(H) is polynomial-time solvable [9]
and if H is disconnected, then it is easy to reduce the problem to the components of H.
Thus Theorem 2 gives a complete characterization of the complexity of the problem for every
fixed H.

Let us discuss the significance of a complete classification result such as Theorem 2.
As the LHom(H) problem is an infinite family of problems, it is not clear at all what is
the full range of algorithmic ideas that can help solve the problem faster than the naive
|V (H)|tw(G) · nO(1) time algorithm. Even after realizing that this naive algorithm can be
beaten in some cases (e.g., by discovering the importance of incomparable sets or some
form of decompositions), we cannot be sure that some completely different algorithm cannot
solve some cases even faster, or can be applied to an even wider class of target graphs H.
But in order to prove a complete classification result of the form of Theorem 2, one has
to discover each and every relevant algorithmic idea. Our main result not only provides a
set of algorithmic tools, but proves in a formal sense (assuming the SETH) that no other
algorithmic idea can improve on these results. Thus we completely map the complexity
landscape of the LHom(H) problem, determining the complexity of every case of LHom(H)
with surprising tightness and revealing every combinatorial insight that can be exploited
algorithmically.

Lower bound proofs. The complexity result of Theorem 2b needs to exploit three properties
of the induced subgraph H∗: it is not an interval graph, it is undecomposable, and has a
large incomparable set. There are well-known characterization results that show that every
non-interval graph contains certain obstructions (induced cycles or asteroidal triples) and
the NP-hardness proofs of Feder and Hell [9] show how these obstructions can be used to
reduce 3-Coloring to LHom(H). However, here we need something much stronger: if
there is an incomparable set I of size c = i∗(H), then we want to reduce c-Coloring to
LHom(H) and use the lower bound in Theorem 1. The natural idea is to represent the c
colors of the c-Coloring problem by the c vertices appearing in the incomparable set I.
Then the main challenge is to construct gadgets that express the 6= relation, that is, ensure
that two adjacent vertices are not assigned the same vertex of I, but every other combination
is allowed. We show with a very delicate and technical proof that the incomparable set
can be connected to the interval graph obstruction with a set of walks satisfying certain
properties, and these walks, together with the obstruction, can be used to create the required
gadgets. It turns out that, surprisingly, the only situation when we cannot find such walks is
precisely when a decomposition exists. Thus if we assume that the graph is non-interval,
has a large incomparable set, and has no decomposition, then we can construct the gadgets
required for the reduction.

Exploiting decompositions. We finish the introduction with a brief explanation of how a
decomposition (S,N,R) can be exploited (a more detailed algorithm description appears in
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Section 3.1). As discussed above, we can assume that every L(v) is an incomparable set in
H. In particular, this means that if some a ∈ S appears in L(v), then L(v) does not contain
any vertex of N (as every vertex of N fully contains the neighborhood of every vertex in S).
Let X ⊆ V (G) be the set of vertices whose lists contain at least one vertex of S. The set X
induces some number of connected components in G; let C be a connected component of
G[X].

The first crucial observation is that in every solution φ, one of the following two cases
has to happen on C: either (1) φ(c) ∈ S for every c ∈ C, or (2) φ(c) 6∈ S for every c ∈ C.
Otherwise, there would be two adjacent vertices c1, c2 ∈ C with φ(c1) ∈ S and φ(c2) 6∈ S.
However, as N separates S and R in H, this is only possible if φ(c2) ∈ N , contradicting our
earlier assumption. Thus as a first step, we check if there is a homomorphism φC from G[C]
to H1 := H[S] that respects the list. If there is no such homomorphism, then we can rule
out the possibility that case (1) happens on C and remove the vertices of S from the lists of
the vertices in C. Suppose now that there is such a homomorphism φC .

The second crucial observation is that if case (1) happens on C, then we might as well
assume that the solution φ restricted to C is exactly the same as φC : it is easy to see that
φ(v) ∈ N should hold for every v ∈ N(C), and every vertex of N is adjacent to every vertex
of S, hence no conflict can arise if we change φ to be the same as φC on C. Let us select an
arbitrary vertex a ∈ S and let us change the list of every v ∈ C to be L′(v) = (L(v)\S)∪{a},
that is, the single vertex a will represent the vertices L(v)∩S. We claim that this modification
does not change the solvability of the instance: if the original instance has a solution where
case (1) happens on C, then we can modify it to have a’s on every vertex of C; and if we
obtain a solution of the new instance with a’s on C, then we can obtain a solution of the
original instance by using φC on C.

We repeat these steps for every connected component C of G[X]. Then we obtain an
instance where the selected vertex a ∈ S is the only vertex of S that appears anywhere on the
lists. This means that effectively we have an instance where we need to find a homomorphism
to H2 := H \ (S \ {a}). As |S| ≥ 2, H2 has strictly fewer vertices than H. Thus the existence
of the decomposition (S,N,R) allowed us to reduce the problem to instances of LHom(H1)
and LHom(H2) where H1 and H2 have fewer vertices than H.

2 Preliminaries

Throughout the paper we consider reflexive graphs only, i.e., we assume that for every vertex
v, vv is an edge (a loop). Let H = (V,E) be a reflexive graph. By N [v] we denote the set
{u : uv ∈ E}. Note that v ∈ N [v]. By N(v) we denote N [v] \ {v}. For a set X of vertices,
by N [X] we denote

⋃
v∈X N [v], while N(X) denotes N [X] \X. For a set X and a vertex

v, by NX [v] we denote N [v] ∩X. In an analogous way we define NX(v) and NX(Y ) and
NX [Y ] for a set Y . For two disjoint sets A,B ⊆ V , such that no vertex from A is adjacent
to a vertex from B, an A-B-separator is a set S, such that there is no path from any vertex
a ∈ A to any vertex b ∈ B in the graph H − S. An A-B-separator S is minimal if no S′ ( S

is an A-B-separator. If A is a singleton, say A = {a}, we write a-B-separator instead of
{a}-B separator (analogously if B is a singleton).

For two graphs G and H, a mapping f : V (G)→ V (H) is a homomorphism if for every
edge xy of G it holds that f(x)f(y) is an edge of H. If f is a homomorphism from G to
H, we denote it shortly by f : G → H. We write G → H to say that there exists some
homomorphism from G to H. For a fixed graph H, by Hom(H) we consider an algorithmic
problem of deciding if there is a homomorphism from a given graph G to H.
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In the list homomorphism problem we are given two graphs G,H and a mapping
L : V (G) → 2V (H) (where the sets L(v) for v ∈ V (G) are called H-lists or just lists),
and we ask for a homomorphism f : G→ H, such that f(x) ∈ L(x) for every x ∈ V (G). We
denote this by f : (G,L) → H. We often write (G,L) → H to denote that there is a list
homomorphisms from G to H with lists L. Moreover, as we only deal with list homomorph-
isms, we write f : G→ H to denote f : (G,L)→ H, if the lists are clear from the context.
For a fixed graph H, by LHom(H) we denote the algorithmic problem, whose input is a
graph G with lists L, and we ask whether there exists a list homomorphism (G,L)→ H.

We observe that if H has several connected components, then there is a polynomial-time
reduction from LHom(H) to the problems LHom(H ′) for the connected components H ′ of
H. Thus we always assume that H is connected.

2.1 Interval graphs and obstructions
Interval graphs are one of the most studied classes of geometric intersection graphs. A
graph H is an interval graph if it admits an interval representation, where each vertex is
represented by some closed interval of the real line and two vertices are adjacent if and only
if their corresponding intervals intersect. Note that interval graphs are usually defined to be
irreflexive, but in our case we consider reflexive graphs.

Before we analyze structural properties of interval graphs, we need a few more definitions.
An asteroidal triple is an independent set of three vertices a, b, c, such that for every {i, j, `} =
{a, b, c} there is an i-j-path Wi,j , whose every vertex is non-adjacent to `. Note that by our
convention Wj,i is Wi,j reversed.

I Theorem 3 (Lekkeikerker and Boland [19]). A graph is an interval graph if and only if does
not contain an asteroidal triple or an induced cycle of length at least 4.

There is a deep connection between the list homomorphism problem and reflexive interval
graphs, as shown in the following dichotomy theorem of Feder and Hell [9].

I Theorem 4 (Feder and Hell [9]). Let H be a reflexive graph. If H is an interval graph,
then the LHom(H) problem is polynomially solvable, otherwise it is NP-complete.

In this paper we will focus on graphs H, for which LHom(H) is NP-complete, so we will
assume that H is non-interval and thus contains at least one of structures mentioned in
Theorem 3.

Observe that for an asteroidal triple a, b, c, we may w.l.o.g. assume that each path Wa,b

is induced. We define the asteroidal subgraph of an asteroidal triple a, b, c, as the subgraph
of H induced by Wa,b ∪Wb,c ∪Wa,c.1 For a vertex a (b, c, resp.), we say that the path Wb,c

(Wa,c, Wa,b, resp.) is opposite.
Moreover, note that an induced cycle with at least 6 vertices contains an asteroidal

subgraph. So an equivalent statement of Theorem 3 says that every non-interval graph H
contains an induced 4-cycle, an induced 5-cycle, or an asteroidal subgraph. An induced
subgraph of H isomorphic to one of these three structures is called an obstruction in H.

A vertex o ∈ O is a corner if:
O is isomorphic to a 4-cycle or a 5-cycle, or
O is an asteroidal subgraph for an asteroidal triple containing o.

Two vertices o, o′ of an obstruction O are opposite if:

1 We will often identify graphs with their vertex sets.
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both are corners, or
O is an asteroidal subgraph and o belongs to the path opposite to o′.

2.2 Dominating vertices and incomparable sets
For two vertices u, v of H, we say that v dominates u or, equivalently, u is dominated by
v, if N [u] ⊆ N(v). Observe that this implies that u and v are adjacent. We say that a set
X dominates a set Y if every x ∈ X dominates every y ∈ Y . If u is not dominated by v, it
means that there is a vertex u′ ∈ N [u] (possibly u′ = u), which is not a neighbor of v. Two
vertices u and v are incomparable if u does not dominate v and v does not dominate u. A
set S of vertices is incomparable if all its members are pairwise incomparable. By i(H) we
denote the size of the largest incomparable set in H.

2.3 Avoiding walks
A walk is a sequence of vertices P = p1, p2, . . . , p`, such that pipi+1 is an edge for every
i = 1, 2, . . . , `− 1. For the walk P , its length denotes the number `− 1. For two vertices a, b,
we say that P = p1, p2, . . . , p` is an a-b-walk if p1 = a and p` = b. We denote this shortly by
P : a→ b. By P̄ we denote the reversed walk, i.e., P̄ = p`, p`−1, . . . , p2, p1.

For two walks A = a1, a2, . . . , a` and B = b1, b2, . . . , b`′ such that a` = b1, we let A ◦ B
denote the concatenation of A and B, i.e., the walk a1, a2, . . . , a`, b2, b3, . . . , b`′ . Note that
|A ◦ B| = |A|+ |B| − 1.

For two walks P = p1, p2, . . . , p` and Q = q1, q2, . . . q` of equal length, we say that P
avoids Q if pi is non-adjacent to qi+1 for every i = 1, 2, . . . , `− 1. We conclude this section
with two simple observations concerning walks and avoidance.

I Observation 5. For walks A : a → b, B : b → c and A′ : a′ → b′,B′ : b′ → c′, if A avoids
A′ and B avoids B′, then A ◦ B avoids A′ ◦ B′. J

I Observation 6. Let P = p1, p2, . . . , p` and Q = q1, q2, . . . q` be two walks, such that P
avoids Q. Then Q̄ avoids P̄. J

3 Algorithm

In this section we prove the algorithmic part of our main result, i.e., Theorem 2a). Let us
start with the following simple observation.

I Observation 7. Let u, v be vertices of H, such that v dominates u. Let f : G→ H be a
homomorphism, such that f(x) = u for some vertex x of G. Then f ′ defined by f ′(x) := v

and f ′(y) := f(y) for every y ∈ V (G) \ {x} is also a homomorphism from G to H. J

Thus we can assume that in our instance (G,L) of LHom(H) the set L(x) is incomparable
for every vertex x of G (otherwise we can safely remove a dominated vertex).

3.1 Decomposition
For a graph H, let T (H,n, t) denote an upper bound for the time complexity of an algorithm
solving the LHom(H) problem on a graph with n vertices and treewidth t. The following
lemma is the main tool in the proof of Theorem 2a). The proof is omitted in this extended
abstract.
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I Lemma 8 (Decomposition lemma). Let H = (V,E) be a reflexive graph, whose vertex set
can be partitioned into three subsets S,N,R, such that:
1. |S| ≥ 2,
2. N is a clique with at least one vertex,
3. N separates S and R,
4. all edges between S and N are present in H.
Let H1 be the subgraph of H induced by S, and H2 be the subgraph of H obtained by
contracting S to a single vertex. Moreover, suppose that there are constants c, d, such that
T (H1, n, t) = O(ct · nd) and T (H2, n, t) = O(ct · nd). Then T (H,n, t) = O(ct · nd).

A graph H which satisfies the assumptions of Lemma 8 is called decomposable and we
say that (S,N,R) is a decomposition of H, or that H decomposes into H1 and H2. We refer
to S as dominated part and the set N as dominating clique separator. A graph which is not
decomposable is called undecomposable.

Observe that with H we can associate a decomposition tree T , whose nodes are labeled
with induced subgraphs of H. The root, denoted by node(H) corresponds to the whole graph
H. If H is undecomposable, then the decomposition tree has just one node. If H decomposes
into H1 and H2, then node(H) has two children, node(H1) and node(H2), respectively. We
construct a decomposition tree recursively. Clearly, each leaf of the decomposition tree is an
undecomposable induced subgraph of H. Note that a decomposition tree may not be unique,
as a graph may have more than one decomposition. However, the number of leaves is always
O(|H|), so the total number of nodes is also O(|H|).

3.2 Solving LHom(H) problem
Now we are ready to present an algorithm for determining if (G,L)→ H.

Proof of Theorem 2a). We assume that the graph G has n vertices and is given along with
its tree decomposition of width tw(G). We also define

i∗(H) := max{i(H ′) : H ′ is undecomposable connected non-interval induced subgraph of H}.

Observe that if H ′ is an induced subgraph of H, then i∗(H ′) ≤ i∗(H), and thus i(H) = i∗(H)
for undecomposable H.

It can be shown that in time polynomial in H we can check if H is undecomposable, or
find a decomposition. If H is undecomposable, we run a standard dynamic programming on
a tree decomposition of G (see [3, 2]). For each bag of the tree decomposition we store all
partial list homomorphisms from the graph induced by this bag to H. By Observation 7,
the size of each list L(x) for x ∈ V (G) is at most i(H), thus the complexity of the dynamic
programming algorithm is bounded by O(nd · i(H)tw(G)) = O(nd · i∗(H)tw(G)) for some
constant d.

So suppose H is decomposable. Let T be a decomposition tree of H, note that it can
be constructed in polynomial time, has O(|H|) nodes, and its every leaf corresponds to an
induced subgraph of H with strictly fewer vertices. Indeed, if H decomposes into H1 and
H2, then they are both induced subgraphs of H and |H1|, |H2| < |H|. Therefore, for any leaf
H ′ of T , we can solve every instance of LHom(H ′) with n vertices and treewidth at most
tw(G) in time O(nd · i∗(H)tw(G)) (note that this is also true if H ′ is an interval graph, as
then we can use a polynomial algorithm). Now, applying Lemma 8 in a bottom-up fashion,
we conclude that we can solve LHom(H) in time O(nd · i∗(H)tw(G)), which completes the
proof of Theorem 2a). J
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4 Hardness

In this section we prove Theorem 2b), i.e., the lower bound for an algorithm deciding the
existence of a list homomorphism (G,L)→ H. We will prove the following theorem.

I Theorem 9. Let H be a connected, reflexive, undecomposable graph with i(H) ≥ 3.
Assuming the SETH, there is no algorithm that solves LHom(H) for every G and L in time
f(H) · poly(|G|+ |H|) · (i(H)− ε)tw(G) for any ε > 0 and any computable function f .

Let us first show that Theorem 9 is equivalent to Theorem 2b).

Theorem 9 → Theorem 2b). Suppose Theorem 9 holds and Theorem 2b) fails. So there
is a graph H (may be decomposable) and an algorithm A that solves LHom(H) in time
f(H) · poly(|G|+ |H|) · (i∗(H)− ε)tw(G) for every input G,L. Let H ′ be an undecomposable
connected non-interval induced subgraph of H, such that i(H ′) = i∗(H). As every instance
of LHom(H ′) can be seen as an instance of LHom(H), the algorithm A can be used to solve
LHom(H ′) in time f ′(H ′) · poly(|G|+ |H ′|) · (i(H ′)− ε)tw(G), thus contradicting Theorem 9.

Theorem 2b) → Theorem 9. Suppose Theorem 2b) holds and Theorem 9 fails. So
there is an undecomposable graph H and an algorithm A that solves LHom(H) in time
f(H) · poly(|G|+ |H|) · (i(H)− ε)tw(G) for every input G,L. But since H is undecomposable,
we have i∗(H) = i(H), so algorithm A contradicts Theorem 2b).

4.1 Using an obstruction to express basic relations
Let O be an obstruction in H with non-adjacent corners α, β and let k ≥ 2 be an integer.
First, we show how express k-wise relations ORk = {α, β}k \αk and NANDk = {α, β}k \βk.
More formally, we define a graph F (ORk) (F (NANDk), resp.), called an ORk-gadget
(NANDk-gadget, resp.) with H-lists L and k specified vertices x1, x2, . . . , xk, such that:

for every i ∈ [k] it holds that L(xi) = {α, β},
the relation

⋃
f : F (ORk)→H{f(x1)f(x2) . . . f(xk)} is exactly ORk (respectively,⋃

f : F (NANDk)→H{f(x1)f(x2) . . . f(xk)} is NANDk).
The construction of these gadgets is simple and it is omitted in this extended abstract.
Another useful property of obstructions is shown in the following lemma.

I Lemma 10 (Moving inside the obstruction). Let O be an obstruction with distinct corners
a, c. Moreover, let b, d be distinct vertices of O, such that b is a corner and d is either a corner,
or a vertex non-adjacent to b. Then there are walks Aa,b,A′a,b : a→ b and Bc,d,B′c,d : c→ d,
such that Aa,b avoids Bc,d and B′c,d avoids A′a,b. Moreover, all four walks use only vertices
of O and can be constructed in polynomial time.

Proof. If O is an induced 4-cycle or an induced 5-cycle, the walks are easy to construct. So
consider the case that O is an asteroidal subgraph for an asteroidal triple o1, o2, o3.

Case 1. First, let us deal with case when both b, d are corners. Then we have {a, b, c, d} ⊆
{o1, o2, o3}. If a = b and c = d then the problem is trivial. If a = b and c 6= d,
then we set Aa,b = A′a,b = a, a, . . . , a and Bc,d = B′c,d = Wc,d (the walk opposite
to a). The case when a 6= b and c = d is similar. So we assume that a 6= b and
c 6= d. If a = d and c 6= b (the case when a 6= d and c = b is similar), we set
Aa,b = A′a,b =Wa,b ◦ b, b, . . . , b and Bc,d = B′c,d = c, c, . . . , c ◦Wc,a. If a = d and c = b, we
set Aa,b = A′a,b = a, a, . . . , a ◦Wa,c ◦ c, c, . . . , c and Bc,d = B′c,d =Wc,b ◦ b, b, . . . , b ◦Wb,a.
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Case 2. Next, consider the case when b is a corner and d is not. We know that d ∈ Wb′,b′′ ,
where b′, b′′ are corners and b′ 6= b. Let W ′ be the subpath of Wb′,b′′ , starting in b′ and
ending in d. Recall that Wb′,b′′ is induced, so even if b = b′′, there is no edge from W ′
to b. We set

Aa,b = Ca,b ◦ b, b, . . . , b A′a,b = C′a,b ◦ b, b, . . . , b

Bc,d = Dc,b′ ◦ W ′ B′c,d = D′c,b′ ◦ W ′,

where Ca,b, C′a,b : a→ b and Dc,b′ ,D′c,b′ : c→ b′ are appropriate walks given by Case 1. J

4.2 Constructing distinguishing walks

As we have seen, we can easily use the structure of an obstruction to enforce non-trivial
relations that could be used to show hardness. For the rest of the proof we will show that we
can attach vertices of an incomparable set to the vertices of an obstruction using walks with
certain avoidance properties, which will later be exploited to prove hardness.

For a walk P = v1, v2, . . . , vn, by P̃ we denote the walk P with its first vertex removed,
i.e., P̃ = v2, . . . , vn. The following structural lemmas will be later used to obtain the main
gadget used in our hardness proof.

I Lemma 11. Let H be a connected undecomposable non-interval reflexive graph, and O be
an obstruction in H with non-adjacent corners α, β. Let S be a set of incomparable vertices
in H such that |S| ≥ 2. Let a and b be arbitrary distinct vertices in S. Then there is a
partition (X,Y ) of S such that vertices a and b are in X, and there are walks Dv for each
v ∈ S of length at least 1, satisfying the following properties:
1. For each v ∈ S, the first vertex of Dv is v, and its last vertex is either α (Dv is said to

be an α-walk) or β (Dv is said to be a β-walk).
2. Da is an α-walk and Db is a β-walk.
3. Let u, v ∈ S such that Du is an α-walk and Dv is a β-walk. Then

a. if u, v ∈ X, or if u ∈ Y and v ∈ X ∪ Y , then Du avoids Dv,
b. if u ∈ X, v ∈ Y , then D̃u avoids D̃v.

4. For any v ∈ Y and u ∈ X, there is no edge joining v and the second vertex of Du.
5. For every v ∈ Y , the second vertex of Dv is in Y .

Recall that it is possible that we have two walks Dx,Dy constructed in Lemma 11, such
that Dx is an α-walk, Dy is a β-walk, but Dx does not avoid Dy (this may happen for
x ∈ X and y ∈ Y ). This is an undesired situation for us, but luckily such walks have a
well-defined structure. In the next lemma we will construct a small gadget to patch this
situation, and then we will combine them to construct the main tool in our hardness proof,
i.e., a distinguisher gadget.

I Lemma 12. Let H,S, X, Y , and Dv, where v ∈ S, be as in Lemma 11. Let NX = {dx
2 : x ∈

X}, i.e., the set of vertices that appear as a second vertex of a walk Dx where x ∈ X

and NY = {dy
2 : y ∈ Y }. Then there is a graph F with H-lists and two specified vertices

p1, p2 ∈ V (F ) such that
1. L(p1) = S and L(p2) = NX ∪NY ,
2. for any list homomorphism ϕ : F → H, if ϕ(p1) ∈ X, then ϕ(p2) /∈ Y ,
3. for every v ∈ S, there is ψ : F → H, such that ψ(p1) = v and ψ(p2) = dv

2.
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4.3 Constructing a distinguisher gadget
The main tool in our hardness proof is a gadget called a distinguisher. Let H be an
undecomposable reflexive non-interval graph with obstruction O with non-adjacent corners
α, β. For an incomparable set S of H and two vertices a, b ∈ S, a distinguisher is a graph
Da/b with two specified vertices x, y and H-lists L, such that:
1. L(x) = S and L(y) = {α, β},
2. there is a list homomorphism φa : Da/b → H, such that φa(x) = a and φa(y) = α,
3. there is a list homomorphism φb : Da/b → H, such that φb(x) = b and φb(y) = β,
4. for any c ∈ S \ {a, b} there is φc : Da/b → H, such that φc(x) = c and φc(y) ∈ {α, β},
5. there is no list homomorphism φ : Da/b → H, such that φ(x) = a and φ(y) = β.

I Lemma 13 (Construction of distinguisher). Let H = (V,E) be an undecomposable reflexive
non-interval graph with obstruction O with two non-adjacent corners α, β. Let S be a
maximum incomparable set in H. Then for every ordered pair (a, b) of distinct elements of S
there exists a distinguisher Da/b.

Proof. Call Lemma 11 for H,S, a, b to obtain a partition (X,Y ) of S and walks Dv for every
v ∈ S. Let s be the length of each of these walks. By dv

j we denote the j-th vertex of Dv.
Let P be a path with s vertices p1, p2, . . . , ps. We set L(pj) =

⋃
v∈S{dv

j}. Observe that
by Lemma 11 we have s ≥ 2.

Next, call Lemma 12 to obtain a graph FP and unify its p1-vertex with p1 of P and its
p2-vertex with p2 of P . Observe that this unification preserves lists. Finally, we set x = p1
and y = ps. Let us verify that the graph constructed in such a way is indeed a distinguisher.
The first property holds by the definition of the walks Dv for v ∈ S. To show properties 2,3,
and 4, consider v ∈ S and set φv(pi) = dv

i for all i ∈ [s]. This mapping can be extended to
the vertices of FP by property 3 of Lemma 12.

Finally, let us show that property 5 holds as well. Assume for the sake of contradiction
that a list homomorphism φ : Da/b → H, such that φ(x) = a and φ(y) = β, exists. Observe
that φ(p1), φ(p2), . . . , φ(ps) is an a-β walk of length s in H, such that for every i ∈ [s] we
have φ(pi) ∈

⋃
v∈S{dv

2}. For all i ∈ [s], let Di denote a walk from {Dv : v ∈ S}, whose i-th
vertex is φ(pi) (if there is more than one such a walk, choose an arbitrary one). Observe that
D1 = Da is an α-walk. Let i be a minimum integer, such that Di is a β-walk. This value is
well-defined, as Ds is a β-walk. Thus there is an edge between the (i− 1)th vertex of the
α-walk Di−1 and the i-th vertex of the β-walk Di, so Di−1 does no avoid Di. Let u, v be
vertices such that Di−1 = Du and Di = Dv. If u, v ∈ X, or u ∈ Y and v ∈ X ∪ Y , then we
have a contradiction with property 3a in Lemma 11.

Thus assume that u ∈ X and v ∈ Y . If i ≥ 3, then again we have a contradiction with
property 3b in Lemma 11. Thus the only case left is i = 2. By property 2. in Lemma 12
we observe that dv

2 /∈ Y , and thus, by property 5 in Lemma 11, we conclude that v /∈ Y , a
contradiction. This completes the proof. J

4.4 Hardness proof
We are ready to prove to prove Theorem 9. Recall that Theorem 9 implies Theorem 2b).

Proof of Theorem 9. Let O be an obstruction in H and let α, β be non-adjacent corners of
O. Let S = {v1, v2, . . . , vk} be a maximum incomparable set in H. Note that we can assume
that k ≥ 3, since the corners of O are pairwise incomparable.

Suppose we are given a graph G along with its tree decomposition of width tw(G). The
main idea of our hardness proof is to construct a graph G∗ with H-lists L such that:

STACS 2018
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(G∗, L)→ H if and only if G is k-colorable (in our construction the colors used on G will
correspond to vertices from S),
the number of vertices of G∗ is g(H) · (|V (G)|+ |E(G)|) for some function g of H,
the treewidth of G∗ is at most g(H) + tw(G),
G∗ can be constructed in time poly(|V (G)|) · g′(H) for some function g′.

Invoking Theorem 1, this will prove Theorem 9. The construction is performed in four steps.

Step 1. Constructing an indicator gadget. Fix i ∈ [k]. For j ∈ [k] \ {i}, we use Lemma
13 to construct a distinguisher gadget Dvi/vj

with two specified vertices xi,j and yi,j . The
number of constructed gadgets is thus k−1. We identify vertices xi,j for all j ∈ [k], let us call
this identified vertex xi. Moreover, introduce a new vertex ci. Now, using the construction
from Section 4.1 we introduce an ORk gadget and identify its specified vertices with distinct
vertices from Xi := {ci} ∪

⋃
j∈[k]\{i}{vi,j} (there are k vertices in this set). Let us call this

graph Ii (‘I’ stands for indicator).
The construction forces that in every list homomorphism f : Ii → H, at least one vertex

from Xi is mapped to β. Observe that:
for every f : Ii → H, if f(xi) = vi, then f(ci) = β.
for every j 6= i, there exist f ′, f ′′ : Ii → H, such that f ′(xi) = f ′′(xi) = vj and f ′(ci) = α

and f ′′(ci) = β.

Step 2. Constructing a half-edge gadget. Let us construct k indicator gadgets I1, I2, . . . ,

Ik. We identify the vertices x1, x2, . . . , xk, and call this vertex x. Call the resulting gadget a
half-edge. By the construction of indicators, we observe that for a half-edge F , the following
hold:

for every f : F → H, if f(x) = vi, then f(ci) = β,
for every i ∈ [k], and every tuple X ∈ {α, β}k, such that Xi = β, there exists f : F → H

such that f(x) = vi and f(cj) = Xj .

Step 3. Constructing an edge gadget. An edge gadget consists of two half-edge gadgets
F, F ′ (we will use primes to denote the vertices in F ′). Moreover, for every i ∈ [k], we
introduce a NAND2 gadget on vertices ci and c′i, which enforces that at least one of them
is mapped to α. We call the resulting graph an edge gadget. For an edge gadget FF we
observe the following:

for any f : FF → H, if f(x) = vi, then f(x′) 6= vi. Assume for contradiction that f(x) =
f(x′) = vi. Then by the construction of a half-edge, we observe that f(ci) = f(c′i) = β.
However, this is impossible by the definition of NAND2 gadget.
for any distinct i, j ∈ [k] there is g : FF → H such that g(x) = vi, and g(x′) = vj .
By the construction of a half-edge gadget, there is f : F → H, such that f(x) = vi,
f(ci) = β, and f(ci′) = α for every i′ 6= i (in particular, for i′ = j). Analogously, there
is f ′ : F ′ → H, such that f ′(x′) = vj , f ′(cj) = β and f ′(cj′) = α for every j′ 6= j . We
obtain g by combining f and f ′, and extending this partial homomorphism to vertices
of NAND2-gadgets. By the definition of these gadgets, it is possible, as for every i′ we
have f(ci′) = α or f ′(ci′) = α.

Observe that the construction so far was performed for H only. Let g(H) be the number of
vertices in an edge gadget.
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Step 4. Constructing G∗ and H-lists L. We start constructing G∗ by including the vertex
set V (G) of G to G∗(initially they are isolated vertices). For every edge uv of G, we introduce
an edge gadget, where x is unified with u and x′ is unified with v. By the construction of
edge gadget, we observe that for every v ∈ V (G) we have L(v) = S. Moreover, (G∗, L) is a
Yes-instance of LHom(H) if and only if G is k-colorable (we interpret mapping u to vi ∈ S
as coloring u with color i). Recall that the size of each edge gadget is g(H), thus the number
of vertices of G∗ is at most (|V (G)|+ |E(G)|) · g(H).

To see that the treewidth of G∗ is at most tw(G) + g(H), consider a tree decomposition
T of G with width tw(G). For every edge uv of G, we choose one bag Xuv of T , such
that u, v ∈ Xuv. Define a set X ′uv as the union of Xuv and the set of vertices of the edge
gadget corresponding to the edge uv. We extend T to a tree decomposition T ∗ of G∗, by
introducing a bag X ′uv for every edge uv of G and making it adjacent (in T ∗) to Xuv only. It is
straightforward to verify that T ∗ is a tree decomposition of G∗ of width at most tw(G)+g(H).
Moreover, it is clear that G∗ and L can be constructed in time g′(H) · poly(|V (G)|) for some
function g′. Thus, by Theorem 1, our claim holds. J
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Abstract
In spite of the close connection between the evaluation of quantified Boolean formulas (QBF) and
propositional satisfiability (SAT), tools and techniques which exploit structural properties of SAT
instances are known to fail for QBF. This is especially true for the structural parameter treewidth,
which has allowed the design of successful algorithms for SAT but cannot be straightforwardly
applied to QBF since it does not take into account the interdependencies between quantified
variables.

In this work we introduce and develop dependency treewidth, a new structural parameter
based on treewidth which allows the efficient solution of QBF instances. Dependency treewidth
pushes the frontiers of tractability for QBF by overcoming the limitations of previously introduced
variants of treewidth for QBF. We augment our results by developing algorithms for computing
the decompositions that are required to use the parameter.
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1 Introduction

The problem of evaluating quantified Boolean formulas (QBF) is a generalization of the
propositional satisfiability problem (SAT) which naturally captures a range of computational
tasks in areas such as verification, planning, knowledge representation and automated
reasoning [11, 20, 24, 25]. QBF is the archetypical PSpace-complete problem and is therefore
believed to be computationally harder than NP-complete problems such as SAT [18, 21, 31].
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In spite of the close connection between QBF and SAT, many of the tools and techniques
which work for SAT are known not to help for QBF, and dynamic programming based on
the structural parameter treewidth [2, 32] is perhaps the most prominent example of this
behavior. Treewidth is a highly-established measure of how “treelike” an instance is, and in
the SAT setting it is known that n-variable instances of treewidth at most k can be solved in
time at most f(k) · n [32] for a computable function f . Algorithms with running time in this
form (i.e., f(k) · nO(1), where k is the parameter and the degree of the polynomial of n is
independent of k) are called fixed-parameter algorithms, and problems which admit such an
algorithm (w.r.t. a certain parameter) belong to the class FPT. Furthermore, in the SAT
setting, treewidth allows us to do more than merely solve the instance: it is also possible to
find a so-called resolution proof [8, 5]. If the input was a non-instance, such a resolution
proof contains additional information on “what makes it unsatisfiable” and hence can be
more useful than outputting a mere Reject in practical settings.

In the QBF setting, the situation is considerably more complicated. It is known that
QBF instances of bounded treewidth remain PSpace-complete [2], and the intrinsic reason
for this fact is that treewidth does not take into account the dependencies that arise between
variables in QBF. So far, there have been several attempts at remedying this situation by
introducing variants of treewidth which support fixed-parameter algorithms for QBF: prefix
pathwidth (along with prefix treewidth) [12] and respectful treewidth [2], along with two other
parameters [1, 6] which originate from a different setting but can also be adapted to obtain
fixed-parameter algorithms for QBF. We refer to Subsection 3.2 for a comparison of these
parameters. Aside from algorithms with runtime guarantees, it is worth noting that empirical
connections between treewidth and QBF have also been studied in the literature [22, 23].

In this work we introduce and develop dependency treewidth, a new structural parame-
ter based on treewidth which supports fixed-parameter algorithms for QBF. Dependency
treewidth pushes the frontiers of tractability for QBF by overcoming the limitations of both
the previously introduced prefix and respectful variants. Compared to the former, this new
parameter allows the computation of resolution proofs analogous to the case of classical
treewidth for SAT instances. Prefix pathwidth relies on entirely different techniques to
solve QBF and does not yield small resolution proofs. Moreover, the running time of the
fixed-parameter algorithm which uses prefix pathwidth has a triple-exponential dependency
on the parameter k, while dependency treewidth allows a O(32knk)-time algorithm for QBF.

Unlike respectful treewidth and its variants, which only take the basic dependencies
between variables into account, dependency treewidth can be used in conjunction with the
so-called dependency schemes introduced by Samer and Szeider [26, 29], see also the work of
Biere and Lonsing [3]. Dependency schemes allow an in-depth analysis of how the assignment
of individual variables in a QBF depends on other variables, and research in this direction
has uncovered a large number of distinct dependency schemes with varying complexities. The
most basic dependency scheme is called the trivial dependency scheme [26], which stipulates
that each variable depends on all variables with distinct quantification which precede it in
the prefix. Respectful treewidth in fact coincides with dependency treewidth when the trivial
dependency scheme is used, but more advanced dependency schemes allow us to efficiently
solve instances which otherwise remain out of the reach of state-of-the-art techniques.

Crucially, all of the structural parameters mentioned above require a so-called decom-
position in order to solve QBF; computing these decompositions is typically an NP-hard
problem. A large part of our technical contribution lies in developing algorithms to compute
decompositions for dependency treewidth. Without such algorithms, it would not be possible
to use the parameter unless a decomposition were supplied as part of the input (an unreal-
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istic assumption in practical settings). It is worth noting that all of these algorithms can
also be used to find respectful tree decompositions, where the question of finding suitable
decompositions was left open [2]. We provide two algorithms for computing dependency tree
decompositions, each suitable for use under different situations.

The article is structured as follows. After the preliminaries, we introduce the parameter
and show how to use it to solve QBF. This section also contains an in-depth overview and
comparison of previous work in the area. A separate section then introduces other equivalent
characterizations of dependency treewidth. The last technical section contains our algorithms
for finding dependency tree decompositions, after which we provide concluding notes.

2 Preliminaries

For i ∈ N, we let [i] denote the set {1, . . . , i}. We refer to the book by Diestel [9] for standard
graph terminology. Given a graph G, we denote by V (G) and E(G) its vertex and edge set,
respectively. We use ab as a shorthand for the edge {a, b}. For V ′ ⊆ V (G), the guards of V ′
(denoted δ(V ′)) are the vertices in V (G) \ V ′ with at least one neighbor in V ′.

We refer to the standard textbooks [10, 15] for an in-depth overview of parameterized
complexity theory. Here, we only recall that a parameterized problem (Q, κ) is a problem
Q ⊆ Σ∗ together with a parameterization κ : Σ∗ → N, where Σ is a finite alphabet. A
parameterized problem (Q, κ) is fixed-parameter tractable (w.r.t. κ), in short FPT, if there
exists a decision algorithm for Q, a computable function f , and a polynomial function p,
such that for all x ∈ Σ∗, the running time of the algorithm on x is at most f(κ(x)) · p(|x|).
Algorithms with this running time are called fixed-parameter algorithms.

2.1 Quantified Boolean Formulas
For a set of propositional variables K, a literal is either a variable x ∈ K or its negation x̄.
A clause is a disjunction over literals. A propositional formula in conjunctive normal form
(i.e., a CNF formula) is a conjunction over clauses. Given a CNF formula φ, we denote the
set of variables which occur in φ by var(φ). For notational purposes, we will view a clause as
a set of literals and a CNF formula as a set of clauses.

A quantified Boolean formula is a tuple (φ, τ) where φ is a CNF formula and τ is a
sequence of quantified variables, denoted var(τ), which satisfies var(τ) ⊇ var(φ); then φ is
called the matrix and τ is called the prefix. A QBF (φ, τ) is true if the formula τφ is true. A
quantifier block is a maximal sequence of consecutive variables with the same quantifier. An
assignment is a mapping from (a subset of) the variables to {0, 1}.

The primal graph of a QBF I = (φ, τ) is the graph GI defined as follows. The vertex set
of GI consists of every variable which occurs in φ, and st is an edge in GI if there exists a
clause in φ containing both s and t.

2.2 Dependency Posets for QBF
Before proceeding, we define a few standard notions related to posets which will be used
throughout the paper. A partially ordered set (poset) V is a pair (V,≤V ) where V is a set
and ≤V is a reflexive, antisymmetric, and transitive binary relation over V . A chain W of
V is a subset of V such that x ≤V y or y ≤V x for every x, y ∈ W . A chain partition of
V is a tuple (W1, . . . ,Wk) such that {W1, . . . ,Wk} is a partition of V and for every i with
1 ≤ i ≤ k the poset induced by Wi is a chain of V. An anti-chain A of V is a subset of V
such that for all x, y ∈ A neither x ≤V y nor y ≤V x. The width (or poset-width) of a poset V ,
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denoted by width(V), is the maximum cardinality of any anti-chain of V . A poset of width 1
is called a linear order. A linear extension of a poset P = (P,≤P ) is a relation � over P
such that x � y whenever x ≤P y and the poset P∗ = (P,�) is a linear order. A subset A of
V is downward-closed if for every a ∈ A it holds that b ≤V a =⇒ b ∈ A. A reverse of a
poset is obtained by reversing each relation in the poset. For brevity we will often write ≤V
to refer to the poset V := (V,≤V ).

We use dependency posets to provide a general and formal way of speaking about the
various dependency schemes introduced for QBF [26]. It is important to note that dependency
schemes in general are too broad a notion for our purposes; for instance, it is known that
some dependency schemes do not even give rise to sound resolution proof systems. Here
we focus solely on so-called permutation dependency schemes [28], which is a general class
containing all commonly used dependency schemes that give rise to sound resolution proof
systems. This leads us to our definition of dependency posets, which allow us to capture all
permutation dependency schemes.

Given a QBF I = (φ, τ), a dependency poset V = (var(φ),≤I) of I is a poset over var(φ)
with the following properties:
1. for all x, y ∈ var(φ), if x ≤I y, then x is before y in the prefix, and
2. given any linear extension � of V , the QBF I ′ = (φ, τ�), obtained by permutation of the

prefix τ according the �, is true iff I is true.
The trivial dependency scheme is one specific example of a permutation dependency scheme.
This gives rise to the trivial dependency poset, which sets x ≤ y whenever x, y are in
different quantifier blocks and x is before y in the prefix. However, more refined permutation
dependency schemes which give rise to other dependency posets are known to exist and can
be computed efficiently [26, 28]. In particular, it is easy to verify that a dependency poset
can be computed from any permutation dependency scheme in polynomial time.

To illustrate these definitions, consider the following QBF: ∃a∀b∃c(a ∨ c) ∧ (b ∨ c). Then
the trivial dependency poset would set a ≤ b ≤ c. However, for instance the resolution path
dependency poset (arising from the resolution path dependency scheme [33, 27]) contains a
single relation b ≤ c (in this case, a is incomparable to both b and c).

2.3 Q-resolution

Q-resolution is a sound and complete resolution system for QBF [17]. Our goal here is to
formalize the required steps for the Davis Putnam variant of Q-resolution.

We begin with a bit of required notation. For a QBF I = (φ, τ) and a variable x ∈ var(φ),
let φx be the set of all clauses in φ containing the literal x and similarly let φx̄ be the set
of all clauses containing literal x̄. We denote by res(I, x) the QBF I ′ = (φ′, τ ′) such that
τ ′ = τ \ {x} and φ′ = φ \ (φx ∪ φx̄) ∪ {(D \ {x}) ∪ (C \ {x̄})|D ∈ φx;C ∈ φx̄}; informally,
the two clause-sets are pairwise merged to create new clauses which do not contain x. For
a QBF I = (φ, τ) and a variable x ∈ var(φ) we denote by I \ x the QBF I = (φ′, τ \ {x}),
where we get φ′ from φ by removing all occurrences of x and x̄.

I Lemma 1. Let I = (φ, τ) and x ∈ var(φ) be the last variable in τ . If x is existentially
quantified, then I is true if and only if res(I, x) is true.

I Lemma 2. Let I = (φ, τ) and x ∈ var(φ) be the last variable in τ . If x is universally
quantified, then I is true if and only if I \ x is true.
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2.4 Treewidth
Here we will introduce three standard characterizations of treewidth [19]: tree decompositions,
elimination orderings, and cops and robber games. These will play a role later on, when we
define their counterparts in the dependency treewidth setting and use these in our algorithms.

Tree decomposition. A tree decomposition of a graph G is a pair (T, χ), where T is a rooted
tree and χ is a function from V (T ) to subsets of V (G), called a bag, such that the following
properties hold: (T1)

⋃
t∈V (T ) χ(t) = V (G), (T2) for each uv ∈ E(G) there exists t ∈ V (T )

such that u, v ∈ χ(t), and (T3) for every u ∈ V (G), the set Tu = {t ∈ V (T ) : u ∈ χ(t)}
induces a connected subtree of T .

To distinguish between the vertices of the tree T and the vertices of the graph G, we will
refer to the vertices of T as nodes. The width of the tree decomposition T is maxt∈T |χ(t)|−1.
The treewidth of G, tw(G), is the minimum width over all tree decompositions of G.

Elimination ordering. An elimination ordering of a graph is a linear order of its vertices.
Given an elimination ordering φ of the graph G, the fill-in graph H of G w.r.t. φ is the
unique minimal graph such that: V (G) = V (H), E(H) ⊇ E(G), and if 0 ≤ k < i < j ≤ n

and vi, vj ∈ NH(vk), then vivj ∈ E(H). The width of elimination ordering φ is the maximum
number of neighbors of any vertex v that are larger than v (w.r.t. φ) in H.

(Monotone) cops and robber game. The cops and robber game is played between two
players (the cop-player and the robber-player) on a graph G. A position in the game is a
pair (C,R) where C ⊆ V (G) is the position of the cop-player and R is a (possibly empty)
connected component of G \ C representing the position of the robber-player. A move from
position (C,R) to position (C ′, R′) is legal if it satisfies the following conditions:
CM1 R and R′ are contained in the same component of G \ (C ∩ C ′),
CM2 δ(R) ⊆ C ′.
A play P is a sequence (∅, R0), . . . , (Cn, Rn) of positions such that for every i with 1 ≤ i < n

it holds that the move from (Ci, Ri) to (Ci+1, Ri+1) is legal; the cop-number of a play is
maxi≤n |Ci|. A play P is won by the cop-player if Rn = ∅, otherwise it is won by the
robber-player. The cop-number of a strategy for the cop player is maximum cop-number
over all plays that can arise from this strategy. Finally, the cop-number of G is the minimum
cop-number of a winning strategy for the cop player.

For any graph G it holds that G has treewidth k iff G has an elimination ordering of
width k iff G has cop-number k [19].

3 Dependency Treewidth for QBF

We are now ready to introduce our parameter. We remark that in the case of dependency
treewidth, it is advantageous to start with a counterpart to the elimination ordering charac-
terization of classical treewidth, as this is used extensively in our algorithm for solving QBF.
We provide other equivalent characterizations of dependency treewidth (representing the
counterparts to tree decompositions and cops and robber games) in Section 4; these are not
only theoretically interesting, but serve an important role in our algorithms for computing
the dependency treewidth. Furthermore, we remark that on existentially quantified QBFs
dependency treewidth w.r.t. trivial dependency poset collapses with classical treewidth.

Let I = (φ, τ) be a QBF instance with a dependency poset P. An elimination ordering
of GI is compatible with P if it is a linear extension of the reverse of P; intuitively, this
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corresponds to being forced to eliminate variables that have the most dependencies first. For
instance, if P is a trivial dependency poset then a compatible elimination ordering must
begin eliminating from the rightmost block of the prefix. We call an elimination ordering of
GI that is compatible with P a P-elimination ordering (or dependency elimination ordering).
The dependency treewidth w.r.t. P is then the minimum width of a P-elimination ordering.

3.1 Using dependency treewidth
Our first task is to show how dependency elimination orderings can be used to solve QBF.

I Theorem 3. There is an algorithm that given 1. a QBF I with n variables and m clauses,
2. a dependency poset P for I, and 3. a P-elimination ordering π of width k, decides whether
I is true in time O(32kkn). Moreover, if I is false, then the algorithm outputs a Q-resolution
refutation of size O(3kn).

Sketch of Proof. Let I = (φ, τ) and let x1, . . . , xn denote the variables of φ such that
xi ≤π xi+1 for all 1 ≤ i < n. From the definition of the dependency poset and the fact that
π is a dependency elimination ordering, it follows that the QBF instance I ′ = (φ, τ ′), where
τ ′ is the reverse of π, is true if and only if I is true.

To solve I we use a modification of the Davis Putnam resolution algorithm [8]. We start
with instance I ′ and recursively eliminate the last variable in the prefix using Lemmas 1
and 2 until we either run out of variables or we introduce as a resolvent a non-tautological
clause that is either empty or contains only universally quantified variables. We show that
each variable we eliminate has the property that it only shares clauses with at most k other
variables, and in this case we introduce at most 3k clauses of size at most k at each step.

From now on let H be the fill-in graph of the primal graph of I with respect to π, and
let us define Ii = (φi, τ i) for 1 ≤ i ≤ n as follows: (1) I1 = I ′, (2) Ii+1 = Ii \ xi if xi is
universally quantified, and (3) Ii+1 = res(Ii, xi), if xi is existentially quantified.

Note that xi is always the last variable of the prefix of Ii and it follows from Lemmas 1
and 2 that Ii+1 is true if and only if Ii is true. Moreover, In only contains a single variable,
and hence can be decided in constant time. One can show by induction that Ii+1 contains
at most 3k new clauses, i.e., clauses not contained in Ii. To this end, we show and use
the fact that both φix and φix̄ contain at most 3k clauses, and this is sufficient to ensure a
small Q-resolution refutation if the instance is false. A formal proof of this fact and runtime
analysis are provided in the full version. J

3.2 A Comparison of Decompositional Parameters for QBF
As was mentioned in the introduction, two dedicated decompositional parameters have
previously been introduced specifically for evaluating quantified Boolean formulas: prefix
pathwidth (and, more generally, prefix treewidth) [12] and respectful treewidth [2]. The first
task of this section is to outline the advantages of dependency treewidth compared to these
two parameters. We remark that we do not include formal definitions of the parameters in
this section, since they are technical and not critical for our exposition.

Prefix pathwidth is based on bounding the number of viable strategies in the classical two-
player game characterization of the QBF problem [12]. As such, it decomposes the dependency
structure of a QBF instance beginning from variables that have the least dependencies (i.e.,
may appear earlier in the prefix). On the other hand, our dependency treewidth is based on
Q-resolution and thus decomposes the dependency structure beginning from variables that
have the most dependencies (i.e., may appear last in the prefix). Lemma 4 shows that both
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approaches are, in principle, incomparable. That being said, dependency treewidth has two
critical advantages over prefix treewidth/pathwidth:
1. dependency treewidth outputs small resolution proofs, while it is not at all clear whether

the latter can be used to obtain such resolution proofs;
2. dependency treewidth supports a single-exponential fixed-parameter algorithm for QBF

(Theorem 3), while the latter uses a prohibitive triple-exponential algorithm [12].

I Lemma 4. Let us fix the trivial dependency poset. There exist infinite classes A,B of
QBF instances such that:
a. A has unbounded dependency treewidth but prefix pathwidth at most 1;
b. B has unbounded prefix pathwidth (and prefix treewidth) but dependency treewidth at

most 1.

Sketch of Proof. Consider the following examples for A,B. Let A = {Ai = ∃x1, . . . , xi∀y∃x
(y ∨ x) ∧

∧i
j=1(xj ∨ x)}, and let B = {Bi = ∃x1∀x2∃x3∀x4 . . . ∃x2i−1∀x2i∃x2i+1

∧i−1
j=1((xj ∨

x2j) ∧ (xj ∨ x2j+1))}. It is straightforward to verify that these classes satisfy the conditions
stipulated in the lemma. J

Respectful treewidth coincides with dependency treewidth when the trivial dependency
scheme is used, i.e., represents a special case of our measure. Unsurprisingly, the use of more
advanced dependency schemes (such as the resolution path dependency scheme [33, 28])
allows the successful deployment of dependency treewidth on much more general classes of
QBF instances. Furthermore, dependency treewidth with such dependency schemes will
always be upper-bounded by respectful treewidth, and so algorithms based on dependency
treewidth will outperform the previously introduced respectful treewidth based algorithms.

I Lemma 5. There exists an infinite class C of QBF instances such that C has unbounded
dependency treewidth with respect to the trivial dependency poset but dependency treewidth at
most 1 with respect to the resolution-path dependency poset.

Sketch of Proof. It suffices to set C to be equal to the class A used in the proof of the
previous lemma and then verify that C has the desired properties. J

Finally, we note that the idea of exploiting dependencies among variables has also given
rise to similarly flavored structural measures in the areas of first-order model checking (first
order treewidth) [1] and quantified constraint satisfaction (CD-width1) [6]. Even though the
settings differ, Theorem 5.5 [1] and Theorem 5.1 [6] can both be translated to a basic variant
of Theorem 3. We note that this readily-obtained variant of Theorem 3 would not account
for dependency schemes. We conclude this subsection with two lemmas which show that
there are classes of QBF instances that can be handled by our approach but are not covered
by the results of Adler, Weyer [1] and Chen, Dalmau [6].

I Lemma 6. There exist infinite classes D, E of QBF instances such that:
a. D has unbounded CD-width but dependency treewidth at most 1 w.r.t. the resolution-path

dependency poset.
b. E has unbounded dependency treewidth w.r.t. any dependency poset but CD-width at

most 1.

1 We remark that in their paper, the authors refer to their parameter simply as “the width”. For
disambiguation, here we call it CD-width (shorthand for Chen-Dalmau’s width).
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Sketch of Proof. It suffices to set D to be equal to the class A used in the proof of Lemma 4
and then observe that the same class of instances is used as an example of a class with
unbounded CD-width by Chen, Dalmau [6, Example 3.6]. On the other hand, it easy to
verify that the QBF instance Ei = ∀x1∀x2 · · · ∀xi

∧
1≤p<q≤i(xp ∨ xq) has CD-width 0, as Ei

does not contain an existential variable. However, the primal graph of Ei is a clique and
hence it has dependency treewidth i− 1. J

I Lemma 7. There exists an infinite class F of QBF instances such that F has unbounded
first order treewidth but dependency treewidth at most 2 with respect to the resolution-path
dependency poset.

Sketch of Proof. Let Fi = ∀x2iy2i∃x2i−1y2i−1 · · · ∀x2y2∃x1y1∀z(z ∨ x1 ∨ y1)
∧2i−1
j=1 [(xj ∨

xj+1) ∧ (yj ∨ yj+1)] ∧
∧i
j=1(x2j−1 ∨ y1). It is readily observed that the elimination ordering

zx1x2 . . . x2iy1y2 . . . y2i of width 2 is compatible with the resolution-path dependency poset
for this formula. On the other hand, the elimination ordering obtained from first order
treewidth is forced to eliminate y1 before xj , j ≥ 2 (see Definitions 3.3, 3.10, 3.15, together
with the definitions on page 5 of Adler and Weyer [1]). Therefore, the first order treewidth
of this instance would be at least i− 1. J

4 Dependency Treewidth: Characterizations

In this section we obtain other equivalent characterizations of dependency treewidth. The
purpose of this endeavor is twofold. From a theoretical standpoint, having several natural
characterizations (corresponding to the characterizations of treewidth) is not only interesting
but also, in some sense, highlights the solid foundations of a structural parameter. From a
practical standpoint, the presented characterizations play an important role in Section 5,
which is devoted to algorithms for finding optimal dependency elimination orderings.

Dependency tree decomposition. Let I be a QBF instance with primal graph G and
dependency poset P and let (T, χ) be a tree decomposition of G. Note that the rooted tree
T naturally induces a partial order ≤T on its nodes, where the smallest element is the root
and leaves form maximal elements. For a vertex v ∈ V (G), we denote by Fv(T ) the unique
≤T -minimal node t of T with v ∈ χ(t), which is well-defined because of Properties (T1) and
(T3) of a tree decomposition. Let <T be the partial ordering of V (G) such that u <T v if
and only if Fu(T ) <T Fv(T ) for every u, v ∈ V (G). We say that (T, χ) is a dependency tree
decomposition if it satisfies the following additional property:
(T4) <T is compatible with ≤P , i.e., for every two vertices u and v of G it holds that

whenever Fu(T ) <T Fv(T ) then it does not hold that v ≤P u.

I Lemma 8. A graph G has a P-elimination ordering of width at most ω if and only if G has
a dependency tree decomposition of width at most ω. Moreover, a P-elimination ordering of
width ω can be obtained from a dependency tree decomposition of width ω in polynomial-time
and vice versa.

Proof. For the forward direction we will employ the construction given by Kloks in [19],
which shows that a normal elimination ordering can be transformed into a tree decomposition
of the same width. We will then show that this construction also retains the compatibility
with P . Let ≤φ= (v1, . . . , vn) be a dependency elimination ordering for G of width ω and let
H be the fill-in graph of G w.r.t. ≤φ. We will iteratively construct a sequence (T0, . . . , Tn−1)
such that for every i with 0 ≤ i < n, Ti = (Ti, χi) is dependency tree decompositions of
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the graph Hi = H[{vn−i, . . . , vn}] of width at most ω. Because Tn−1 is a dependency tree
decomposition of Hn−1 = H of width at most ω, this shows the forward direction of the
lemma. In the beginning we set T0 to be the trivial tree decomposition of H0, which contains
merely one node whose bag consists of the vertex vn. Moreover, for every i with 0 < i < n,
Ti is obtained from Ti−1 as follows. Note that because NHi

(vn−i) induces a clique in Hi−1,
Ti−1 contains a node that covers all vertices in NHi(vn−i). Let t be any such bag, then
is Ti is obtained from Ti−1 by adding a new node t′ to Ti−1 making it adjacent to t and
setting χi(t′) = NHi [vn−i]. It is known [19] that Ti satisfies the Properties (T1)–(T3) of
a tree decomposition and it hence only remains to show that Ti satisfies (T4). Since, by
induction hypothesis, Ti−1 is a dependency tree decomposition, Property (T4) already holds
for every pair u, v ∈ V (Hi−1). Hence it only remains to consider pairs u and vn−i for some
u ∈ V (Hi−1). Because the only node containing vn−i in Ti is a leaf, we can assume that
Fu(T ) <T Fvn−i(T ) and because vn−i ≤φ u it cannot hold that vn−i ≤P u, as required.

For the reverse direction, let T = (T, χ) be a P-tree decomposition of G of width at most
ω. It is known [19] that any linear extension of <T is an elimination ordering for G of width
at most ω. Moreover, because of Property (T4), <T is compatible with ≤P and hence there
is a linear extension of <T , which is also a linear extension of the reverse of ≤P . J

Dependency cops and robber game. Recalling the definition of the (monotone) cops and
robber game for treewidth, we define the dependency cops and robber game (for a QBF
instance I with dependency poset P) analogously but with the additional restriction that
legal moves must also satisfy a third condition:
CM3 C ′ \ C is downward-closed in R, i.e., there is no r ∈ R \ C ′ with r ≤P c for any

c ∈ C ′ \ C.
Intuitively, condition CM3 restricts the cop-player by forcing him to search vertices (variables)
in an order that is compatible with the dependency poset.

To formally prove the equivalence between the cop-number for this restricted game and
dependency treewidth, we will need to also formalize the notion of a strategy. Here we
will represent strategies for the cop-player as rooted trees whose nodes are labeled with
positions for the cop-player and whose edges are labeled with positions for the robber-player.
Namely, we will represent winning strategies for the cop-player on a primal graph G by a
triple (T, α, β), where T is a rooted tree, α : V (T )→ 2V (G) is a mapping from the nodes of
T to subsets of V (G), and β : E(T )→ 2V (G), satisfying the following conditions:
CS1 α(r) = ∅ and for every component R of G, the root node r of T has a unique child c

with β({r, c}) = R, and
CS2 for every other node t of T with parent p it holds that: the move from position

(α(p), β({p, t})) to position (α(t), β({t, c})) is legal for every child c of t and moreover
for every component R of G \ α(t) contained in β({p, t}), t has a unique child c with
β({t, c}) = R.

Informally, the above properties ensure that every play consistent with the strategy is winning
for the cop-player and moreover for every counter-move of the robber-player, the strategy
gives a move for the cop-player. The width of a winning strategy for the cop-player is the
maximum number of cops simultaneously placed on G by the cop-player, i.e., maxt∈V (T ) |α(t)|.
The cop-number of G is the minimum width of a winning strategy for the cop-player on G.

I Lemma 9. For every graph G the width of an optimal dependency tree decomposition plus
one is equal to the cop-number of the graph. Moreover, a dependency tree decomposition
of width ω can be obtained from a winning strategy for the cop-player of width ω + 1 in
polynomial-time and vice versa.
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Proof. Let T = (T, χ) be a dependency tree decomposition of G of width ω. First, we show
that T can be transformed into a dependency tree decomposition of width ω satisfying:
(*) χ(r) = ∅ for the root node r of T and for every node t ∈ V (T ) with child c ∈ V (T ) in T

the set χ(Tc) \ χ(t) is a component of G \ χ(t).
To ensure that T satisfies χ(r) = ∅ it is sufficient to add a new root vertex r′ to T and
set χ(r′) = ∅. We show next that starting from the root of T we can ensure that for every
node t ∈ V (T ) with child c the set χ(Tc) \ χ(t) is a component of G \ χ(t). Let t be a
node with child c in T for which this does not hold. By the well-known separation property
of tree-decompositions, we have that χ(Tc) \ χ(t) is a set of components, say containing
C1, . . . , Cl, of G \ χ(t). For every i with 1 ≤ i ≤ l, let Ti = (Ti, χi) be the dependency
tree decomposition with Ti = Tc and χi(t′) = χ(t′) ∩ (Ci ∪ χ(t)) and root ri = c. Then
we replace the entire sub dependency tree decomposition of T induced by Tc in T with
the tree decompositions T1, . . . , Tl such that t now becomes adjacent to the roots r1, . . . , rl.
It is straightforward to show that the result of this operation is again a dependency tree
decomposition of G of width at most ω and moreover the node t has one child less that
violates (*). By iteratively applying this operation to every node t of T we eventually obtain
a dependency tree decomposition that satisfies (*).

Hence w.l.o.g. we can assume that T satisfies (*). We now claim that (T, α, β) where:
α(t) = χ(t) for every t ∈ V (T ),
for a node t ∈ V (T ) with parent p ∈ V (T ), β({p, t}) = χ(Tt) \ χ(p).

is a winning strategy for ω + 1 cops. Observe that because T satisfies (*), it holds that
α(r) = ∅ and for every t ∈ V (T ) with parent p ∈ V (T ), the pair (α(p), β({p, t}) is a position
in the visible P-cops and robber game on G. Furthermore, it is possible to verify that for
every t, p as above and every child c of t in T , it holds that the move from (α(p), β({p, t})
to (α(t), β({t, c}) is valid.

On the other hand, let S = (T, α, β) be a winning strategy for the cop-player in the
visible P-cops and robber game on G using ω cops. Observe that S can be transformed into
a winning strategy for the cop-player using ω cops satisfying:
(a) for every node t of T with parent p it holds that α(t) ⊆ δ(β({p, t})) ∪ β({p, t}).
Indeed; if (a) is violated, then one can simply change α(t) to α(t) ∩ (δ(β({p, t})) ∪ β({p, t}))
without violating any of CS1 or CS2. Hence we can assume that S satisfies (a).

We now claim that T = (T, α) is a dependency tree decomposition of G of width ω − 1.
Towards showing T1, let v ∈ V (G). Because of CS1, it holds that either v ∈ α(r) for the
root r of T or there is a child c of r in T with v ∈ β({r, c}). Moreover, due to CS2 we have
that either v ∈ α(c) or v ∈ β({c, c′}) for some child c′ of c in T . By proceeding along T , we
will eventually find a node t ∈ V (T ) with v ∈ α(t). Towards showing T2, let {u, v} ∈ E(G).
Again because of CS1, it holds that either {u, v} ⊆ α(r), or {u, v} ⊆ δ(β({r, c})) ∪ β({r, c})
for some child c of r in T . Because of CM2, we obtain that δ(β({r, c})) ⊆ α(c) and together
with CS2, we have that either {u, v} ⊆ α(c) or {u, v} ⊆ δ(β({c, c′})) ∪ β({c, c′}) for some
child c′ of c in T . By proceeding along T , we will eventually find a node t ∈ V (T ) with
{u, v} ∈ α(t). Finally, in order to argue that T3 and T4 hold, we will first establish that S
satisfies the following property:
(b) for every node t with child c in T it holds that

⋃
t′∈V (Tc) α(t′) ⊆ δ(β({t, c}) ∪ β({t, c}).

Because of CM2 we have that β({t, c}) ⊆ β({p, t}) for every three nodes p, t, and c such
that p is the parent of t which in turn is the parent of c in T . Moreover, because of (a) we
have that α(t) ⊆ δ(β({p, t})) ∪ β({p, t}) for every node t with parent p in T . Applying these
two facts iteratively along a path from t to any of its descendants t′ in T , we obtain that
α(t′) ⊆ δ(β({p, t})) ∪ β({p, t}), as required.
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Knowing (b) and (a), it is not too difficult to show that T3 and T4 hold. This means
that T is a dependency tree-decomposition, completing the proof. J

5 Computing Dependency Treewidth

In this section we will present two exact algorithms to compute dependency treewidth. The
first algorithm is based on the characterization of dependency treewidth in terms of the
cops and robber game and shows that, for every fixed ω, determining whether a graph has
dependency treewidth at most ω, and in the positive case also computing a dependency
tree decomposition of width at most ω, can be achieved in polynomial time. The second
algorithm is based on a chain partition of the given dependency poset and shows that if
the width of the poset is constant, then an optimal dependency tree decomposition can be
constructed in polynomial time.

Before proceeding to the algorithms, we would like to mention here that the fixed-
parameter algorithm for computing first order treewidth [1] can also be used for computing
dependency treewidth in the restricted case that the trivial dependency poset is used.

I Theorem 10. There is an algorithm running in time O(|V (G)|2ω+2) that, given a graph G
and a poset P = (V (G),≤P) and ω ∈ N, determines whether ω cops have a winning strategy
in the dependency cops and robber game on G and P, and if so outputs such a winning
strategy.

Sketch of Proof. This algorithm is similar to the folklore nO(ω) algorithm for computing
treewidth based on cops and robber game; see, e.g., Exercise 7.26 in Cygan et al. [7]. The
idea is to transform the cops and robber game on G into a much simpler two player game,
which is played on all possible positions of the cops and robber game on G.

A simple two player game is played between two players, which in association to the cops
and robber game, we will just call the cops and the robber player [16]. Both players play
by moving a token around on a so-called arena, which is a triple A = (VC , VR, A) such that
((VC ∪ VR), A) is a bipartite directed graph with bipartition (VC , VR). The vertices in VC are
said to belong to the cop-player and the vertices in VR are said to belong to the robber-player.
Initially, one token is placed on a distinguished starting vertex s ∈ VC ∪ VR. From then
onward the player who owns the vertex, say v, that currently contains the token, has to move
the token to an arbitrary successor (i.e., out-neighbor) of v in A. The cop-player wins if the
robber-player gets stuck, i.e., the token ends up in a vertex owned by the robber-player that
has no successors in A, otherwise the robber-player wins. It is well-known that strategies in
this game are deterministic and memoryless, i.e., strategies for a player are simple functions
that assign every node owned by the player one of its successors. Moreover, the winning
region for both players as well as their corresponding winning strategy can be computed
in time O(|VC ∪ VR| + |A|) by the following algorithm. The algorithm first computes the
winning region WC , as follows.

Initially all vertices owned by the robber-player which do not have any successors in A
are placed in WC . The algorithm then iteratively adds the following vertices to WC :

all vertices owned by the cop-player that have at least one successor WC ,
all vertices owned by the robber-player for which all successors are in WC .

Once the above process stops, the set WC is the winning region of the cop-player in A and
(VC ∪ VR) \WC is the winning region for the robber-player. Moreover, the winning strategy
for both players can now be obtained by choosing for every vertex a successors that is in the
winning region of the player owning that vertex (if no such vertex exists, then an arbitrary
successor must be chosen).
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Given a graph G, a poset P = (V (G),≤P), and an integer ω, we construct an arena
A = (VC , VR, A) and a starting vertex s ∈ VR such that ω cops have a winning strategy in
the P-cops and robber game on G iff the cop-player wins from s in the simple two player
game on A as follows:

We set VC to be the set of all pairs (C,R) such that (C,R) is a position in the P-cops
and robber game on G using at most ω cops (|C| ≤ ω),
We set VR to be the set of all triples (C,C ′, R) such that:

(C,R) is a position in the P-cops and robber game on G using at most ω cops, and
C ′ ⊆ V (G) is a potential new cop-position for at most ω cops from (C ′, R′), i.e.,
δ(R) ⊆ C ′ and C, R, and C ′ satisfy CM3.

From every vertex (C,R) ∈ VC we add an arc to all vertices (C,C ′, R) ∈ VR.
From every vertex (C,C ′, R) ∈ VR we add an arc to all vertices (C ′, R′) ∈ VC such that
the move from (C,R) to (C ′, R′) is legal.
Additionally VR contains the starting vertex s that has an outgoing arc to every vertex
(∅, R) ∈ VC such that R is a component of G.

Finally, it is straightforward to show that the cop-player has a winning strategy from s

in A iff G and P have cop-number at most ω. J

The next theorem summarizes our second algorithm for computing dependency treewidth.
The core distinction here lies in the fact that the running time does not depend on the
dependency treewidth, but rather on the poset-width. This means that the algorithm can
precisely compute the dependency treewidth even when this is large, and it will perform
better than Theorem 10 for formulas with “tighter” dependency structures (e.g., formulas
which utilize the full power of quantifier alternations).

I Theorem 11. There is an algorithm running in time O((|V (G)|kk2) that, given a graph
G and a poset P = (V (G),≤P) of width k and ω ∈ N, determines whether G and P admit a
dependency elimination ordering of width at most ω, and if yes outputs such a dependency
elimination ordering.

Proof. To decide whether G has a dependency elimination ordering of width at most ω, we
first build an auxiliary directed graph H as follows.

The vertex set of H consists of all pairs (D, d) such D ⊆ V (G) is a downward closed set
and d ∈ D is a maximal element of D such that |(NG(C) ∩ (D \ {d})| ≤ ω, where C is the
unique component of G \ (D \ {d}) containing d. Note that (NG(C) ∩ (D \ {d}) is equal
to the set of neighbors of d in any fill-in graph w.r.t. to any linear order φ for which d is
larger than all vertices in V (G) \D and smaller than the vertices in D \ {d}. Intuitively, a
vertex (D, d) in H corresponds to the step in which we eliminate vertex d after exactly the
vertices in V (G) \D have already been eliminated. Additionally, H contains the vertices
(V (G), ∅) and (∅, ∅). Furthermore, there is an arc from (D, d) to (D′, d′) of H if and only if
D′ = D ∪ {d′} or D = D′ = V (G) and d′ = ∅. This completes the construction of H. It is
immediate that G has a dependency elimination ordering of width at most ω if and only if
there is a directed path in H from (∅, ∅) to (V (G), ∅). Hence, given H we can decide whether
G has a dependency elimination ordering of width at most ω (and output it, if it exists)
in time O(|V (H)| log(|V (H)|) + E(H)) (e.g., by using Dijkstra’s algorithm). It remains to
analyze the time required to construct H (as well as its size).

Let k be the width of the poset P . By the algorithm of Felsner, Raghavan and Spinrad [14],
we can compute a chain partition C = (W1, . . . ,Wk) of width k in time O(k · |V (G)|2). Note
that every downward closed D set can be characterized by the position of the maximal
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element in D on each of the chains W1, . . . ,Wk, we obtain that there are at most |V (G)|k
downward closed sets. Hence, H has at most O(|V (G)|k(k + 1)) vertices its vertex set can
be constructed in time O(|V (G)|k(k + 1)). Since every vertex (D, d) of H has at most k + 1
possible out-neighbors, we can construct the arc set of H in time O(|V (G)|kk2).

Hence, the total time required to construct H is O((|V (G)|kk2) which dominates the
time required to find a shortest path in H, and so the runtime follows. J

6 Concluding Notes

Dependency treewidth is a promising decompositional parameter for QBF which overcomes
the key shortcomings of previously introduced structural parameters; its advantages include
a single-exponential running time, a refined and flexible approach to variable dependencies,
and the ability to compute decompositions. It also admits several natural characterizations
that show the robustness of the parameter and allows the computation of resolution proofs.

The presented algorithms for computing dependency elimination orderings leave open
the question of whether this problem admits a fixed-parameter algorithm (parameterized by
dependency treewidth). We note that the two standard approaches for computing treewidth
fail here. In particular, the well-quasi-ordering approach with respect to minors does not
work since the set of ordered graphs can be observed not to be well-quasi ordered w.r.t. the
ordered minor relation [30]. On the other hand, the records used in the second approach [4]
do not provide sufficient information in our ordered setting.
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Abstract
For α > 1, an α-approximate (bi-)kernel for a problem Q is a polynomial-time algorithm that
takes as input an instance (I, k) of Q and outputs an instance (I ′, k′) (of a problem Q′) of size
bounded by a function of k such that, for every c ≥ 1, a c-approximate solution for the new
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time. This framework of lossy kernelization was recently introduced by Lokshtanov et al. We
study Connected Dominating Set (and its distance-r variant) parameterized by solution size
on sparse graph classes like biclique-free graphs, classes of bounded expansion, and nowhere dense
classes. We prove that for every α > 1, Connected Dominating Set admits a polynomial-size
α-approximate (bi-)kernel on all the aforementioned classes. Our results are in sharp contrast to
the kernelization complexity of Connected Dominating Set, which is known to not admit a
polynomial kernel even on 2-degenerate graphs and graphs of bounded expansion, unless NP ⊆
coNP/poly. We complement our results by the following conditional lower bound. We show that
if a class C is somewhere dense and closed under taking subgraphs, then for some value of r ∈ N
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1 Introduction

Lossy kernelization. A powerful method in parameterized complexity theory is to compute
on input (I, k) a problem kernel in a polynomial-time pre-processing step, that is, to reduce
the input instance in polynomial time to an equivalent instance (I ′, k′) of size g(k) for some
function g bounded in the parameter only. If the reduced instance (I ′, k′) belongs to a
different problem than (I, k), we speak of a bi-kernel. It is well known that a problem is
fixed-parameter tractable if and only if it admits a kernel, however, in general the function g
can grow arbitrarily fast. For practical applications we are mainly interested in linear or at
worst polynomial kernels. We refer to the textbooks [6, 11, 12] for extensive background on
parameterized complexity and kernelization.

One shortcoming of the above notion of kernelization is that it does not combine well with
approximation algorithms or heuristics. An approximate solution on the reduced instance
provides no insight whatsoever about the original instance, the only statement we can derive
from the definition of a kernel is that the reduced instance (I ′, k′) is a positive instance if and
only if the original instance (I, k) is a positive instance. This issue was recently addressed by
Lokstanov et al. [23], who introduced the framework of lossy kernelization. Intuitively, the
framework combines notions from approximation and kernelization algorithms to allow for
approximation preserving kernels.

Formally, a parameterized optimization (minimization or maximization) problem Π over
finite vocabulary Σ is a computable function Π: Σ? × N × Σ? → R ∪ {±∞}. A solution
for an instance (I, k) ∈ Σ? × N is a string s ∈ Σ?, such that |s| ≤ |I| + k. The value
of the solution s is Π(I, k, s). For a minimization problem, the optimum value of an
instance (I, k) is OPTΠ(I, k) = mins∈Σ∗,|s|≤|I|+k Π(I, k, s), for a maximization problem
it is OPTΠ(I, k) = maxs∈Σ∗,|s|≤|I|+k Π(I, k, s). An optimal solution is a solution s with
Π(I, k, s) = OPTΠ(I, k). If Π is clear from the context, we simply write OPT(I, k).

A vertex-subset graph problem Q defines which subsets of the vertices of an input
graph are feasible solutions. We consider the following parameterized minimization problem
associated with Q:

Q(G, k, S) =
{
∞ if S is not a valid solution for G as determined by Q
min{|S|, k + 1} otherwise.

Note that this bounding of the objective function at k+ 1 does not make sense for approxim-
ation algorithms if one insists on k being the unknown optimum solution of the instance I.
The parameterization above is by the value of the solution that we want our algorithms to
output.

I Definition 1.1. Let α > 1 and let Π be a parameterized minimization problem. An
α-approximate polynomial time pre-processing algorithm A for Π is a pair of polynomial
time algorithms. The first algorithm is called the reduction algorithm, and computes
a map RA : Σ? × N → Σ? × N. Given as input an instance (I, k) of Π, the reduction
algorithm outputs another instance (I ′, k′) = RA(I, k). The second algorithm is called the
solution lifting algorithm. It takes as input an instance (I, k) ∈ Σ? × N, the output instance
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(I ′, k′) = RA(I, k), and a solution s′ to the instance (I ′, k′). The solution lifting algorithm
works in time polynomial in |I|, k, |I ′|, k′ and s′, and outputs a solution s to (I, k) such that

Π(I, k, s)
OPT(I, k) ≤ α ·

Π(I ′, k′, s′)
OPT(I ′, k′) .

I Definition 1.2. An α-approximate kernelization algorithm is an α-approximate polynomial
time pre-processing algorithm for which we can prove an upper bound on the size of the
output instances in terms of the parameter of the instance to be pre-processed. We speak of a
linear or polynomial kernel, if the size bound is linear or polynomial, respectively. If we allow
the reduced instance to be an instance of another problem, we speak of an α-approximate
bi-kernel.

We refer to the work of Lokshtanov et al. [23] for an extensive discussion of related work
and examples of problems that admit lossy kernels.

Sparse graphs and domination. We consider finite, undirected and simple graphs and refer
to the textbook [10] for all undefined notation. We write Ki,j for the complete bipartite
graph with partitions of size i and j, respectively. We call a class C of graphs biclique-free if
there are i, j ∈ N such that Ki,j is not a subgraph of G for all G ∈ C.

The notion of nowhere denseness was introduced by Nešetřil and Ossona de Mendez [28, 29]
as a general model of uniform sparseness of graphs. Many familiar classes of sparse graphs,
like planar graphs, graphs of bounded tree-width, graphs of bounded degree, and all classes
that exclude a fixed (topological) minor, are nowhere dense. An important and related
concept is the notion of a graph class of bounded expansion, which was also introduced by
Nešetřil and Ossona de Mendez [25, 26, 27].

I Definition 1.3. Let H be a graph and let r ∈ N. An r-subdivision of H is obtained by
replacing all edges of H by internally vertex disjoint paths of length at most r.

I Definition 1.4. A class C of graphs is nowhere dense if there exists a function t : N→ N
such that for all r ∈ N and for all G ∈ C we do not find an r-subdivision of the complete
graph Kt(r) as a subgraph of G. Otherwise, C is called somewhere dense.

I Definition 1.5. A class C of graphs has bounded expansion if there exists a function
d : N → N such that for all r ∈ N and all graphs H, such that an r-subdivision of H is a
subgraph of G for some G ∈ C, satisfy |E(H)|/|V (H)| ≤ d(r).

Every class of bounded expansion is nowhere dense, which in turn excludes some biclique
as a subgraph and hence is biclique-free. For extensive background on bounded expansion
and nowhere dense graphs we refer to the textbook of Nešetřil and Ossona de Mendez [30].

I Definition 1.6. In the parameterized Dominating Set (DS) problem we are given a
graph G and k ∈ N, and the objective is to determine the existence of a subset D ⊆ V (G) of
size at most k such that every vertex u of G is dominated by D, that is, either u belongs to D
or has a neighbor in D. More generally, for fixed r ∈ N, in the Distance-r Dominating
Set (r-DS) problem we are asked to determine the existence of a subset D ⊆ V (G) of size at
most k such that every vertex u ∈ V (G) is within distance at most r from a vertex of D. In
the Connected (Distance-r) Dominating Set (CDS/r-CDS) problem we additionally
demand that the (distance-r) dominating set shall be connected.
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Dominating Set plays a central role in the theory of parameterized complexity, as it is
a prime example of a W[2]-complete problem with the size of the optimal solution as the
parameter, thus considered intractable in full generality. For this reason, the (Connected)
Dominating Set problem and (Connected) Distance-r Dominating Set problem have
been extensively studied on restricted graph classes. A particularly fruitful line of research
in this area concerns kernelization algorithms for the aforementioned problems [1, 3, 15, 16,
17, 31]. Philip et al. [31] obtained a kernel of size O(k(d+1)2) on d-degenerate graphs, for
constant d, and more generally a kernel of size O(kmax(i2,j2)) on graphs excluding the biclique
Ki,j as a subgraph. On the lower bounds side, Cygan et al. [7] have shown that the existence
of a size O(k(d−1)(d−3)−ε) kernel, ε > 0, for Dominating Set on d-degenerate graphs would
imply NP ⊆ coNP/poly. For the Connected Dominating Set problem linear kernels are
only known for planar [22] and H-topological-minor-free graphs [17]. Polynomial kernels are
excluded already for graphs of bounded degeneracy [8], assuming NP 6⊆ coNP/poly.

For the more general Distance-r Dominating Set problem we know the following
results. Dawar and Kreutzer [9] showed that for every r ∈ N and every nowhere dense class C,
the Distance-r Dominating Set problem is fixed-parameter tractable on C. Drange et
al. [13] gave a linear bi-kernel for Distance-r Dominating Set on any graph class of
bounded expansion for every r ∈ N, and a pseudo-linear kernel for Dominating Set on any
nowhere dense graph class; that is, a kernel of size f(ε) · k1+ε, for some function f and any
ε > 0. Precisely, the kernelization algorithm of Drange et al. [13] outputs an instance of an
annotated problem where some vertices are not required to be dominated; this will be the
case in the present paper as well (except for the case of biclique-free graphs). Kreutzer et
al. [21] provided a polynomial bi-kernel for the Distance-r Dominating Set problem on
every nowhere dense class for every fixed r ∈ N and finally, Eickmeyer et al. [14] could prove
the existence of pseudo-linear bi-kernels of size f(r, ε) · k1+ε, for some function f .

It is known that bounded expansion classes of graphs are the limit for the existence
of polynomial kernels for the Connected Dominating Set problem. Drange et al. [13]
gave an example of a subgraph-closed class of bounded expansion which does not admit a
polynomial kernel for Connected Dominating Set unless NP ⊆ coNP/Poly. They also
showed that nowhere dense classes are the limit for the fixed-parameter tractability of the
Distance-r Dominating Set problem if we assume closure under taking subgraphs (classes
which are closed under taking subgraphs will be called monotone classes).

Our results. In this paper we prove the following results.

For any α > 1, CDS admits an α-approximate kernel on Kd,d-free graphs of size kO( d2
α−1 ).

For any α > 1, CDS admits an α-approximate bi-kernel on graphs of bounded expansion
of size O(f(α) · k) (i.e, linear in k), where f(α) is a function depending only on α.
For every α > 1 and every r ∈ N, Connected Distance-r Dominating Set admits
an α-approximate kernel of size polynomial in the parameter on classes of nowhere dense
graphs, where the degree of the polynomial depends only on r and not on α.

Observe that our results are in sharp contrast with the above mentioned lower bounds
on kernel size of traditional kernels on these classes. We complement our results by the
following conditional lower bound. We show that if a class C is somewhere dense and closed
under taking subgraphs, then for some value of r ∈ N there cannot exist an α-approximate
bi-kernel for the (Connected) Distance-r Dominating Set problem on C for any α > 1
(assuming the Gap Exponential Time Hypothesis).
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Organization. We explain our methods and provide a general framework for computing
lossy kernels for Connected Dominating Set in Section 2. Using this framework we
can directly derive the claimed bounds for α-approximate kernels on biclique-free graphs,
while for bounded expansion and nowhere dense classes we obtain α-approximate bi-kernels
for Connected Distance-r Dominating Set of polynomial size with the degree of the
polynomial depending both on r and on α. The rest of the paper is devoted to the far more
technical part of improving the bounds for bounded expansion and nowhere dense classes of
graphs. Due to space constraints, the conference version of this latter part contains only a
proof outline.

2 A general framework

Although the technical details for dealing with biclique-free graphs and with bounded
expansion and nowhere dense classes are quite different, the high-level approach is identical.
The kernelization algorithms follow the same two-step strategy. First, our goal is to compute
a “small” set of vertices whose domination is sufficient, i.e. the set of dominatees or the
so-called domination core.

I Definition 2.1 (k-domination core). Let G be a graph and Z ⊆ V (G). We say that Z is a
k-domination core if every set D of size at most k that dominates Z also dominates V (G).

Having found a domination core Z of appropriate size, the next step is to reduce the
number of dominators, i.e. vertices whose role is to dominate other vertices, and the number
of connectors, i.e. vertices whose role is to connect the solution.

I Definition 2.2. Let G be a graph and let D,Z ⊆ V (G). We say that D is a Z-dominator
if D dominates Z in G, i.e. every vertex z ∈ Z \D is at distance at most one from some vertex
in D. We denote by ds(G,Z) (cds(G,Z)) the size of a smallest (connected) Z-dominator
in G. By ds(G) (cds(G)) we mean ds(G,V (G)) (cds(G,V (G))).

We classify all vertices outside the core according to their domination properties.

I Definition 2.3. Let G be a graph and Z ⊆ V (G). We define an equivalence relation ∼Z
on V (G) \ Z by u ∼Z v ⇔ N(u) ∩ Z = N(v) ∩ Z.

Clearly, to find a kernel for Dominating Set it is now sufficient to construct the graph G′
which contains the k-domination core Z and one representative of each equivalence class of ∼Z .
Then G admits a dominating set of size at most k if and only if G′ contains a Z-dominator
of size at most k. This simple two-step approach of computing a small domination core Z
and then bounding the number of equivalence classes of the relation ∼Z forms the basis of
the kernelization algorithms for Dominating Set in [13, 14, 21]. To control the number of
classes of ∼Z , we give the following definition. The index of an equivalence relation is the
number of equivalence classes.

I Definition 2.4. Let G be a graph. We define the neighborhood complexity function of G
as the function µ : N→ N with µ(z) = maxZ⊆V (G),|Z|=z index (∼Z).

For example all classes of bounded VC-dimension have polynomially bounded neighbor-
hood complexity functions [33, 34], while bounded expansion classes have linear and nowhere
dense classes have almost linear neighborhood complexity [18].
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I Proposition 2.5. Let C be a class of graphs such that the neighborhood complexity function
for all G ∈ C is bounded by a fixed polynomial and such that on input (G, k), for G ∈ C, we
can decide in polynomial time whether ds(G) > k or otherwise compute a k-domination core
Z ⊆ V (G) of size polynomial in k. Then Dominating Set parameterized by k admits a
polynomial-size kernel on C.

The above proposition can be applied, e.g., to obtain a polynomial kernel on biclique-free
graphs (we will prove the existence of a polynomial k-domination core below). However,
as the hardness results even for degenerate graphs show, this approach does not extend to
connected dominating sets. We may have to include more vertices in the kernel to ensure
connectivity of the dominating sets. This turns out to be a major problem for the construction
of polynomial size kernels for Connected Dominating Set.

When reducing the number of vertices outside the domination core, we borrow approxim-
ation techniques that are closely related to the Steiner Tree problem.

I Definition 2.6. Let G be a graph and let Y ⊆ V (G) be a set of terminals. A Steiner
tree for Y is a subtree of G spanning Y . We write stG(Y ) for the order of (i.e. the
number of vertices of) the smallest Steiner tree for Y in G (including the vertices of Y ). If
Y = {V1, . . . , Vt} is a family of vertex disjoint subsets of G, a group Steiner tree for Y is a
subtree of G that contains (at least) one vertex of each group Vi. We write stG(Y) for the
order of the smallest group Steiner tree for Y.

The Group Steiner Tree problem on t groups can be solved in O(2t · nO(1))-time [24].
The following definition and proposition form the key to our approach to handle con-

nectivity in the lossy kernelization framework.

I Definition 2.7. Let D be a connected graph and t ∈ N. A (D, t)-covering family is a
family F(D, t) of connected subgraphs of D such that (i) for each T ∈ F(D, t), |V (T )| ≤ 2t
and (ii)

⋃
T∈F(D,t) V (T ) = V (D).

I Proposition 2.8. Let D be a connected graph and t ∈ N. Then there is a (D, t)-covering
family F(D, t) such that |F(D, t)| ≤ |V (D)|

t + 1, and
∑
T∈F(D,t) |V (T )| ≤ (1 + 1

t )|V (D)|+ 1.

Proof Sketch. Let TD be a spanning tree of D. We create a (D, t)-covering family F(D, t) =
{T1, T2, . . . , T`}, which is a set of subtrees of TD constructed as follows. We root TD at
an arbitrary vertex r ∈ V (TD). For any pair of vertices u, v ∈ V (TD), u is called a child
of v if uv ∈ E(TD) and v lies on the path from u to r. For each vertex v ∈ V (TD), we let
weight(v) = 1 +

∑
u∈child(v) weight(u), where child(v) denotes the set of children of v in TD.

In other words, weight(v) is the number of vertices in the subtree rooted at v. Leaves have
weight one. We use Tv to denote the subtree rooted at v. We construct F(D, t) = {T1, T2, . . .}
from TD as follows:
1. If TD is empty, terminate. Otherwise, compute the weights of all vertices in TD, then

sort the vertices in increasing order of weight.
2. If there exists a vertex whose weight is between t and 2t (inclusive), pick the vertex with

the smallest such weight, add Tv to F(D, t), delete Tv from TD, then go back to step (1).
3. If there exists a vertex whose weight is strictly greater than 2t, pick the vertex with

the smallest such weight, greedily compute a subset S ⊆ child(v) such that t <∑
u∈S weight(u) < 2t, let R = child(v) \ S, add Tv −

⋃
w∈R V (Tw) to F(D, t), delete Tu

from TD, for every u ∈ S, then go back to step (1). Note that by our choice of v, all
children of v must have weight at most t− 1 as otherwise case (2) would apply.
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4. Otherwise, every vertex in TD has weight strictly less than t and hence TD has at most t
vertices (by the definition of the weight function). In this case, simply add TD to F(D, t)
and terminate.

The correctness proof is deferred to the full version of the paper due to the paucity of
space. J

While the previous proposition allows us to “take apart” connected dominating sets, the
next proposition explains how to “put them back together”.

I Proposition 2.9. Let G be a graph, X ⊆ V (G), such that G[X] is connected, and let D be
an X-dominator such that G[D] has at most p connected components. Then a set Q ⊆ X of
size at most 2p such that G[D ∪Q] is connected, can be computed in polynomial time.

We have now collected all the tools required to control the number of vertices which have
to be added to ensure connectivity.

I Theorem 2.10. Let C be a class of graphs such that the neighborhood complexity function
for all G ∈ C is bounded by a fixed polynomial of degree d and such that on input (G, k),
for G ∈ C, we can decide in polynomial time whether cds(G) > k or otherwise compute
a k-domination core Z ⊆ V (G). Then for every ε > 0, Connected Dominating Set
parameterized by k admits a (1 + ε)-approximate kernel with |Z|O(d/ε) vertices on C.

The reduction algorithm. Let (G, k) be the input instance, where G ∈ C is connected
and k is a positive integer. We first describe the reduction algorithm RA. As a first step we
run the polynomial time algorithm (which exists by assumption of the theorem) to decide
whether cds(G) > k and otherwise compute a k-domination core Z ⊆ V (G). In the first
case, we output a trivial negative instance (({v}, ∅), 0). In the second case, we proceed as
follows.

We partition the graph into two sets Z and R = V (G) \ Z. We compute the equivalence
relation ∼Z on R (see Definition 2.3), that is, we partition vertices in R according to their
neighborhoods in Z. This is clearly possible in polynomial time. Let R be the set of
equivalence classes defined by ∼Z . As a direct implication of our assumption, we can bound
the size of R by O(|Z|d).

I Proposition 2.11. The equivalence relation ∼Z has O(|Z|d) classes, i.e. |R| ∈ O(|Z|d).

As Z is a k-domination core, to find a dominating set of size at most k it is enough to
find a set which dominates Z. Hence for the purpose of domination, it is redundant to pick
more than one vertex from an equivalence class in R. The following construction finds a
small set of relevant vertices which “approximately” preserves the connectivity requirements.

Let t ≥ 1 be a constant, which we fix later. Let Z be the family of groups {{z} | z ∈ Z}
and let R be the set of equivalence classes defined by ∼Z . The set R∪Z forms a family of
groups of vertices in V (G). For every subset Q = {Q1, . . . , Q`} ⊆ R∪Z of size at most 2t of
groups in R∪Z, construct a Group Steiner Tree instance on the graph G with groups
Q1, . . . , Q`. Note that since t is a constant each instance can be solved in polynomial time
using the algorithm of Misra et al. [24]. For each subset Q denote by TQ the corresponding
solution. For every instance that we solve, if the size of TQ is at most 2t then we mark the
vertices of TQ in G. We denote the set of all marked vertices by

⋃
TQ. If

⋃
TQ is not a

dominating set in G, then we may declare that cds(G) > k. Otherwise, since G is assumed to
be connected, we can run the polynomial-time algorithm of Proposition 2.9 (with parameter
X = V (G)) to obtain a set W ⊆ V (G) such that

⋃
TQ ∪W is a connected dominating set

in G and |
⋃
TQ ∪W | ≤ 3|

⋃
TQ|. Let Y =

⋃
TQ ∪W . We output the instance (G[Y ], k).
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Approximation guarantee. Now we prove that OPT(G[Y ], k) ≤ (1 + ε)OPT(G, k). Let D∗
be a connected dominating set ofG of minimum cardinality. If |D∗| > k, then OPT(G[Y ], k) ≤
(1 + ε)OPT(G, k) holds trivially. So we assume that |D∗| ≤ k. We let F(D∗, t) =
{T1, T2, · · · , Tm} denote a (D∗, t)-covering family. Proposition 2.8 implies that there exists
such a family for which |F(D∗, t)| ≤ |V (D∗)|

t +1 and
∑
T∈F(D∗,t) |V (T )| ≤ (1+ 1

t )|V (D∗)|+1.
Moreover, the size of each connected subgraph T (in this case also subtree) is at most 2t. We
construct a new family F ′ from F(D∗, t) as follows. For each T ∈ F(D∗, t), we replace T
by TQ, where Q is the set of groups from R∪Z such that Q ∈ Q if and only if V (T )∩Q 6= ∅
and TQ is the set of marked vertices in an optimal Steiner tree connecting vertices from the
groups in Q. Note that the fact that T is of size at most 2t guarantees the existence of TQ
(by construction). Moreover, the size of TQ is at most the size of T , since T is also a solution
for Group Steiner Tree for Q. Let DF ′ denote the union of all vertices in F ′.

Let D′ be a subset of DF ′ , of cardinality at most |D∗|, such that for any w ∈ D∗, there is
a vertex w′ ∈ D′ with the property that {w,w′} ⊆ Q ∈ R ∪ Z and w′ ∈ DF ′ . That is, if D∗
has a vertex from a group Q in R∪Z, then D′ also has a vertex from group Q. We claim
that D′ is a dominating set in G. Notice that Z ∩ V (D) = Z ∩D′ and if any vertex in Z is
adjacent to a vertex in a group Q, then it is adjacent to all vertices in group Q. This implies
that D′ also dominates Z and since |D′| ≤ |D| ≤ k, by the definition of a k-domination
core, D′ is a dominating set in G.

This implies that DF ′ ⊇ D′ is also a dominating set in G. Applying Proposition 2.9
in G[Y ] (with DF ′ as dominator and since G[Y ] is connected), we obtain a connected
dominating set of size at most 2|F(D∗, t)|+ |DF ′ | ≤ 2|V (D∗)|

t + 2 + (1 + 1
t )|V (D∗)|+ 1 =

(1 + 3
t )|V (D∗)|+ 3. Now we can fix the constant t appropriately (as roughly 3

ε ) and we get
that OPT(G[Y ], k) ≤ (1 + ε)OPT(G, k).

Size of the kernel. Now we show that |Y | ∈ |Z|O(d)/ε. By Proposition 2.11, we have that
|R ∪ Z| = O(Zd). From the construction, it follows that |

⋃
TQ| = O(2t|R ∪ Z|O(t)) =

|Z|O(d/ε). Notice that Y =
⋃
TQ ∪W , where W is obtained by applying Proposition 2.9 and

hence we have that Y = |
⋃
TQ ∪W | ≤ 3|

⋃
TQ| = |Z|O(d/ε).

The solution lifting algorithm. The solution lifting algorithm works as follows. Given a
solution D′ to the reduced instance (G′, k′), if D′ is not a connected dominating set of G′,
then the solution lifting algorithm will output ∅. If D′ is a connected dominating set, then
the algorithm returns D′ if |D′| ≤ k and V (G) otherwise. Let D be the output of the solution
lifting algorithm.

The final step. We prove that the above reduction algorithm together with the solution
lifting algorithm constitute a (1 + ε)-approximate kernel. Note that if D′ is not a valid
solution of G′, then ∅ is not a valid solution for G and CDS(G′, k′, D′) = CDS(G, k,D) =∞.
Hence we can restrict ourselves to the case when D′ is a connected dominating set of G′. First,
consider the case where the reduction algorithm outputs Y ⊆ V (G) and the reduced instance
is hence (G′, k′) = (G[Y ], k). From our above observation, we have that OPT(G[Y ], k) ≤
(1 + ε)OPT(G, k). We show that in this case CDS(G, k,D) = CDS(G′, k′, D′). If |D′| > k,
then CDS(G, k,D) = CDS(G, k, V (G)) = k + 1 = CDS(G′, k′, D′). So assume that |D′| ≤ k,
which implies D = D′. Since D′ is a connected dominating set of G[Y ] and Y contains a
k-domination core of G, it follows that D′ dominates G and CDS(G, k,D) = CDS(G′, k′, D′).
Combining CDS(G, k,D) = CDS(G′, k′, D′) and OPT(G[Y ], k) ≤ (1 + ε)OPT(G, k) we get
CDS(G,k,D)
OPT(G,k) ≤ (1 + ε)CDS(G′,k′,D′)

OPT(G′,k′) .
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When (G′, k′) = (({v}, ∅), 0), we can easily verify that the above mentioned approximation
guarantee holds. �

The remainder of the paper is concerned with proving the existence of small domination
cores for concrete sparse classes of graphs. For example, to prove the following theorem for
biclique-free graphs we prove the existence of a polynomial k-domination core and simply
use the fact that such classes have polynomially bounded neighborhood complexity.

I Theorem 2.12. For every ε > 0, Connected Dominating Set, parameterized by
solution size, admits a (1 + ε)-approximate kernel with kO(d2/ε) vertices on Kd,d-free graphs.

The most technical part will be to prove the existence of a linear domination core for
bounded expansion classes (the definition of a domination core is slightly changed to obtain
such good bounds, see Section 3). Most surprisingly, the general framework summarized
in Theorem 2.10 does not produce a bi-kernel of size O(|Z|1/ε) but rather of size f(ε) · |Z|
for some function f on bounded expansion classes and of polynomial size on nowhere dense
classes.

3 Graphs of bounded expansion

In this section we show that Connected Dominating Set, parameterized by solution
size k, admits a (1 + ε)-approximate bi-kernel on at most O(f(ε) · k) vertices on graphs
of bounded expansion. The reduced instance will be an instance of Subset Connected
Dominating Set (SCDS), defined as follows:

SCDS((G,Z), k,D) =
{

∞ if D is not a connected Z-dominator in G
min{|D|, k + 1} otherwise

We first formally define the class of graphs of bounded expansion. Towards that we need
the definition of shallow minors.

I Definition 3.1. A graph M is an r-shallow minor of G, for some r ∈ N, if there is a family
of disjoint subsets V1, . . . , V|M | of V (G) such that (i) each graph G[Vi] is connected and has
radius at most r, and (ii) there is a bijection ω : V (M)→ {V1, . . . , V|M |} such that for any
uv ∈ E(M) there is an edge in G with one endpoint in ω(u) and another in ω(v).

The set of all r-shallow minors of a graph G is denoted by GOr. The set of all r-shallow
minors of all members of a graph class G is denoted by GOr =

⋃
G∈G(GOr). It will be

convenient to work with the following equivalent definition of bounded expansion classes.

I Definition 3.2 (Grad and bounded expansion [25]). For a graph G and an integer r ≥ 0,
the greatest reduced average density (grad) at depth r is, ∇r(G) = maxM∈GOrdensity(M) =
maxM∈GOr|E(M)|/|V (M)|. For a graph class G, ∇r(G) = supG∈G∇r(G). A graph class G has
bounded expansion if there is a function f : N→ R such that for all r we have ∇r(G) ≤ f(r).

The first phase of our algorithm, i.e. finding a domination core, closely follows the work
of Drange et al. [13] but requires subtle changes.

3.1 Finding the domination core
In the following we fix a graph class G that has bounded expansion and let (G, k) be the
input instance of Connected Dominating Set, where G ∈ G and G is connected.
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To obtain a linear domination core for classes of bounded expansion we have to invest a
considerable amount of work. The following construction shows that we cannot work with
k-domination cores.

I Lemma 3.3. There exists a class C of bounded expansion such that for all k ∈ N there is
G ∈ C such that every k-domination core for G has Ω(k2) vertices.

Instead, we introduce the notion of a c-exchange domination core, which is different from
the definition used in the previous section and from the one considered in [13]. Here, c is a
fixed constant which we set later.

I Definition 3.4 (c-exchange domination core). Let G be a graph and Z ⊆ V (G). We say that
Z is a c-exchange domination core if for every set X that dominates Z one of the following
conditions holds: (1.) X dominates G, or (2.) there exist A ⊆ X and B ⊆ V (G) such that
|B| < |A| ≤ c and (X \A)∪B dominates Z. Moreover the number of connected components
of (X \A)∪B is at most the number of connected components of X. In particular, if X is a
connected set then (X \A) ∪B is also connected.

Clearly, V (G) is a c-exchange domination core, for any c, but we look for a c-exchange
domination core that is linear in k. Hence, we start with Z = V (G) and gradually reduce
|Z| by removing one vertex at a time, while maintaining the invariant that Z is a c-exchange
domination core. To this end, we need to prove Lemma 3.5. Note that we only remove
vertices from Z at this stage (no vertex deletions), and hence the graph remains intact.

I Lemma 3.5. There exists a constant Ccore > 0 depending only on a fixed (finite) number
of grads of G and a polynomial-time algorithm that, given a graph G ∈ G and a c-exchange
domination core Z ⊆ V (G) with |Z| > Ccore · k, either correctly concludes that cds(G) > k

or finds a vertex z ∈ Z such that Z \ {z} is still a c-exchange domination core. Here c is a
non-zero positive constant.

We remark that we do not know how to prove the existence of a small c-exchange
distance-r domination core (a generalization needed for r-CDS) on graphs of bounded
expansion. In fact the generalization of our proof will not guarantee that the number of
connected components after exchange is at most the number of connected component before
exchange. This obstacle prevents us from finding a linear or almost linear bi-kernel for the
case of r-CDS.

3.2 Reducing connectors and dominators
Armed with a c-exchange domination core Z whose size is linear in k, our next goal is to
reduce the number of connectors and dominators (the number of vertices in V (G) \ Z). To
that end, we need the following lemma which is a generalized version of Lemma 2.11 in [13].

I Lemma 3.6 (Trees closure lemma). Let G be a class of bounded expansion and let q and r
be positive integers. Let G ∈ G be a graph and X ⊆ V (G). Then a superset of vertices
X ′ ⊇ X can be computed in polynomial time, with the following properties: (1) For every
Y ⊆ X of size at most q, if stG(Y ) ≤ rq then stG[X′](Y ) = stG(Y ). (2) |X ′| ≤ Ctc · |X|,
where Ctc is a constant depending only on r, q, and the class G.

Lemma 3.6 ensures that the reduction algorithm of Theorem 2.10 produces a set
⋃
TQ

of linear size. We addionally use the linear neighborhood complexity of classes of bounded
expansion to conclude as in the proof of Theorem 2.10.
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The rest of section is devoted to prove Lemma 3.6. Towards that we need some more
definitions and known results which we state first. Given two graphs G and H, the lexico-
graphic product G�H is defined as the graph on the vertex set V (G)× V (H) where vertices
(u, a) and (v, b) are adjacent if uv ∈ E(G) or if u = v and ab ∈ E(H).

I Lemma 3.7 ([19, 20]). For a graph G and non-negative integers t ≥ 1 and r we have
∇r(G�Kt) ≤ 5t2(r + 1)2 · ∇r(G).

Let G be a graph and X be a subset of its vertices. For u ∈ V (G) \ X, we define the
r-projection of u onto X as follows: MG

r (u,X) is the set of all vertices w ∈ X for which
there exists a path in G that starts in u, ends in w, has length at most r, and whose internal
vertices do not belong to X. Note that MG

1 (u,X) = NX(u).

I Lemma 3.8 ([13]). Let G be a class of graphs of bounded expansion. There exists a
polynomial-time algorithm that, given a graph G ∈ G, X ⊆ V (G), and an integer r ≥ 1,
computes the r-closure of X, denoted by clr(X), with the following properties:

(i) X ⊆ clr(X) ⊆ V (G),
(ii) |clr(X)| ≤ Ccl1 · |X|, and
(iii) |MG

r (u, clr(X))| ≤ Ccl2 for each u ∈ V (G)\clr(X), where Ccl1 and Ccl2 are constants
depending only on r and a fixed (finite) number of grads of G.

Proof of Lemma 3.6. First, using Lemma 3.8 we compute X0 = clrq(X). Then, |X0| ≤
Ccl1 · |X| and for each vertex u /∈ X0 we have |MG

rq(u,X0)| ≤ Ccl2. Now, for each set Y ⊆ X0
of at most q vertices, compute an optimal Steiner tree TY whose edges do not belong to
G[X0]; in case there is no such tree, set TY = ∅. Note that TY can be computed in polynomial
time for any fixed q [2]. Define X ′ to be X0 plus the vertex sets of all trees TY that have
size at most rq.

I Claim 3.9. |X ′| ≤ Ctc · |X0|, where Ctc is a constant depending only on r, q, and a finite
number of grads of G.

Proof of the Claim. Let H be a graph on vertex set X0, where uv ∈ E(H) if and only if
there exists Y such that {u, v} ⊆ Y , TY 6= ∅ and has size at most rq, and hence its vertex set
was added to X. Note that we do not add multiedges. For every such set Y , H[Y ] induces a
clique in H. Let ω(H) denote the number of cliques in H. Clearly |X ′| ≤ |X0|+ rq · ω(H),
so it suffices to prove an upper bound on ω(H).

Consider an edge uv ∈ E(H). The existence of this edge implies that u and v appear
together in some tree TY of size at most rq. Since TY does not contain any edges from G[X0]
(by construction), there must exist a path Pu,v of length at most rq connecting u and v.
The internal vertices of Pu,v do not belong to X0. Take any w ∈ X ′ \X0, and consider for
how many pairs {u, v} ⊆ X0 it can hold that w ∈ Pu,v. If {u, v} is such a pair, then in
particular u, v ∈MG

rq(w,X0). But we know that |MG
rq(w,X0)| ≤ Ccl2, so the number of such

pairs is at most τ ≤ (Ccl2)2. Consequently, we observe that graph H is an (rq − 1)-shallow
minor of G � Kτ : when each vertex w ∈ X ′ \ X0 is replaced with τ copies, then we can
realize all the paths between u and v, in G�Kτ , so that they are internally vertex-disjoint.
From Lemma 3.7, we know that ∇rq−1(G�Kτ ) is bounded polynomially in ∇rq−1(G) and τ ,
which in turn is also bounded polynomially in ∇rq−1(G). Hence ∇rq−1(G�Kτ ) is bounded
polynomially in ∇rq−1(G). The number of cliques in graph of bounded expansion is linear
in the number of vertices [4]. Combining the fact that H has bounded expansion with
|X ′| ≤ |X0|+ rq · ω(H), the claim follows. J

I Claim 3.10. If Y ⊆ X0 has size at most q and stG(Y ) ≤ rq then stG[X′](Y ) = stG(Y ).
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Proof of the Claim. Let TY be an optimal Steiner tree for Y in G, and let T1, T2, . . . , Tp be
the subtrees of size greater than one obtained after deleting all edges of TY for which both
endpoints are in X0. Note that deleting such edges can only create either singleton vertices
or subtrees of size greater than one. Moreover, let Yi, 1 ≤ i ≤ p, denote the set Y ∩ V (Ti).
The existence of Ti certifies that some tree of size at most |Ti| was added when constructing
X ′ from X0, and hence stG[X′](Yi) ≤ |Ti|. Consequently, we infer that

stG[X′](Y ) ≤
p∑
i=1

stG[X′](Yi) + |Y \
p⋃
i=1

Yi| ≤
p∑
i=1
|Ti|+ |Y \

p⋃
i=1

Yi| ≤ |TY | = stG(Y ).

The opposite inequality stG[X′](Y ) ≥ stG(Y ) follows directly from the fact that G[X ′] is an
induced subgraph of G. J

Claim 3.9 and the fact that |X0| ≤ Ccl1|X| prove property (2). Claim 3.10 and the fact that
X ⊆ X0 prove property (1). J

4 Nowhere dense graphs

As we solve the more general Connected Distance-r Dominating Set on nowhere dense
classes, we work with the following definition of a domination core.

I Definition 4.1. Let G be a graph. A set Z ⊆ V (G) is a (k, r)-domination core for G if
every set D of size at most k that r-dominates Z also r-dominates G

Domination cores of polynomial size exist for nowhere dense classes, as the following
lemma shows.

I Lemma 4.2 (Kreutzer et al. [21]). There exists a polynomial q (of degree depending
only on r) and a polynomial-time algorithm that, given a graph G ∈ C and k ∈ N either
correctly concludes that G cannot be r-dominated by a set of at most k vertices, or finds a
(k, r)-domination core Z ⊆ V (G) of G of size at most q(k).

We remark that the non-constructive polynomial bounds that follow from [21] can be
replaced by the much improved constructive bounds from [32].

It now remains to prove a lemma analogous to Lemma 3.6 for nowhere dense classes to
conclude again similarly as in the proof of Theorem 2.10.

5 Lower bounds

Our lower bound is based on Proposition 3.2 of [23] which establishes equivalence between
FPT-approximation algorithms and approximate kernelization. More precisely, the Proposi-
tion states that for every function α and decidable parameterized optimization problem Π,
Π admits a fixed parameter tractable α-approximation algorithm if and only if Π has an
α-approximate kernel.

We use a reduction from Set Cover to the Distance-r Dominating Set problem,
which under the assumption that the Gap Exponential Time Hypothesis (gap-ETH) holds
does not admit a fixed-parameter tractable α-approximation algorithm for any function α [5].

For every monotone somewhere dense graph class C, there exists r ∈ N such that the
exact r-subdivision of every graph can be found as a member of C [29]. Now it is straight
forward to adapt the W[2]-hardness proof for Distance-r Dominating Set for monotone
somewhere dense graph classes [13] to our setting.
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I Theorem 5.1. If the Gap Exponential Time Hypothesis holds, then for every monotone
somewhere dense class of graphs C there is no α(k)-approximate kernel for the distance-r
dominating set problem on C for any function α : N→ N.

6 Conclusion

The study of computationally hard problems on restricted classes of inputs is a very fruitful
line of research in algorithmic graph structure theory and in particular in parameterized
complexity theory. This research is based on the observation that many problems such as
Dominating Set, which are considered intractable in general, can be solved efficiently on
restricted graph classes. In this work we were able to provide lossy kernels for graphs of
bounded expansion whose size matches the size of the best known kernel for Dominating
Set. We were furthermore able to identify the exact limit for the existence of lossy kernels
for r-CDS. One interesting open question is whether our polynomial bounds on the size of
the lossy kernel on nowhere dense classes can be improved to pseudo-linear bounds. For
Kd,d-free graphs we have an additional 1

α−1 multiplicative factor in the exponent. This leads
to the question whether it is possible to reduce the size of our kernel on Kd,d-free graphs
to f(α)kO(d2) for some function f . And, in light of the O(k(d−1)(d−3)−ε) lower bound for
Dominating Set, is it possible to obtain a lossy kernel for Dominating Set on biclique-
free graphs that beats this bound? Our hope is that such a “fine-grained” analysis of the
kernelization complexity of domination problems will lead to a better understanding of the
boundary between “hard” and “easy” instances.
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Abstract
We investigate the intersection problem for finite monoids, which asks for a given set of regular
languages, represented by recognizing morphisms to finite monoids from a variety V, whether
there exists a word contained in their intersection. Our main result is that the problem is PSPACE-
complete if V 6⊆ DS and NP-complete if 1 ( V ⊆ DO. Our NP-algorithm for the case V ⊆ DO
uses novel methods, based on compression techniques and combinatorial properties of DO. We
also show that the problem is log-space reducible to the intersection problem for deterministic
finite automata (DFA) and that a variant of the problem is log-space reducible to the membership
problem for transformation monoids. In light of these reductions, our hardness results can be
seen as a generalization of both a classical result by Kozen and a theorem by Beaudry, McKenzie
and Thérien.
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1 Introduction

In 1977, Kozen showed that deciding whether the intersection of the languages recognized by
a set of given deterministic finite automata (DFA) is non-empty is PSPACE-complete [16].
This result has since been the building block for numerous hardness results in formal language
theory and related fields; see e.g. [8, 11, 12, 15]. It is natural to ask whether the problem
becomes easier when restricting the input. Various special cases, such as bounding the
number k of automata in the input [17] or considering only automata with a fixed number of
accepting states [9], were investigated in follow-up work; see [14] for a survey.

Another very natural restriction is to only consider automata with certain structural
properties. One such property is counter-freeness: an automaton is counter-free if no word
permutes a non-trivial subset of its states. By a famous result of Schützenberger [19], a
regular language is recognized by a counter-free automaton if and only if it is star-free. These
properties are often expressed using the algebraic framework: instead of considering the
automaton itself, one considers its transition monoid. The latter is the transformation monoid
generated by the action of the letters on the set of states. Now, properties of automata
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Table 1 Summary of complexity results ( new main result, follows from reductions.)

MonIsect(V) MonIsect1(V) Memb(V) [2, 7]
NC — V ⊆ G V ⊆ G
P — V ⊆ R1 ∨ L1 V ⊆ R1 ∨ L1

NP V ⊆ DO V ⊆ DO V ⊆ R,V ⊆ A1

NP-hard all V 6= 1 — Acom2 ⊆ V,
XR ⊆ V,XL ⊆ V

PSPACE all V all V all V
PSPACE-hard V 6⊆ DS V 6⊆ DS V 6⊆ DS

can be given by membership of the transition monoid in certain classes, so-called varieties,
of finite monoids. For example, an automaton is counter-free if and only if its transition
monoids belongs to the variety A of aperiodic monoids. The DFA intersection problem for a
variety V, denoted by DfaIsect(V), is formalized as follows.

DfaIsect(V)
Input: DFAs A1, . . . , Ak with transition monoids from V
Question: Is L(A1) ∩ · · · ∩ L(Ak) 6= ∅?

Note that DfaIsect(Mon), where Mon is the variety of all finite monoids, is the general
DFA intersection problem considered by Kozen. A careful inspection of his proof actually
reveals that DfaIsect(A) is PSPACE-complete already [11]. Additionally requiring all DFAs
to have a single accepting state, we obtain a variant of DfaIsect(V) reminiscent of another
problem investigated by Kozen, the membership problem for transformation monoids.

Memb(V)
Input: Transformations f1, . . . , fm : X → X generating a monoid T ∈ V and g : X → X

Question: Does g belong to T?

The complexity of Memb(V) was studied extensively in a series of papers [2, 4, 5, 6, 7,
13, 3]. However, for certain varieties V, obtaining the exact complexity of DfaIsect(V)
and Memb(V) is a challenging problem. To date, only partial results are known, see Table 1.
For example, it is open whether or not Memb(DA) ∈ NP, a question stated explicitly in [7]
and revisited in [20] around ten years later.

Since algebraic tools are already used to express structural properties of automata, it
seems natural to consider the fully algebraic version of the intersection problem by directly
using finite monoids as language acceptors instead of taking the detour via automata and
their transition monoids. A language L ⊆ A∗ is recognized by a morphism h : A∗ → M to
a finite monoid M if L = h−1(P ) for some subset P of M . The set P is often called the
accepting set because it resembles the accepting states in finite automata. A monoid M

recognizes a language L ⊆ A∗ if there exists a morphism h : A∗ → M recognizing L. It is
well-known that a language is recognized by a finite monoid if and only if it is regular. For a
variety of finite monoids V, the intersection problem for V is defined as follows.

MonIsect(V)
Input: Morphisms hi : A∗ →Mi ∈ V and sets Pi ⊆Mi with 1 6 i 6 k

Question: Is h−1
1 (P1) ∩ · · · ∩ h−1

k (Pk) 6= ∅?
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MonIsect1(V)

MonIsect(V)

DfaIsect(V)

Memb(V)

Figure 1 Relations between the problems considered in this work.

We assume that the monoids are given as multiplication tables, such that, assuming a
random-access machine model, multiplications can be performed in logarithmic time.

There is a close connection to both the DFA intersection problem and the membership
problem for transformation monoids. More specifically, for every variety V, there is a
log-space reduction of MonIsect(V) to DfaIsect(V). The variant MonIsect1(V) of the
finite monoid intersection problem, where each of the accepting sets is a singleton, can be
reduced to Memb(V). Our reducibility results are depicted in Figure 1.

Not only is the algebraic version of the intersection problem a natural problem to consider,
making progress in classifying its complexity also raises hope to make progress in solving
open complexity questions regarding DfaIsect(V) and Memb(V). Using novel techniques,
we prove that MonIsect(V) is NP-complete whenever V ⊆ DO and PSPACE-complete
whenever V 6⊆ DS. In particular, since DA is a subset of DO, we obtain an NP-algorithm for
MonIsect(DA) while the problem of whether there exists such an algorithm for Memb(DA)
or DfaIsect(DA) has been open for more than 25 years. Moreover, in view of the reductions
mentioned above, our PSPACE-hardness result can be seen as a generalization of both Kozen’s
result and a result from [7], stating that every variety of aperiodic monoids not contained
within DA = DS ∩ A admits a PSPACE-complete transformation monoid membership
problem.

Our results are summarized in Table 1. Only a very small gap of varieties contained
within DS but not DO remains. Answering complexity questions in this setting is deeply
connected to understanding the languages recognized by monoids in DS which is another
problem open for over twenty years; see e.g. [1, Open Problem 14]. Obtaining a dichotomy
result for MonIsect(V) is likely to provide new major insights for both DfaIsect(V) and
the language variety corresponding to DS, and, conversely, new insights on either language
properties of DS or on DfaIsect(DS) will potentially help with obtaining such a result.

We conclude with a first complexity result on the intersection problem for finite monoids.

I Theorem 1. MonIsect(Mon) ∈ PSPACE.

Proof. Since PSPACE = NPSPACE by Savitch’s Theorem, it suffices to give a non-deter-
ministic algorithm which requires polynomial space. The algorithm proceeds by guessing a
word in the intersection, letter by letter. The word is not written down explicitly but after
each guess, the image of the current prefix under each morphism is computed and stored.
Finally, the algorithm verifies that each of the images is in the corresponding accepting
set. J

2 Preliminaries

Words and Languages. Let A be a finite alphabet. A word over A is a finite sequence of
letters a1 · · · a` with ai ∈ A for all i ∈ {1, . . . , `}. The set A∗ denotes the set of all words
over A and a language is a subset of A∗. The content (or alphabet) of a word w = a1 · · · a`
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is the subset alph(w) = {a1, . . . , a`} of A. A word u is a factor of w if there exist p, q ∈ A∗
such that w = puq; and, when the factorization is fixed, then the position of u is called its
occurrence.

Algebra. Let M be a finite monoid. An element e ∈ M is idempotent if e2 = e. The set
of all idempotent elements of M is denoted by E(M). In a finite monoid M , the integer
ωM = |M |! plays an important role: for each m ∈M , the element mωM is idempotent. For
convenience, we often write ω instead of ωM if the reference to M is clear from the context.
For two elements m,n ∈M , we write m 6J n if the two-sided ideal of m is contained in the
two-sided ideal of n, i.e., MmM ⊆MnM . We write m J n if both m 6J n and n 6J m.

The direct product of two monoids M and N is the Cartesian product M × N with
componentwise multiplication. A monoid N is a quotient of a monoid M if there exists a
surjective morphism h : M → N . A monoid N is a divisor of a monoid M if N is a quotient
of a submonoid of M .

A variety of finite monoids is a class V of finite monoids which is closed under (finite)
direct products and divisors. The class of all finite monoids Mon is a variety. The following
other varieties play an important role in this work:

G = {M ∈Mon | ∀e ∈ E(M) : e = 1}
DS = {M ∈Mon | ∀e, f ∈ E(M) : e J f =⇒ (efe)ω = e}
DO = {M ∈Mon | ∀e, f ∈ E(M) : e J f =⇒ efe = e}

It is easy to see that G contains exactly those finite monoids which are groups. Since
direct products of groups are groups and divisors of groups are groups, G is indeed a variety.
For proofs that DS and DO are varieties, we refer to [18]. From the definitions, it follows
immediately that DO ⊆ DS. There exist several other interesting characterizations of DS.
Let B1

2 be the monoid defined on the set {1, a, b, ab, ba, 0} by the operation aba = a, bab = b

and a2 = b2 = 0 where 0 is a zero element. Then the following holds, see e.g. [1].

I Proposition 2. Let M be a finite monoid. The following properties are equivalent:
1. M ∈ DS.
2. For each e ∈ E(M) and x ∈M with e 6J x, we have (exe)ω = e.
3. For each e ∈ E(M), the elements {x ∈M | e 6J x} form a submonoid of M .
4. B1

2 is not a divisor of M ×M .

Tiling Systems. A tiling system is a tuple T = (Λ, T, n, f, b) where Λ is a finite set of labels,
T ⊆ Λ× Λ× Λ× Λ are the so-called tiles, n ∈ N is the width and f, b ∈ Tn are the first row
and bottom row. For a tile t = (tw, te, ts, tn) ∈ T , we let λw(t) = tw, λe(t) = te, λs(t) = ts
and λn(t) = tn. These labels can be thought of as labels in west, east, south and north
direction. An m-tiling of T is a mapping τ : {1, . . . ,m} × {1, . . . , n} → T such that the
following properties hold:
1. τ(1, 1)τ(1, 2) · · · τ(1, n) = f ,
2. λe(τ(i, j)) = λw(τ(i, j + 1)) for 1 6 i 6 m and 1 6 j 6 n− 1,
3. λs(τ(i, j)) = λn(τ(i+ 1, j)) for 1 6 i 6 m− 1 and 1 6 j 6 n,
4. τ(m, 1)τ(m, 2) · · · τ(m,n) = b.

The corridor tiling problem asks for a given tiling system T whether there exists some
m ∈ N such that there is a m-tiling of T . The square tiling problem asks for a given tiling
system T of width n, whether there exists an n-tiling of T . It is well-known that the corridor
tiling problem is PSPACE-complete and that the square tiling problem is NP-complete [10].
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Straight-Line Programs. A straight-line program (SLP) is a grammar S = (V,A, P,Xs)
where V is a finite set of variables, A is a finite alphabet, P : V → (V ∪ A)∗ is a mapping
and Xs ∈ V is the so-called start variable. For a variable X ∈ V , the word P (X) is the
right-hand side of X. We require that there exists a linear order < on V such that Y < X

whenever P (X) ∈ (V ∪A)∗Y (V ∪A)∗. Starting with some word α ∈ (V ∪A)∗ and repeatedly
replacing variables X ∈ V by P (X) yields a word from A∗, the so called evaluation of α,
denoted by val(α). The word produced by S is val(S) = val(Xs). If the reference to A and V
is clear from the context, we will often use the notation h(α) instead of h(val(α)) for the
image of the evaluation of a word α ∈ (A∪ V )∗ under a morphism h : A∗ →M . Analogously,
we write h(S) instead of h(val(S)). The size of S is |S| =

∑
X∈V |P (X)|. Each variable X

of an SLP S can be viewed as an SLP itself by making X the start variable of S.
The following simple lemma illustrates how SLPs can be used for compression.

I Lemma 3. Let S = (V,A, P,Xs) be an SLP and let e ∈ N. Let w be the word produced
by S. Then there exists an SLP S′ of size |S′| 6 |S|+ 4 log(e) such that S′ produces we.

Proof. We obtain S′ by iteratively adding new variables to V as follows, starting with i = e

and repeating the process until i = 0.
If i > 0 is odd, add a new variable Xi and let P (Xi) = Xi−1Xs. Let i := i− 1.
If i > 0 is even, add a new variable Xi and let P (Xi) = Xi/2Xi/2. Let i := i/2.

Finally, add the variable X0 and let P (X0) = ε. The new start variable is Xe and by
construction, we have val(Xe) = we. J

3 Connections to Other Problems

Before investigating the complexity of MonIsect(V) itself, we establish connections to other
well-known problems defined in the introduction, starting with the DFA intersection problem.

I Proposition 4. Let V be a variety of finite monoids, let M ∈ V, let h : A∗ → M be a
morphism and let P ⊆M . Then there exists a finite deterministic automaton A with |M |
states such that L(A) = h−1(P ) and such that the transition monoid of A belongs to V.
When the monoid, the morphism and the accepting set are given as inputs, this automaton is
log-space computable.

Proof. It suffices to perform the standard conversion of monoids to finite automata. The set
of states of A is M , the initial state is the identity element 1, the transitions are defined by
δ(m, a) = mh(a) for all m ∈M and a ∈ A and the accepting states are P . A straightforward
verification shows that the transition monoid of A is isomorphic to M . Since computing
images h(a) and performing multiplications are just table lookups, each output bit can be
computed in logarithmic time on a random-access machine model. J

I Corollary 5. For each variety of finite monoids V, the problem MonIsect(V) is log-space
reducible to DfaIsect(V).

For a direct link to Memb(V), we consider the variant MonIsect1(V) of the finite
monoid intersection problem. In this variant, each of the accepting sets is a singleton.

I Proposition 6. Let V be a variety of finite monoids and let M1, . . . ,Mk ∈ V be pairwise
disjoint finite monoids. For each i ∈ {1, . . . , k}, let hi : A∗ → Mi be a morphism and let
pi ∈Mi. Then there exists a transformation monoid T ∈ V on the set M = M1 ∪ · · · ∪Mk, a
morphism h : A∗ → T and a transformation p ∈ T such that h−1(p) = h−1

1 (p1)∩· · ·∩h−1
k (pk).
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30:6 The Intersection Problem for Finite Monoids

Proof. For each a ∈ A, we define a transformation fa : M → M by fa(m) = mhi(a) for
m ∈Mi. The closure of {fa | a ∈ A} under composition is the transformation monoid T and
the morphism h : A∗ → T is given by h(a) = fa. We let p : M →M be the transformation
defined by p(m) = mpi for m ∈Mi.

We need to verify that h−1(p) = h−1
1 (p1) ∩ · · · ∩ h−1

k (pk). For the inclusion from right to
left, let w ∈ A∗ be a word such that hi(w) = pi for each i ∈ {1, . . . , k}. Then, by definition,
h(w) is the transformation which maps an element m ∈Mi to mhi(w) = mpi, i.e., h(w) = p.
The converse inclusion is trivial.

It is easy to check that T is a divisor of the direct product M1 × · · · ×Mk and thus,
by closure of V under direct products and under division, T belongs to V as well. Since
computing images hi(a) and performing multiplications are just table lookups, each output
bit can be computed in logarithmic time on a random-access machine model. J

I Corollary 7. For each variety of finite monoids V, the problem MonIsect1(V) is log-space
reducible to Memb(V).

4 Hardness Results

The following lower bound can be viewed as a variant of classical NP-hardness results and
is based on the well-known fact that each non-trivial variety contains either the monoid
U1 = {0, 1} with integer multiplication or a finite cyclic group (however, the proof itself does
not require this case distinction).
I Theorem 8. Let V be a non-trivial variety of finite monoids. Then, the decision problem
MonIsect(V) is NP-hard.
Proof. We give a polynomial-time reduction of the square tiling problem to MonIsect(V).

Let T = (Λ, T, n, f, b) be a tiling system. Let M ∈ V be a non-trivial finite monoid and
let x ∈ M \ {1}. The alphabet A is the set T × {1, . . . , n} × {1, . . . , n}. Let f = t1 · · · tn.
For each integer j ∈ {1, . . . , n} and each direction d ∈ {w, e, s, n}, we define a morphism
fj,d : A→M by mapping (t, 1, j) to x if λd(t) = λd(tj) and mapping the remaining letters
to 1. Analogously, with b = u1 · · ·un, we let bj,d : A→M be the morphism mapping (t, n, j)
to x if λd(t) = λd(uj) and mapping other letters to 1. For each integer i ∈ {1, . . . , n}, each
j ∈ {1, . . . , n− 1} and each label µ ∈ Λ, we define a morphism hi,j,µ : A→M ×M by

hi,j,µ(t, k, `) =


(x, 1) if k = i, ` = j and λe(t) = µ

(1, x) if k = i, ` = j + 1 and λw(t) = µ

(1, 1) otherwise

and, analogously, we define morphisms vi,j,µ : A → M ×M with i ∈ {1, . . . , n− 1} and
j ∈ {1, . . . , n} and µ ∈ Λ as follows:

vi,j,µ(t, k, `) =


(x, 1) if k = i, ` = j and λs(t) = µ

(1, x) if k = i+ 1, ` = j and λn(t) = µ

(1, 1) otherwise

Finally, we define morphisms gi,j,d,µ,µ′ : A→M ×M with i, j ∈ {1, . . . , n}, d ∈ {w, e, s, n}
as well as µ, µ′ ∈ Λ and µ 6= µ′ as follows:

gi,j,d,µ,µ′(t, k, `) =


(x, 1) if k = i, ` = j and λd(t) = µ

(1, x) if k = i, ` = j and λd(t) = µ′

(1, 1) otherwise
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For each of the morphisms bj,d and fj,d, the accepting set is {x}. For each hi,j,µ and vi,j,µ, the
accepting set is {(1, 1), (x, x)}. The accepting set for each gi,j,d,µ,µ′ is {(1, 1), (1, x), (x, 1)}.

J

The next objective is to obtain a stronger result in the case that V contains some finite
monoid which is not in DS. Our proof is based on the well-known fact that direct products
of B1

2 can be used to encode computations of a Turing machine or runs of an automaton, an
idea which already appears in the proof of [7, Theorem 4.9]. To this end, we first describe
classes of languages recognizable by such direct products.

I Lemma 9. Let V be a variety of finite monoids such that V 6⊆ DS. Let A be a finite
alphabet and let B,C,D,E, F be (possibly empty) pairwise disjoint subsets of A. Then, each
of the languages E∗B(D ∪ E)∗, (D ∪ E)∗CE∗ and (E∗B(E ∪ F )∗CE∗ ∪ E∗DE∗)+ is the
preimage of an element of a monoid M ∈ V of size 6 under a morphism h : A∗ →M .

Proof. Let N be a monoid from V \DS. By Proposition 2, the monoid B1
2 is a divisor of

the direct product N ×N and since V is closed under direct products and divisors, we have
B1

2 ∈ V. We let M = B1
2 .

For E∗B(D ∪ E)∗, consider the morphism h : A∗ → M defined by h(e) = 1 for e ∈ E,
h(b) = b for b ∈ B, h(d) = ab for all d ∈ D. All other letters are mapped to the zero
element. By construction, we have h−1(b) = E∗B(D ∪ E)∗. For (D ∪ E)∗CE∗, one can use
a symmetrical construction.

For (E∗B(E ∪ F )∗CE∗ ∪ E∗DE∗)+, we define h : A∗ → M by h(b) = a for all b ∈ B,
h(c) = b for c ∈ C, h(d) = ab for d ∈ D, h(f) = ba for f ∈ F and h(e) = 1 for e ∈ E. Again,
the remaining letters are mapped to 0. The preimage of ab is the desired language. J

I Lemma 10. Let V be a variety of finite monoids such that V 6⊆ DS. Let A be a finite
alphabet, let n ∈ N and let A1, . . . , An be pairwise disjoint subsets of A. Then the language
(A1 · · ·An)+ can be written as an intersection of n languages, each of which is the preimage
of an element of a monoid M ∈ V of size 6 under a morphism h : A∗ →M .

Proof. Let B = A1∪· · ·∪An. For 1 6 i 6 n−1, we define the alphabet Di = B \ (Ai∪Ai+1)
and the language Li = (AiAi+1∪Di)+. We also let Ln = (A1D

∗
nAn)+ withDn = B\(A1∪An).

By construction, we have L1∩· · ·∩Ln = (A1 · · ·An)+ and by Lemma 9, each of the languages
Li is recognized by a monoid of size 6. J

We are now able to state the second main theorem of this section.

I Theorem 11. Let V be a variety of finite monoids such that V 6⊆ DS. Then, the decision
problem MonIsect1(V) is PSPACE-complete.

Proof. Let T = (Λ, T, n, f, b) be a tiling system. The objective is to construct a language L
which is non-empty if and only if there exists a valid m-tiling of T for some m ∈ N.

We may assume without loss of generality that λw(t) 6= λe(t) and λs(t) 6= λn(t) for all
tiles t ∈ T . If, for example, λw(t) = µ = λe(t) for a tile t ∈ T , we create a copy µ′ of the
label µ and replace every tile with λw(t) = µ by two copies. In one of the copies, we replace
the west label with µ′. We repeat this for all other directions and finally remove all tiles
with λw(t) = λe(t) ∈ {µ, µ′}.

We define an alphabet A = T × {0, 1, 2} × {1, . . . , n}. Intuitively, the letters of A
correspond to positions in a tiling. The first component describes the tile itself, the second
component specifies whether the tile is in the first row, some intermediate row or in the
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30:8 The Intersection Problem for Finite Monoids

bottom row and the third component specifies the column. For each j ∈ {1, . . . , n} and
µ ∈ Λ, let Cj = T × {0, 1, 2} × {j} and Dj = A \ Cj and

Wµ = {(t, i, j) ∈ A | λw(t) = µ, j > 1} , Nj,µ = {(t, i, j) ∈ A | λn(t) = µ, i > 0} ,
Eµ = {(t, i, j) ∈ A | λe(t) = µ, j < n} , Sj,µ = {(t, i, j) ∈ A | λs(t) = µ, i < 2} ,
Xµ = A \ (Wµ ∪ Eµ), Yj,µ = Cj \ (Nj,µ ∪ Sj,µ).

Note that by our initial assumption, Wµ ∩ Eµ = ∅ and Nj,µ ∩ Sj,µ = ∅ for each µ ∈ Λ and
for 1 6 j 6 n. Let Fj = {(tj , 0, j)} and Bj = {(uj , 2, j)} where tj and uj are the tiles
uniquely determined by f = t1 · · · tn and b = u1 · · ·un. Let F j = {(t, i, j) ∈ A | i > 0} and
Bj = {(t, i, j) ∈ A | i < 2}. We define

K =

 ⋂
16j6n

D∗jFj(F j ∪Dj)∗
 ∩

 ⋂
16j6n

(Bj ∪Dj)∗BjD∗j

 ∩
⋂
µ∈Λ

(EµWµ ∪Xµ)+



∩

 ⋂
µ∈Λ,

16j6n

(D∗jSj,µD∗jNj,µD∗j ∪D∗jYj,µD∗j )+

 .

and L = (C1 · · ·Cn)+ ∩K. By Lemma 9 and Lemma 10, the language L can be represented
by a MonIsect(V) instance with polynomially many morphisms to monoids of size 6 from
V and with singleton accepting sets. J

5 A Small Model Property for DO

The objective of this section is to prove the following result which states that, within a
non-empty intersection of languages recognized by monoids from DO, there always exists a
word with a small SLP representation.

I Theorem 12. For each i ∈ {1, . . . , k}, let Mi ∈ DO and let hi : A∗ →Mi be a morphism.
Let w ∈ A∗. Then there exists an SLP S of size at most p(N) with hi(S) = hi(w) for all
i ∈ {1, . . . , k} where p : R→ R is some polynomial and N = |M1|+ · · ·+ |Mk|.

Before diving into the proof of this result, we note that the theorem immediately yields
the following corollary:

I Corollary 13. MonIsect(DO) is NP-complete.

Proof. In view of Theorem 8, it suffices to describe an NP-algorithm. The algorithm first
non-deterministically guesses an SLP of polynomial size producing a word in the intersection
of the given languages. It remains to check that the word represented in the SLP is indeed
contained in each of the languages. To this end, we compute the image of the word represented
by the SLP under each of the morphisms. Each such computation can be performed in time
linear in the size of the SLP by computing the image of a variable X as soon as the images
of all variables appearing on the right-hand side of X are computed already, starting with
minimal variables. J

5.1 The Group Case
We first take care of a special case, namely that each of the monoids is a group. In this
case, one can use a variant of the Schreier-Sims algorithm [3, 13] to obtain a compressed
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representative. To keep the paper self-contained, we give the full algorithm alongside with a
correctness proof.

Our setting is as follows: the input are groups G1, . . . , Gk which are, without loss of
generality, assumed to be pairwise disjoint, and morphisms hi : A∗ → Gi with i ∈ {1, . . . , k}.
We let G = G1 ∪ · · · ∪Gk and N = |G|. Note that G is considered as a set; it does not form
a group unless k = 1. However, for each g ∈ G, we interpret powers gi in the corresponding
group Gi with g ∈ Gi. We let ω = N ! so that, for each g ∈ G, the element gω is the identity.1

Algorithm 1 The sift procedure.
procedure sift(α)

R0 ← ε

for i ∈ {1, . . . , k} do
Si ← Rω−1

i−1 α

if T [hi(Si)] = ε then T [hi(Si)]← Si end if
Ri ← Ri−1T [hi(Si)]

end for
return Rk

end procedure

The algorithm maintains a table T : G→ (A ∪ V )∗ as an internal data structure, where
the set of variables V is extended as needed and the table entries T [g] can be considered
variables themselves. The sift procedure expects a parameter α ∈ (V ∪ A)∗ and tries to
find a short representation of val(α), using only entries from the table unless it comes across
an empty table entry, in which case it uses α to fill the missing table entry itself. When
a table entry is assigned a word with a factor of the form Xω−1, this factor is stored in a
compressed form by using the technique from Lemma 3 and adding new variables as needed.
Thus, a factor Xω−1 only requires 4 log(ω − 1) 6 4 log(N !) 6 4N log(N) additional space.

Algorithm 2 Initialization of the compression algorithm for groups.
procedure init

for all g ∈ G do T [g]← ε end for
c← 0
repeat

cp ← c

for all g1 ∈ G1, . . . gk ∈ Gk, a ∈ A do
sift(T [g1] · · ·T [gk]a)

end for
c← |{g ∈ G | T [g] 6= ε}|

until c = cp
end procedure

Before the sift procedure is used for compression, the table needs to be initialized. To
this end, the init routine fills the table with short representatives such that future sift
invocations never run into empty table entries again. Let us first prove several invariants of
the sift procedure.

1 One could also choose ω = lcm {|G1| , . . . , |Gk|} but for the analysis, it does not matter, since N ! is
sufficiently small.
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30:10 The Intersection Problem for Finite Monoids

I Lemma 14. For each i ∈ {1, . . . , k} and g ∈ Gi, we have T [g] = ε or hi(T [g]) = g.

Proof. Suppose that T [g] 6= ε. Then, in some round of the sift procedure, we have
hi(Si) = g and T [hi(Si)] is assigned the SLP Si (and never modified again). Therefore,
hi(T [g]) = hi(T [hi(Si)]) = hi(Si) = g. J

I Lemma 15. After round i of the sift procedure, we have hi(Ri) = hi(α).

Proof. By the definition of Ri, we have hi(Ri) = hi(Ri−1T [hi(Si)]) which is the same as
hi(Ri−1Si) by Lemma 14. Plugging in the definition of Si yields hi(Ri−1R

ω−1
i−1 α) = hi(α)

where the latter equality holds since Gi is a group. J

I Lemma 16. For 1 6 i < j 6 k and for all g ∈ Gj, we have hi(T [g]) = 1.

Proof. Consider the invocation of the sift procedure where T [g] is defined. In round j of
this invocation, the entry T [g] is assigned some SLP Sj with hj(Sj) = g.

Therefore, hi(T [g]) = hi(Sj) = hi(Rω−1
j−1 α). Expanding Rj−1 yields

hi(Rj−1) = hi
((j−1∏

r=1
T [hr(Sr)]

))
= hi

(( i∏
r=1

T [hr(Sr)]
))

= hi(Ri)

where the second equality follows by induction. Therefore, hi(T [g]) = hi(Rω−1
i α) which is

the same as hi(αω−1α) = 1 by Lemma 15. J

I Lemma 17. After round j, we have hi(Rk) = hi(α) for all i ∈ {1, . . . , j}.

Proof. Using the expansion of Rk and Lemma 16, we obtain the sequence of equalities

hi(Rk) = hi
(( k∏

r=1
T [hr(Sr)]

))
= hi

(( i∏
r=1

T [hr(Sr)]
))

= hi(Ri).

The statement now follows immediately from Lemma 15. J

I Theorem 18. For each i ∈ {1, . . . , k}, let Gi be a finite group and let hi : A∗ → Gi be a
morphism. Let w ∈ A∗. Then there exists an SLP S of size at most p(N) with hi(S) = hi(w)
for all i ∈ {1, . . . , k} where p : R→ R is some polynomial and N = |G1|+ · · ·+ |Gk|.

Proof. We claim that the SLP S constructed when calling init, followed by sift with
parameter w satisfies the properties above. By Lemma 17, we have hi(S) = hi(w) for all
i ∈ {1, . . . , k}. Moreover, when the initialization routine returns, the table entries contain
SLP of polynomially bounded size. We now claim that any subsequent executions of the
sift procedure will not define any new table entries, no matter which SLP is passed as a
parameter. In particular, running sift(w) yields an SLP that only uses already existing
table entries.

To prove the claim, assume, for the sake of contradiction, that there exists some word v
such that some new table entry T [g] is defined during sift(v). We choose v such that it is a
word of minimal length satisfying this condition. This means that we can factorize v = v′a

with a ∈ A such that all table entries are defined when calling sift(v′). Let T [g1] · · ·T [gk]
be the return value of sift(v′). Then sift(T [g1] · · ·T [gk]a) is called during the initialization
process and because hi(T [g1] · · ·T [gk]a) = hi(v) for all 1 6 i 6 k, the sequence of Si during
the execution of sift(T [g1] · · ·T [gk]a) is the same as in sift(v) which means that all table
entries accessed during sift(v) are defined. J
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5.2 The General Case
For the general case, where each of the monoids is in DO but not necessarily a group, we use
combinatorial properties of languages recognized by monoids from DO to reduce the problem
to the group case. The following lemmas are an essential ingredient of this reduction.

I Lemma 19. Let h : A∗ → M be a morphism to a finite monoid M ∈ DS. Let u, v ∈ A∗
such that h(v) ∈ E(M) and alph(u) ⊆ alph(v). Then h(v) 6J h(u).

Proof. Let u = a1 · · · a` with ai ∈ A for 1 6 i 6 `. Since ai ∈ alph(v) for each i ∈ {1, . . . , `},
we have h(v) 6J h(ai). By Proposition 2, the set {x ∈M | h(v) 6J x} is a submonoid of
M which means that h(v) 6J h(a1) · · ·h(a`) = h(u), thereby proving the claim. J

I Lemma 20. Let M ∈ DO and let e, f, g ∈ E(M) with e J f 6J g. Then egf = ef .

Proof. First note that (fg)ω J (fgf)ω J (gf)ω. Since M ∈ DS, we have (fgf)ω = f

and since M ∈ DO, we have (fg)ω = (fg)ω(gf)ω(fg)ω = (fg)ω−1. Together, this yields,
fgf = (fgf)ωgf = (fg)ωfgf = (fg)ω−1fgf = (fg)ωf = (fgf)ω = f , thus gf ∈ E(M). By
Proposition 2, we obtain gf J e. Therefore, egf = eg(fef) = (egf e)f = ef . J

I Lemma 21. Let M ∈ DO, let e, f, g ∈ E(M) and let x, y ∈M such that e J f 6J g, x, y.
Then exgyf = exyf .

Proof. Since M ∈ DS, we have ex = (exe)ωx = ex(ex)ω and yf = y(fyf)ω = (yf)ωyf .
Note that (ex)ω J e J f J (yf)ω by Proposition 2 and thus, Lemma 20 yields (ex)ωg(yf)ω =
(ex)ω(yf)ω. Finally, combining all the equalities, we obtain the desired statement exgyf =
ex(ex)ωg(yf)ωyf = ex(ex)ω(yf)ωyf = exyf . J

For the remainder of this section, let M1, . . . , Mk ∈ DO be finite monoids and let
hi : A∗ →Mi be morphisms. We let N = |M1|+ · · ·+ |Mk|. The occurrence of a word u in
puq is called isolated if for each i ∈ {1, . . . , k}, there exist words vi, wi ∈ A∗ such that

alph(vi) = alph(wi) ⊇ alph(u), hi(pvi) = hi(p) and hi(wiq) = hi(q).

Let w = a1u1a2 · · ·u`−1a` be a factorization of w with aj ∈ A and uj ∈ A∗ for all
j ∈ {1, . . . , `}. Let pj = a1u1a2 · · ·uj−1aj and qj = aj+1uj+1 · · · a`−1u`−1a`. The factoriza-
tion w = a1u1a2 · · ·u`−1a` is called piecewise isolating if, for each j ∈ {1, . . . , `− 1}, the
occurrence of uj in w = pjujqj is isolated. The value ` is the length of this factorization.

I Lemma 22. Every word w ∈ A∗ admits a piecewise isolating factorization of length at
most N2.

Proof. Let w = b1 · · · bm where br ∈ A for 1 6 r 6 m. To each position r ∈ {1, . . . ,m},
we assign a set Cr = {(hi(b1 · · · bs), hi(bs+1 · · · bm)) | 1 6 i 6 k, 1 6 s 6 r}. Note that by
definition, we have Cr ⊆ Cr+1. Let r1, . . . , r` ∈ N such that r1 = 1, r` = m and Crj−1 =
Crj−1 ( Crj

for all j ∈ {2, . . . , `}. Let aj = brj
and let uj = brj+1 · · · brj+1−1 for all

j ∈ {1, . . . , `}.
Now, for j ∈ {1, . . . , `} and i ∈ {1, . . . , k}, let t(j, i) be the smallest index g such that

(hi(a1u1 · · · ajuj), hi(aj+1uj+1 · · · a`−1u`−1a`)) ∈ Crg , i.e., the prefix of length rt(j,i) of w is
the shortest prefix p such that w = pq for some q ∈ A∗ and the image of p under hi is
hi(a1u1 · · · ajuj) and the image of q is hi(aj+1uj+1 · · · a`−1u`−1a`). Note that t(j, i) 6 j and,
by choice of t(j, i), we have

hi(a1u1 · · · ajuj) = hi(a1u1a2 · · ·ut(j,i)−1at(j,i)) and (1)
hi(aj+1uj+1 · · · a`−1u`−1a`) = hi(ut(j,i)at(j,i)+1 · · ·u`−1a`). (2)
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Let wji = ut(j,i)at(j,i)+1 · · ·uj−1ajuj and let vji = ujut(j,i)at(j,i)+1 · · ·uj−1aj . In the special
case t(j, i) = j, we obtain wji = vji = uj .

For pj = a1u1a2 · · ·uj−1aj and qj = aj+1uj+1 · · · a`−1u`−1a`, equation (1) implies

hi(pjvji) = hi(a1u1 · · · ajuj) · hi(ut(j,i)at(j,i)+1 · · ·uj−1aj)
= hi(a1u1a2 · · ·ut(j,i)−1at(j,i)) · hi(ut(j,i)at(j,i)+1 · · ·uj−1aj) = hi(pj)

and, similarly, equation (2) yields hi(wjiqj) = hi(qj). Since uj is a suffix of wji and since vji
can be obtained by rotating wji cyclically, we have alph(vji) = alph(wji) ⊇ alph(uj). The
bound on ` follows from the fact that Cr1 ( · · · ( Cr`

⊆
⋃k
i=1Mi ×Mi. J

The lemma above suggests that it is sufficient to construct SLPs for isolated occurrences.
Thus, let now u ∈ A∗ be an isolated occurrence of w = puq, and let B = alph(u). For each
i ∈ {1, . . . , k}, we define an equivalence relation ≡i on the submonoid Ti = hi(B∗) of Mi by
m ≡i n if and only if hi(p)xmyhi(q) = hi(p)xnyhi(q) for all x, y ∈ Ti. It is easy to check
that this relation is a congruence. Moreover, for all u, v ∈ B∗ with hi(u) ≡i hi(v), we have
hi(puq) = hi(pvq). Another fundamental property of ≡i is captured in the following lemma.

I Lemma 23. For each i ∈ {1, . . . , k}, the quotient Ti/≡i is a group.

Proof. Let ω = N ! and let m ∈ Ti be an arbitrary element. It suffices to show that mω ≡i 1,
i.e., for all x, y ∈ Ti, we have hi(p)xmωyhi(q) = hi(p)xyhi(q).

Let vi, wi ∈ A∗ as in the definition of isolated occurrences and let e = h(vωi ) and
f = h(wωi ). Note that hi(pvi) = hi(p) implies hi(p)e = hi(p). Analogously, we have
fhi(q) = hi(q). Since B is contained in alph(vi) = alph(wi) and since m,x, y ∈ Ti = hi(B∗),
we have e J f 6J mω, x, y by Lemma 19. Therefore,

hi(p)xmωyhj(q) = hi(p)exmωyfhi(q) = hi(p)exyfhi(q) = hi(p)xyhi(q)

where the second equality uses Lemma 21. J

We now return to the proof of the main theorem of this section.

Proof of Theorem 12. By considering a piecewise isolating factorization of w, it suffices to
show that if u is an isolated occurrence in w = puq, then there exists an SLP S of polynomial
size with hi(pSq) = hi(puq) for all i ∈ {1, . . . , k}. Combining the letters ai and the SLPs for
the isolated occurrences in the piecewise isolating factorization, we obtain the SLP for w.

Let again B = alph(u). To obtain a polynomial-size SLP S with hi(pSq) = hi(puq) for
all i ∈ {1, . . . , k}, we consider the morphisms ψi : B∗ → Ti/≡i defined by ψi(v) = [hi(v)]≡i

,
i.e., each word v is mapped to the equivalence class of hi(v) with respect to ≡i. Note that
|Ti/≡i| 6 |Ti| 6 |Mi| for 1 6 i 6 k and by Lemma 23, each of the monoids Ti/≡i is a
group. By Theorem 18, there exists a polynomial-size SLP S with ψi(S) = ψi(u) for all
i ∈ {1, . . . , k} and, by the definition of ≡i, we obtain hi(pSq) = hi(puq), as desired. J

6 Summary and Outlook

We investigated the complexity of the intersection problem for finite monoids, showing
that the problem is NP-complete for varieties contained in DO and PSPACE-complete for
varieties not contained within DS. To obtain a dichotomy result, one needs to investigate
the complexity of the problem when monoids from DS \DO are part of the input. Using
techniques similar to those in Section 5, we were able to show that for a subset of this class,
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the problem remains NP-complete and thus, we conjecture that the problem is NP-complete
whenever V ⊆ DS. The fact that DS \DO have not been studied and understood well
enough from a language-theoretic perspective makes the problem of classifying the complexity
of these monoids challenging but, at the same time, an interesting object for further research.
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Abstract
In a recent paper we analyzed the space complexity of streaming algorithms whose goal is to
decide membership of a sliding window to a fixed language. For the class of regular languages
we proved a space trichotomy theorem: for every regular language the optimal space bound
is either constant, logarithmic or linear. In this paper we continue this line of research: We
present natural characterizations for the constant and logarithmic space classes and establish
tight relationships to the concept of language growth. We also analyze the space complexity
with respect to automata size and prove almost matching lower and upper bounds. Finally, we
consider the decision problem whether a language given by a DFA/NFA admits a sliding window
algorithm using logarithmic/constant space.
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1 Introduction

Streaming algorithms process an input sequence a1a2 · · · am from left to right and have at
time t only direct access to the current data value at. Such algorithms have received a lot of
attention in recent years; see [1] for an introduction. The general goal of streaming algorithms
is to avoid the explicit storage of the whole data stream. Ideally, a streaming algorithm
works in constant space, in which case it reduces to a deterministic finite automaton (DFA),
but polylogarithmic space with respect to the input length might be acceptable, too. These
small space requirements are motivated by the current explosion in the size of the input data,
which makes random access to the input often infeasible. Such a scenario arises for instance
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when searching in large databases (e.g., genome databases or web databases), analyzing
internet traffic (e.g. click stream analysis), and monitoring networks.

The first papers on streaming algorithms are usually attributed to Munro and Paterson
[28] and Flajolet and Martin [17], although the principle idea goes back to the work on online
machines by Hartmanis, Lewis and Stearns from the 1960’s [27, 31]. Extremely influential
for the area of streaming algorithms was the paper of Alon, Matias, and Szegedy [2].

The sliding window model. Two streaming models can be found in the literature: In the
standard model the algorithm reads a data stream a1 · · · am from left to right. At time instant
t it outputs a value f(a1 · · · at) for a certain function f . In contrast, in the sliding window
model the algorithm works on a sliding window. At time instant t, the active window is a
certain suffix at−n+1 · · · at of a1 · · · at and the algorithm outputs f(at−n+1 · · · at).

The sliding window model is the right approach for streaming applications, where data
items are outdated after a certain time. A typical example is the analysis of a time series
as it may arise in medical monitoring, web tracking, or financial monitoring. In all these
applications, data items are usually no longer important after a certain time. Two variants
of the sliding window model can be found in the literature; see e.g. [3]:

Fixed-size model: The size of the active window is a fixed constant (the window size). In
other words: at each time instant a new data value ai arrives and the oldest data value
from the sliding window expires.
Variable-size model: The active window at−n+1 · · · at is determined by an adversary. At
every time instant the adversary can either remove the first data value from the window
(expiration of a value) or add a new data value at the right end (arrival of a new value).

In the seminal paper of Datar et al. [15], where the fixed-size sliding window model was
introduced, the authors show how to maintain the number of 1’s in a sliding window of size n
over the alphabet {0, 1} in space 1

ε · log2 n if one allows a multiplicative error of 1± ε. This
is has been the starting point for a large number of further papers on the approximation of
statistical data over sliding windows. Let us mention the work on computation of the variance
and k-median [4], quantiles [3], and entropy [8] over sliding windows. Other computational
problems that have been considered for the sliding window model include optimal sampling
[9], various pattern matching problems [10, 11, 12, 13], database querying (e.g. processing
of join queries [22]) and graph problems (e.g. checking for connectivity and computation
of matchings, spanners, and spanning trees [14]). Further references on the sliding window
model can be found in [1, Chapter 8] and [7].

Language recognition in the streaming model. A natural problem that has been surpris-
ingly neglected for the streaming model is language recognition. The goal is to check whether
an input string belongs to a given language L. Let us quote Magniez, Mathieu, and Nayak
[26]: “Few applications [of streaming] have been made in the context of formal languages,
which may have impact on massive data such as DNA sequences and large XML files. For
instance, in the context of databases, properties decidable by streaming algorithm have been
studied [30, 29], but only in the restricted case of deterministic and constant memory space
algorithms.” For Magniez et al. this was the starting point to study language recognition in
the streaming model. Thereby they restricted their attention to the above mentioned stand-
ard streaming model. Note that in the standard model the membership problem for a regular
language is trivial to solve: one simply simulates a DFA on the stream and thereby only
store the current state. In [26] the authors present a randomized streaming algorithm for the
(non-regular) Dyck language Ds with s pairs of parenthesis that works in space O(

√
n logn)
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and time polylog(n) per symbol. Further investigations on streaming language recognition
for various subclasses of context-free languages can be found in [5, 6, 18, 23, 24, 29, 30].
Let us emphasize that all these papers exclusively deal with the standard streaming model.
Language recognition problems for the sliding window model have been completely neglected
so far. This was the starting point for our previous paper [20].

Querying regular languages in the sliding window model. As mentioned above, in the
standard streaming model the membership problem for a regular language can be solved in
constant space by simulating a DFA. This solution does not work for the sliding window
model. The problem is the removal of the left-most symbol from the sliding window. In
order to check whether the active window belongs to a certain language L one has to know
this first symbol in general. In such a case one has to store the whole window content using
O(n) bits (where n is the window size). A simple regular language where this phenomenon
arises is the language a{a, b}∗ of all words that start with a. The point is that by repeatedly
checking whether the sliding window content belongs to a{a, b}∗, one can recover the exact
content of the sliding window, which implies that every sliding window algorithm for testing
membership in a{a, b}∗ has to use n bits of storage (where n is the window size).

For a function s(n) let Freg(s(n)) be the class of all languages L with the following
property: For every window size n there exists an algorithm that reads a data stream, uses
only space s(n) and correctly decides at every time instant whether the active window (the
last n symbols from the stream) belongs to L. Note that this is a non-uniform model: for
every window size n we use a separate algorithm. The class Vreg(s(n)) of languages that
have variable-size sliding window algorithms with space complexity s(n) is defined similarly,
see page 6 for details. Our main result from [20] is a space trichotomy for regular languages:
1. Vreg(o(n)) = Freg(o(n)) = Freg(O(logn)) = Vreg(O(logn))
2. Freg(o(logn)) = Freg(O(1))
3. Vreg(o(logn)) = Vreg(O(1)) = all trivial languages (empty and universal languages)
Each of the three cases is characterized in terms of the syntactic homomorphism and the left
Cayley graph of the syntactic monoid of the regular language. The precise characterizations
are a bit technical; see [20] for details.

In this paper we continue our investigation of sliding-window algorithms for regular
languages. As a first contribution, we present very natural characterizations of the above
language classes in 1. and 2.: The languages in 1. are exactly the languages that are reducible
with a Mealy machine (working from right to left) to a regular language of polynomial growth.
The regular languages of polynomial growth are exactly the bounded regular languages
[33]. A language L is bounded if L ⊆ w∗1w∗2 · · ·w∗n for words w1, w2, . . . , wn. In addition, we
show that the class 1. is the Boolean closure of regular left ideals (regular languages L with
Σ∗L ⊆ L) and regular length languages (regular languages where |u| = |v| implies that u ∈ L
iff v ∈ L). The class 2. is characterized as the Boolean closure of suffix-testable languages
(languages L where membership in L only depends on a suffix of constant length) and regular
length languages. A natural example for the classes above is the problem of testing whether
the sliding window contains a fixed pattern w as a factor (or as a suffix) since we can check
membership of the left ideal Σ∗wΣ∗ (or of the suffix-testable language Σ∗w).

We also consider the sliding-window space complexity of regular languages in a uniform
setting, where the size m (number of states) of an automaton for the regular language is
also taken into account. In [20], we asked whether for DFAs of size m that accept languages
in Freg(O(logn)) = Vreg(O(logn)), there exists a sliding-window streaming algorithm with
space complexity poly(m) · logn. Here, we give a negative answer by proving a lower bound

STACS 2018
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of the form Ω(2m · logn). Moreover, we also show almost matching upper bounds.
Finally, we prove that one can test in nondeterministic logspace (NL) and hence in

deterministic polynomial time whether for a given DFA A the language L(A) belongs to the
above class 1. (resp., 2.). For NFAs these problems become Pspace-complete.

2 Preliminaries

For an alphabet Σ and n ≥ 0 let Σ≤n = {x ∈ Σ∗ : |x| ≤ n}. The set of all prefixes of x ∈ Σ∗
is Pref(x) = {u ∈ Σ∗ : ∃v ∈ Σ∗ : x = uv} and the reversal of x = a1 · · · an is xR = an · · · a1.
For a language L ⊆ Σ∗ let Pref(L) =

⋃
x∈L Pref(x) and LR = {xR : x ∈ L}. The reversal of

a function τ : Σ∗ → Γ∗ is defined as τR(x) = τ(xR)R. Thus, τ(u) = v iff τR(uR) = vR.
We use log x as an abbreviation for blog2 xc. Note that if (wi)i≥0 is the length-lexicographic

enumeration of {0, 1}∗ then |wi| ≤ log i. We use the following well-known bounds for binomial
coefficients, where 1 ≤ k ≤ n and e is Euler’s constant: (n/k)k ≤

(
n
k

)
≤ (e · n/k)k.

We use standard definitions from automata theory. A nondeterministic finite automaton
(NFA) is a tuple A = (Q,Σ, I,∆, F ) where Q is a finite set of states, Σ is an alphabet, I ⊆ Q
is the set of initial states, ∆ ⊆ Q× Σ×Q is the transition relation and F ⊆ Q is the set of
final states. A deterministic finite automaton (DFA) A = (Q,Σ, q0, δ, F ) has a single initial
state q0 ∈ Q instead of I and a transition function δ : Q× Σ→ Q instead of the transition
relation ∆. A deterministic automaton has the same format as a DFA, except that the state
set Q is not required to be finite. If A is deterministic, the transition function δ is extended
to a function δ : Q× Σ∗ → Q in the usual way and we define A(x) = δ(q0, x) for x ∈ Σ∗ and
L(A) = {x ∈ Σ∗ : A(x) ∈ F} (the language accepted by A).

Let L ⊆ Σ∗ be a language. The left quotient of x ∈ Σ∗ is x−1L = {z ∈ Σ∗ : xz ∈ L}.
The Myhill-Nerode congruence ∼L is the equivalence relation on Σ∗ defined by x ∼L y if
and only if x−1L = y−1L. It is a right congruence on Σ∗, i.e. x ∼L y implies xz ∼L yz for
all x, y, z ∈ Σ∗. If A is a (not necessarily finite) deterministic automaton for a language
L ⊆ Σ∗, then A(x) = A(y) implies x ∼L y. The minimal deterministic automaton for L is
AL = (Σ∗/∼L, Σ, [ε]∼L

, δ, {[x]∼L
: x ∈ L}) with δ([x]∼L

, a) = [xa]∼L
. Clearly, L(AL) = L.

For an NFA A we denote with AD the corresponding deterministic power set automaton
(restricted to those states that are reachable from the initial state) and with AR the NFA
obtained from A by reversing all transitions and swapping the set of initial states and the
set of final states. Moreover, we define ARD = (AR)D. Thus, L(AR) = L(ARD) = L(A)R. If
an NFA A has m states, then both AD and ARD have at most 2m states.

3 Streaming algorithms

A data stream is just a finite sequence of data values. We make the assumption that these
data values are from a finite set Σ. Thus, a data stream is a finite word w = a1 · · · am ∈ Σ∗.
A streaming algorithm reads the symbols of a data stream from left to right. At time
instant t the algorithm has only access to the symbol at and the internal storage, which
is encoded by a bit string. The goal of the streaming algorithm is to compute a certain
function f : Σ∗ → A into some domain A, which means that at time instant t the streaming
algorithm outputs the value f(a1 · · · at). In this paper, we only consider the Boolean case
A = {0, 1}; in other words, the streaming algorithm tests membership in a fixed language.
Furthermore, we abstract away from the actual computation and only analyze the space
requirement. Formally, a streaming algorithm for L ⊆ Σ∗ is a deterministic (possibly infinite)
automaton A = (S,Σ, s0, δ, F ) with L = L(A), where the states are encoded by bit strings.
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We describe this encoding by an injective function enc: S → {0, 1}∗. The space function
space(A, ·) : Σ∗ → N specifies the space used by A on a certain input: For w ∈ Σ∗ let
space(A, w) = max{|enc(A(u))| : u ∈ Pref(w)}.

In the above streaming model, the output value of the streaming algorithm at time
t depends on the whole past a1a2 · · · at of the data stream. However, in many practical
applications one is only interested in the “relevant part of the past”. Two formalizations of
this can be found in the literature:

Only the suffix of a1a2 · · · at of length n is relevant. Here, n is a fixed constant. This
streaming model is called the fixed-size sliding window model.
The relevant suffix of a1a2 · · · at is determined by an adversary. In this model, at every
time instant the adversary can either remove the first symbol from the active window
(expiration of a data value), or add a new symbol at the right end (arrival of a new data
value). This streaming model is also called the variable-size sliding window model.

Fixed-size sliding windows. Given a word w = a1a2 · · · am ∈ Σ∗ and a window length
n ≥ 0, we define the active window lastn(w) = am−n+1am−n+2 · · · am ∈ Σn, where we set
ai = a for i ≤ 0. Here a ∈ Σ is an arbitrary symbol, which fills the window initially. A
sequence A = (An)n≥0 is a fixed-size sliding window algorithm for L ⊆ Σ∗ if each An is
a streaming algorithm for {w ∈ Σ∗ : lastn(w) ∈ L}. Its space complexity is the function
fA : N→ N ∪ {∞} where fA(n) is the maximum encoding length of a state in An.

Note that for every language L and every n the language {w ∈ Σ∗ : lastn(w) ∈ L} is
regular, which ensures that An can be chosen to be a DFA and hence fA(n) <∞ for all n ≥ 0.
The trivial fixed-size sliding window algorithm for L is the sequence B = (Bn)n≥0, where Bn

is the DFA with state set Σn and the transition mapping δ(au, b) = ub for a, b ∈ Σ, u ∈ Σn−1.
States of Bn can be encoded with O(log |Σ| · n) bits. By minimizing each Bn, we obtain an
optimal fixed-size sliding window algorithm A for L. Finally, we define FL(n) = fA(n). Thus,
FL is the space complexity of an optimal fixed-size sliding window algorithm for L. Notice
that FL is not necessarily monotonic. For instance, take L = {au : u ∈ {a, b}∗, |u| odd}.
Then, we have FL(2n) ∈ Θ(n) and FL(2n+ 1) ∈ O(1). The above trivial algorithm B yields
FL(n) ∈ O(n) for every language L.

Note that the fixed-size sliding window is a non-uniform model: for every window size we
have a separate streaming algorithm and these algorithms do not have to follow a common
pattern. Working with a non-uniform model makes lower bounds stronger. In contrast, the
variable-size sliding window model that we discuss next is a uniform model in the sense that
there is a single streaming algorithm that works for every window length.

Variable-size sliding windows. For an alphabet Σ we define the extended alphabet Σ =
Σ ∪ {↓}. In the variable-size model the active window wnd(u) ∈ Σ∗ for a stream u ∈ Σ∗ is
defined as follows, where a ∈ Σ:

wnd(ε) = ε wnd(u↓) = ε if wnd(u) = ε

wnd(ua) = wnd(u)a wnd(u↓) = v if wnd(u) = av

A variable-size sliding window algorithm for a language L ⊆ Σ∗ is a streaming algorithm
A for {w ∈ Σ∗ : wnd(w) ∈ L}. Its space complexity is the function vA mapping a window
length n to the maximum number of bits used by A on inputs producing an active window
of size at most n. Formally, it is the monotonic function vA : N→ N ∪ {∞} with vA(n) =
max{space(A, u) : u ∈ Σ∗, |wnd(v)| ≤ n for all v ∈ Pref(u)}. This definition of vA(n)
slightly deviates from the one given in [20], where the space complexity is defined as v′A(n) =
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max{|enc(A(u))| : u ∈ Σ∗, |wnd(u)| = n}. One easily sees that vA(n) = maxk≤n v
′
A(k) and

hence vA(n) = v′A(n) if v′A(n) is monotonic. An advantage of our definition of vA(n) is that
for every language an optimal variable-size sliding window algorithm exists. We obtain this
algorithm from the minimal deterministic automaton for {w ∈ Σ∗ : wnd(w) ∈ L}.

I Lemma 3.1. For every L ⊆ Σ∗ there exists a variable-size sliding window algorithm A
such that vA(n) ≤ vB(n) for every variable-size sliding window algorithm B for L and all n.

We define VL(n) = vA(n), where A is a space optimal variable-size sliding window algorithm
for L from Lemma 3.1. Since any algorithm in the variable-size model yields an algorithm in
the fixed-size model, we have FL(n) ≤ VL(n).

Space complexity classes and closure properties. For a function s : N → N we define
the classes F(s) and V(s) of all languages L ⊆ Σ∗ which have a fixed-size (variable-size,
respectively) sliding window algorithm with space complexity bounded by s(n). For a class
C of functions we define X(C) =

⋃
s∈C X(s) for X ∈ {F,V}.

Several times we will exploit closure properties of the classes F(O(s)) and V(O(s)) (for
a function s(n)). We need the following definitions: A Mealy machineM = (Q,Σ,Γ, q0, δ)
consists of a finite set of states Q, an input alphabet Σ, an output alphabet Γ, an initial
state q0 ∈ Q and the transition function δ : Q× Σ→ Q× Γ. For every q ∈ Q the machine
computes a length-preserving transduction τq : Σ∗ → Γ∗ in the usual way: τq(ε) = ε and
if δ(p, a) = (q, b) then τp(au) = b τq(u). We call τR

q0
the ←-transduction computed by M.

Thus, a ←-transduction is computed by a Mealy machine that works on an input word from
right to left. If L is regular and τ is a ←-transduction, then τ(L) and τ−1(L) are regular as
well. A ←-transduction τ is called a ←-reduction from K ⊆ Σ∗ to L ⊆ Γ∗ if K = τ−1(L).

I Lemma 3.2. For any function s(n) the classes F(O(s)) and V(O(s)) are closed under (i)
Boolean operations and (ii) ←-reductions.

Space trichotomy for regular languages. In [20] we proved a trichotomy theorem on
sliding window algorithms for regular languages. We identified a partition of the class of
regular languages into three classes which completely characterize the sliding window space
complexity in both the fixed-size and the variable-size model. The definition of the three
classes is given in terms of the syntactic homomorphism and the left Cayley graph of the
syntactic monoid of the regular language, see [20].

For X ∈ {F,V} and a class C of functions we abbreviate X(C) ∩ REG by Xreg(C), where
REG is the class of all regular languages.

I Theorem 3.3 ([20]). The following holds:
Vreg(o(n)) = Freg(o(n)) = Freg(O(logn)) = Vreg(O(logn))
Freg(o(logn)) = Freg(O(1))
Vreg(o(logn)) = Vreg(O(1)) = all trivial languages (empty and universal languages)

Strictly speaking, [20, Theorem 7] only claims VL(n) /∈ O(1) for all non-trivial languages
L. However, the proof of [20, Theorem 7] does imply the stronger bound VL(n) /∈ o(logn).
This statement will also be reproved in the following section.

Let us comment on a subtle point. When making statements about the space complexity
functions VL(n) and FL(n) it is in general important to fix the underlying alphabet. For
instance according to the third point from Theorem 3.3 we have VL(n) ∈ O(1) for the
language L = {a}∗ if the underlying alphabet is {a}. On the other hand, if the underlying
alphabet is {a, b} then VL(n) 6∈ O(1) (in fact, L then belongs to Vreg(Θ(logn))).



M. Ganardi, D. Hucke, D. König, M. Lohrey, and K. Mamouras 31:7

4 Space complexity and language growth

In this section we reprove the space trichotomy (Theorem 3.3) for the variable-size model.
For this we relate the function VL(n) to the growth of a certain derived language and
then use the well known results about the growth of regular languages. We need the
following definition. For a language L ⊆ Σ∗ define the mapping ψL : Σ∗ → (Σ∗/∼L)∗ by
ψL(a1 · · · an) = [a1 · · · an]∼L

[a2 · · · an]∼L
· · · [an]∼L

. Notice that ψL is a length-preserving
mapping from Σ∗ to the set of words over the alphabet Σ∗/∼L. Although Σ∗/∼L may be
infinite (namely for non-regular L), the image ψL(Σ≤n) has at most |Σ|n+1 − 1 elements for
each n ≥ 0.

I Theorem 4.1. For every language ∅ ( L ( Σ∗ we have VL(n) = log |ψL(Σ≤n)|.

Proof sketch. We first exhibit a variable-size sliding window algorithm A with vA(n) =
log |ψL(Σ≤n)|. The idea is that on input w ∈ Σ∗ the algorithm A is in state A(w) =
ψL(wnd(w)). Consider an active window a1 · · · an ∈ Σ∗. Three observations are crucial:

ψL(a2 · · · an) is obtained from ψL(a1 · · · an) by removing the first ∼L-class [a1 · · · an]∼L
.

ψL(a1 · · · an) and a ∈ Σ determine ψL(a1 · · · ana) = [a1 · · · ana]∼L
· · · [ana]∼L

[a]∼L
, since

∼L is a right-congruence
The first ∼L-class in ψL(a1 · · · an) determines whether a1 · · · an ∈ L.

These remarks define a variable-size sliding window algorithm for L with state set ψL(Σ∗).
It is easy to define a binary encoding of the states such that this variable-size sliding window
algorithm has space complexity log |ψL(Σ≤n)|.

Conversely, consider a variable-size sliding window algorithm A for L with space com-
plexity v(n) = vA(n). To prove that v(n) ≥ log |ψL(Σ≤n)|, one shows that for every input
x = a1a2 · · · am ∈ Σ∗ of length m ≤ n, the state A(x) determines (i) m = |x| and (ii)
ψL(a1 · · · am). Hence, every value ψL(x) for x ∈ Σ≤n can be encoded by a bit string of
length at most v(n), namely enc(A(x)). Since there are |ψL(Σ≤n)| such values, it follows
that 2v(n)+1 − 1 ≥ |ψL(Σ≤n)|, which implies v(n) ≥ log |ψL(Σ≤n)|. J

Lemma 4.1 fails for L = ∅ or L = Σ∗, where VL(n) = 0 and log |ψL(Σ≤n)| = log(n+ 1).
We can use Lemma 4.1 to reprove the space trichotomy for regular languages in the

variable-size sliding window model. For this, we need the following simple lemma:

I Lemma 4.2. If L ⊆ Σ∗ is regular, then ψL is a ←-transduction. In particular, ψL(Σ∗)
and ψL(L) are regular. Furthermore ψL is a ←-reduction from L to ψL(L).

The growth of a language L ⊆ Σ∗ is the function g(n) = |{x ∈ L : |x| ≤ n}|. Since the
growth of every regular language is either Θ(nd) for some integer d ≥ 0 or Ω(rn) for some
r > 1 [21, Section 2.3], Lemma 4.1 and 4.2 reprove the trichotomy theorem for variable-size
windows: For a regular language L, VL(n) is either in O(1), Θ(logn) or Θ(n). Furthermore,
since |ψL(Σ≤n)| ≥ n+ 1 we have VL(n) ∈ Ω(logn) for every non-trivial language L.

Let us conclude this section with a result that bounds for all languages the fixed-size
space function FL(n) in terms of the growth of L.

I Theorem 4.3. If L ⊆ Σ∗ has growth g(n), then FL(n) ∈ O(log g(n) + logn).

5 Logspace sliding-window algorithms

In this section we will study the class Vreg(O(logn)). We will (i) give several new and very
natural characterizations of Vreg(O(logn)), (ii) will exhibit a new logspace sliding-window
algorithm that is more space efficient in terms of the automata size compared to our previous
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algorithm from [20], and (iii) will match our new space bound by an almost tight lower
bound. Before we state the results, we have to introduce a couple of definitions.

A strongly connected component (SCC for short) of a DFA B = (Q,Σ, q0, δ, F ) is an
inclusion-maximal subset C ⊆ Q such that for all p, q ∈ C there exist words u, v ∈ Σ∗ such
that δ(p, u) = q and δ(q, v) = p. An SCC C ⊆ Q is well-behaved if for all q ∈ C and u, v ∈ Σ∗
with |u| = |v| and δ(q, u), δ(q, v) ∈ C we have: δ(q, u) ∈ F if and only if δ(q, v) ∈ F . If every
SCC in B which is reachable from q0 is well-behaved, then B is called well-behaved.

A language L ⊆ Σ∗ is called a left ideal (right ideal) if Σ∗L ⊆ L (LΣ∗ ⊆ L). A language
L ⊆ Σ∗ is called a length language if for all n ∈ N, either Σn ⊆ L or L ∩ Σn = ∅. Clearly, L
is a length language iff LR is a length language, and L is left ideal iff LR is a right ideal. In
this section we prove the main characterization theorem for the class Vreg(O(logn)):

I Theorem 5.1. Let L ⊆ Σ∗ be regular. The following statements are equivalent:
1. L ∈ F(O(logn))
2. L ∈ V(O(logn))
3. LR is recognized by a well-behaved DFA.
4. L is ←-reducible to a regular language of polynomial growth.
5. L is a Boolean combination of regular left ideals and regular length languages.

Our proof of the direction from 3. to 2. will also yield a better space bound in terms of
automata size. In [20] we presented a variable-size sliding window algorithm using space
O(mm · (m · log(m) + log(n))) for a regular language that is given by a DFA with m states.

I Theorem 5.2. Let A be a DFA or NFA with m states such that ARD is well-behaved. There
are constants cm, dm that only depend on m such that the following holds for L = L(A):

If A is a DFA then VL(n) ≤ (2m ·m+ 1) · logn + cm for n large enough.
If A is an NFA then VL(n) ≤ (4m + 1) · logn + dm for n large enough.

Finally we prove a lower bound for the fixed-size model (and hence also for the variable-size
model) that almost matches the space bound in Theorem 5.2:

I Theorem 5.3. For all k ≥ 1 there exists a language Lk ⊆ {0, . . . , k}∗ recognized by a DFA
with k + 3 states such that Lk ∈ F(O(logn)) and FLk

(n) ≥ (2k − 1) · (logn− k).

We start with the proof of Theorem 5.2.

5.1 Proof of Theorem 5.2
We need one more definition for the proof of Theorem 5.2. Let B be a well-behaved DFA
with m states and let ρ be a run in B, which does not necessarily start in the initial state.
Let C1, . . . , Ck be the sequence of pairwise different SCCs that are visited by ρ in that
order. The path summary of ρ is the sequence S(ρ) = (p1, `1, p2, `2, . . . , pk, `k) where pi is
the first state in Ci visited by ρ, and `i ≥ 0 is the number of symbols read in ρ from the
first occurrence of pi until the first state from Ci+1 (or until the end for pk). The number of
different path summaries S(ρ), where ρ ranges over all runs in B of length n can be bounded
by (e is Euler’s constant)

mm ·
(
n+m− 1
m− 1

)
≤ mm ·

(
n+m

m

)
≤ mm ·

(
e · (n+m)

m

)m

≤ em · (n+m)m. (1)

Here, (i) mm is the number of sequences of m states (we can repeat the last state in a
path summary so that we have exactly m states) and (ii)

(
n+m−1

m−1
)
is the number of ordered

partitions of n into m summands.
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We can now prove Theorem 5.2. Let L ⊆ Σ∗ be regular and given by a finite DFA or NFA
A. Let B = ARD, which is well-behaved. A set D ⊆ Σ∗ distinguishes L if for all x, y ∈ Σ∗
with x 6∼L y there exists z ∈ D such that exactly one of the words xz and yz belongs to L.
If A is a DFA with m states, then there are at most m distinct left quotients x−1L. Since
every family of m sets has a distinguishing set of size at most m− 1 [16], we get a set D of
size at most m− 1 that distinguishes L. If A is an NFA with m states, we can clearly choose
|D| ≤ 2m − 1 by determinizing A.

For a window content w = a1 · · · an we define a 0-1-matrix Aw : D × {1, . . . , n} → {0, 1}
by Aw(z, i) = 1 iff ai · · · anz ∈ L. Note that the i-th column Aw(·, i) determines [ai · · · an]∼L

,
and vice versa. Hence, the matrix Aw determines ψL(w) and vice versa, i.e., |ψL(Σ≤n)| =
|{Aw : w ∈ Σ≤n}|. By Lemma 4.1, it therefore suffices to bound |{Aw : w ∈ Σ≤n}|.

We can encode each row Aw(z, ·) of Aw succinctly as follows. Consider one row indexed
by z ∈ D. Let ρz be the run of B on the word (wz)R and ρ̃z be the subrun of ρz which only
reads the suffix wR of (wz)R. One can reconstruct Aw(z, ·) from the path summary S(ρ̃z).
Thus Aw can be encoded by |D| many path summaries. With (1) and the fact that B has at
most 2m states, we get the bound

|{Aw : w ∈ Σ≤n}| ≤
n∑

i=0
e2m|D| · (i+ 2m)2m|D| ≤ (n+ 1) · e2m|D| · (n+ 2m)2m|D|.

Hence, for the DFA case (where |D| ≤ m− 1) we have

VL(n) = log |ψL(Σ≤n)| ≤ log(n+1)+2m ·m ·(log e+log(n+2m)) ≤ (2m ·m+1) · logn + cm

for n large enough, where cm can be chosen as 1 + 2m ·m · log e+m2 · 2m. The calculation
for the NFA case (where |D| ≤ 2m − 1) is analogous.

5.2 Proof of Theorem 5.1
The equivalence of 1. and 2. is shown in [20] (its the only direction that we do not reprove),
and the direction from 3. to 2. is stated in Theorem 5.2. The implication from 2. to 4. follows
from Lemma 4.1 and 4.2. The direction from 2. to 3. is shown in the full version [19], where
we actually show that VL(n) ∈ Ω(n) if LR is recognized by a DFA that is not well-behaved.
To prove that 5. implies 3. we show in [19] that (i) the minimal DFA for a regular right ideal
or a regular length language is well-behaved, and (ii) that the class of languages accepted by
well-behaved DFAs is closed under Boolean operations.

It remains to show the implication from 4. to 5. First, a straightforward argument shows
that the class of Boolean combinations of regular left ideals and regular length languages
is closed under pre-images of ←-transductions (see [19]). Therefore, it suffices to prove
that every regular language of polynomial growth is a Boolean combination of regular left
ideals and regular length languages. Since a language L and its reversal LR have the same
growth, we can instead show that every regular language of polynomial growth is a Boolean
combination of regular right ideals and regular length languages. The idea is to decompose
every regular language of polynomial growth as a finite union of languages recognized by so
called linear cycle automata.

In the following we will allow partial DFAs A = (Q,Σ, q0, δ, F ) where δ : Q× Σ→ Q is
a partial function. An SCC C of a partial DFA A = (Q,Σ, q0, δ, F ) is called a cycle if for
every p ∈ C there exists at most one a ∈ Σ such that δ(p, a) ∈ C. Note that a singleton
SCC C = {p} such that δ(p, a) 6= p whenever δ(p, a) is defined is a cycle, too. Such a cycle is
called trivial. A partial DFA A = (Q,Σ, q0, δ, F ) is a linear cycle automaton if

for all p, q ∈ Q there exists at most one symbol a ∈ Σ such that δ(p, a) = q,
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every SCC C of A is a (possibly trivial) cycle,
there is an enumeration C1, . . . , Ck of the SCCs of A such that there is a unique transition
from Ci to Ci+1 for 1 ≤ i ≤ k − 1, and there is no transition from Ci to Cj for j > i+ 1,
q0 belongs to C1,
|F | = 1 and the unique final state belongs to Ck.

I Lemma 5.4. If L is a regular language with polynomial growth, then L is a finite union
of languages recognized by linear cycle automata.

Proof. Let A = (Q,Σ, q0, δ, F ) be the minimal DFA for a regular language L ⊆ Σ∗ of
polynomial growth. We first remove from A all states from which no state in F is reachable;
then A becomes a partial DFA. By [21, Lemma 2] for every q ∈ Q there exists a word uq ∈ Σ∗
such that the language {w ∈ Σ∗ : δ(q, w) = q} is a subset of u∗q . Thus, for every SCC C of A
and every state q ∈ C there is at most one symbol a ∈ Σ with δ(q, a) ∈ C.

A path description is a sequence P = (q0, C0, p0, a0, q1, C1, p1, a2, . . . , qk, Ck, pk) where
C0, . . . , Ck is a chain in the partial ordering on the SCCs of A, qi, pi ∈ Ci for all 0 ≤ i ≤ k,
δ(pi, ai) = qi+1 for all 0 ≤ i < k and pk ∈ F . There are only finitely many path descriptions.
To every accepting run of A we assign a path description, which indicates the SCCs traversed
in the run and the transitions that lead from one SCC to the next SCC. We can write L(A)
as a finite union of languages over all path descriptions. For every path description P , we
take the set of all words accepted by a run of A whose path description is P .

Consider a single path description P = (q0, C0, p0, a0, q1, C1, p1, a2, . . . , qk, Ck, pk) and let
B be the restriction of A to the SCCs Ci. Furthermore all transitions between two distinct
SCCs are removed except for the transitions (pi, ai, qi+1). Finally, pk becomes the only final
state of B. Then B is indeed a linear cycle automaton. J

By the previous lemma, it suffices to decompose the language accepted by a linear cycle
automaton as a Boolean combination of regular length languages and regular right ideals.
By a simple pumping argument (see [19]) we can reduce to linear cycle automata, in which
each cycle has the same length. Let us consider such an automaton A and let L = L(A):
There are numbers p, q ≥ 0 such that each word in L has length p+ qn for some n ≥ 0. Here
q is the uniform length of the non-trivial cycles in A. We claim that L is the intersection of
the three languages

LΣ∗, which is a regular right ideal,
{x ∈ Σ∗ : Pref(x) ⊆ Pref(L)}, which is the complement of a regular right ideal,
Σp(Σq)∗, which is a length language.

Clearly L is contained in the described intersection. Conversely, consider a word x in the
intersection. We have x = yz where y ∈ L. Hence, |y| = p+qn for some n. Since |x| = p+qn′
for some n′, the length |z| is divided by q. Since y ∈ L, A(y) is the unique final state of A,
which belongs to the unique maximal SCC C of A. If C is non-trivial, then it is a cycle of
length q and also A(yz) is the final state, i.e., x ∈ L. If C is trivial, then y, yz ∈ L implies
z = ε and x is also accepted by A. This concludes the proof for the direction from 4. to 5.

5.3 Proof of Theorem 5.3
The languages Lk (k ≥ 0) from Theorem 5.3 are defined as

L0 = 0+ and Lk = Lk−1 ∪ Lk−1 k {0, . . . , k − 1}∗ for k ≥ 1.

Observe that a word a1 · · · an ∈ {0, . . . , k}∗ belongs to Lk if and only if n ≥ 1, a1 = 0 and for
each 1 ≤ i ≤ n it holds that ai = 0 or ai 6= max1≤j≤i−1 aj . We can construct a DFA Ak for
Lk with k + 3 states, which stores the maximum value seen so far in its state, see Figure 1.
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0, . . . , k − 1

Figure 1 A DFA for Lk. Omitted transitions lead to a sink state. All non-sink states are final.

To prove that each Lk belongs to V(O(logn)), we show that Lk is a Boolean combination
of regular left ideals. Given a word x = a1 · · · an ∈ Σ∗ and a language L ⊆ Σ∗, a position
1 ≤ i ≤ n is an L-alternation point, if exactly one of the words ai · · · an and ai+1 · · · an

belongs to L. Denote by altL(x) the number of L-alternation points in x. We need the
following two lemmas, which are proven in the full version [19].

I Lemma 5.5. Let L ⊆ Σ∗ be regular. Then L is a Boolean combination of at most k regular
left ideals if and only if altL(x) ≤ k for all x ∈ Σ∗.

I Lemma 5.6. For all k ≥ 0 and x ∈ N∗ we have altLk
(x) ≤ 2k+2 − 2. Moreover,

VLk
(n) ≤ (2k+3 · (k + 3) + 1) · logn + ck for n large enough, where ck only depends on k.

For the proof of the if-direction in Lemma 5.5, one writes L as a Boolean combination of the
sets {x ∈ Σ∗ : altL(x) ≥ i} (1 ≤ i ≤ k). Lemma 5.6 is shown by induction on k.

We can now prove Theorem 5.3. Define the languages Z0 = 0∗ and Zk = Zk−1 k Zk−1
for k ≥ 1. An example word from Z3 is 0010002100300010020010. Note that every suffix of
x ∈ Zk that starts with 0 belongs to Lk and every suffix of x ∈ Zk that starts with a > 0 does
not belong to Lk. The former follows by induction on k; the latter holds since Lk ⊆ 0N∗.

Fix some k ≥ 1 and let B = (Bn)n≥0 be a fixed-size sliding window algorithm for Lk.
Consider a window size n. We claim that Bn(x) 6= Bn(y) for all x, y ∈ Zk with |x| = |y| = n

and x 6= y. To see this, write x = zau and y = zbv with a, b ∈ {0, . . . , k}, a 6= b. We must
have a = 0 and b > 0 or vice versa. Assume that a = 0 and b > 0. Thus, au ∈ Lk and
bv 6∈ Lk. Hence, we have wnd(x0|z|) = au0|z| ∈ Lk and wnd(y0|z|) = bv0|z| 6∈ Lk. But if
Bn(x) = Bn(y), then also Bn(x0|z|) = Bn(y0|z|), which yields a contradiction.

It follows that Bn has at least
(

n
2k−1

)
≥ (n/(2k − 1))2k−1 ≥ (n/2k)2k−1 many states,

which implies vB(n) ≥ (2k − 1) · (logn− k).

6 Constant space sliding-window algorithms

Lemma 4.1 implies that VL(n) ≥ logn if ∅ 6= L 6= Σ∗. Thus, only trivial languages have
a constant-space variable-size streaming algorithm. This changes in the fixed-size window
model. In [20] we characterized those regular languages L in F(O(1)) in terms of the left
Cayley graph of the syntactic monoid of L. Here we give a more natural characterization.

A language L ⊆ Σ∗ is called k-suffix testable if for all x, y ∈ Σ∗ and z ∈ Σk we have:
xz ∈ L ⇐⇒ yz ∈ L. Equivalently, L is a Boolean combination of languages of the form
Σ∗w where w ∈ Σ≤k. We call L suffix testable if it is k-suffix testable for some k ≥ 0. Clearly,
every finite language is suffix testable: if L ⊆ Σ≤k then L is (k+ 1)-suffix testable. The class
of suffix testable languages corresponds to the variety D of definite monoids [32]. Our main
result about the class F(O(1)) is the following; its proof can be found in the full version [19]:

I Theorem 6.1. A regular language L ⊆ Σ∗ belongs to F(O(1)) if and only if L is a finite
Boolean combination of suffix testable languages and regular length languages.
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Figure 2 A critical tuple (u0, u1, w0, w1).

7 Deciding space complexity in the sliding window model

In this section, we consider the complexity of the following decision problems:
Dfa(1): Given a DFA A, does L(A) belong to F(O(1))?
Nfa(1): Given an NFA A, does L(A) belong to F(O(1))?
Dfa(logn): Given a DFA A, does L(A) belong to F(O(logn)) = V(O(logn))?
Nfa(logn): Given an NFA A, does L(A) belong to F(O(logn)) = V(O(logn))?

Recall that by Theorem 3.3, L(A) belongs to V(O(1)) iff L(A) is trivial. The latter problem
can be shown to be NL-complete (resp., Pspace-complete) if A is a DFA (resp., an NFA)
using standard constructions. The same complexity bounds hold for the above problems:

I Theorem 7.1. The following hold:
Dfa(1) and Dfa(logn) are NL-complete.
Nfa(1) and Nfa(logn) are Pspace-complete.

We only sketch the NL upper bound for Dfa(logn); the other parts of Theorem 7.1 are
shown in the full version [19]. We can assume that the input DFA A = (Q,Σ, q0, δ, F ) is
minimal; see the argument for the NL upper bound for Dfa(1) in [19]. Let L = L(A). For
u, x0, x1 ∈ Σ∗ we define Q(u, x0, x1) = {A(ux) : x ∈ {x0, x1}∗}, which is the set of states of
A reachable from the initial state by first reading u and then an arbitrary product of copies
of x0 and x1. We call a tuple (u0, u1, w0, w1) of words critical, if (i) |u0| = |u1| ≥ 1, (ii) ui

is a suffix of wi for all i ∈ {0, 1} and (iii) Q(u0, w0, w1) ∩Q(u1, w0, w1) = ∅. Using critical
tuples, we can state another characterization of the class Vreg(logn):

I Lemma 7.2. We have L 6∈ Vreg(logn) if and only if there exists a critical tuple in A.

We show that if there exists a critical tuple, then there exists a critical tuple (u0, u1, w0, w1)
such that |Q(u0, w0, w1)| ≤ 3 ≥ |Q(u1, w0, w1)|. Assume that (u0, u1, w0, w1) is a critical
tuple. Let h : Σ∗ → M be the canonical homomorphism into the transition monoid M

of A, which right acts on Q via Q × M → Q, (q,m) 7→ q · m = m(q). Notice that
Q(ui, w0, w1) = {A(ui) ·m : m ∈ {h(w0), h(w1)}∗}, where X∗ denotes the submonoid of M
generated byX ⊆M . It suffices to define a new critical tuple (u0, u1, x0, x1) with the property
that h(xi)·h(xj) = h(xj) for all i, j ∈ {0, 1}. This implies {h(x0), h(x1)}∗ = {1, h(x0), h(x1)},
and hence, |Q(u0, x0, x1)| ≤ 3 ≥ |Q(u1, x0, x1)|.

Notice that if (u0, u1, w0, w1) is critical, then also (u0, u1, y0w0, y1w1) is critical for all
y0, y1 ∈ {w0, w1}∗. Let ω ≥ 1 be a number such that mω is idempotent for all m ∈ M .
By choosing e0 = (h(w0)ωh(w1)ω)ωh(w0)ω and e1 = (h(w0)ωh(w1)ω)ω we indeed obtain
eiej = ej for all i, j ∈ {0, 1}. Hence we define x0 = (wω

0w
ω
1 )ωwω

0 and x1 = (wω
0w

ω
1 )ω.

To decide whether L 6∈ Vreg(logn) it therefore suffices to check whether there is a critical
tuple (u0, u1, w0, w1) such that |Q(u0, w0, w1)| ≤ 3 ≥ |Q(u1, w0, w1)|. Figure 2 illustrates the
substructure we need to detect in A. We show that the existence of such a structure can be
verified in NL. To do so, we reduce to testing emptiness of one-counter automata, which is
known to be in NL [25]. For two states p, r ∈ Q let Ap,r = (Q,Σ, p, δ, {r}) be the automaton
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A with initial state p and final state r, and let L(p, r) = L(Ap,r). The algorithm iterates over
all disjoint sets {p, p0, p1}, {r, r0, r1} ⊆ Q. For i ∈ {0, 1} let Ai be a DFA for the language
L(p, pi) ∩ L(p0, pi) ∩ L(p1, pi) ∩ L(r, ri) ∩ L(r0, ri) ∩ L(r1, ri). Now consider the language
{v0 #u0 # v1 #u1 : viui ∈ L(Ai) for i ∈ {0, 1}, |u0| = |u1| ≥ 1, u0 ∈ L(q0, p), u1 ∈ L(q0, r)}
for which one can construct in logspace a one-counter automaton. The counter is used to
verify the constraint |u0| = |u1|. The language above is empty if and only if A has a critical
tuple. This concludes the proof that Dfa(logn) belongs to NL.
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1 Introduction

In [15], Myasnikov, Nikolaev, and Ushakov began the investigation of classical discrete
optimization problems, which are formulated over the integers, for arbitrary (possibly non-
commutative) groups. The general goal of this line of research is to study to what extent
results from the commutative setting can be transferred to the non-commutative setting.
Among other problems, Myasnikov et al. introduced for a finitely generated group G the
knapsack problem and the subset sum problem. The input for the knapsack problem is a
sequence of group elements g1, . . . , gk, g ∈ G (specified by finite words over the generators
of G) and it is asked whether there exists a solution (x1, . . . , xk) ∈ Nk of the equation
gx1

1 · · · g
xk

k = g. For the subset sum problem one restricts the solution to {0, 1}k. For the
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particular case G = Z (where the additive notation x1 · g1 + · · · + xk · gk = g is usually
preferred) these problems are NP-complete (resp., TC0-complete) if the numbers g1, . . . , gk, g

are encoded in binary representation [7, 6] (resp., unary notation [2]).
Another motivation is that decidability of knapsack for a group G implies that the

membership problem for every fixed polycyclic subgroup of G is decidable. This follows from
the well-known fact that every polycyclic group A has a generating set {a1, . . . , ak} such that
every element of A can be written as an1

1 · · · a
nk

k for n1, . . . , nk ∈ N, see e.g. [17, Chapter 9].
In [15], Myasnikov et al. encode elements of the finitely generated group G by words over

the group generators and their inverses, which corresponds to the unary encoding of integers.
There is also an encoding of words that corresponds to the binary encoding of integers, so
called straight-line programs, and knapsack problems under this encodings have been studied
in [11]. In this paper, we only consider the case where input words are explicitly represented.
Here is a (non-complete) list of known results concerning knapsack and subset sum problems:

Subset sum and knapsack can be solved in polynomial time for every hyperbolic group
[15]. In [3] this result was extended to free products of any number of hyperbolic groups
and finitely generated abelian groups.
For every virtually nilpotent group, subset sum belongs to nondeterministic logspace [8].
On the other hand, there are nilpotent groups of class 2 for which knapsack is undecidable.
Examples are direct products of sufficiently many copies of the discrete Heisenberg group
H3(Z) [8], and free nilpotent groups of class 2 and sufficiently high rank [14].
Knapsack for H3(Z) is decidable [8]. In particular, together with the previous point it
follows that decidability of knapsack is not preserved under direct products.
For the following groups, subset sum is NP-complete (whereas the word problem can be
solved in polynomial time): free metabelian non-abelian groups of finite rank, the wreath
product Z o Z, Thompson’s group F , the Baumslag-Solitar group BS(1, 2) [15], and every
polycyclic group that is not virtually nilpotent [16].
Knapsack is decidable for every co-context-free group [8].
Knapsack belongs to NP for all virtually special groups (finite extensions of subgroups of
graph groups) [11]. For graph groups (also known as right-angled Artin groups) a complete
classification of the complexity of knapsack was obtained in [12]: If the underlying graph
contains an induced path or cycle on 4 nodes, then knapsack is NP-complete; in all other
cases knapsack can be solved in polynomial time (even in LogCFL).
Decidability of knapsack is preserved under finite extensions, HNN-extensions over finite
associated subgroups and amalgamated free products over finite subgroups [11].

In this paper, we study the knapsack problem for wreath products. The wreath product
is a fundamental construction in group theory and semigroup theory, see Section 4 for the
definition. An important application of wreath products in group theory is the Magnus
embedding theorem [18], which allows to embed the quotient group Fk/[N,N ] into the wreath
product Zk o (Fk/N), where Fk is a free group of rank k and N is a normal subgroup of Fk.
In particular, free solvable groups can be embedded into iterated wreath products of free
abelian groups; a fact that we will use in this paper. Wreath products also have some nice
algorithmic properties: The word problem for a wreath product G oH is AC0-reducible to the
word problems for the factors G and H, and the conjugacy problem for G oH is TC0-reducible
to the conjugacy problems for G and H and the so called power problem for H [13].

As in the case of direct products, it turns out that decidability of knapsack is not preserved
under wreath products: For this we consider direct products of the form H3(Z)× Z`, where
H3(Z) is the discrete 3-dimensional Heisenberg group. It was shown in [8] that for every
` ≥ 0, knapsack is decidable for H3(Z)× Z`. We prove that for every non-trivial group G
and every sufficiently large `, knapsack for G o (H3(Z)× Z`) is undecidable.
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By the above discussion, we need stronger assumptions on G and H to obtain decidability
of knapsack for G oH. We exhibit a very weak condition on G and H, knapsack-semilinearity,
which is sufficient for decidability of knapsack for G oH. A finitely generated group G is
knapsack-semilinear if for every knapsack equation, the set of all solutions (a solution can be
seen as an vector of natural numbers) is effectively semilinear.

Clearly, for every knapsack-semilinear group, the knapsack problem is decidable. While
the converse is not true, the class of knapsack-semilinear groups is extraordinarily wide. The
simplest examples are finitely generated abelian groups, but it also includes the rich class
of virtually special groups [11], all hyperbolic groups [4], and all co-context-free groups [8].
Furthermore, it is known to be closed under direct products (an easy observation), going
to a finitely generated subgroup, going to a finite extension, HNN-extensions over finite
associated subgroups and amalgamated free products over finite subgroups (the last three
closure properties are simple extensions of the transfer theorems in [11]). In fact, the only
non-knapsack-semilinear groups with a decidable knapsack problem that we are aware of are
the groups H3(Z)× Zn for n ≥ 0.

We prove in Section 6 that the class of knapsack-semilinear groups is closed under wreath
products. As a direct consequence of the Magnus embedding, it follows that knapsack is
decidable for every free solvable group. Recall that, in contrast, knapsack for free nilpotent
groups is in general undecidable [14].

Finally, we consider the complexity of knapsack for wreath products. We prove that
for every non-trivial finitely generated abelian group G, knapsack for G o Z is NP-complete
(the hard part is membership in NP). This result includes important special cases like for
instance the lamplighter group Z2 o Z and Z o Z. Wreath products of the form G o Z with G
abelian turn out to be important in connection with subgroup distortion [1]. Our proof also
shows that for every non-trivial finitely generated abelian group G, the subset sum problem
for G o Z is NP-complete. In [15] this result is only shown for infinite abelian groups G.

Missing proofs can be found in the full version [4].

2 Preliminaries

We assume standard notions concerning groups. A group G is finitely generated if there
exists a finite subset Σ ⊆ G such that every element g ∈ G can be written as g = a1a2 · · · an
with a1, a2, . . . , an ∈ Σ. We also say that the word a1a2 · · · an ∈ Σ∗ evaluates to g (or
represents g). The set Σ is called a finite generating set of G. We always assume that Σ is
symmetric in the sense that a ∈ Σ implies a−1 ∈ Σ. Elements of G will be represented by
words from Σ∗. An element g ∈ G is called torsion element if there is an n ≥ 1 with gn = 1.
The smallest such n is the order of g and is denoted by ord(g). If g is not a torsion element,
we set ord(g) =∞.

A set A ⊆ Nk is linear if A = {v0 + λ1 · v1 + · · · + λn · vn | λ1, . . . , λn ∈ N} for
vectors v0, . . . , vn ∈ Nk. The tuple of vectors (v0, . . . , vn) is a linear representation of A.
A set A ⊆ Nk is semilinear if it is a finite union of linear sets A1, . . . , Am. A semilinear
representation of A is a list of linear representations for the linear sets A1, . . . , Am. It is
well-known that the semilinear subsets of Nk are exactly the sets definable in Presburger
arithmetic. These are those sets that can be defined with a first-order formula ϕ(x1, . . . , xk)
over the structure (N, 0,+,≤) [5]. Moreover, the transformations between such a first-order
formula and an equivalent semilinear representation are effective. In particular, the semilinear
sets are effectively closed under Boolean operations.
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3 Knapsack for groups

Let G be a finitely generated group with the finite symmetric generating set Σ. Moreover, let
V be a set of formal variables that take values from N. For a subset U ⊆ V , we use NU to
denote the set of maps ν : U → N, which we call valuations. An exponent expression over G is
a formal expression of the form E = v0u

x1
1 v1u

x2
2 v2 · · ·uxk

k vk with k ≥ 0 and words ui, vi ∈ Σ∗.
Here, the variables do not have to be pairwise distinct. If every variable in an exponent
expression occurs at most once, it is called a knapsack expression. Let VE = {x1, . . . , xk} be
the set of variables that occur in E. For a valuation ν ∈ NU such that VE ⊆ U (in which case
we also say that ν is a valuation for E), we define ν(E) = v0u

ν(x1)
1 v1u

ν(x2)
2 v2 · · ·uν(xk)

k vk ∈ Σ∗.
We say that ν is a solution of the equation E = 1 if ν(E) evaluates to the identity element
1 of G. With Sol(E) we denote the set of all solutions ν ∈ NVE of E. We can view Sol(E)
as a subset of Nk. The length of E is defined as |E| = |v0|+

∑k
i=1 |ui|+ |vi|, whereas k is

its depth. If the length of a knapsack expression is not needed, we will write an exponent
expression over G also as E = h0g

x1
1 h1g

x2
2 h2 · · · gxk

k hk where gi, hi ∈ G. We define solvability
of exponent equations over G, ExpEq(G) for short, as the following decision problem:
Input: A finite list of exponent expressions E1, . . . , En over G.
Question: Is

⋂n
i=1 Sol(Ei) non-empty?

The knapsack problem for G, KP(G) for short, is the following decision problem:
Input: A single knapsack expression E over G.
Question: Is Sol(E) non-empty?
We also consider the uniform knapsack problem for powers Gm =

∏m
i=1 Gi with Gi ∼= G. We

denote this problem with KP(G∗). Formally, it is defined as follows:
Input: A number m ≥ 0 (in unary notation) and a knapsack expression E over Gm.
Question: Is Sol(E) non-empty?
It turns out that the problems KP(G∗) and ExpEq(G) are inter-reducible:

I Proposition 3.1. KP(G∗) is decidable if and only if ExpEq(G) is decidable.

Note that the exponent equation v0u
x1
1 v1u

x2
2 v2 · · ·uxk

k vk = 1 is equivalent to the expo-
nent equation (v0u1v

−1
0 )x1(v0v1u2v

−1
1 v−1

0 )x2 · · · (v0 · · · vk−1ukv
−1
k−1 · · · v

−1
0 )xk (v0 · · · vk) = 1.

Hence, it suffices to consider exponent expressions of the form ux1
1 ux2

2 · · ·u
xk

k v.
The group G is called knapsack-semilinear if for every knapsack expression E over G,

the set Sol(E) is a semilinear set of vectors and a semilinear representation can be effectively
computed from E. The following classes of groups only contain knapsack-semilinear groups:

virtually special groups [11]: these are finite extensions of subgroups of graph groups
(aka right-angled Artin groups). The class of virtually special groups is very rich. It
contains all Coxeter groups, one-relator groups with torsion, fully residually free groups,
and fundamental groups of hyperbolic 3-manifolds.
hyperbolic groups [4]
co-context-free groups [8], i.e., groups where the set of all words over the generators that
do not represent the identity is a context-free language. Lehnert and Schweitzer [9] have
shown that the Higman-Thompson groups are co-context-free.

Since emptiness of the intersection of finitely many semilinear sets is decidable, we have:

I Lemma 3.2. If G is knapsack-semilinear, then KP(G∗) and ExpEq(G) are decidable.

An example of a group G, where KP(G) is decidable, but KP(G∗) and ExpEq(G) are
undecidable is the Heisenberg group H3(Z) (the group of all upper triangular (3×3)-matrices
over Z with all diagonal entries equal to 1) [8]. Hence, H3(Z) is not knapsack-semilinear.
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4 Wreath products

Let G andH be groups. Consider the direct sumK =
⊕

h∈H Gh, where Gh is a copy of G. We
view K as the set G(H) of all mappings f : H → G such that supp(f) = {h ∈ H | f(h) 6= 1}
is finite, together with pointwise multiplication as the group operation. The set supp(f) ⊆ H
is called the support of f . The group H has a natural left action on G(H) given by
hf(a) = f(h−1a), where f ∈ G(H) and h, a ∈ H. The corresponding semidirect product
G(H) oH is the wreath product G oH. In other words:

Elements of G oH are pairs (f, h), where h ∈ H and f ∈ G(H).
The multiplication in G o H is defined as follows: Let (f1, h1), (f2, h2) ∈ G o H. Then
(f1, h1)(f2, h2) = (f, h1h2), where f(a) = f1(a)f2(h−1

1 a).
The following intuition might be helpful: An element (f, h) ∈ G oH can be thought of as a
finite multiset of elements of G \ {1G} that are sitting at certain elements of H (the map f)
together with the distinguished element h ∈ H, which can be thought of as a cursor moving
in H. The product (f1, h1)(f2, h2) is computed as follows. First, we shift the finite collection
of G-elements (that corresponds to the mapping f2) by h1: If g ∈ G \ {1G} is sitting at
a ∈ H (i.e., f2(a) = g), then we remove g from a and put it to the new location h1a ∈ H.
This new collection corresponds to the mapping f ′2 : a 7→ f2(h−1

1 a). After this shift, the two
collections of G-elements are multiplied pointwise: If in a ∈ H the elements g1 and g2 are
sitting (i.e., f1(a) = g1 and f ′2(a) = g2), then we put the product g1g2 into the location a.
Finally, the new distinguished H-element (the new cursor position) becomes h1h2.

By identifying f ∈ G(H) with (f, 1H) ∈ G o H and h ∈ H with (1G(H) , h), we regard
G(H) and H as subgroups of G o H. Hence, for f ∈ G(H) and h ∈ H, we have fh =
(f, 1H)(1G(H) , h) = (f, h). There are two natural projection maps σGoH : G oH → H (which is
a morphism) and τGoH : G oH → G(H) with σGoH(f, h) = h and τGoH(f, h) = f . If G (resp.
H) is generated by the set Σ (resp. Γ) with Σ ∩ Γ = ∅, then G oH is generated by the set
{(fa, 1H) | a ∈ Σ} ∪ {(f1G

, b) | b ∈ Γ}, where for g ∈ G, the mapping fg : H → G is defined
by fg(1H) = g and fg(x) = 1G for x ∈ H \ {1H}. We identify this generating set with Σ ] Γ.

5 Main results

In this section, we state the main results of the paper. We begin with a general necessary
condition for knapsack to be decidable for a wreath product. Note that if H is finite, then
G oH is a finite extension of G|H| [10, Proposition 1], meaning that KP(G oH) is decidable if
and only if KP(G|H|) is decidable [11, Theorem 11] (in [11], preservation of NP-membership
was shown, but the proof also yields preservation of decidability). Therefore, we are only
interested in the case that H is infinite.

I Proposition 5.1. Suppose H is infinite. If KP(G o H) is decidable, then KP(H) and
KP(G∗) are decidable.

Of course, as a subgroup of G oH, H inherits decidability of knapsack. On the other hand,
given m ∈ N, one can easily compute an embedding of Gm into G oH and thus solve knapsack
instances over Gm uniformly in m. Proposition 5.1 shows that KP(H3(Z) oZ) is undecidable:
It was shown in [8] that KP(H3(Z)) is decidable, whereas for some m > 1, the problem
KP(H3(Z)m) is undecidable.

Proposition 5.1 raises the question whether decidability of KP(H) and KP(G∗) implies
decidability of KP(G oH). We disprove this in the following theorem. The second statement
is due to the fact that for every ` ∈ N, KP(H3(Z)× Z`) is decidable, as shown in [8].
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I Theorem 5.2. There is an ` ∈ N such that for every G 6= 1, KP(G o (H3(Z) × Z`))
is undecidable. In particular, there are groups G, H such that KP(G∗) and KP(H) are
decidable and KP(G oH) is undecidable.

We therefore need to strengthen the assumptions on H in order to show decidability of
KP(G o H). Under the weak additional assumption of knapsack-semilinearity for H, we
obtain a partial converse to Proposition 5.1. In Section 6 we prove:

I Theorem 5.3. Let H be knapsack-semilinear and infinite. Then KP(G oH) is decidable if
and only if KP(G∗) is decidable.

If G is knapsack-semilinear, the solution sets are effectively semilinear:

I Theorem 5.4. The group G oH is knapsack-semilinear if and only if both G and H are
knapsack-semilinear.

Since every free abelian group is clearly knapsack-semilinear, it follows that the iterated
wreath products G1,r = Zr and Gd+1,r = Zr oGd,r are knapsack-semilinear. By the well-known
Magnus embedding, the free solvable group Sd,r embeds into Gd,r. Hence, we get:

I Corollary 5.5. Every free solvable group is knapsack-semilinear. Hence, solvability of
exponent equations is decidable for free solvable groups.

Finally, we consider the complexity of knapsack for wreath products. In Section 7 we prove
NP-completeness for an important special case:

I Theorem 5.6. For every finitely generated abelian group G 6= 1, KP(G oZ) is NP-complete.

6 (Un)decidability: Proofs of Theorems 5.2, 5.3, and 5.4

Undecidability. We begin with a proof sketch for Theorem 5.2. Here, the only property of
H3(Z) that we use is that solvability of knapsack instances of some fixed depth k over the
group H3(Z)m is undecidable for some m ≥ 0, which was shown in [8]. Using this property,
we prove that KP(Gm o (H3(Z)× Zk·m)) is undecidable. Since every group Gn oH embeds
into G o (H × Z), this implies undecidability of KP(G o (H3(Z)× Zk·m+1)).

Undecidability of KP(Gm o (H3(Z) × Zk·m)) is shown as follows. Consider a knapsack
expression E over H3(Z)m of depth k. We turn E into m knapsack expressions E1, . . . , Em
over H3(Z) of depth k so that E has a solution if and only if there is a common solution
to E1, . . . , Em so that for every i ∈ [1, k], the i-th variable for each expression has the same
value. We construct a knapsack expression over Gm o (H3(Z) × Zk·m) as follows. We pick
an a ∈ G \ {1} and use it as a “breadcrumb”: It is placed at a particular cursor position in
H3(Z)×Zk·m in one of the m coordinates of Gm and is later collected by multiplying a−1 in
the same coordinate of Gm. Fix a correspondence between the k ·m variables in E1, . . . , Em
and the coordinates of Zk·m. Our new expression operates in three phases. The first phase
performs for each j = 1, . . . ,m the following. It places a breadcrumb in the j-th coordinate
of Gm and then moves the cursor by some value of Ej . At the same time, for each variable in
Ej , it moves the cursor in the corresponding coordinate of Zk·m by the value of that variable.

In the second phase, we check that for each i ∈ [1, k], the i-th variable for each expression
has the same value and move the cursor back to the origin. To this end, we move the cursor
in the Zk·m-coordinates so that two coordinates that correspond to two variables that are to
be compared are decremented simultaneously. After this, we collect the first breadcrumb.
In the third phase, it remains to check that each Ej evaluates to 1 ∈ H3(Z). Since we are
already in the origin, this amounts to checking that we can collect the remaining breadcrumbs
2, . . . ,m by moving just in the Zk·m-coordinates. The full proof can be found in [4].
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Decidability. The rest of this section is devoted to the positive results, Theorems 5.3
and 5.4. Let us fix a wreath product G oH. Recall the projections σ = σGoH : G oH → H

and τ = τGoH : G oH → G(H) from section 4. For g ∈ G oH we write supp(g) for supp(τ(g)).
A knapsack expression E = h0g

x1
1 h1 · · · gxk

k hk over G oH is called torsion-free if for each
i ∈ [1, k], either σ(gi) = 1 or σ(gi) has infinite order. A simple conjugation argument shows
that it suffices to prove Theorem 5.3 and 5.4 for torsion-free knapsack expressions. For the
rest of this section let us fix a torsion-free knapsack expression E over G oH. We can assume
that E = gx1

1 gx2
2 · · · g

xk

k gk+1 (note that if g has infinite order than also c−1gc has infinite
order). We partition the set VE = {x1, . . . , xk} of variables in E as VE = S ]M , where
S = {xi ∈ VE | σ(gi) = 1} and M = {xi ∈ VE | ord(σ(gi)) = ∞}. In this situation, the
following notation will be useful. If U = A ]B for a set of variables U ⊆ V and µ ∈ NA and
κ ∈ NB, then we write µ⊕ κ ∈ NU for the valuation with (µ⊕ κ)(x) = µ(x) for x ∈ A and
(µ⊕ κ)(x) = κ(x) for x ∈ B.

Computing powers. A key observation in our proof is that in order to compute the group
element τ(gm)(h) (in the cursor intuition, this is the element labeling the point h ∈ H in the
wreath product element gm) for h ∈ H and g ∈ G oH, where σ(g) has infinite order, one only
has to perform at most |supp(g)| many multiplications in G, yielding a bound independent
of m. We begin by introducing a partial order on H. Suppose h ∈ H has infinite order (i.e.
ord(h) =∞). For h′, h′′ ∈ H, we write h′ 4h h′′ if there is an n ≥ 0 with h′ = hnh′′. Then,
4h is transitive. Moreover, since h has infinite order, 4h is also anti-symmetric and thus a
partial order. Observe that if knapsack is decidable for H, given h, h′, h′′ ∈ H, we can decide
whether h has infinite order and whether h′ 4h h′′. This notion is used because for g ∈ G oH,
the order 4σ(g) determines how to evaluate the mapping τ(gm) at a certain element of H.
We will sometimes want to multiply all elements ai for i ∈ I such that the order in which
we multiply is specified by some linear order on I. If (I,≤) is a finite linearly ordered set
with I = {i1, . . . , in}, i1 < i2 < . . . < in, then we write

∏≤
i∈I ai for

∏n
j=1 aij . If the order ≤

is clear from the context, we just write
∏
i∈I ai.

Addresses. A central concept in our proof is that of an address. A solution to the equation
E = 1 can be thought of as a sequence of instructions on how to walk through the Cayley
graph of H and place elements of G at those nodes. Here, being a solution means that in
the end, all the nodes contain the identity of G. In order to express that every node carries
1 in the end, we want to talk about at which points in the product E = gx1

1 gx2
2 · · · g

xk

k gk+1
a particular node is visited. An address is a datum that contains just enough information
about such a point to determine which element of G has been placed during that visit.

A pair (i, h) with i ∈ [1, k + 1], and h ∈ H is called an address if h ∈ supp(gi). The set of
addresses of the expression E is denoted by A. Note that A is finite and computable. To
each address (i, h), we associate the group element γ(i, h) = gi of the expression E.

A linear order on addresses. We will see that if a node is visited more than once, then (i)
each time1 it does so at a different address and (ii) the order of these visits only depends on
the addresses. To capture the order of these visits, we define a linear order on addresses.

We partition A =
⋃
i∈[1,k+1] Ai, where Ai = {(i, h) | h ∈ supp(gi)} for i ∈ [1, k+ 1]. Then,

for a ∈ Ai and a′ ∈ Aj with i < j, we let a < a′. It remains to order addresses within each

1 Here, we count two visits inside the same factor gi, i ∈ [1, k], with σ(gi) = 1 as one visit.
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32:8 Knapsack Problems for Wreath Products

Ai. Within Ak+1, we pick an arbitrary order. If i ∈ [1, k] and σ(gi) = 1, we also order Ai
arbitrarily. Finally, if i ∈ [1, k] and σ(gi) has infinite order, then we pick a linear order ≤ on
Ai so that for h, h′ ∈ supp(gi), h 4σ(gi) h

′ implies (i, h) ≤ (i, h′). Note that this is possible
since 4σ(gi) is a partial order on H.

Cancelling profiles. In order to express that a solution for E yields the identity at every
node of the Cayley graph of H, we need to compute the element of G that is placed after the
various visits at a particular node. We therefore associate to each address an expression over
G that yields the element placed during a visit at this address a ∈ A. In analogy to τ(g) for
g ∈ G oH, we denote this expression by τ(a). If a = (k+ 1, h), then we set τ(a) = τ(gk+1)(h).
Now, let a = (i, h) for i ∈ [1, k]. If σ(gi) = 1, then τ(a) = τ(gi)(h)xi . Finally, if σ(gi) has
infinite order, then τ(a) = τ(gi)(h).

This allows us to express the element of G that is placed at a node h ∈ H if h has
been visited with a particular set of addresses. To each subset C ⊆ A, we assign the
expression EC =

∏
a∈C τ(a), where the order of multiplication is given by the linear order on

A. Observe that only variables in S ⊆ {x1, . . . , xk} occur in EC . Therefore, given κ ∈ NS ,
we can evaluate κ(EC) ∈ G. We say that C ⊆ A is κ-cancelling if κ(EC) = 1.

In order to record which sets of addresses can cancel simultaneously (meaning: for the
same valuation), we use profiles. A profile is a subset of P(A) (the power set of A). A profile
P ⊆ P(A) is said to be κ-cancelling if every C ∈ P is κ-cancelling. A profile is cancelling if
it is κ-cancelling for some κ ∈ NS .

Clusters. We also need to express that there is a node h ∈ H that is visited with a particular
set of addresses. To this end, we associate to each address a ∈ A another expression σ(a).
As opposed to τ(a), the expression σ(a) is over H and variables M ′ = M ∪ {yi | xi ∈ M}.
Let a = (i, h) ∈ A. When we define σ(a), we will also include factors σ(gj)xj and σ(gj)yj

where σ(gj) = 1. However, since these factors do not affect the evaluation of the expression,
this should be interpreted as leaving out such factors.
1. If i = k + 1 then σ(a) = σ(g1)x1 · · ·σ(gk)xkh.
2. If i ∈ [1, k] then σ(a) = σ(g1)x1 · · ·σ(gi−1)xi−1σ(gi)yih.
We now want to express that when multiplying gν(x1)

1 · · · gν(xk)
k gk+1, there is a node h ∈ H

such that the set of addresses with which one visits h is precisely C ⊆ A. In this case, we will
call C a cluster. Let µ ∈ NM and µ′ ∈ NM ′ . We write µ′ @ µ if µ′(xi) = µ(xi) for xi ∈M and
µ′(yi) ∈ [0, µ(xi)− 1] for every yi ∈M ′. We can now define the set of addresses at which one
visits h ∈ H: For h ∈ H, let Aµ,h = {a ∈ A | µ′(σ(a)) = h for some µ′ ∈ NM ′ with µ′ @ µ}.
A subset C ⊆ A is called a µ-cluster if C 6= ∅ and there is an h ∈ H such that C = Aµ,h.
It can now be shown that if ν = µ ⊕ κ for κ ∈ NS and µ ∈ NM , evaluating τ(ν(E)) at a
node h ∈ H amounts to evaluating κ on the expression EC where C is the µ-cluster Aµ,h.
In other words, we have τ(ν(E))(h) = κ(EC). From this, we obtain a characterization of
solutions of the knapsack expression E.

I Proposition 6.1. Let ν ∈ NVE with ν = µ ⊕ κ for µ ∈ NM and κ ∈ NS. Then ν(E) = 1
if and only if σ(ν(E)) = 1 and there is a κ-cancelling profile P such that every µ-cluster is
contained in P .

This allows us to decompose a knapsack instance for G oH into two tasks: determining which
profiles are cancelling and finding a µ ∈ NM such that all µ-clusters are contained in a given
profile. The first task can be reduced to solving exponent equation systems over G: For each
profile P ⊆ P(A), let KP ⊆ NS be the set of all κ ∈ NS such that P is κ-cancelling.
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I Lemma 6.2. Let P be a given profile. If KP(G∗) is decidable, then it is decidable whether
KP 6= ∅. If G is knapsack-semilinear, then KP ⊆ NS is effectively semilinear.

For our second task, we employ the effective semilinearity of knapsack solution sets for H.
Let LP ⊆ NM be the set of all µ ∈ NM such that every µ-cluster belongs to P .

I Lemma 6.3. Let H be knapsack-semilinear. For every profile P ⊆ P(A), the set LP is
effectively semilinear.

We can define LP in Presburger arithmetic: In order to express that a given C ⊆ A is a
µ-cluster, we employ universal quantification to state that no other address a ∈ A \ C is
visited at the same node as the addresses in C. This leads to a Π2-formula.

We can now prove Theorem 5.3 and 5.4. Let H be knapsack-semilinear and let KP(G∗)
be decidable. Observe that for ν = µ⊕ κ, where µ ∈ NM and κ ∈ NS , the value of σ(ν(E))
only depends on µ. The set T ⊆ NM of all µ such that σ(ν(E)) = 1 is effectively semilinear by
knapsack-semilinearity of H. Proposition 6.1 tells us that Sol(E) =

⋃
P⊆P(A) KP ⊕ (LP ∩ T )

and LP is effectively semilinear by Lemma 6.3. This implies Theorem 5.3: We can decide
solvability of E by checking, for each profile P ⊆ P(A), whether KP 6= ∅ (which is decidable
by Lemma 6.2) and whether LP ∩ T 6= ∅. Moreover, if G is knapsack-semilinear, then KP

and thus Sol(E) are effectively semilinear as well. This proves Theorem 5.4.

7 Complexity: Proof of Theorem 5.6

Throughout the section we fix a finitely generated group G. The goal of this section is to
show that if G is abelian and non-trivial, then KP(G o Z) is NP-complete.

7.1 Periodic words over groups
With Gω we denote the group of all mappings f : N→ G with the pointwise multiplication
(fg)(n) = f(n)g(n). The identity element is the mapping id with id(n) = 1 for all n ∈ N.
If G is abelian, then also Gω is abelian and we write

∑n
i=1 fi for f1 · · · fn with fi ∈ Gω. A

function f ∈ Gω is periodic with period q ≥ 1 if f(k) = f(k + q) for all k ≥ 0. Note that q is
not assumed to be minimal. Let Gρ be the set of all periodic functions from Gω. With G+

we denote the set of all tuples (g0, . . . , gq−1) over G of arbitrary length q ≥ 1. A periodic
function f ∈ Gρ with period q can be specified by the tuple (f(0), . . . , f(q − 1)) ∈ G+.
Vice versa, a tuple u = (g0, . . . , gq−1) ∈ G+ defines the periodic function fu ∈ Gω with
fu(n · q + r) = gr for n ≥ 0 and 0 ≤ r < q. One can view this mapping as the sequence uω
obtained by taking infinitely many repetitions of u. If f1 is periodic with period q1 and f2 is
periodic with period q2, then f1f2 is periodic with period q1q2 (in fact, lcm(q1, q2)). Hence,
Gρ forms a countable subgroup of Gω. Note that Gρ is not finitely generated: The subgroup
generated by elements fi ∈ Gρ with period qi (1 ≤ i ≤ n) contains only functions with period
lcm(q1, . . . , qn). For n ≥ 0 let Gρn ≤ Gρ be the subgroup of all f ∈ Gρ with f(k) = 1 for all
0 ≤ k ≤ n− 1. The uniform membership problem for subgroups Gρn, Membership(Gρ∗), is
the following problem:
Input: Tuples u1, u2, . . . , un ∈ G+ and a binary encoded number m.
Question: Does the product fu1fu2 · · · fun

∈ Gρ belong to Gρm?

I Theorem 7.1. For every finitely generated abelian group G, Membership(Gρ∗) can be
solved in polynomial time.
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Proof. We use the additive notation for Gω. Let u1, . . . , un ∈ G+, qi = |ui|, and f =∑n
i=1 fui

. We show that if there exists a position m such that f(m) 6= 0, then there exists a
position m <

∑n
i=1 qi such that f(m) 6= 0. This suffices to prove the theorem since the word

problem for a finitely generated abelian group can be solved in polynomial time.
Let m ≥

∑n
i=1 qi and assume that f(j) = 0 for all j with m −

∑n
i=1 qi ≤ j < m. We

show that f(m) = 0, which proves the above claim.
Note that fui

(j) = fui
(j − qi) for all j ≥ qi, 1 ≤ i ≤ n. For M ⊆ [1, n] let qM =

∑
i∈M qi.

Moreover, for 1 ≤ k ≤ n letMk = {M ⊆ [1, n], |M | = k}. For 1 ≤ k ≤ n− 1 we get∑
M∈Mk

∑
i∈M

fui(m−qM ) =
∑

M∈Mk

∑
i∈[1,n]\M

−fui(m−qM ) =
∑

M∈Mk

∑
i∈[1,n]\M

−fui(m−qM−qi)

=
n∑
i=1

∑
M∈Mk,i/∈M

−fui
(m− qM∪{i}) =

∑
M∈Mk+1

∑
i∈M
−fui

(m− qM ).

We can write

f(m) =
n∑
i=1

fui
(m) =

n∑
i=1

fui
(m− qi) =

∑
M∈M1

∑
i∈M

fui
(m− qM ).

From the above identities we get by induction:

f(m) = ±
∑

M∈Mn

∑
i∈M

fui(m− qM ) = ±
∑
i∈[1,n]

fui(m− q[1,n]) = ±f(m−
n∑
i=1

qi) = 0.

This proves the claim and hence the theorem. J

7.2 Automata for Cayley representations
The main technical result of this section is:

I Proposition 7.2. Let G be a finitely generated abelian group. If ExpEq(G) ∈ NP and
Membership(Gρ∗) ∈ NP, then also KP(G o Z) ∈ NP.

We start with some definitions. An interval [a, b] ⊆ Z supports an element (f, d) ∈ G o Z if
{0, d} ∪ supp(f) ⊆ [a, b]. If (f, d) ∈ G o Z is a product of length n over the generators, then
the minimal interval [a, b] which supports (f, d) satisfies b− a ≤ n. A knapsack expression
E = v0u

x1
1 v1 · · ·uxk

k vk is called rigid if each ui evaluates to an element (fi, 0) ∈ G o Z.
Intuitively, the movement of the cursor is independent from the values of the variables xi up
to repetition of loops. In particular, every variable-free expression is rigid.

In the following we define the so called Cayley representation of a rigid knapsack expression.
This is a finite word, where every symbol is a marked knapsack expression over G. A marked
knapsack expression over G is of the form E, E, E, or E, where E is a knapsack expression
over G. We say that E and E (resp., E and E) are top-marked (resp., bottom-marked).

Let E = v0u
x1
1 v1 · · ·uxk

k vk be a rigid knapsack expression over G o Z. For an assignment
ν let (fν , d) ∈ G o Z be the element to which ν(E) evaluates, i.e. (fν , d) = ν(E). Note that
d does not depend on ν. Because of the rigidity of E, there is an interval [a, b] ⊆ Z that
supports (fν , d) for all assignments ν. For each j ∈ [a, b] let Ej be a knapsack expression
over G with the variables x1, . . . , xk such that fν(j) = ν(Ej) for all assignments ν. Then we
call the formal expression

r =


EaEa+1 · · · E−1 E0 E1 · · · Ed−1 EdEd+1 · · · Eb if d > 0
EaEa+1 · · · E−1 E0 E1 · · · Eb if d = 0
EaEa+1 · · · Ed−1 EdEd+1 · · · E−1 E0 E1 · · · Eb if d < 0

.
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Figure 1 Cayley representation.

a Cayley representation of E (or E is represented by r). Formally, a Cayley representation
r is a sequence of marked knapsack expressions, and the length of this sequence is denote
by |r|. In our examples, we separate for better readability consecutive marked knapsack
expressions in r by commas. By the above definition, r depends on the chosen supporting
interval [a, b]. However, compared to the representation of the minimal supporting interval,
any other Cayley representation differs only by adding 1’s (i.e., trivial knapsack expressions
over G) at the left and right end of r.

A Cayley representation of E records for each point in Z an expression that describes
which element will be placed at that point. Multiplying an element of G o Z always begins
at a particular cursor position; in a Cayley representation, the marker on top specifies
the expression that is placed at the cursor position in the beginning. Moreover, a Cayley
representation describes how the cursor changes when multiplying ν(E): The marker on the
bottom specifies where the cursor is located in the end.

I Example 7.3. Consider the wreath product F2 oZ, where F2 is the free group generated by
{a, b} and Z is generated by t, and the rigid knapsack expression E = ux1u2u

y
3u

5
4 with u1 =

at−1at2bt−1 (represented by a a b), u2 = t (represented by 1 1), u3 = btbtbt−2 (represented
by b b b), and u4 = at−1bt2b−1tatat−1 (represented by b a b−1 a a).

A Cayley representation of ux1 is ax ax b−1 and a Cayley representation of uy3 is by by by.
The diagram in Figure 1 illustrates how to compute a Cayley representation r of E, which is
shown in the bottom line. Here, we have chosen the supporting interval minimal. Note that
if we replace the exponents 5 in u5

4 by a larger number, then we only increase the number of
repetitions of the factor a, a2 in the Cayley representation.

Let E be an arbitrary knapsack expression over G o Z. We can assume that E has the
form ux1

1 · · ·u
xk

k uk+1. Let X0 be the set of all variables xi where ui evaluates to an element
(f, 0) ∈ G oZ, and let X1 = {x1, . . . , xk} \X0. For a partial assignment ν : X1 → N we obtain
a rigid knapsack expression Eν by replacing in E every variable xi ∈ X1 by ν(xi). A set R
of Cayley representations is a set representation of E if

for each assignment ν : X1 → N there exists r ∈ R such that r represents Eν ,
for each r ∈ R there exists an assignment ν : X1 → N such that r represents Eν and
ν(x) ≤ |r| for all x ∈ X1.

I Example 7.4. Consider the non-rigid knapsack expression E′ = ux1u2u
y
3u
z
4 over F2 o Z,

where u1, u2, u3, u4 are taken from Example 7.3. We have X0 = {x, y} and X1 = {z}. A set
representation R of E′ consists of the following Cayley representations: ax, ax, bxby, by, by
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for ν(z) = 0, ax, axb, bxbya, byb−1, bya, a for ν(z) = 1, and

ax, axb, bxbya, by, bya2, (a, a2)ν(z)−2, ab−1, a, a for ν(z) ≥ 2.

Only finitely many different marked knapsack expressions appear in this set representation
R, and R is clearly a regular language over the finite alphabet consisting of this finitely many
marked knapsack expressions.

We can now sketch the proof of Proposition 7.2. The main idea is to construct a non-
deterministic finite automaton (NFA) that accepts a set representation of E = ux1

1 · · ·u
xk

k uk+1.
Let n = |E|. First, we compute polynomial-size NFAs Ai (i ∈ [1, k + 1]), where Ai accepts a
set representation of uxi

i (or uk+1 for i = k + 1). For uk+1 and expressions uxi
i with xi ∈ X0

these set representations are singletons and the construction of Ai is straightforward, see e.g.
Example 7.3. For expressions uxi

i with xi ∈ X1 one has to construct an NFA that accepts a
set containing a Cayley representation of every umi (a variable-free knapsack expression over
G) for m ≥ 0. The main observation is that all these Cayley representations are periodic
(except for a short prefix and suffix) with the same period.

From the NFAs Ai one obtains an NFA A accepting a set representation of E using a
simple product construction. This NFA A has exponential size in n, so we cannot construct
it. However, its exponential size bound on A yields that E = 1 has a solution if and only
if there exists a solution ν such that ν(x) is exponentially bounded in n for all x ∈ X1.
Since each Ai accepts a set representation of uxi

i , i ∈ [1, k] or of uk+1, this implies that
solvability of E is witnessed by words αi ∈ L(Ai) for i ∈ [1, k + 1] whose length is bounded
exponentially in n. The periodic nature of the words αi allows to represent these words in
polynomial space as a concatenation of powers βm for binary encoded numbers m. We guess
such representations of the αi.

It remains to verify that the guessed words αi indeed witness a solution of E = 1. This
means that there exists a valuation ν : X0 → N such that for every position p the (k+1)-tuple
consisting of the p-th entries of the αi evaluates to 1 under ν. There exist only polynomially
many positions p where an expression ux with x ∈ X0 occurs in some αi. Thus, we can
construct from all these positions an instance of ExpEq(G). The remaining pieces of the αi
only contain group elements from G and are periodic. The question, whether they cancel at
all remaining positions is an instance of Membership(Gρ∗).

Proposition 7.2 yields the NP upper bound for Theorem 5.6: If G is a finitely generated
abelian group, then ExpEq(G) corresponds to the solvability problem for linear equation
systems over the integers, possibly with modulo-constraints. This problem is well known to
be in NP. Moreover, Membership(Gρ∗) can be solved in polynomial time by Theorem 7.1.

It remains to prove the NP-hardness part of Theorem 5.6. Using a reduction from
3-dimensional matching, one can show the following [4]:

I Theorem 7.5. If G is non-trivial and H contains an element of infinite order, then
knapsack and subset sum for G oH are NP-hard.

8 Open problems

The main open problem is to characterize those G and H for which KP(G oH) is decidable.
Concerning complexity, we are confident that our NP upper bound for KP(G o Z), where G
is finitely generated abelian, can be extended to KP(G oH), where H is a finitely generated
free group or Zn for some n ≥ 0. Another question is whether the assumption on G being
abelian can be weakened. In particular, we want to investigate whether polynomial time
algorithms exist for Membership(Gρ∗) for certain non-abelian groups G.
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Abstract
We study the parameterized complexity of the Bounded-Degree Vertex Deletion problem (BDD),
where the aim is to find a maximum induced subgraph whose maximum degree is below a given
degree bound. Our focus lies on parameters that measure the structural properties of the input
instance. We first show that the problem is W[1]-hard parameterized by a wide range of fairly
restrictive structural parameters such as the feedback vertex set number, pathwidth, treedepth,
and even the size of a minimum vertex deletion set into graphs of pathwidth and treedepth at
most three. We thereby resolve the main open question stated in Betzler, Bredereck, Niedermeier
and Uhlmann (2012) concerning the complexity of BDD parameterized by the feedback vertex
set number. On the positive side, we obtain fixed-parameter algorithms for the problem with
respect to the decompositional parameter treecut width and a novel problem-specific parameter
called the core fracture number.
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1 Introduction

This paper studies the Bounded-Degree Vertex Deletion problem (BDD): given an
undirected graph G, a degree bound d, and a limit `, determine whether it is possible to
delete at most ` vertices from G in order to obtain a graph of maximum degree at most d.
Aside from being a natural generalization of the classical Vertex Cover problem, BDD
has found applications in areas such as computational biology [17] and is the dual problem
of the so-called s-Plex Detection problem in social network analysis [30, 3, 31, 35].

It is not surprising that the complexity of BDD and several of its variants has been studied
extensively by the theory community in the past years [5, 4, 7, 6, 11, 26, 34, 35]. Since the
problem is NP-complete in general, it is natural to ask under which conditions does the
problem become tractable. In this direction, the parameterized complexity paradigm [13, 33,
9] allows a more refined analysis of the problem’s complexity than classical complexity. In the
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parameterized setting, we associate each instance with a numerical parameter k and are most
often interested in the existence of a fixed-parameter algorithm, i.e., an algorithm solving the
problem in time f(k) · |V (G)|O(1) for some computable function f . Parameterized problems
admitting such an algorithm belong to the class FPT; on the other hand, parameterized
problems that are hard for the complexity class W[1] or W[2] do not admit fixed-parameter
algorithms (under standard complexity assumptions).

In general, there exist two notable approaches for selecting parameters: a parameter
may either originate from the formulation of the problem itself (often called natural pa-
rameters), or rather from the structure of the input graph (so-called structural parameters,
most prominently represented by the decomposition-based parameter treewidth tw). The
parameterized complexity of BDD has already been studied extensively through the lens
of natural parameters (especially d and `). In particular, BDD is known to be FPT when
parameterized by d+ ` [34, 17, 31], W[2]-hard when parameterized only by ` [17], and NP-
complete when parameterized only by d (as witnessed by the case of d = 0, i.e., Vertex
Cover). The complexity of BDD is also fairly well understood when considering combina-
tions of natural and structural parameters: it is FPT when parameterized by tw + d due to
Courcelle’s Theorem [8] and has been shown to be FPT when parameterized by tw + ` [5].

Given the above, it is fairly surprising that the problem has remained fairly unexplored
when viewed through the lens of structural parameters only, i.e., in the case where we impose
no restrictions on the problem formulation itself but only on the structure of the graph. BDD
was shown not to be FPT when parameterized by treewidth [5], complementing the previous
O(ntw+1) algorithm of Dessmark et al. [11]. The only structural parameter which is known
to make the problem fixed-parameter tractable is the feedback edge set number, i.e., the
minimum number of edges whose deletion results in a forest [5].

Contribution

The goal of this paper is to provide new insight into the complexity of BDD parameterized
by the structure of the input graph. Our first main result shows that BDD is W[1]-hard
parameterized by the feedback vertex set number, i.e., the minimum number of vertices whose
deletion results in a forest. This resolves the main open question in [5]. Interestingly, our
result is significantly stronger since we show that hardness even applies in the case that
the remaining parts, after deleting the feedback vertex set, are trees of height three. This
rules out fixed-parameter algorithms w.r.t. most of the remaining “classical” decomposition-
based structural parameters such as pathwidth and treedepth [32] as well as w.r.t. the vertex
deletion distance [19, 32] to bounded pathwidth, treedepth, and treewidth. On the way to
our hardness result we show hardness for several multidimensional variants of the classical
subset sum problem parameterized by the number of dimensions, which we believe are
interesting on their own.

In light of the above, it is natural to ask whether there exist natural decomposition-based
parameters for which BDD is fixed-parameter tractable. Our main algorithmic result answers
this question affirmatively: we obtain a fixed-parameter algorithm utilizing the recently
introduced structural parameter called treecut width. The importance of treecut width is
that it plays a similar role with respect to the fundamental graph operation of immersion
as the graph parameter treewidth plays with respect to the minor operation [36, 29]. Up to
now, only a handful of problems are known to be FPT when parameterized by treecut width
but W[1]-hard when parameterized by treewidth [20]. Furthermore, unlike previously known
algorithms using treecut width, this is the first of its kind which does not use an Integer
Linear Programming formulation but instead relies purely on combinatorial arguments.
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Our second algorithmic result focuses on structural parameters which are not based on
any particular decomposition of the graph, but instead measure the “vertex-deletion dis-
tance” to a certain graph property. Such structural parameters have been successfully used
in the past for a plethora of other difficult problems [19, 22, 27, 15, 14, 21]. In this context
and taking into account the strong lower bounds obtained in Section 3, we introduce a struc-
tural parameter which is specifically tailored to BDD and which we call the core fracture
number. Roughly speaking, the core fracture number k is the vertex deletion distance to a
graph where each connected component only contains at most k vertices which exceed the
degree bound d. We show that computing the core fracture number is FPT which in turn
gives rise to a fixed-parameter algorithm for BDD; the latter is achieved by identifying and
formalizing a type-aggregation condition, allowing for an encoding of the problem into an
Integer Linear Program with a controlled number of integer variables. This also resolves the
question from [5] if BDD is FPT parametrized by vertex cover.

Finally, we exclude the existence of a polynomial kernel [13, 9] for BDD parameterized by
the treecut width and core fracture number, and compare the two parameters in Section 5.

2 Preliminaries

2.1 Basic Notation
We use standard terminology for graph theory, see for instance [12]. All graphs except for
those used to compute the torso-size in Subsection 2.3 are simple; the multigraphs used in
Subsection 2.3 have loops, and each loop increases the degree of the vertex by 2.

Let G be a graph. We denote by V (G) and E(G) its vertex and edge set, respectively.
For a vertex v ∈ V (G), let NG(v) = {y ∈ V (G) : vy ∈ E(G)}, NG[v] = NG(v) ∪ {v}, and
degG(v) denote its open neighborhood, closed neighborhood, and degree, respectively. For
a subset X ⊆ V (G), the (open) neighborhood NG(X) of X is defined as

⋃
x∈X N(x) \ X.

The set NG[X] refers to the closed neighborhood of X defined as NG(X) ∪X. We refer to
the set NG(V (G) \X) as ∂G(X); this is the set of vertices in X which have a neighbor in
V (G)\X. We omit the lower index G, if G is clear from the context. For a vertex set A, we
use G−A to denote the graph obtained from G by deleting all vertices in A. We use [i] to
denote the set {0, 1, . . . , i}. For completeness, we provide a formal definition of our problem
of interest below.

Bounded-Degree Vertex Deletion (BDD)

Input: An undirected graph G = (V,E) and integers d ≥ 0 and ` ≥ 0.
Question: Is there a subset V ′ ⊆ V with |V ′| ≤ ` whose removal from G yields

a graph in which each vertex has degree at most d?

2.2 Parameterized Complexity
A parameterized problem P is a subset of Σ∗×N for some finite alphabet Σ. Let L ⊆ Σ∗ be
a classical decision problem for a finite alphabet, and let p be a non-negative integer-valued
function defined on Σ∗. Then L parameterized by p denotes the parameterized problem
{ (x, p(x)) | x ∈ L } where x ∈ Σ∗. For a problem instance (x, k) ∈ Σ∗ × N we call x the
main part and k the parameter. A parameterized problem P is fixed-parameter tractable
(FPT in short) if a given instance (x, k) can be solved in time O(f(k) · p(|x|)) where f is
an arbitrary computable function of k and p is a polynomial function; we call algorithms
running in this time fixed-parameter algorithms. We refer the reader to [13] for more details
on parameterized complexity.

STACS 2018
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Parameterized complexity classes are defined with respect to fpt-reducibility. A parame-
terized problem P is fpt-reducible to Q if in time f(k) · |x|O(1), one can transform an instance
(x, k) of P into an instance (x′, k′) of Q such that (x, k) ∈ P if and only if (x′, k′) ∈ Q,
and k′ ≤ g(k), where f and g are computable functions depending only on k. Central to
parameterized complexity is the following hierarchy of complexity classes, defined by the
closure of canonical problems under fpt-reductions: FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ XP. All
inclusions are believed to be strict. In particular, FPT 6= W[1] under the Exponential Time
Hypothesis [23].

The class W[1] is the analog of NP in parameterized complexity. A major goal in pa-
rameterized complexity is to distinguish between parameterized problems which are in FPT
and those which are W[1]-hard, i.e., those to which every problem in W[1] is fpt-reducible.
There are many problems shown to be complete for W[1], or equivalently W[1]-complete,
including the Multi-Colored Clique (MCC) problem [13].

2.3 Treecut Width
The notion of treecut decompositions was first proposed by Wollan [36], see also [29]. A
family of subsets X1, . . . , Xk of X is a near-partition of X if they are pairwise disjoint and⋃k
i=1Xi = X, allowing the possibility of Xi = ∅.

I Definition 1. A treecut decomposition of G is a pair (T,X ) which consists of a rooted tree
T and a near-partition X = {Xt ⊆ V (G) : t ∈ V (T )} of V (G). A set in the family X is
called a bag of the treecut decomposition.

For any node t of T other than the root r, let e(t) = ut be the unique edge incident
to t on the path to r. Let Tu and Tt be the two connected components in T − e(t) which
contain u and t, respectively. Note that (

⋃
q∈Tu

Xq,
⋃
q∈Tt

Xq) is a near-partition of V (G),
and we use cut(t) to denote the set of edges with one endpoint in each part. We define the
adhesion of t (adhT (t) or adh(t) in brief) as |cut(t)|; if t is the root, we set adhT (t) = 0
and cut(t) = ∅.

The torso of a treecut decomposition (T,X ) at a node t, written as Ht, is the graph
obtained from G as follows. If T consists of a single node t, then the torso of (T,X ) at t is
G. Otherwise let T1, . . . , T` be the connected components of T − t. For each i = 1, . . . , `, the
vertex set Zi ⊆ V (G) is defined as the set

⋃
b∈V (Ti)Xb. The torso Ht at t is obtained from

G by consolidating each vertex set Zi into a single vertex zi (this is also called shrinking in
the literature). Here, the operation of consolidating a vertex set Z into z is to substitute Z
by z in G, and for each edge e between Z and v ∈ V (G) \ Z, adding an edge zv in the new
graph. We note that this may create parallel edges.

The operation of suppressing (also called dissolving in the literature) a vertex v of degree
at most 2 consists of deleting v, and when the degree is two, adding an edge between the
neighbors of v. Given a connected graph G and X ⊆ V (G), let the 3-center of (G,X) be the
unique graph obtained from G by exhaustively suppressing vertices in V (G) \X of degree
at most two. Finally, for a node t of T , we denote by H̃t the 3-center of (Ht, Xt), where Ht

is the torso of (T,X ) at t. Let the torso-size tor(t) denote |H̃t|.

I Definition 2. The width of a treecut decomposition (T,X ) of G is max
t∈V (T )

{adh(t), tor(t)}.

The treecut width of G, or tcw(G) in short, is the minimum width of (T,X ) over all treecut
decompositions (T,X ) of G.

We conclude this subsection with some notation related to treecut decompositions. Given
a tree node t, let Tt be the subtree of T rooted at t. Let Yt =

⋃
b∈V (Tt)Xb, and let Gt denote
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Figure 1 A graph G and a width-3 treecut decomposition of G, including the torso-size (left
value) and adhesion (right value) of each node.

the induced subgraph G[Yt]. The depth of a node t in T is the distance of t from the root
r. The vertices of ∂t = ∂G(Yt) are called the border at node t. A node t 6= r in a rooted
treecut decomposition is thin if adh(t) ≤ 2 and bold otherwise. For a node t, we let Bt and
At denote the set of children of t which are thin and bold, respectively.

While it is not known how to compute optimal treecut decompositions efficiently, there
exists a fixed-parameter 2-approximation algorithm which fully suffices for our purposes.

I Theorem 3 ([24]). There exists an algorithm that takes as input an n-vertex graph G

and integer k, runs in time 2O(k2 log k)n2, and either outputs a treecut decomposition of G of
width at most 2k or correctly reports that tcw(G) > k.

A treecut decomposition (T,X ) is nice if it satisfies the following condition for every
thin node t ∈ V (T ): N(Yt) ∩

⋃
b is a sibling of t Yb = ∅. The intuition behind nice treecut

decompositions is that we restrict the neighborhood of thin nodes in a way which facilitates
dynamic programming.

I Lemma 4 ([20]). There exists a cubic-time algorithm which transforms any rooted treecut
decomposition (T,X ) of G into a nice treecut decomposition of the same graph, without
increasing its width or number of nodes.

The following property of nice treecut decompositions will be crucial for our algorithm.

I Lemma 5 ([20]). Let t be a node in a nice treecut decomposition of width k. Then
|At| ≤ 2k + 1.

We refer to previous work [20] for a comparison of treecut width to other parameters.

3 Hardness Results

In this section we show that BDD is W[1]-hard parameterized by a vertex deletion set to
trees of height at most three, i.e., a subset D of the vertices of the graph such that every
component in the graph, after removing D, is a tree of height at most three. On the
way towards this result, we provide hardness results for several interesting versions of the
multidimensional subset sum problem (parameterized by the number of dimensions) which
we believe are interesting in their own right. In particular, we note that the hardness results
also hold for the well-known and more general multidimensional knapsack problem [18].

Our first auxiliary result shows hardness for the following problem.

Multidimensional Subset Sum (MSS)

Input: An integer k, a set S = {s1, . . . , sn} of item-vectors with si ∈ Nk

for every i with 1 ≤ i ≤ n and a target vector t ∈ Nk.
Parameter: k

Question: Is there a subset S′ ⊆ S such that
∑

s∈S′ s = t?

STACS 2018
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I Lemma 6. MSS is W[1]-hard even if all integers in the input are given in unary.

Proof sketch. The proof is by a parameterized reduction from the well-known W[1]-hard
Multicolored Clique (MCC) problem [13]: given a k-partite graph G with partition
V1, . . . , Vk, decide whether G contains a clique of size k. For an instance I = (G, k) of MCC
we construct an equivalent instance I ′ = (2

(
k
2
)

+ k, S, t) of MSS in polynomial time, as
follows. For every v ∈ V (G) we construct one item-vector sv in S and for every e ∈ E(G)
one item-vector se. Furthermore, we impose the following requirements on every solution
S′ ⊆ S of I ′: (1) exactly one vector sv with v ∈ Vi is contained in S′ for every i with
1 ≤ i ≤ k, (2) exactly one vector se, with e being an edge between Vi and Vj , is contained
in S′ for every i and j with 1 ≤ i < j ≤ k, and (3) for every edge e with se ∈ S′ and
endpoints vi ∈ Vi, vj ∈ Vj we find svi , svj ∈ S′. To ensure (1), the target vector has k
entries with value one and every vector sv with v ∈ Vi has value one at the i-th of those
entries. Property (2) is ensured in a similar way by using

(
k
2
)
entries with value one in the

target vector. To ensure Property (3), we assign to every vertex v of G a unique number
S(v) from a Sidon sequence S of length |V (G)| [16]. A Sidon sequence is a sequence of
natural numbers such that the sum of each pair of numbers is unique; it can be shown that
it is possible to construct such sequences whose maximum value is bounded by a polynomial
in its length [1, 16]. The target vector then contains one additional entry I(i, j) for every i
and j with 1 ≤ i < j ≤ k with value max2(S) + 1, where max2(S) is the maximum sum of
any two numbers in S. Moreover, every vector sv for v ∈ V (G) has value S(v) at every entry
I(l, r) with l = i or r = i and similarly every vector se for an edge e between Vi and Vj has
value (max2(S) + 1)− (S(u) + S(v)) at entry I(i, j). Then, because S is a Sidon sequence,
it holds that the I(i, j)-th entry of

∑
s∈S′ s for a solution S′ is equal to the I(i, j)-th entry

of t if and only if the endpoints of the unique edge chosen between Vi and Vj are equal to
the unique vertices vi and vj chosen in Vi and Vj , respectively. J

The proof of the above lemma also implies hardness for the following slightly adapted ver-
sion of MSS, which we call the Restricted Multidimensional Subset Sum (RMSS)
problem. For RMSS an additional integer k′ is given (which will be part of the parameter)
and we ask for a solution of the MSS problem of size exactly k′. Before presenting our
hardness result for BDD, we need to show hardness for the following more relaxed version of
RMSS, which we call the Multidimensional Relaxed Subset Sum (MRSS) problem.
For MRSS both the input as well as the parameters are the same as in the case of RMSS
however one now asks whether there is a subset S′ ⊆ S with |S′| ≤ k′ such that

∑
s∈S′ s ≥ t.

I Lemma 7. MRSS is W[1]-hard even if all integers in the input are given in unary.

We are now ready to show our main hardness result for BDD using a reduction from MRSS.

I Theorem 8. BDD is W[1]-hard parameterized by the size of a vertex deletion set into
trees of height at most 3.

Proof Sketch. We prove the theorem by a parameterized reduction from MRSS. Namely,
given an instance I = (k, S, t, k′) of MRSS we construct an equivalent instance I ′ = (G, d, `)
of BDD such that G has a FVS D of size k · k′. The core idea of the reduction relies on
transforming the decision of whether to select a vector into a solution S′ for I into the
decision of whether to resolve a tree gadget in G in one of two possible ways.

The set D consists of (k′+ 1) vertices d1
i , . . . , d

k′+1
i for every i with 1 ≤ i ≤ k. Moreover,

for every s ∈ S we introduce the gadget G(s) defined as follows. G(s) consists of max(s)
stars with centers cs1, . . . , csmax(s) and d+ 1 leaves. For every star with center csi , we denote
by lsi one of its leaves (chosen arbitrarily). Additionally, G(s) has a root vertex, denoted
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by rs, that has an edge to every center vertex csi . Finally, we add edges between the
leaves ls1, . . . , lsmax(s) and the vertices in D such that for every i and j with 1 ≤ i ≤ k and
1 ≤ j ≤ k′ + 1, it holds that dji has s[i] neighbors among the leaves ls1, . . . , lsmax(s) of G(s).
Clearly this is always possible and can be done in an arbitrary manner.

We set d to be the maximum degree of the part of G constructed so far (note that this
maximum is reached by one of the vertices in D). Moreover, we now ensure that for every
i and j with 1 ≤ i ≤ k and 1 ≤ j ≤ k′ + 1, the vertex dji has degree d + t[i] in G by
attaching a appropriate number of leaves to di. Finally, we set ` to be

(∑
s∈S max(s)

)
+ k′.

This completes the construction of I ′. Clearly, I ′ can be constructed in polynomial time.
Moreover, |D| ≤ k · k′ and each component of G − D is a tree with height at most 3. To
complete the proof, it suffices to establish the equivalence between I and I ′. J

Clearly trees of height at most three are trivially acyclic. Moreover, it is easy to verify that
such trees have pathwidth [25] and treedepth [32] at most three, which implies:

I Corollary 9. BDD is W[1]-hard parameterized by any of the following parameters:
the size of a feedback vertex set,
the pathwidth and treedepth of the input graph,
the size of a minimum set of vertices whose deletion results in components of path-
width/treedepth at most three.

4 Solving BDD using Treecut-width

The goal of this section is to provide a fixed-parameter algorithm for BDD parameterized by
treecut-width. The core of the algorithm is a dynamic programming procedure which runs on
a nice treecut decomposition of the input graph. First we define the data table the algorithm
is going to dynamically compute for individual nodes of the treecut decomposition. For each
node t ∈ T , the table is going to contain two components, which we will call the universal
cost ut and the specific cost st. Informally, the universal cost captures the minimum number
of vertices which need to be deleted from Yt to satisfy the degree bound in Gt. The specific
cost captures how many more vertices (than the universal cost) we need to delete in order
to satisfy the degree bound in Gt when we also place restrictions on how Gt will interact
with the rest of the graph. We formalize these notions below.

Let us fix an instance (G, d, `) of BDD and a treecut decomposition (T,X ) of G of width
at most k and rooted at r. A configuration δ of a graph H with a designated vertex-subset
Z is a mapping Z 7→ [k] ∪ del. Intuitively, configurations are going to be used to place
additional restrictions on the deletion sets we are interested in. We let bdd(H,Z, δ) denote
the minimum size of a vertex set W ⊆ V (H) such that:

v ∈W ∩ Z if and only if δ(v) = del, and
for each v ∈ Z \W , the degree of v in H −W is at most d− δ(v),
for each v ∈ V (H) \ (Z ∪W ), the degree of v in H −W is at most d.

Figure 2 depicts an illustration of bdd(H,Z, δ). Informally, bdd captures the size of a
minimum deletion set which intersects the designated subset precisely in the vertices specified
by δ, and for the remainder of the designated subset it overshoots the degree bound by a
buffer specified by δ. If bdd(H,Y, δ) is not defined (which may happen, e.g., if d < |Y |), we
formally set bdd(H,Y, δ) =∞. For each node t ∈ V (T ), we can now define:

ut = bdd(Gt, ∅, ∅), and
for each δ : ∂t → [k] ∪ del such that each v ∈ ∂t is mapped to del or to an integer
i ≤ |N(v) \ Yt|, we let s′t(δ) = bdd(Gt, ∂t, δ)− ut.
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V (H)

W

Z

δ(v) = del deg(v) ≤ d− δ(v)

deg(v) ≤ dW = bdd(H,Z, δ)

Figure 2 Illustration of the set bdd(H,Z, δ).
The dotted edges are not considered for the de-
gree of a node v.

At

∂t

t

Bounded number of equivalence classes

Bt

Bt

Figure 3 The three branching sets for a node
t ∈ T , first branch on ∂t (green), then on the
boundaries of the bold nodes At together with
the “interior” of t (orange) and finally on the
equivalence classes of Bt (gray).

We proceed with a few observations. Naturally, the value of ut can be much larger than
k (as an example, consider a collection of disjoint stars), and this is not an issue for our
algorithm. Furthermore, for every δ it holds that 0 ≤ s′t(δ), since ut ≤ bdd(Gt, ∂t, δ); notice
that ut attains the value of the smallest deletion set for Gt, while bdd(Gt, ∂t, δ) attains the
value of a smallest deletion set for Gt which satisfies certain additional restrictions.

Crucially, the value of s′t(δ) can be much larger than k, and this represents a significant
obstacle for our algorithm. The role of the specific cost in the dynamic programming pro-
cedure is to capture how a node may interact with the solution and how such interactions
affect the size of a deletion set. The algorithm relies heavily on having only a bounded
number of possible interactions in order to achieve its run-time bounds. Luckily, we will
prove that any value of s′t(δ) exceeding k must lead to a dead end and can be disregarded.

I Lemma 10. Let S be a minimum-size bounded degree deletion set in G. Let δtS be defined
over ∂t as follows: δtS(v) = del if v ∈ S, and otherwise δtS(v) = |(N(v) \ Yt) \ S|. Then
s′t(δtS) ≤ |N(Yt)| ≤ k.

Proof. For brevity, let q = N(Yt). The fact that q ≤ k follows immediately from the
bound on the adhesion of t, hence we only need to prove that s′t(δtS) ≤ q. So, assume for
a contradiction that s′t(δtS) > q. Let P be a witness for the value of ut, i.e., let P be a
minimum-cardinality vertex subset of Gt such that the maximum degree in Gt − P is at
most d. Observe that |P ∪N(Yt)| = ut + q. Now consider the set S′ = (S \ Yt)∪P ∪N(Yt).
First of all, note that |S′| < |S|, since we obtained S′ from S by removing more than ut + q

vertices (recall that, by our assumption, s′t(δtS) > q) and then adding back at most ut + q

vertices. Second, we claim that S′ is also a bounded degree deletion set in G. Indeed,
consider for a contradiction that G−S′ contains a vertex v of degree higher than d. Such a
v cannot lie in Yt since P was a solution in Gt and N(Yt) separates Gt from the rest of G.
On the other hand, v cannot lie outside of Yt due to the fact that S itself was a solution in
G[V (G)− Yt]. So the claim holds, and S′ contradicts the optimality of S. J

Thanks to Lemma 10, we can safely focus our attention on those configurations δ where
s′t(δ) ≤ |N(Yt)|. Hence we define st(δ) = s′t(δ) if s′t(δ) ≤ |N(Yt)| and s′t(δ) = ∞ otherwise.
Observe that, unlike s′t, the number of distinct possibilities of what a special cost st may
look like is bounded by a function of k. The high-level strategy for the algorithm is now the
following:
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1. Compute (ut, st) when t is a leaf,
2. Compute (ut, st) when t is not a leaf, but the universal and specific costs are known for

all of its children, and
3. Use the values (ur, sr) at the root node r ∈ T .

As we will see below, points 1. and 3. are straightforward.

I Observation 11. (ut, st) can be computed in time at most 2O(k) if t is a leaf.

Proof. To compute ut it suffices to exhaustively loop through all vertex subsets L ⊆ Xt

and check whether Gt − L has degree at most d. Then ut is equal to the minimum size of
such a subset. To compute st, we proceed similarly: for each configuration δ such that each
v ∈ ∂t is mapped to del or to an integer i ≤ |N(v) \ Yt|, we exhaustively loop through all
L ⊆ Xt \ ∂t in order to determine the value of bdd(Gt, ∂t, δ), and we then use that value
and ut to determine st(δ). J

I Observation 12. (G, d, `) is a YES-instance of BDD if and only if ur ≤ `.

Given the above, the last remaining obstacle is handling point (2), i.e., the dynamic
propagation of information from leaves to the root. This is also the by far most challenging
part of the algorithm. Let us fix a node t ∈ T and for all its children p we assume (up, sp)
to be already computed.

Our strategy is to apply a 2-step approach. Figure 3 shows an illustration of the upcoming
branching sets for a node t. Recall that At and Bt denote the set of all children of t which are
bold and thin, respectively. First, we exhaustively loop over all options of how a deletion set
candidate intersects with Xt and the borders of nodes in At, resulting in a set of “templates”
which provide us with additional information about a potential solution. Here the bound
on |At| provided in Lemma 5 will be crucial. Second, we use branching and network flows
to find an optimal way of extending such a template to a solution which deals with Bt. In
this step, we overcome the fact that there may be an unbounded number of children p in Bt
by “aggregating” them into types based on their sp component. Lemma 10 along with our
definition of specific costs then guarantees that the number of aggregated types will depend
only on k. Informally, if two nodes p1, p2 in Bt have the same specific cost, then their
behavior (“contribution”) to any solution is fully interchangeable. In particular, even if p1,
p2 have different universal costs, both of these costs will need to be “paid” by every solution
regardless of how the solution handles the borders of these nodes. When formalizing the
above sketched algorithm we obtain.

I Lemma 13. Point 2. can be solved in time 2O(k2) · |Bt|2, where |Bt| is upper-bounded by
the number of children of t.

I Theorem 14. BDD can be solved in time n3 + 2O(k2·log k) · n2, where k and n are the
treecut-width and number of vertices of the input graph, respectively.

Proof. We begin by applying Theorem 3 followed by Lemma 4 to obtain a nice treecut
decomposition (T,X ) of width at most 2k. We then use a dynamic programming algorithm
to compute the values ut and st at every node t ∈ T . For leaves, this is carried out by
Observation 11, while for non-leaves we invoke Lemma 13. Finally, once we compute ur for
the root r, we can determine the answer to a BDD instance using Observation 12. J

Finally, using standard techniques it is not difficult to show that BDD parameterized by
treecut width does not admit a polynomial kernel.

I Theorem 15. BDD parameterized by treecut width has no polynomial kernel unless
coNP ⊆ NP/poly.
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5 Core Fracture Number

In this section we introduce the new structural parameter core fracture number and pro-
vide a fixed-parameter algorithm for BDD parameterized by this parameter. An important
prerequisite for the introduction of this parameter is the following simple preprocessing pro-
cedure that can be applied to any BDD instance. Given an instance I = (G, d, `) of BDD,
the core of I, denoted by c(I) = (c(G), d, `), is the BDD instance obtained from I after
removing all edges whose both endpoints have degree at most d from G.

I Observation 16. Let I = (G, d, `) be a BDD instance. Then I and c(I) are equivalent
instances of BDD in the sense that any solution for I is also a solution for c(I) and vice
versa. Moreover, c(I) can be computed in linear time w.r.t. the number of edges of G.

In the following we will assume that we have already applied the above preprocessing proce-
dure to any BDD instance and hence the graph of the instance does not contain any edges
between vertices whose degree is already below the given degree bound. The core fracture
number of a BDD instance I = (G, d, `), denoted by cfn(I), is the minimum integer k such
that there is a deletion set D ⊆ V (G) with |D| ≤ k and the number of vertices in any
component C of G \ D of degree larger than d in G is at most k. In other words, each
connected component of G−D may contain only at most k vertices of degree greater than
d. We start by showing that this parameter is orthogonal to treecut width.

I Theorem 17. There is a class of BDD instances with bounded treecut width and unbounded
core fracture number. Similarly, there is a class of BDD instances with bounded core fracture
number and unbounded treecut width. Moreover, both classes only contain BDD instances I
with c(I) = I.

We are now ready to present our fixed-parameter algorithm for BDD parameterized by the
core fracture number. The algorithm consists of two steps: (1) it computes a deletion set D
of size at most k, witnessing that cfn(I) ≤ k and (2) it solves I with the help of the deletion
set D. Namely, our algorithm will consists of fixed-parameter algorithms for the following
two parameterized problems. Given an instance I = (G, d, `) of BDD and an integer k (which
also serves as the parameter of the problem), the Core Fracture Number Detection
(CFND) problem, asks whether cfn(I) ≤ k and if so outputs a set D ⊆ V (G) witnessing
this. On the other hand the Core Fracture Number Evaluation (CFNE) problem
asks whether I has a solution for a given BDD instance I = (G, d, `) and a set D ⊆ V (G)
witnessing that cfn(I) ≤ |D| and is parameterized by |D|.

I Theorem 18. CFND can be solved in time O((2k+1)k|E(G)|) and is hence fixed-parameter
tractable. Moreover, CFND can be approximated in polynomial time within a factor of 2k+1.

Let I = (G, d, `,D) be an instance of CFNE and assume w.l.o.g. that c(G) = G. We start
by showing that we do not need to consider solutions V ′ ⊆ V (G) for I that contain more
than 2k − 1 vertices from any component C of G−D.

I Lemma 19. If I has a solution, then it has a solution V ′ such that |V ′ ∩ V (C)| < 2k for
every component C of G−D.

Proof. Let V ′ be a solution for I and C be a component of G−D with |V ′ ∩ V (C)| ≥ 2k;
if no such component exists, then we are done. Let M be the set of all vertices in C, whose
degree is larger than d in G. Then (V ′ \V (C))∪M ∪D is also a solution for I and moreover
|(V ′ \ V (C)) ∪M ∪D| ≤ |V ′| − 2k + k + k ≤ |V ′|. By iterating the same process for every
component C with |V ′ ∩ V (C)| ≥ 2k, one obtains the desired solution for I. J
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Let C be a component of G − D and let M ⊆ V (C) be the set of all vertices with degree
larger than d in G. Then the signature of C, denoted by S(C), contains all pairs (D′,Γ)
such that D′ ⊆ D, and Γ is the set of all pairs (o, γ) such that:

o is an integer with 0 ≤ o < 2k, and
γ : D \ D′ → {0, . . . , 2k − 1} is a mapping such that there is a set V ′ ⊆ V (C) with
|V ′| = o satisfying the following conditions:
(S1) every vertex in M \ V ′ has degree at most d in G− (V ′ ∪D′) and
(S2) for every vertex v in D \D′, V ′ contains exactly γ(v) neighbors of v.

Informally, for every subset D′ of vertices that we decide to delete from D, the signature
tells us how many vertices in C we need to delete and how their deletion affects the degrees
of the remaining vertices in D −D′. Because we only need to consider solutions containing
less than 2k vertices from C (Lemma 19), the number of ways in which different solutions
effect the degrees of vertices in D is bounded, which allows us to compute the signatures.

I Lemma 20. The signature S(C) can be computed in time O(|V (C)|+ |E(C)|+ 2k(2k)22k )
for any component C of G−D.

Let D′ ⊆ D and C and C ′ be two distinct components of G−D. We say that C and C ′ are
equivalent w.r.t. D′ if (D′,Γ) ∈ S(C) ∩ S(C ′) for some Γ. Let P(D′) be the partition of all
components of G−D into equivalence classes and for an equivalence class C ∈ P(D′) let Γ(C)
denote the set Γ such that (D′,Γ) ∈ S(C) for every C ∈ C. Note that |P(D′)| ≤ 2k(2k)k .

I Lemma 21. An instance I = (G, d, `,D) has a solution if and only if there is a subset D′
of D and a mapping α that assigns to every C ∈ P(D′) and every (o, γ) ∈ Γ(C) a natural
number satisfying the following conditions:
(C1) (

∑
C∈P(D′)∧(o,γ)∈Γ(C) o · α(C, (o, γ))) + |D′| ≤ `, i.e., the budget ` is not exceeded,

(C2)
∑

(o,γ)∈Γ(C) α(C, (o, γ)) = |C| for every C ∈ P(D′), i.e., all components are considered,
(C3)

∑
C∈P(D′)∧(o,γ)∈Γ(C) γ(v) · α(C, (o, γ) ≥ |NG−D′(v)| − d for every v ∈ D \D′, i.e., the

degree conditions for the vertices in D \D′ are satisfied.

Proof. Towards showing the forward direction let V ′ be a solution for I. We start by setting
D′ = D∩V ′. Consider a component C of G−D and let Γ be the set such that (D′,Γ) ∈ S(C).
Because of Lemma 19, we can assume that |V ′ ∩ V (C)| < 2k. Hence Γ contains a pair
(|V ′ ∩ V (C)|, γ), which we denote by A(C), such that for every v ∈ D \D′, it holds that v
has exactly γ(v) neighbors in V ′ ∩ V (C). For every C ∈ P(D′) and (o, γ) ∈ Γ(C), we now
set α(C, (o, γ)) to be the number of components C in C with A(C) = (o, γ) and claim that α
satisfies the conditions (C1)–(C3). Because (

∑
C∈P(D′)∧(o,γ)∈Γ(C) o·α(C, (o, γ)))+|D′| = |V ′|

and |V ′| ≤ `, we obtain that α satisfies (C1). Condition (C2) follows immediately from the
definition of α. Finally, Condition (C3) follows because for every v ∈ D \D′ it holds that∑
C∈P(D′)∧(o,γ)∈Γ(C) γ(v) ·α(C, (o, γ)) is equal to the number of neighbors of v in V ′ \D and

the fact that v can have at most d neighbors in G− V ′.
Towards showing the reverse direction let D′ ⊆ D and α be a mapping satisfying (C1)–

(C3). For a component C ∈ C and (o, γ) ∈ Γ, where C ∈ P(D′) and (D′,Γ) ∈ S(C), we
denote by V (C, (o, γ)) a subset of V (C) of size o satisfying the conditions (S1) and (S2)
in the definition of a signature. Then a solution V ′ for I is obtained as follows. For any
C ∈ P(D′) we take the union of V (C, (o, γ)) for exactly α(C, (o, γ)) components C ∈ C.
Condition (C2) ensures that there are enough components in C and moreover that this way
we use every component exactly once. Finally, we add D′ to V ′. Because of Condition (C1),
we have that |V ′| ≤ `. Moreover, because of Condition (C3), we obtain that every vertex in
D \D′ has degree at most d in G− V ′. The same holds for every vertex in any component
C of G−D, because of Property (S1). Hence V ′ is a solution for I of size at most `. J

STACS 2018



33:12 On Structural Parameterizations of the Bounded-Degree Vertex Deletion Problem

With the help of the above lemma, we can express the existence of a solution in terms
of the solution of an integer linear program with a bounded number of variables, which in
turn can be solved in fpt-time w.r.t. the number of variables [28].

I Theorem 22. CFNE is fixed-parameter tractable.

Proof sketch. Let I = (G, d, `,D) be the given instance of CFNE. The algorithm first
computes the signature S(C) for every component C of G − D according to Lemma 20.
It then uses the characterization given in Lemma 21 to decide whether I has a solution.
Namely, for every D′ ⊆ D the algorithm constructs an ILP instance I ′ whose optimum is
at most ` − |D′| if and only if the BDD instance I has a solution V ′ with V ′ ∩ D = D′.
In accordance with Lemma 21 the ILP instance I ′ has one variable, denote by xC,(o,γ), for
every C ∈ P(D′) and (o, γ) ∈ Γ(C) and consists of the following constraints:

minimize
∑

C∈P(D′),(o,γ)∈Γ(C)

o · xC,(o,γ)

subject to
∑

(o,γ)∈Γ(C)

xC,(o,γ) = |C| ∀C ∈ P(D′)∑
C∈P(D′)∧(o,γ)∈Γ(C)

γ(v) · xC,(o,γ) ≥ |NG−D′(v)| − d∀v ∈ D \D′

Observe that there is a one-to-one correspondence between assignments β for the variables
in I ′ and the assignment α defined in Lemma 21. Moreover, the constraints of I ′ ensure
Condition (C2) and (C3) and Condition (C1) can be satisfied if and only if the optimum
value of I ′ is at most `− |D′|. This completes the description of the algorithm. J

As our final result, we show a kernel lower bound for CFNE.

I Theorem 23. CFNE has no polynomial kernel unless coNP ⊆ NP/poly.

Proof sketch. We give a polynomial parameter transformation [2, Proposition 1] from the
well-known Set Cover problem parameterized by the size of the universe. It is known that
Set Cover does not admit a polynomial kernel unless coNP ⊆ NP/poly [10]. Given an
instance I = (U,F , k) of Set Cover, we construct an instance I ′ = (G, d, `,D) of CFNE
as follows. G has one vertex vu for every u ∈ U as well as one vertex wF for every F ∈ F .
Moreover, G has an edge between a vertex vu and a vertex wF if and only if u ∈ F . We set
D = { vu | u ∈ U }. Let ∆ be the maximum degree of any vertex in G. Then we attach to
every vertex in D new leaf vertices such that the degree of every vertex in D becomes ∆+1.
This completes the construction of G. Finally, we set d = ∆ and ` = k. Because G −D is
an independent set, this shows that cfn(G) ≤ k. To complete the proof, it remains to show
that I has a solution if and only if so does I ′. J

6 Concluding Notes

Our results close a wide gap in the understanding of the complexity landscape of BDD
parameterized by structural parameters. In particular, they not only resolve the main open
question from previous work in the area [5], but push the lower bounds significantly further,
specifically to deletion distance to trees of bounded depth. Moreover, we identified structural
parameterizations which are better suited for the problem at hand and used these to obtain
two novel fixed-parameter algorithms for BDD.



R. Ganian, F. Klute, and S. Ordyniak 33:13

References
1 Martin Aigner and Günter M. Ziegler. Proofs from the Book (3. ed.). Springer, 2004.
2 Christer Bäckström, Peter Jonsson, Sebastian Ordyniak, and Stefan Szeider. A complete

parameterized complexity analysis of bounded planning. JCSS, 81(7):1311–1332, 2015.
3 Balabhaskar Balasundaram, Sergiy Butenko, and Illya V. Hicks. Clique relaxations in

social network analysis: The maximum k-plex problem. Operations Research, 59(1):133–
142, 2011.

4 Balabhaskar Balasundaram, Shyam Sundar Chandramouli, and Svyatoslav Trukhanov. Ap-
proximation algorithms for finding and partitioning unit-disk graphs into co-k-plexes. Op-
timization Letters, 4(3):311–320, 2010.

5 Nadja Betzler, Robert Bredereck, Rolf Niedermeier, and Johannes Uhlmann. On bounded-
degree vertex deletion parameterized by treewidth. Discrete Applied Mathematics, 160(1-
2):53–60, 2012.

6 Hans L. Bodlaender and Babette van Antwerpen-de Fluiter. Reduction algorithms for
graphs of small treewidth. Inf. Comput., 167(2):86–119, 2001.

7 Zhi-Zhong Chen, Michael R. Fellows, Bin Fu, Haitao Jiang, Yang Liu, Lusheng Wang, and
Binhai Zhu. A linear kernel for co-path/cycle packing. In Proc. AAIM 2010, volume 6124
of LNCS, pages 90–102. Springer, 2010.

8 Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite
graphs. Inf. Comput., 85(1):12–75, 1990.

9 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

10 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

11 Anders Dessmark, Klaus Jansen, and Andrzej Lingas. The maximum k-dependent and f -
dependent set problem. In Proc. ISAAC 1993, volume 762 of LNCS, pages 88–98. Springer,
1993.

12 Reinhard Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer
Verlag, New York, 2nd edition, 2000.

13 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

14 Eduard Eiben, Robert Ganian, and Stefan Szeider. Meta-kernelization using well-structured
modulators. In Thore Husfeldt and Iyad A. Kanj, editors, Proc. IPEC 2015, volume 43 of
LIPIcs, pages 114–126. Leibniz-Zentrum für Informatik, 2015.

15 Eduard Eiben, Robert Ganian, and Stefan Szeider. Solving problems on graphs of high
rank-width. In Proc. WADS 2015, volume 9214 of LNCS, pages 314–326. Springer, 2015.

16 Paul Erdős and Paul Turán. On a problem of Sidon in additive number theory, and on
some related problems. Journal of the London Mathematical Society, 1(4):212–215, 1941.

17 Michael R. Fellows, Jiong Guo, Hannes Moser, and Rolf Niedermeier. A generalization of
Nemhauser and Trotter’s local optimization theorem. J. Comput. Syst. Sci., 77(6):1141–
1158, 2011.

18 Arnaud Fréville. The multidimensional 0-1 knapsack problem: An overview. European
Journal of Operational Research, 155(1):1–21, 2004.

19 Jakub Gajarský, Petr Hlinený, Jan Obdrzálek, Sebastian Ordyniak, Felix Reidl, Peter Ross-
manith, Fernando Sánchez Villaamil, and Somnath Sikdar. Kernelization using structural
parameters on sparse graph classes. J. Comput. Syst. Sci., 84:219–242, 2017.

20 Robert Ganian, Eun Jung Kim, and Stefan Szeider. Algorithmic applications of tree-cut
width. In Giuseppe F. Italiano, Giovanni Pighizzini, and Donald Sannella, editors, Proc.
MFCS 2015, volume 9235 of LNCS, pages 348–360. Springer, 2015.

STACS 2018

http://dx.doi.org/10.1007/978-3-319-21275-3


33:14 On Structural Parameterizations of the Bounded-Degree Vertex Deletion Problem

21 Robert Ganian, Friedrich Slivovsky, and Stefan Szeider. Meta-kernelization with structural
parameters. J. Comput. Syst. Sci., 82(2):333–346, 2016.

22 Serge Gaspers, Neeldhara Misra, Sebastian Ordyniak, Stefan Szeider, and Stanislav Zivny.
Backdoors into heterogeneous classes of SAT and CSP. J. Comput. Syst. Sci., 85:38–56,
2017.

23 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

24 Eunjung Kim, Sang-il Oum, Christophe Paul, Ignasi Sau, and Dimitrios M. Thilikos. An
FPT 2-approximation for tree-cut decomposition. In Laura Sanità and Martin Skutella,
editors, Proc. WAOA 2015, volume 9499 of LNCS, pages 35–46. Springer, 2015.

25 Ton Kloks. Treewidth: Computations and Approximations, volume 842 of LNCS. Springer
Verlag, Berlin, 1994.

26 Christian Komusiewicz, Falk Hüffner, Hannes Moser, and Rolf Niedermeier. Isolation con-
cepts for efficiently enumerating dense subgraphs. Theor. Comput. Sci., 410(38-40):3640–
3654, 2009.

27 Martin Kronegger, Sebastian Ordyniak, and Andreas Pfandler. Variable-deletion backdoors
to planning. In Proc. AAAI 2015, pages 2300–2307. AAAI Press, 2014.

28 H. W. Lenstra. Integer programming with a fixed number of variables. MATH. OPER.
RES, 8(4):538–548, 1983.

29 Dániel Marx and Paul Wollan. Immersions in highly edge connected graphs. SIAM J.
Discrete Math., 28(1):503–520, 2014.

30 Benjamin McClosky and Illya V. Hicks. Combinatorial algorithms for the maximum k-plex
problem. J. Comb. Optim., 23(1):29–49, 2012.

31 Hannes Moser, Rolf Niedermeier, and Manuel Sorge. Exact combinatorial algorithms and
experiments for finding maximum k-plexes. J. Comb. Optim., 24(3):347–373, 2012.

32 Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity - Graphs, Structures, and Algo-
rithms, volume 28 of Algorithms and combinatorics. Springer, 2012.

33 Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms, volume 31 of Oxford Lecture
Series in Mathematics and its Applications. Oxford University Press, Oxford, 2006.

34 Naomi Nishimura, Prabhakar Ragde, and Dimitrios M. Thilikos. Fast fixed-parameter
tractable algorithms for nontrivial generalizations of vertex cover. Discrete Applied Math-
ematics, 152(1-3):229–245, 2005.

35 Stephen B Seidman and Brian L Foster. A graph-theoretic generalization of the clique
concept. Journal of Mathematical sociology, 6(1):139–154, 1978.

36 Paul Wollan. The structure of graphs not admitting a fixed immersion. J. Comb. Theory,
Ser. B, 110:47–66, 2015.



Dependences in Strategy Logic
Patrick Gardy
LSV, CNRS & ENS Paris-Saclay, Univ. Paris-Saclay, France

Patricia Bouyer
LSV, CNRS & ENS Paris-Saclay, Univ. Paris-Saclay, France

Nicolas Markey
LSV, CNRS & ENS Paris-Saclay, Univ. Paris-Saclay, France and
Univ. Rennes, CNRS, Inria, IRISA, France

Abstract
Strategy Logic (SL) is a very expressive temporal logic for specifying and verifying properties of
multi-agent systems: in SL, one can quantify over strategies, assign them to agents, and express
LTL properties of the resulting plays. Such a powerful framework has two drawbacks: first, model
checking SL has non-elementary complexity; second, the exact semantics of SL is rather intricate,
and may not correspond to what is expected. In this paper, we focus on strategy dependences in SL,
by tracking how existentially-quantified strategies in a formula may (or may not) depend on other
strategies selected in the formula, revisiting the approach of [Mogavero et al., Reasoning about
strategies: On the model-checking problem, 2014]. We explain why elementary dependences, as
defined by Mogavero et al., do not exactly capture the intended concept of behavioral strategies.
We address this discrepancy by introducing timeline dependences, and exhibit a large fragment
of SL for which model checking can be performed in 2 -EXPTIME under this new semantics.
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1 Introduction

Temporal logics. Since Pnueli’s seminal paper [24] in 1977, temporal logics have been
widely used in theoretical computer science, especially by the formal-verification community.
Temporal logics provide powerful languages for expressing properties of reactive systems,
and enjoy efficient algorithms for satisfiability and model checking [9]. Since the early 2000s,
new temporal logics have appeared to address open and multi-agent systems. While classical
temporal logics (e.g. CTL [8, 25] and LTL [24]) could only deal with one or all the behaviours
of the whole system, ATL [2] expresses properties of (executions generated by) behaviours
of individual components of the system. ATL has been extensively studied since then, both
about its expressiveness and about its verification algorithms [2, 13, 16].

Strategic interactions in ATL. Strategies in ATL are handled in a very limited way, and
there are no real strategic interactions in that logic (which, in return, enjoys a polynomial-time
model-checking algorithm). Over the last 10 years, various extensions have been defined
and studied in order to allow for more interactions [1, 7, 6, 18, 26]. Strategy Logic (SL for
short) [7, 18] is such a powerful approach, in which strategies are first-class objects; formulas
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34:2 Dependences in Strategy Logic

can quantify (universally and existentially) over strategies, store those strategies in variables,
assign them to players, and express properties of the resulting plays. As a simple example,
the existence of a winning strategy for Player A (with objective ϕA) against any strategy of
Player B would be written as ∃σA. ∀σB . assign(A 7→ σA;B 7→ σB). ϕA. This makes the logic
both expressive and easy to use (at first sight), at the expense of a very high complexity:
SL model checking has non-elementary complexity, and satisfiability is undecidable [18, 15].

Understanding SL. Since it enjoys decidable model checking and high expressiveness,
SL is the logic of choice for showing that some game problems are decidable (e.g. rational
synthesis [12, 14, 10] or assume-admissible synthesis [5]). For instance, the existence of
an admissible strategy for player A (i.e., a strategy that is strictly dominated by no other
strategies [5]) is expressed as

∃σA. ∀σ′A.

[
∨
∃σB . (assign(A 7→ σA, B 7→ σB).ϕA ∧ assign(A 7→ σ′A, B 7→ σB).¬ϕA)

∀σ′B . (assign(A 7→ σA, B 7→ σ′B).ϕA ∨ assign(A 7→ σ′A, B 7→ σ′B).¬ϕA)

]

However, it has been noticed in recent works that the nice expressiveness of SL comes
with unexpected phenomena. One such phenomenon is induced by the separation of strategy
quantification and strategy assignment: are the events between strategy quantifications and
strategy assignments part of the memory of the strategy? While both options may make
sense depending on the applications, only one of them makes model checking decidable [4].

A second phenomenon—which is the main focus of the present paper—concerns strategy
dependences [18]: in a formula such as ∀σA. ∃σB . ξ, the existentially-quantified strategy σB
may depend on the whole strategy σA; in other terms, the action returned by strategy σB after
some finite history ρ may depend on what strategy σA would play on any other history ρ′.
Again, in some contexts, it may be desirable that the value of strategy σB after history ρ can
be computed based solely on what has been observed along ρ (see Fig. 2 for an illustration).
This approach was initiated in [18, 21], conjecturing that large fragments of SL (subsum-
ing ATL *) would have 2 -EXPTIME model-checking algorithms with such limited dependences.

Our contributions. We follow this line of work by performing a more thorough exploration
of strategy dependences in (a fragment of) SL. We mainly follow the framework of [21], based
on a kind of Skolemization of the formula: for instance, a formula of the form (∀xi∃yi)i. ξ is
satisfied if there exists a dependence map θ defining each existentially-quantified strategy yj
based on the universally-quantified strategies (xi)i. In order to recover the classical semantics
of SL, it is only required that the strategy θ((xi)i)(yj) (i.e. the strategy assigned to the
existentially-quantified variable yj by θ((xi)i)) only depends on (xi)i<j .

Based on this definition, other constraints can be imposed on dependence maps, in order
to refine the dependences of existentially-quantified strategies on universally-quantified ones.
Elementary dependences [21] only allows existentially-quantified strategy yj to depend on
the values of (xi)i<j along the current history. This gives rise to two different semantics in
general, but fragments of SL have been defined (SL[1G] in [17], SL[CG] and SL[DG] in [20])
on which the classic and elementary semantics would coincide.

The coincidence actually only holds for SL[1G]. As we explain in this paper, elementary
dependences as defined and used in [17, 20] do not exactly capture the intuition that
strategies should depend on the “behavior [of universal strategies] on the history of interest
only” [20]: indeed, they only allow dependences on universally-quantified strategies that
appear earlier in the formula, while we claim that the behaviour of all universally-quantified
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strategies should be considered. We address this discrepancy by introducing another kind of
dependences, which we call timeline dependences, and which extend elementary dependences
by allowing existentially-quantified strategies to additionally depend on all universally-
quantified strategies along strict prefixes of the current history (as illustrated on Fig. 4).

We study and compare those three dependences (classic, elementary and timeline),
showing that they correspond to three distinct semantics. Because the semantics based on
dependence maps is defined in terms of the existence of a witness map, we show that the
syntactic negation of a formula may not correspond to its semantic negation: there are cases
where both a formula ϕ and its syntactic negation ¬ϕ fail to hold (i.e., none of them has a
witness map). This phenomenon is already present, but had not been formally identified,
in [18, 21]. The main contribution of the present paper is the definition of a large (and, in a
sense, maximal) fragment of SL for which syntactic and semantic negations coincide under
the timeline semantics. As an (important) side result, we show that model checking this
fragment under the timeline semantics is 2 -EXPTIME-complete.

2 Definitions

2.1 Concurrent game structures

Let AP be a set of atomic propositions, V be a set of variables, and Agt be a set of agents. A
concurrent game structure is a tuple G = (Act,Q,∆, lab) where Act is a finite set of actions,
Q is a finite set of states, ∆: Q× ActAgt → Q is the transition function, and lab : Q→ 2AP

is a labelling function. An element of ActAgt will be called a move vector. For any q ∈ Q,
we let succ(q) be the set {q′ ∈ Q | ∃m ∈ ActAgt. q′ = ∆(q,m)}. For the sake of simplicity,
we assume in the sequel that succ(q) 6= ∅ for any q ∈ Q. A game G is said turn-based
whenever for every state q ∈ Q, there is a player own(()q) ∈ Agt (named the owner of q)
such that for any two move vectors m1 and m2 with m1(own(()q)) = m2(own(()q)), it holds
∆(q,m1) = ∆(q,m2). Figure 1 displays an example of a (turn-based) game.

Fix a state q ∈ Q. A play in G from q is an infinite sequence π = (qi)i∈N of states in Q
such that q0 = q and qi ∈ succ(qi−1) for all i > 0. We write PlayG(q) for the set of plays in G
from q. In this and all similar notations, we might omit to mention G when it is clear from
the context, and q when we consider the union over all q ∈ Q. A (strict) prefix of a play π is a
finite sequence ρ = (qi)0≤i≤L, for some L ∈ N. We write Pref(π) for the set of strict prefixes
of play π. Such finite prefixes are called histories, and we let HistG(q) = Pref(PlayG(q)).
We extend the notion of strict prefixes and the notation Pref to histories in the natural way,
requiring in particular that ρ /∈ Pref(ρ). A (finite) extension of a history ρ is any history ρ′
such that ρ ∈ Pref(ρ′). Let ρ = (qi)i≤L be a history. We define first(ρ) = q0 and last(ρ) = qL.
Let ρ′ = (q′j)j≤L′ be a history from last(ρ). The concatenation of ρ and ρ′ is then defined
as the path ρ · ρ′ = (q′′k )k≤L+L′ such that q′′k = qk when k ≤ L and q′′k = q′k−L when L ≥ k

(notice that we required q′0 = qL).
A strategy from q is a mapping δ : HistG(q) → Act. We write StratG(q) for the set of

strategies in G from q. Given a strategy δ ∈ Strat(q) and a history ρ from q, the translation δ−→ρ
of δ by ρ is the strategy δ−→ρ from last(ρ) defined by δ−→ρ (ρ′) = δ(ρ ·ρ′) for any ρ′ ∈ Hist(last(ρ)).
A valuation from q is a partial function χ : V ∪ Agt ⇀ Strat(q). As usual, for any partial
function f , we write dom(f) for the domain of f .

Let q ∈ Q and χ be a valuation from q. If Agt ⊆ dom(χ), then χ induces a unique
play from q, called its outcome, and defined as out(q, χ) = (qi)i∈N such that q0 = q and for
every i ∈ N, we have qi+1 = ∆(qi,mi) with mi(A) = χ(A)((qj)j≤i) for every A ∈ Agt.
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2.2 Strategy Logic with boolean goals
Strategy Logic (SL for short) was introduced in [7], and further extended and studied
in [22, 18], as a rich logical formalism for expressing properties of games. SL manipulates
strategies as first-order elements, assigns them to players, and expresses LTL properties
on the outcomes of the resulting strategic interactions. This results in a very expressive
temporal logic, for which satisfiability is undecidable [22, 19] and model checking is TOWER-
complete [18, 3]. In this paper, we focus on a restricted fragment of SL, called SL[BG][
(where BG stands for boolean goals [18], and the symbol [ indicates that we do not allow
nesting of (closed) subformulas; we discuss this latter restriction below).

Syntax. Formulas in SL[BG][ are built along the following grammar

SL[BG][ 3 ϕ ::= ∃x. ϕ | ∀x. ϕ | ξ ξ ::= ¬ξ | ξ ∧ ξ | ξ ∨ ξ | β
β ::= assign(σ). ψ ψ ::= ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Xψ | ψUψ | p

where x ranges over V , σ ranges over the set VAgt of full assignments, and p ranges over AP.
A goal is a formula of the form β in the grammar above; it expresses an LTL property ψ on the
outcome of the mapping σ. Formulas in SL[BG][ are thus made of an initial block of first-order
quantifiers (selecting strategies for variables in V), followed by a boolean combination of goals.

Free variables. With any subformula ζ of some formula ϕ ∈ SL[BG][, we associate its set
of free agents and variables, which we write free(ζ). It contains the agents and variables that
have to be associated with a strategy in order to unequivocally evaluate ζ (as will be seen
from the definition of the semantics of SL[BG][ below). The set free(ζ) is defined inductively:

free(p) = ∅ for all p ∈ AP free(Xψ) = Agt ∪ free(ψ)
free(¬α) = free(α) free(ψ1 Uψ2) = Agt ∪ free(ψ1) ∪ free(ψ2)

free(α1 ∨ α2) = free(α1) ∪ free(α2) free(∃x. ϕ) = free(ϕ) \ {x}
free(α1 ∧ α2) = free(α1) ∪ free(α2) free(∀x. ϕ) = free(ϕ) \ {x}

free(assign(σ). ϕ) = (free(ϕ) ∪ σ(Agt ∩ free(ϕ))) \ Agt

Subformula ζ is said to be closed whenever free(ζ) = ∅. We can now comment on our choice
of considering the flat fragment of SL[BG]: the full fragment, as defined in [18], allows for
nesting closed SL[BG] formulas in place of atomic propositions. The meaning of such nesting
in our setting is ambiguous, because our semantics (in Sections 3 to 5) are defined in terms of
the existence of a witness, which does not easily propagate in formulas. In particular, as we
explain later in the paper, the semantics of the negation of a formula (there is a witness
for ¬ϕ) does not coincide with the negation of the semantics (there is no witness for ϕ); thus
substituting a subformula and substituting its negation may return different results.

Semantics. Fix a state q ∈ Q, and a valuation χ : V∪Agt→ Strat(q). We inductively define
the semantics of a subformula α of a formula of SL[BG][ at q under valuation χ, requiring
free(α) ⊆ dom(χ). We omit the easy cases of boolean combinations and atomic propositions.

Given a mapping σ : Agt→ V , the semantics of strategy assignments is defined as follows:

G, q |=χ assign(σ). ψ ⇔ G, q |=χ[A∈Agt7→χ(σ(A))] ψ.

Notice that, writing χ′ = χ[A ∈ Agt 7→ χ(σ(A))], we have free(ψ) ⊆ dom(χ′) if free(α) ⊆
dom(χ), so that our inductive definition is sound.
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q0

q1

q2

p1

p2

ϕ = ∀y.∃z.∀xA.∀xB .
∨{

assign( 7→ xA; 7→ y; 7→ z). F p1

assign( 7→ xB ; 7→ y; 7→ z). F p2

Figure 1 A game and a SL[BG] formula.

We now consider path formulas ψ = Xψ1 and ψ = ψ1 Uψ2. Since Agt ⊆ free(ψ) ⊆
dom(χ), the valuation χ induces a unique outcome out(q, χ) = (qi)i∈N from q. For n ∈ N,
we write outn(q, χ) = (qi)i≤n, and define χ−→n as the valuation obtained by shifting all
the strategies in the image of χ by outn(q, χ). Under the same conditions, we also define
q−→n = last(outn(q, χ)). We then set

G, q |=χ Xψ1 ⇔ G, q−→1 |=χ−→1
ψ1

G, q |=χ ψ1 Uψ2 ⇔ ∃k ∈ N. G, q−→
k
|=χ−→

k
ψ2 and ∀0 ≤ j < k. G, q−→

j
|=χ−→

j
ψ1.

In the sequel, we use classical shorthands, such as > for p ∨ ¬p (for any p ∈ AP), Fψ for
>Uψ (eventually ψ), and Gψ for ¬F¬ψ (always ψ). It remains to define the semantics of
the strategy quantifiers. This is actually what this paper is all about. We provide here the
original semantics, and discuss alternatives in the following sections:

G, q |=χ ∃x.ϕ ⇔ ∃δ ∈ Strat(q). G, q |=χ[x 7→δ] ϕ.

I Example 1. We consider the (turn-based) game G is depicted on Fig. 1. We name the
players after the shape of the state they control. The SL[BG] formula ϕ to the right of Fig. 1
has four quantified variables and two goals. We show that this formula evaluates to true
at q0: fix a strategy δy (to be played by player ); because G is turn-based, we identify the
actions of the owner of a state with the resulting target state, so that δy(q0q1) will be either p1
or p2. We then define strategy δz (to be played by ) as δz(q0q2) = δy(q0q1). Then clearly,
for any strategy assigned to player , one of the goals of formula ϕ holds true, so that ϕ
itself evaluates to true.

Subclasses of SL[BG]. Because of the high complexity and subtlety of reasoning with SL
and SL[BG], several restrictions of SL[BG] have been considered in the literature [17, 20, 21],
by adding further restrictions to boolean combinations in the grammar defining the syntax:

SL[1G] restricts SL[BG] to a unique goal. SL[1G][ is then defined from the grammar of
SL[BG][ by setting ξ ::= β in the grammar;
the larger fragment SL[CG] allows for conjunctions of goals. SL[CG][ corresponds to
formulas defined with ξ ::= ξ ∧ ξ | β;
similarly, SL[DG] only allows disjunctions of goals, i.e. ξ ::= ξ ∨ ξ | β;
finally, SL[AG] mixes conjunctions and disjunctions in a restricted way. Goals in SL[AG][
can be combined using the following grammar: ξ ::= β ∧ ξ | β ∨ ξ | β.

In the sequel, we write a generic SL[BG][ formula ϕ as (Qixi)1≤i≤l. ξ(βj . ψj)j≤n where:
(Qixi)i≤l is a block of quantifications, with {xi | 1 ≤ i ≤ l} ⊆ V and Qi ∈ {∃,∀}, for
every 1 ≤ i ≤ l;
ξ(g1, ..., gn) is a boolean combination of its arguments;
for all 1 ≤ j ≤ n, βj . ψj is a goal: βj is a full assignment and ψj is an LTL formula.
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∀x1∀x1 ∃x2 ∀x3 ∀x1∀x1 ∃x2 ∀x3

Figure 2 Classical (left) vs elementary (right) dependences for a formula ∀x1. ∃x2. ∀x3. ξ.

3 Strategy dependences

We now follow the framework of [18, 21] and define the semantics of SL[BG][ in terms of
dependence maps. This approach provides a fine way of controlling how existentially-quantified
strategies depend on other strategies (in a quantifier block). Using dependence maps, we can
limit such dependences.

Dependence maps. Consider an SL[BG][ formula ϕ = (Qixi)1≤i≤l. ξ(βj . ϕj)j≤n, assuming
w.l.o.g. that {xi | 1 ≤ i ≤ l} = V. We let V∀ = {xi | Qi = ∀} ⊆ V be the set of
universally-quantified variables of ϕ. A function θ : StratV

∀
→ StratV is a ϕ-map (or map

when ϕ is clear from the context) if θ(w)(xi)(ρ) = w(xi)(ρ) for any w ∈ StratV
∀
, any xi ∈ V∀,

and any history ρ. In other words, θ(w) extends w to V. This general notion allows any
existentially-quantified variable to depend on all universally-quantified ones (dependence on
existentially-quantified variables is implicit: all existentially-quantified variables are assigned
through a single map, hence they all depend on the others); we add further restrictions
later on. Using maps, we may then define new semantics for SL[BG][: generally speaking,
formula ϕ = (Qixi)1≤i≤l. ξ(βj . ϕj)j≤n holds true if there exists a ϕ-map θ such that, for any
w : V∀ → Strat, the valuation θ(w) makes ξ(βj . ϕj)j≤n hold true.

Classic maps are dependence maps in which the order of quantification is respected:

∀w1, w2 ∈ StratV
∀
. ∀xi ∈ V \ V∀.(

∀xj ∈ V∀ ∩ {xj | j < i}. w1(xj) = w2(xj)
)
⇒
(
θ(w1)(xi) = θ(w2)(xi)

)
. (C)

In words, if w1 and w2 coincide on V∀ ∩ {xj | j < i}, then θ(w1) and θ(w2) coincide on xi.
Elementary maps [18, 17] have to satisfy a more restrictive condition: for those maps,

the value of an existentially-quantified strategy at any history ρ may only depend on the
value of earlier universally-quantified strategies along ρ. This may be written as:

∀w1, w2 ∈ StratV
∀
. ∀xi ∈ V \ V∀. ∀ρ ∈ Hist.(

∀xj ∈ V∀ ∩ {xk | k < i}. ∀ρ′ ∈ Pref(ρ) ∪ {ρ}. w1(xj)(ρ′) = w2(xj)(ρ′)
)
⇒(

θ(w1)(xi)(ρ) = θ(w2)(xi)(ρ)
)
. (E)

In this case, for any history ρ, if two valuations w1 and w2 of the universally-quantified
variables coincide on the variables quantified before xi all along ρ, then θ(w1)(xi) and
θ(w2)(xi) have to coincide at ρ.

The difference between both kinds of dependences is illustrated on Fig. 2: for classic
maps, the existentially-quantified strategy x2 may depend on the whole strategy x1, while it
may only depend on the value of x1 along the current history for elementary maps. Notice
that a map satisfying (E) also satisfies (C).
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q0

A

p1 p2

B

p1 p2

ϕ = ∀x.∃y.
∧{

assign( 7→ y). FB

assign( 7→ x). F p1 ⇔ assign( 7→ y). F p1

Figure 3 A game G and an SL[BG][ formula ϕ such that G, q0 6|=E ϕ and G, q0 6|=E ¬ϕ.

Satisfaction relations. Pick a formula ϕ = (Qixi)1≤i≤l. ξ
(
βj . ϕj

)
j≤n in SL[BG][. We define:

G, q |=C ϕ iff ∃θ satisfying (C). ∀w ∈ StratV
∀
. G, q |=θ(w) ξ

(
βjϕj

)
j≤n

As explained above, this actually corresponds to the usual semantics of SL[BG][ as given in
Section 2 [18, Theorem 4.6]. When G, q |=C ϕ, a map θ satisfying the conditions above is
called a C-witness of ϕ for G and q. Similarly, we define the elementary semantics [18] as:

G, q |=E ϕ iff ∃θ satisfying (E). ∀w ∈ StratV
∀
. G, q |=θ(w) ξ

(
βjϕj

)
j≤n

Again, when such a map exists, it is called an E-witness. Notice that since Property (E)
implies Property (C), we have G, q |=E ϕ⇒ G, q |=C ϕ for any ϕ ∈ SL[BG][. This corresponds
to the intuition that it is harder to satisfy a SL[BG][ formula when dependences are more
restricted. The contrapositive statement then raises questions about the negation of formulas.

The syntactic vs. semantic negations. If ϕ = (Qixi)1≤i≤lξ(βjϕj)j≤n is an SL[BG][ formula,
its syntactic negation ¬ϕ is the formula (Qixi)i≤l(¬ξ)(βjϕj)j≤n, where Qi = ∃ if Qi = ∀
and Qi = ∀ if Qi = ∃. Looking at the definitions of |=C and |=E , it could be the case
that e.g. G, q |=C ϕ and G, q |=C ¬ϕ: this only requires the existence of two adequate
maps. However, since |=C and |= coincide, and since G, q |= ϕ ⇔ G, q 6|= ¬ϕ in the usual
semantics, we get G, q |=C ϕ⇔ G, q 6|=C ¬ϕ. Also, since G, q |=E ϕ⇒ G, q |=C ϕ, we also get
G, q |=E ϕ⇒ G, q 6|=E ¬ϕ. As we now show, the converse implication holds for SL[1G][, but
may fail to hold for SL[BG][.

I Proposition 1. There exist a (one-player) game G with initial state q0 and a formula
ϕ ∈ SL[BG][ such that G, q0 6|=E ϕ and G, q0 6|=E ¬ϕ.

Proof. Consider the formula and the one-player game of Fig. 3. We start by proving that
G, q0 6|=E ϕ. For a contradiction, assume that a witness map θ satisfying (E) exists, and
pick any valuation w for the universal variable x. First, for the first goal in the conjunction
to be fulfilled, the strategy assigned to y must play to B from q0. We abbreviate this as
θ(w)(y)(q0) = B in the sequel. Now, consider two valuations w1 and w2 such that w1(x)(q0) =
w2(x)(q0) = A and w1(x)(q0 · B) = w2(x)(q0 · B), but such that w1(x)(q0 · A) = p1 and
w2(x)(q0·A) = p2. In order to fulfill the second goal under both valuations w1 and w2, we must
have θ(w1)(y)(q0 ·B) = p1 and θ(w2)(y)(q0 ·B) = p2. But this violates Property (E): since
w1(x) and w2(x) coincide on q0 and on q0 ·B, we must have θ(w1)(y)(q0 ·B) = θ(w2)(y)(q0 ·B).

We now prove that G, q0 6|=E ¬ϕ. Indeed, following the previous discussion, we easily
get that G, q0 |=C ϕ, by letting θ(w)(y)(q0) = B and θ(w)(y)(q0 · B) = w(x)(q0 · A) if
w(x)(q0) = A, and θ(w)(y)(q0 ·B) = w(x)(q0 ·B) if w(x)(q0) = B. As explained above, this
entails G, q0 6|=C ¬ϕ, and G, q0 6|=E ¬ϕ. J

I Proposition 2. For any game G with initial state q0, and any formula ϕ ∈ SL[1G][, it holds
G, q0 |=E ϕ⇔ G, q0 6|=E ¬ϕ.
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Sketch of proof. This result follows from [18, Corollary 4.21], which states that |=C and
|=E coincide on SL[1G]. Because it is central in our approach, we sketch a direct proof here
using similar ingredients: it consists in encoding the problem whether G, q0 |=E ϕ into a
two-player turn-based game with a parity-winning objective.

The construction is as follows: the interaction between existential and universal quantific-
ations of the formula is integrated into the game structure, replacing each state of G with a
tree-shaped subgame where Player P∃ selects existentially-quantified actions and Player P∀
selects universally-quantified ones. The unique goal of the formula is then incorporated
into the game via a deterministic parity automaton, yielding a two-player turn-based parity
game. We then show that G, q0 |=E ϕ if, and only if, Player P∃ has a winning strategy in
the resulting turn-based parity game, while G, q0 |=E ¬ϕ if, and only if, Player P∀ has a
winning strategy. Those equivalences hold for the elementary semantics because memoryless
strategies are sufficient in parity games. Proposition 2 then follows by determinacy of those
games [11, 23]. J

Note that the construction of the parity game gives an effective algorithm for the model-
checking problem of SL[1G][, which runs in time doubly-exponential in the size of the formula,
and polynomial in the size of the game structure; we recover the result of [18] for that problem.

Comparison of |=C and |=E. A consequence of Prop. 2 is that |=C and |=E coincide
on SL[1G][ (Corollary 4.21 of [18]). However, when considering larger fragments, the satisfac-
tion relations are distinct (see the proof of Prop. 1 for a candidate formula in SL[CG][):

I Proposition 3. The relations |=C and |=E differ on SL[CG][, as well as on SL[DG][.

I Remark. Proposition 3 contradicts the claim in [20] that |=E and |=C coincide on SL[CG]
(and SL[DG]). Indeed, in [20], the satisfaction relation for SL[DG] and SL[CG] is encoded into
a two-player game in pretty much the same way as we did in the proof of Prop. 2. While this
indeed rules out dependences outside the current history, it also gives information to Player P∃
about the values (over prefixes of the current history) of strategies that are universally-
quantified later in the quantification block. This proof technique works with SL[1G][ because
the single goal can be encoded as a parity objective, for which memoryless strategies exist,
so that the extra information is not crucial. In the next section, we investigate the role of
this extra information for larger fragments of SL[BG][.

4 Timeline dependences

Following the discussion above, we introduce a new type of dependences between strategies
(which we call timeline dependences). They allow strategies to also observe (and depend on) all
other universally-quantified strategies on the strict prefix of the current history. For instance,
for a block of quantifiers ∀x1. ∃x2. ∀x3, the value of x2 after history ρ may depend on the value
of x1 on ρ and its prefixes (as for elementary maps), but also on the value of x3 on the (strict)
prefixes of ρ. Such dependences are depicted on Fig. 4. We believe that such dependences
are relevant in many situations, especially for reactive synthesis, since in this framework
strategies really base their decisions on what they could observe along the current history.
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∀x1∀x1 ∃x2 ∀x3 ∀x1∀x1 ∃x2 ∀x3∀x3

Figure 4 Elementary (left) vs timeline (right) dependences for a formula ∀x1. ∃x2. ∀x3. ξ.

q0

a

b

p1

p2

Figure 5 |=E and |=T differ on SL[CG][.

q0

a

b

p1

p2

Figure 6 |=E and |=T differ on SL[DG][.

Formally, a map θ is a timeline map if it satisfies the following condition:

∀w1, w2 ∈ StratV
∀
. ∀xi ∈ V \ V∀. ∀ρ ∈ Hist.(

∀xj ∈ V∀ ∩ {xk | k < i}. ∀ρ′ ∈ Pref(ρ) ∪ {ρ}. w1(xj)(ρ) = w2(xj)(ρ)
∧ ∀xj ∈ V∀. ∀ρ′ ∈ Pref(ρ). w1(xj)(ρ) = w2(xj)(ρ)

)
⇒(

θ(w1)(xi)(ρ) = θ(w2)(xi)(ρ)
)
. (T)

Using those maps, we introduce the timeline semantics of SL[BG][:

G, q |=T ϕ iff ∃θ satisfying (T). ∀w ∈ StratV
∀
. G, q |=θ(w) ξ

(
βjϕj

)
j≤n

Such a map, if any, is called a T-witness of ϕ for G and q. As in the previous section, it is
easily seen that Property (E) implies Property (T), so that an E-witness is also a T-witness,
and G, q |=E ϕ⇒ G, q |=T ϕ for any formula ϕ ∈ SL[BG][.

I Example 2. Consider again the game of Fig 1 in Section 2. We have seen that G, q0 |=C ϕ

in Section 2, and that G, q0 6|=E ϕ in the proof of Prop. 3. With timeline dependences, we
have G, q0 |=T ϕ. Indeed, now θ(w)(z)(q0 · q2) may depend on w(xA)(q0) and w(xB)(q0):
we could then have e.g. θ(w)(z)(q0 · q2) = p1 when w(xA)(q0) = q2, and θ(w)(z)(q0 · q2) = p2
when w(xA)(q0) = q1. It is easily checked that this map is a T -witness of ϕ for q0.

Comparison of |=E and |=T . As explained at the end of Section 3, the proof of Prop. 2
actually shows the following result:

I Proposition 4. For any game G with initial state q0, and any formula ϕ ∈ SL[1G][, it holds
G, q0 |=E ϕ⇔ G, q0 |=T ϕ.

We now prove that this does not extend to SL[CG][ and SL[DG][:

I Proposition 5. The relations |=E and |=T differ on SL[CG][, as well as on SL[DG][.

Proof. For SL[CG][, we consider the game structure of Fig. 5, and formula

ϕC = ∃y. ∀xA. ∃xB .
∧{

assign( 7→ y; 7→ xA). F p1

assign( 7→ y; 7→ xB). F p2
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We first notice that G, q0 6|=E ϕC : indeed, in order to satisfy the first goal under any choice
of xA, the strategy for y has to point to p1 from both a and b. But then no choice of xB will
make the second goal true.

On the other hand, considering the timeline semantics, strategy y after q0 · a and q0 · b
may depend on the choice of xA in q0. When w(xA)(q0) = a, we let θ(w)(y)(q0 · a) = p1 and
θ(w)(y)(q0 · b) = p2 and θ(w)(xB)(q0) = b, which makes both goals hold true. Conversely, if
w(xA)(q0) = b, then we let θ(w)(y)(q0 ·b) = p1 and θ(w)(y)(q0 ·a) = p2 and θ(w)(xB)(q0) = a.

For SL[DG][, we consider the game of Fig. 6, and easily prove that formula ϕD below has
a T-witness but no E-witness:

ϕD = ∃y. ∀xA. ∀xB . ∀z.
∨{

assign( 7→ y; 7→ xA; 7→ z). F p1

assign( 7→ y; 7→ xB ; 7→ z). F p2
J

The syntactic vs. semantic negations. While both semantics differ, we now prove that
the situation w.r.t. the syntactic vs. semantic negations is similar. First, following Prop. 4
and 2, the two negations coincide on SL[1G][ under the timeline semantics. Moreover:

I Proposition 6. For any formula ϕ in SL[BG][, for any game G and any state q0, we have
G, q0 |=T ϕ⇒ G, q0 6|=T ¬ϕ.

Sketch of proof. Write ϕ = (Qixi)1≤i≤lξ(βjϕj)j≤n. For a contradiction, assume that there
exist two maps θ and θ witnessing G, q0 |=T ϕ and G, q0 |=T ¬ϕ, respectively. Then for
any strategy valuations w and w for V∀ and V∃, we have that G, q0 |=θ(w) ξ(βjϕj)j and
G, q0 |=θ(w) ¬ξ(βjϕj)j . We can then inductively (on histories and on the sequence of
quantified variables) build a strategy valuation χ on V such that θ(χ|V∀) = θ(χ|V∃) = χ.
Then under valuation χ, both ξ(βjϕj)j and ¬ξ(βjϕj)j hold in q0, which is impossible. J

I Proposition 7. There exists a formula ϕ ∈ SL[BG][, a (turn-based) game G and a state q0
such that G, q0 6|=T ϕ and G, q0 6|=T ¬ϕ.

5 The fragment SL[EG][

In this section, we focus on the timeline semantics |=T . We exhibit a fragment1 SL[EG][ of
SL[BG][, containing SL[CG][ and SL[DG][, for which the syntactic and semantic negations
coincide, and for which we prove model-checking is in 2 -EXPTIME:

I Theorem 8. For any ϕ ∈ SL[EG][ and any state q0, it holds: G, q0 |=T ϕ⇔ G, q0 6|=T ¬ϕ.
Moreover, model checking SL[EG][ for the timeline semantics is 2 -EXPTIME-complete.

5.1 Semi-stable sets.
For n ∈ N, we let {0, 1}n be the set of mappings from [1, n] to {0, 1}. We write 0n (or 0 if
the size n is clear) for the function that maps all integers in [1, n] to 0, and 1n (or 1) for the
function that maps [1, n] to 1. For f, g ∈ {0, 1}n, we define:

f : i 7→ 1− f(i) f f g : i 7→ min{f(i), g(i)} f g g : i 7→ max{f(i), g(i)}.

1 We name our fragment SL[EG][ as it comes as a natural continuation after fragments SL[AG][ [21],
SL[BG][ [18], and SL[CG][ and SL[DG][ [20].
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We then introduce the notion of semi-stable sets, on which the definition of SL[EG][ relies:
a set Fn ⊆ {0, 1}n is semi-stable if for any f and g in Fn, it holds that

∀s ∈ {0, 1}n. (f f s) g (g f s) ∈ Fn or (g f s) g (f f s) ∈ Fn.

I Example 3. Obviously, the set {0, 1}n is semi-stable, as well as the empty set. For n = 2,
the set {(0, 1), (1, 0)} is easily seen not to be semi-stable: taking f = (0, 1) and g = (1, 0)
with s = (1, 0), we get (f f s) g (g f s) = (0, 0) and (g f s) g (f f s) = (1, 1). Similarly,
{(0, 0), (1, 1)} is not semi-stable. Any other subset of {0, 1}2 is semi-stable.

We then define

SL[EG][ 3 ϕ ::= ∀x.ϕ | ∃x.ϕ | ξ ξ ::= Fn((βi)1≤i≤n)
β ::= assign(σ). ψ ψ ::= ¬ψ | ψ ∨ ψ | Xψ | ψUψ | p

where Fn ranges over semi-stable subsets of {0, 1}n, for all n ∈ N. The semantics of the
operator Fn is defined as

G, q |=χ F
n((βi)i≤n) ⇔ ∃f ∈ Fn. ∀1 ≤ i ≤ n. (f(i) = 1 iff G, q |=χ βi).

Notice that if Fn would range over all subsets of {0, 1}n, then this definition would
exactly correspond to SL[BG][. Similarly, the case where Fn = {1n} corresponds to SL[CG][,
while Fn = {0, 1}n \ {0n} gives rise to SL[DG][.

I Example 4. Consider the following formula, expressing the existence of a Nash equilibrium
for two players with respective LTL objectives ψ1 and ψ2:

∃x1.∃x2.∀y1.∀y2.
∧{

(assign(A1 7→ y1;A2 7→ x2).ψ1)⇒ (assign(A1 7→ x1;A2 7→ x2).ψ1)
(assign(A1 7→ x1;A2 7→ y2).ψ2)⇒ (assign(A1 7→ x1;A2 7→ x2).ψ2)

This formula has four goals, and it corresponds to the set

F 4 = {(a, b, c, d) ∈ {0, 1}4 | a ≤ b and c ≤ d}

Taking f = (1, 1, 0, 0) and g = (0, 0, 1, 1), with s = (1, 0, 1, 0) we have (f f s) g (g f s) =
(1, 0, 0, 1) and (g f s) g (f f s) = (0, 1, 1, 0), none of which is in F 4. Hence our formula is
not (syntactically) in SL[EG][.

The definition of SL[EG] may look artificial. The main reason why we work with SL[EG]
is that it is maximal for the first claim of Theorem 8 (see Prop. 11). But as the next result
shows, it is actually a large fragment encompassing SL[AG] (hence also SL[CG] and SL[DG]):

I Proposition 9. SL[EG][ contains SL[AG][. The inclusion is strict (syntactically).

5.2 Defining quasi-orders from semi-stable sets.
For Fn ⊆ {0, 1}n, we write Fn for the complement of Fn. Fix such a set Fn, and pick
s ∈ {0, 1}n. For any h ∈ {0, 1}n, we define

Fn(h, s) = {h′ ∈ {0, 1}n | (hf s) g (h′ f s) ∈ Fn}
Fn(h, s) = {h′ ∈ {0, 1}n | (hf s) g (h′ f s) ∈ Fn}

Trivially Fn(h, s) ∩ Fn(h, s) = ∅ and Fn(h, s) ∪ Fn(h, s) = {0, 1}n. If we assume Fn to be
semi-stable, then the family (Fn(h, s))h∈{0,1}n enjoys the following property:
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I Lemma 10. Fix a semi-stable set Fn and s ∈ {0, 1}n. For any h1, h2 ∈ {0, 1}n, either
Fn(h1, s) ⊆ Fn(h2, s) or Fn(h2, s) ⊆ Fn(h1, s).

Given a semi-stable set Fn and s ∈ {0, 1}n, we can use the inclusion relation of Lemma 10
to define a relation �Fn

s (written �s when Fn is clear) over the elements of {0, 1}n. It is
defined as follows: h1 �s h2 if, and only if, Fn(h1, s) ⊆ Fn(h2, s).

This relation is a quasi-order: its reflexiveness and transitivity both follow from the
reflexiveness and transitivity of the inclusion relation ⊆. By Lemma 10, this quasi-order is
total. Intuitively, �s orders the elements of {0, 1}n based on how “easy” it is to complete
their restriction to s so that the completion belongs to Fn. In particular, only the indices on
which s take value 1 are used to check whether h1 �s h2: given h1, h2 ∈ {0, 1}n such that
(h1 f s) = (h2 f s), we have F(h1, s) = F(h2, s), and h1 ≡s h2.

I Example 5. Consider the set F 3 = {(1, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)} repres-
ented on the figure below, and which can be shown to be semi-stable. Fix s = (1, 1, 0).
Then F3((0, 1, ?), s) = {0, 1}2 × {1}, while F3((1, 1, ?), s) = F3((1, 0, ?), s) = {0, 1}3 and
F3((0, 0, ?), s) = ∅. It follows that (0, 0, ?) �s (0, 1, ?) �s (1, 0, ?) ≡s (1, 1, ?).

(0, 0, 0)

(0, 1, 0) (0, 0, 1)(1, 0, 0)

(1, 1, 0) (1, 0, 1) (0, 1, 1)

(1, 1, 1) F 3

5.3 Sketch of proof of Theorem 8
The approach we used in Prop 2 does not extend in general to formulas with several goals.
Consider for instance formula (Qixi)i≤l(β1.ψ1 ⇔ β2.ψ2): if at some points the two goals give
rise to two different outcomes (hence to two different subgames), the winning objectives in
one subgame depends on what is achieved in the other subgame.

SL[EG][ has been designed to prevent such situations: when two (or more) outcomes are
available at a given position, each subgame can be assigned an independent winning objective.
This objective can be obtained from the quasi-orders �s associated with the SL[EG][ formula
being considered. Consider again Example 5: associating the set F 3 with three goals β1, β2
and β3, we get a formula in SL[EG][. Assume that the moves selected by the players give rise
to the same transition for β1 and β2, and to a different transition for β3; then in the subgame
reached when following the transition of β1 and β2 (hence with s = (1, 1, 0)), the optimal
way of fulfilling goals β1 and β2 is given by (0, 0, ?) �s (0, 1, ?) �s (1, 0, ?) ≡s (1, 1, ?),
independently of what may happen in the subgame reached by following the transition given
by β3.

We exploit this idea in our proof: first, in order to keep track of the truth values of the
LTL formulas ψi of each goal, we define a family of parity automata, one for each subset of
goals of the formula under scrutiny. A subgame, as considered above, is characterized by
a state q of the original concurrent game, a state dp of each of the parity automata, and a
vector s ∈ {0, 1}n defining which goals are still active. For each subgame, we can compute,
by induction on s, the optimal set of goals that can be fulfilled from that configuration.
The optimal strategies of both players in each subgame can be used to define (partial) optimal
timeline dependence maps. We can then combine these partial maps together to get optimal
dependence maps θ and θ; using similar arguments as for the proof of Prop. 6, we get a
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valuation χ such that θ(χ|V∀) = χ = θ(χ|V∃), from which we deduce that exactly one of ϕ
and ¬ϕ holds.

5.4 Maximality of SL[EG][

Finally, we prove that SL[EG][ is, in a sense, maximal for the first property of Theorem 8:

I Proposition 11. For any non-semi-stable boolean set Fn ⊆ {0, 1}n, there exists a SL[BG][
formula ϕ built on Fn, a game G and a state q0 such that G, q0 6|=T ¬ϕ and G, q0 6|=T ϕ.

Whether SL[EG][ is also maximal for having a 2 -EXPTIME model-checking algorithm
remains open. Actually, we do not know if SL[BG][ model checking is decidable under the
timeline semantics. These questions will be part of our future works on this topic.
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Abstract

The Colouring problem is to decide if the vertices of a graph can be coloured with at most k
colours for a given integer k such that no two adjacent vertices are coloured alike. The complexity
of Colouring is fully understood for graph classes characterized by one forbidden induced
subgraph H. Despite a huge body of existing work, there are still major complexity gaps if two
induced subgraphs H1 and H2 are forbidden. We let H1 be the s-vertex cycle Cs and H2 be the t-
vertex path Pt. We show that Colouring is polynomial-time solvable for s = 4 and t ≤ 6, which
unifies several known results for Colouring on (H1, H2)-free graphs. Our algorithm is based on
a novel decomposition theorem for (C4, P6)-free graphs without clique cutsets into homogeneous
pairs of sets and a new framework for bounding the clique-width of a graph by the clique-width
of its subgraphs induced by homogeneous pairs of sets. To apply this framework, we also need to
use divide-and-conquer to bound the clique-width of subgraphs induced by homogeneous pairs
of sets. To complement our positive result we also prove that Colouring is NP-complete for
s = 4 and t ≥ 9, which is the first hardness result on Colouring for (C4, Pt)-free graphs.

2012 ACM Subject Classification Mathematics of computing → Graph theory

Keywords and phrases Graph Colouring, Hereditary Graph Class, Clique-width, Cycle, Path

Digital Object Identifier 10.4230/LIPIcs.STACS.2018.35

Funding Serge Gaspers is the recipient of an Australian Research Council (ARC) Future Fel-
lowship (FT140100048) and acknowledges support under the ARC’s Discovery Projects funding
scheme (DP150101134). Daniël Paulusma is supported by Leverhulme Trust Grant RPG-2016-
258.

Acknowledgements Initially we proved NP-hardness of Colouring for (C4, P16)-free graphs.
Afterwards we were able to improve this result to (C4, P9)-free graphs via a simplification of our
construction. We would like to thank an anonymous reviewer for pointing out this simplification
as well.

© Serge Gaspers, Shenwei Huang, and Daniël Paulusma;
licensed under Creative Commons License CC-BY

35th Symposium on Theoretical Aspects of Computer Science (STACS 2018).
Editors: Rolf Niedermeier and Brigitte Vallée; Article No. 35; pp. 35:1–35:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sergeg@cse.unsw.edu.au
mailto:dynamichuang@gmail.com
mailto:daniel.paulusma@durham.ac.uk
http://dx.doi.org/10.4230/LIPIcs.STACS.2018.35
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


35:2 Colouring Square-Free Graphs without Long Induced Paths

1 Introduction

Graph colouring has been a popular and extensively studied concept in computer science and
mathematics since its introduction as a map colouring problem more than 150 years ago due
to its many application areas crossing disciplinary boundaries and to its use as a benchmark
problem in research into computational hardness. The corresponding decision problem,
Colouring, is to decide, for a given graph G and integer k, if G admits a k-colouring, that
is, a mapping c : V (G) → {1, . . . , k} such that c(u) 6= c(v) whenever uv ∈ E(G). Unless
P = NP, it is not possible to solve Colouring in polynomial time for general graphs, not
even if the number of colours is limited to 3 [37]. To get a better understanding of the
borderline between tractable and intractable instances of Colouring, it is natural to restrict
the input to some special graph class. Hereditary graph classes, which are classes of graphs
closed under vertex deletion, provide a unified framework for a large collection of well-known
graph classes. It is readily seen that a graph class is hereditary if and only if it can be
characterized by a (unique) set H of minimal forbidden induced subgraphs. Graphs with no
induced subgraph isomorphic to a graph in a set H are called H-free.

Over the years, the study of Colouring for hereditary graph classes has evolved into
a deep area of research in theoretical computer science and discrete mathematics (see, for
example, [6, 22, 31, 44]). One of the best-known results is the classical result of Grötschel,
Lovász, and Schrijver [24], who showed that Colouring is polynomial-time solvable for
perfect graphs. Faster, even linear-time, algorithms are known for subclasses of perfect
graphs, such as chordal graphs, bipartite graphs, interval graphs, and comparability graphs;
see for example [22]. All these classes are characterized by infinitely many minimal forbidden
induced subgraphs. Král’, Kratochvíl, Tuza, and Woeginger [35] initiated a systematic study
into the computational complexity of Colouring restricted to hereditary graph classes
characterized by a finite number of minimal forbidden induced subgraphs. In particular they
gave a complete classification of the complexity of Colouring for the case where H consists
of a single graph H. Their dichotomy result led to two natural directions for further research:
1. Is it possible to obtain a dichotomy for Colouring on H-free graphs if the number of

colours, k, is fixed (that is, k no longer belongs to the input)?
2. Is it possible to obtain a dichotomy for Colouring on H-free graphs if H has size 2?
We briefly discuss known results for both directions below and refer to [19] for a detailed
survey. Let Cs and Pt denote the cycle on s vertices and path on t vertices, respectively. We
start with the first question. If k is fixed, then we denote the problem by k-Colouring. It
is known that for every k ≥ 3, the k-Colouring problem on H-free graphs is NP-complete
whenever H contains a cycle [16] or an induced claw [28, 36]. Therefore, only the case when
H is a disjoint union of paths remains. In particular, the situation where H = Pt has been
thoroughly studied. On the positive side, 3-Colouring P7-free graphs and k-Colouring
P5-free graphs for any fixed k ≥ 1 are shown to be polynomial-time solvable [3, 26]. On the
negative side, Huang [29] proved NP-completeness for (k = 5, t = 6) and for (k = 4, t = 7).
The cases (k = 3, t ≥ 8) and (k = 4, t = 6) remain open, although some partial results are
known [9, 10].

In this paper we focus on the second question, that is, we restrict the input of Colouring
to H-free graphs for H = {H1, H2}. For two graphs G and H, we use G+H to denote the
disjoint union of G and H, and we write rG to denote the disjoint union of r copies of G.
As a starting point, Král’, Kratochvíl, Tuza, and Woeginger [35] identified the following
three main sources of NP-completeness: (i) both H1 and H2 contain a claw; (ii) both H1
and H2 contain a cycle; and (iii) both H1 and H2 contain an induced subgraph from the set
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{4P1, 2P1 + P2, 2P2}. They also showed additional NP-completeness results by mixing the
three types. Since then numerous papers [1, 7, 8, 13, 14, 25, 27, 29, 33, 35, 38, 41, 42, 43, 47]
have been devoted to this problem, but despite all these efforts the complexity classification
for Colouring on (H1, H2)-free graphs is still far from complete, and even dealing with
specific pairs (H1, H2) may require substantial work.

One of the “mixed” results obtained in [35] is that Colouring is NP-complete for
(Cs, H)-free graphs when s ≥ 5 and H ∈ {4P1, 2P1 + P2, 2P2}. This, together with the
well-known result that Colouring can be solved in linear time for P4-free graphs, implies
the following dichotomy.

I Theorem 1 ([35]). Let s ≥ 5 be a fixed positive integer. Then Colouring for (Cs, Pt)-free
graphs is polynomial-time solvable when t ≤ 4 and NP-complete when t ≥ 5.

Theorem 1 raises the natural question: what is the complexity of Colouring on (Cs, Pt)-free
graphs when s ∈ {3, 4}? Huang, Johnson and Paulusma [30] proved that 4-Colouring, and
thus Colouring, is NP-complete for (C3, P22)-free graphs, while a result of Brandstädt,
Klembt and Mahfud [5] implies that Colouring is polynomial-time solvable for (C3, P6)-free
graphs. For s = 4, it is only known that Colouring is polynomial-time solvable for (C4, P5)-
free graphs [41]. This is unless we fix the number of colours: for every k ≥ 1 and t ≥ 1, it is
known that k-Colouring is polynomial-time solvable for (C4, Pt)-free graphs [21].

Our Results. We first show, in section 3, that Colouring is polynomial-time solvable for
(C4, P6)-free graphs. This case was explicitly mentioned as a natural case to consider in [19].
Our result unifies several previous results on colouring (C4, Pt)-free graphs, namely: the
polynomial-time solvability of Colouring for (C4, P5)-free graphs [41]; the polynomial-time
solvability of k-Colouring for (C4, P6)-free graphs for every k ≥ 1 [21]; and the recent 3/2-
approximation algorithm for Colouring for (C4, P6)-free graphs [18]. It was not previously
known if there exists an integer t such that Colouring is NP-complete for (C4, Pt)-free
graphs. In section 4 we complement our positive result by giving an affirmative answer to
this question: already the value t = 9 makes the problem NP-complete.

Our Methodology. The general research aim of our paper is to increase, in a systematic
way, our insights in the computational hardness of Colouring and to narrow the complexity
gaps between hard and easy cases. Clique-width is a well-known width parameter and having
bounded clique-width is often the underlying reason for a large collection of NP-complete
problems, including Colouring, to become tractable on a special graph class; this follows
from results of [11, 17, 34, 45, 46]. However, the class of (C4, P6)-free graphs contains the
class of split graphs, which may have arbitrarily large clique-width [40]. Hence, if we want
to use clique-width to solve Colouring for (C4, P6)-free graphs, then we first need to
preprocess the input graph. An atom is a graph with no clique cut set. In this paper we
prove that (C4, P6)-free atoms have bounded clique-width. This implies a polynomial-time
algorithm for Colouring on (C4, P6)-free graphs, as it is well known that Colouring is
polynomial-time solvable on a hereditary graph class G if it is so on the atoms of G [49].

In order to prove that (C4, P6)-free atoms have bounded clique-width, we further develop
the approach of [18] that was used to bound the chromatic number of (C4, P6)-free graphs as
a linear function of their maximum clique size and to obtain a 3/2-approximation algorithm
for Colouring for (C4, P6)-free graphs. The approach of [18] is based on a decomposition
theorem for (C4, P6)-free atoms. For our purposes we derive a new variant of this decom-
position theorem for so-called strong atoms, which are atoms that contain no universal
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vertices and no pairs of twin vertices. Another novel element in our approach is that we
show how to bound the clique-width of a graph by the clique-width of its subgraphs induced
by homogeneous pairs of sets, and this will be very useful for dealing with (C4, P6)-free
strong atoms. To apply this method, we also need to use divide-and-conquer to bound the
clique-width of subgraphs induced by homogeneous pairs of sets.

2 Preliminaries

For general graph theory notation we follow [2]. LetG = (V,E) be a graph. The neighbourhood
of a vertex v, denoted by NG(v), is the set of neighbours of v. For a set X ⊆ V (G), let
NG(X) =

⋃
v∈X NG(v) \ X. The degree of v, denoted by dG(v), is equal to |NG(v)|. For

x ∈ V and S ⊆ V , we denote by NS(x) the set of neighbours of x that are in S, i.e.,
NS(x) = NG(x) ∩ S. For X,Y ⊆ V , we say that X is complete (resp. anti-complete) to Y if
every vertex in X is adjacent (resp. non-adjacent) to every vertex in Y . A vertex subset
K ⊆ V is a clique cutset if G −K has more components than G and K induces a clique.
A vertex is universal in G if it is adjacent to all other vertices. For S ⊆ V , the subgraph
induced by S, is denoted by G[S].

A subset D ⊆ V is a dominating set if every vertex not in D has a neighbour in D. Let
u, v ∈ V be two distinct vertices. We say that a vertex x /∈ {u, v} distinguishes u and v if
x is adjacent to exactly one of u and v. A set H ⊆ V is a homogeneous set if no vertex in
V \H can distinguish two vertices in H. A homogeneous set H is proper if 1 < |H| < |V |.
A graph is prime if it contains no proper homogeneous set. We say that u and v are twins if
u and v are adjacent and they have the same set of neighbours in V \ {u, v}. Note that the
binary relation of being twins is an equivalence relation on V and so V can be partitioned
into equivalence classes T1, . . . , Tr of twins. The skeleton of G is the subgraph induced by a
set of r vertices, one from each of T1, . . . , Tr. A blow-up of a graph G is a graph G′ obtained
by replacing each vertex v of G with a clique Kv of size at least 1 such that Kv and Ku

are complete in G′ if u and v are adjacent in G, and anti-complete otherwise. Since each
equivalence class of twins is a clique and any two equivalence classes are either complete or
anti-complete, every graph is a blow-up of its skeleton.

The clique-width of a graph G, denoted by cw(G), is the minimum number of labels
required to construct G using the following four operations:

i(v): create a new graph consisting of a single vertex v with label i;
G1 ⊕G2: take the disjoint union of two labelled graphs G1 and G2;
ηi,j : join each vertex with label i to each vertex with label j (for i 6= j);
ρi→j : rename label i to j.

A clique-width expression for G is an algebraic expression that describes how G can
be recursively constructed using these operations. A k-expression for G is a clique-width
expression using at most k distinct labels. For instance, this is a 3-expression for the induced
path on four vertices a, b, c, d:

η3,2(3(d)⊕ ρ3→2(ρ2→1(η3,2(3(c)⊕ η2,1(2(b)⊕ 1(a)))))).

Clique-width is of fundamental importance in computer science since all problems express-
ible in monadic second-order logic using quantifiers over vertex subsets but not over edge
subsets become polynomial-time solvable for graphs of bounded clique-width [11]. Although
this meta-theorem does not directly apply to Colouring, a result of Kobler and Rotics
[34], combined with the approximation algorithm of Oum and Seymour [45] for finding a
p-expression, showed that Colouring can be added to the list of such problems.
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I Theorem 2 ([34]). Colouring can be solved in polynomial time for graphs of bounded
clique-width.

3 The Polynomial-Time Result

In this section, we shall prove that the chromatic number of any (C4, P6)-free graph can be
found in polynomial time.

I Theorem 3. Colouring is polynomial-time solvable on the class of (C4, P6)-free graphs.

A graph is called an atom if it contains no clique cutset. The main ingredient for proving
Theorem 3 is a new structural property of (C4, P6)-free atoms below which asserts that
(C4, P6)-free atoms have bounded clique-width.

I Theorem 4. Every (C4, P6)-free atom has bounded clique-width.

The proof of Theorem 4 is deferred to subsection 3.3.

Proof of Theorem 3 (assuming Theorem 4). Let G be a (C4, P6)-free graph. We find the
clique decomposition of Tarjan [49] in O(mn) time and this gives a binary decomposition tree
T where the root of T is G and the leaves are induced subgraphs of G without clique cutsets.
Tarjan [49] showed that there are at most O(n) leaves and that the chromatic number of any
node in T is the maximum of the chromatic numbers of its children. Therefore, determining
χ(G) reduces to determining the chromatic number of atoms. Now it follows from Theorem 4
that each atom has bounded clique-width and thus the chromatic number can be found in
polynomial time by Theorem 2. J

The remainder of the section is organized as follows. In subsection 3.1, we present the key
tools on clique-width that play an important role in the proof of Theorem 4. In subsection 3.2,
we list structural properties around a 5-cycle in a (C4, P6)-free graph that are frequently used
in later proofs. We then present our main proof, the proof of Theorem 4, in subsection 3.3.

3.1 Clique-width
Let G = (V,E) be a graph and H be a proper homogeneous set in G. Then V \ H is
partitioned into two subsets N and M where N is complete to H and M is anti-complete
to H. Let h ∈ H be an arbitrary vertex and Gh = G− (H \ {h}). We say that H and Gh

are factors of G with respect to H. Suppose that τ is a k1-expression for Gh using labels
1, . . . , k1 and σ is a k2-expression for H using labels 1, . . . , k2. Then substituting i(h) in τ
with ρ1→i . . . ρk2→iσ results in a k-expression for G where k = max{k1, k2}.

I Lemma 5 ([12]). The clique-width of any graph G is the maximum clique-width of any
prime induced subgraph of G.

A bipartite graph is a chain graph if it is 2P2-free. A co-bipartite chain graph is the
complement of a bipartite chain graph. Let G be a (not necessarily bipartite) graph such
that V (G) is partitioned into two subsets A and B. We say that a k-expression for G is nice
if all vertices in A end up with the same label i and all vertices in B end up with the same
label j with i 6= j. It is well-known that any co-bipartite chain graph whose vertex set is
partitioned into two cliques has a nice 4-expression.

I Lemma 6 (Folklore). There is a nice 4-expression for any co-bipartite chain graph.
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35:6 Colouring Square-Free Graphs without Long Induced Paths

We now use divide-and conquer to show that a special graph class has clique-width at
most 4. This plays a crucial role in our proof of the main theorem (Theorem 4).

I Lemma 7. Let G be a C4-free graph such that V (G) is partitioned into two subsets A and
B that satisfy the following conditions:
(i) A is a clique;
(ii) B is P4-free;
(iii) no vertex in A has two non-adjacent neighbours in B;
(iv) there is no induced P4 in G that starts with a vertex in A followed by three vertices in

B.
Then there is a nice 4-expression for G.

Proof. We use induction on |B|. If B contains at most one vertex, then G is a co-bipartite
chain graph and the lemma follows from Theorem 6. So, we assume that B contains at least
two vertices. Since B is P4-free, either B or B is disconnected [48]. Suppose first that B is
disconnected. Then B can be partitioned into two nonempty subsets B1 and B2 that are
anti-complete to each other. Let A1 = N(B1)∩A and A2 = A \A1. Clearly, G[Ai ∪Bi] with
the partition (Ai, Bi) satisfies all the conditions of the lemma for each 1 ≤ i ≤ 2. Note also
that, by (iii), A1 is anti-complete to B2 and A2 is anti-complete to B1. By the inductive
hypothesis there is a nice 4-expression τi for G[Ai ∪Bi] in which all vertices in Ai and Bi

have labels 2 and 4, respectively. Now ρ1→2(η1,2(τ1 ⊕ ρ2→1τ2)) is a nice 4-expression for G.
Suppose now that B is disconnected. This means that B can be partitioned into two

subsets B1 and B2 that are complete to each other. Since G is C4-free, either B1 or B2 is a
clique. Without loss generality, we may assume that B1 is a clique. Moreover, we choose
the partition (B1, B2) such that B1 is maximal. Then every vertex in B2 is not adjacent to
some vertex in B2 for otherwise we could have moved such a vertex to B1. If B2 = ∅ then
G is a co-bipartite chain graph and so the lemma follows from Theorem 6. Therefore, we
assume in the following that B1, B2 6= ∅. Let A1 = N(B1) ∩A and A2 = A \A1. Note that
A2 is anti-complete to B1.

We claim thatN(B2)∩A is complete to B1. Suppose, by contradiction, that a ∈ N(B2)∩A
and b1 ∈ B1 are not adjacent. By definition, a has a neighbour b ∈ B2. Recall that b is not
adjacent to some vertex b′ ∈ B2. Now a, b, b1, b

′ induces either a P4 or a C4, depending on
whether a and b′ are adjacent. This contradicts (iv) or the C4-freeness of G. This proves the
claim. Therefore, A2 is anti-complete to B2 and N(B2) ∩ A = N(B2) ∩ A1 (see Figure 1).
Consequently, G[(A1 ∩ N(B2)) ∪ B2] with the partition (A1 ∩ N(B2), B2) satisfies all the
conditions of the lemma. By the inductive hypothesis there is a nice 4-expression τ for
G[(A1 ∩N(B2)) ∪B2] in which all vertices in A ∩N(B2) = A1 ∩N(B2) and B2 have labels
2 and 4, respectively. In addition, note that (A1 \N(B2), B1) is a co-bipartite chain graph.
It then follows from Theorem 6 that there is a nice 4-expression ε for it in which all vertices
in A1 \N(B2) and B1 have labels 1 and 3, respectively. Then

σ = ρ3→4(ρ1→2(η3,4(η2,3(η1,2(ε⊕ τ)))))

is a nice 4-expression for G − A2. Let δ be a 2-expression for A2 in which all vertices in
A2 have label 1. Then ρ1→2(η1,2(δ ⊕ σ)) is a nice 4-expression for G. This completes the
proof. J

Let G = (V,E) be a graph and X and Y two disjoint subsets of V (G). We say that
(X,Y ) is a homogeneous pair of sets in G if no vertex in V \ (X ∪ Y ) distinguishes two
vertices in X or in Y . If both X and Y are cliques then (X,Y ) is a homogeneous pair of
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B1B2

A1 \N(B2)A1 ∩N(B2)

A2

Figure 1 The case B is disconnected. Shaded circles represent cliques. A thick line between two
sets represents that the two sets are complete, and a dotted line represents that the edges between
the two sets can be arbitrary. Two sets are anti-complete if there is no line between them.

cliques. Note that homogeneous sets are special cases of homogeneous pair of sets where one
of X and Y is empty. We establish a novel framework via existing results on clique-width
for bounding the clique-width of a graph by the clique-width of its subgraphs induced by
homogeneous pairs of sets.

I Lemma 8. Let G be a graph such that V (G) can be partitioned into a subset V0 of vertices
of constant size, a constant number of pairs of sets (Si, Ti) for 1 ≤ i ≤ r and a subset V ′ of
vertices such that
(i) for each 1 ≤ i ≤ r, (Si, Ti) is a homogeneous pair of sets in G− (V0 ∪

⋃i−1
j=1(Sj ∪ Tj);

(ii) for each 1 ≤ i ≤ r, G[Si ∪ Ti] has bounded clique-width; and
(iii) G[V ′] has bounded clique-width.
Then G has bounded clique-width.

Proof. Let G1 = G− V0 and Gi+1 = Gi − (Si ∪ Ti) for 1 ≤ i ≤ r. Note that Gr+1 = G[V ′].
First of all, it follows from [39] that G has bounded clique-width if and only if G1 has bounded
clique-width. In addition, (i) says that (Si, Ti) is a homogeneous pair of sets in Gi. Let Ni

and Mi be sets of vertices in Gi that are complete to Si and Ti, respectively. For each i we
do in Gi two bipartite complementations on the pairs (Si, V (Gi) \Ni) and (Ti, V (Gi) \Mi),
which means that we interchange edges and non-edges between the pairs. This results in a
graph G′ on the same vertex set as G1 that is the disjoint union of G[Si ∪ Ti] and G[V ′]. It
follows from [32] that G1 has bounded clique-width if and only if each G[Si ∪ Ti] and G[V ′]
have bounded clique-width. Now the lemma follows from our assumptions (ii) and (iii). J

3.2 Structure around a 5-Cycle
Let G = (V,E) be a graph and H be an induced subgraph of G. We partition V \ V (H)
into subsets with respect to H as follows: for any X ⊆ V (H), we denote by S(X) the set of
vertices in V \ V (H) that have X as their neighbourhood among V (H), i.e.,

S(X) = {v ∈ V \ V (H) : NV (H)(v) = X}.

For 0 ≤ j ≤ |V (H)|, we denote by Sj the set of vertices in V \ V (H) that have exactly j
neighbours among V (H). Note that Sj =

⋃
X⊆V (H):|X|=j S(X). We say that a vertex in

Sj is a j-vertex. Let G be a (C4, P6)-free graph and C = 1, 2, 3, 4, 5 be an induced C5 in
G. We partition V \ C with respect to C as above. All indices below are modulo 5. Since
G is C4-free, there is no vertex in V \ C that is adjacent to vertices i and i+ 2 but not to
vertex i + 1. In particular, S(1, 3), S4, etc. are empty. The following properties of S(X)
were proved in [25] using the fact that G is (C4, P6)-free.
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Figure 2 The Petersen graph.

(P1) S5 ∪ S(i− 1, i, i+ 1) is a clique.
(P2) S(i) is complete to S(i+ 2) and anti-complete to S(i+ 1). Moreover, if neither S(i)

nor S(i+ 2) are empty then both sets are cliques.
(P3) S(i, i+ 1) is complete to S(i+ 1, i+ 2) and anti-complete to S(i+ 2, i+ 3). Moreover,

if neither S(i, i+ 1) nor S(i+ 1, i+ 2) are empty then both sets are cliques.
(P4) S(i− 1, i, i+ 1) is anti-complete to S(i+ 1, i+ 2, i+ 3).
(P5) S(i) is anti-complete to S(j, j + 1) if j 6= i+ 2. Moreover, if a vertex in S(i+ 2, i+ 3)

is not anti-complete to S(i) then it is universal in S(i+ 2, i+ 3).
(P6) S(i) is anti-complete to S(i+ 1, i+ 2, i+ 3).
(P7) S(i− 2, i+ 2) is anti-complete to S(i− 1, i, i+ 1).
(P8) Either S(i) or S(i+ 1, i+ 2) is empty. By symmetry, either S(i) or S(i− 1, i− 2) is

empty.
(P9) At least one of S(i− 1, i), S(i, i+ 1) and S(i+ 2, i− 2) is empty.

3.3 Proof of Theorem 4
In this section, we give a proof of Theorem 4. A graph is chordal if it does not contain any
induced cycle of length at least 4. The following structure of (C4, P6)-free graphs discovered
by Brandstädt and Hoàng [4] is of particular importance in our proofs below.

I Theorem 9 ([4]). Let G be a (C4, P6)-free atom. Then the following statements hold:
(i) every induced C5 is dominating;
(ii) if G contains an induced C6 which is not dominating, then G is the join of a blow-up

of the Petersen graph (Figure 2) and a (possibly empty) clique.

We say that an atom is strong if it has no pair of twin vertices or universal vertices. Note
that a pair of twin vertices and a universal vertex in a graph give rise to two special kinds of
proper homogeneous sets such that one of the factors decomposed by these homogeneous
sets is a clique. Therefore, removing twin vertices and universal vertices does not change
the clique-width of the graph by Theorem 5. So, to prove Theorem 4 it suffices to prove the
theorem for strong atoms. We follow the approach in [18]. In [18], the first and second authors
showed how to derive a useful decomposition theorem for (C4, P6)-free atoms by eliminating
a sequence F1, C6, F2 and C5 (see Figure 3 for the graphs F1 and F2) of induced subgraphs
and then employing Dirac’s classical theorem [15] on chordal graphs. Here we adopt the
same strategy and show in Theorem 10–Theorem 13 below that if a (C4, P6)-free strong atom
G contains an induced C5 or C6, then it has bounded clique-width. The remaining case is
therefore that G is chordal and so G is a clique by Dirac’s theorem [15]. Since cliques have
clique-width 2, Theorem 4 follows. It turns out that we can easily prove Theorem 10 and
Theorem 11 via the framework formulated in Theorem 8 using the structure of the graphs
discovered in [18]. The difficulty is, however, that we have to extend the structural analysis
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Figure 3 Two special graphs F1 and F2.

in [18] extensively for Theorem 12 and Theorem 13 and provide new insights on bounding
the clique-width of certain special graphs using divide-and-conquer (see Theorem 7).

I Lemma 10. If a (C4, P6)-free strong atom G contains an induced F1, then G has bounded
clique-width.

I Lemma 11. If a (C4, F1, P6)-free strong atom G contains an induced C6, then G has
bounded clique-width.

I Lemma 12. If a (C4, C6, F1, P6)-free strong atom G contains an induced F2, then G has
bounded clique-width.

I Lemma 13. If a (C4, C6, F1, F2, P6)-free strong atom G contains an induced C5, then G
has bounded clique-width.

We illustrate our techniques by giving a proof of Theorem 12 below and omit the proofs
of the other lemmas.

Proof of Theorem 12. Let G be a (C4, C6, F1, P6)-free strong atom that contains an induced
subgraph H that is isomorphic to F2 with V (H) = {1, 2, 3, 4, 5, t, x, y} such that 1, 2, 3, 4, 5, 1
induces the underlying 5-cycle C, and t is adjacent to 5, 1 and 2, x is adjacent to 4, 5 and y is
adjacent to 2 and 3. Moreover, t is adjacent to both x and y, see Figure 3. We partition V (G)
with respect to C. We choose H such that C has |S2| maximized. Note that x ∈ S(4, 5),
y ∈ S(2, 3) and t ∈ S(5, 1, 2).

The overall strategy is to first decompose G into a subset V0 of constant size, constant
number of homogeneous pairs of sets, and a subset V ′, and then finish off the proof via
Theorem 8 by showing that each homogeneous pair of sets and G[V ′] have bounded clique-
width where Theorem 7 is employed.

We start with the decomposition. Since S(2, 3) and S(4, 5) are not empty, it follows from
(P8) that S1 = S(2)∪ S(5). If both S(2) and S(5) are not empty, say u ∈ S(2) and v ∈ S(5),
then u, 2, 3, 4, 5, v induces either a P6 or a C6, depending on whether u and v are adjacent.
This shows that S1 = S(i) for some i ∈ {2, 5}. Now we argue that S2 = S(2, 3) ∪ S(4, 5). If
S(3, 4) contains a vertex z, then z is adjacent to x and y by (P3) but not adjacent to t by
(P7). This implies that t, x, z, y induces a C4, So, S(3, 4) = ∅. If S(1, 2) contains a vertex z,
then z is adjacent to y by (P3) and so 1, z, y, 3, 4, 5, 1 induces a C6, a contradiction. This
shows that S(1, 2) = ∅. By symmetry, S(5, 1) = ∅. Therefore, S2 = S(2, 3) ∪ S(4, 5). The
following properties among subsets of G were proved in [18].
(a) Each vertex in S(5, 1, 2) is either complete or anti-complete to S2.
(b) S(2, 3) and S(4, 5) are cliques.
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(c) Each vertex in S(3, 4, 5) ∪ S(4, 5, 1) is either complete or anti-complete to S(4, 5). By
symmetry, each vertex in S(1, 2, 3) ∪ S(2, 3, 4) is either complete or anti-complete to
S(2, 3).

(d) S(4, 5) is anti-complete to S(2, 3, 4). By symmetry, S(2, 3) is anti-complete to S(3, 4, 5).
(e) S(1, 2, 3) is complete to S(5, 1, 2). By symmetry, S(5, 1, 2) is complete to S(4, 5, 1).
(f) S(4, 5) is complete to S(4, 5, 1). By symmetry, S(2, 3) is complete to S(1, 2, 3).
(g) S(1, 2, 3) is complete to S(2, 3, 4). By symmetry, S(3, 4, 5) is complete to S(4, 5, 1).
(h) S5 is complete to S2.
Recall that S1 = S(i) for some i ∈ {2, 5}. By symmetry, we may assume that S1 = S(5).
Note that S(5) is complete to S(4, 5, 1) by Theorem 9 and anti-complete to S(1, 2, 3) by
(P6). It follows from (P1), (P4), (P7), (e), (f) and (g) that S(i − 1, i, i + 1) ∪ {i} is a
homogeneous clique in G and therefore S(i− 1, i, i+ 1) = ∅ for i = 2, 5. Similarly, S(4, 5)
is a homogeneous clique in G by (P7), (a)-(d), (f) and (h) and so S(4, 5) = {x}. Let
T = {t ∈ S(5, 1, 2) : t is complete to S2}.
(1) S(5) is anti-complete to S(5, 1, 2) \ T .

Let u ∈ S(5) and t′ ∈ S(5, 1, 2) \ T . If u and t′ are adjacent, then u, t′, 2, 3, 4, x induces
either a P6 or a C6, depending on whether u and x are adjacent. �

By (1) and (d), (S(5, 1, 2) \ T ) ∪ {1} is a homogeneous set in G and so S(5, 1, 2) \ T = ∅.
In other words, S(5, 1, 2) is complete to S2. We now partition S(5) into X = {v ∈ S(5) :
v has a neighbour in S(2, 3)} and Y = S(5) \X.
(2) X is anti-complete to S(3, 4, 5).

Let v ∈ X and s ∈ S(3, 4, 5) be adjacent. By the definition of X, v has a neighbour
y′ ∈ S(2, 3). By (d), y′ is not adjacent to s and so v, y′, 3, s induces a C4. �

(3) X is complete to S(5, 1, 2).
Assume, by contradiction, that v ∈ X and t′ ∈ T are not adjacent. By the definition of
X, v has a neighbour y′ ∈ S(2, 3). Since t′ is adjacent to y′, v, 5, t′, y′ induces a C4. �

(4) X is anti-complete to Y .
Suppose that u ∈ X and v ∈ Y are adjacent. Let y′ ∈ S(2, 3) be a neighbour of u.
Note that x is adjacent to neither u nor v by (P5). But now x, 4, 3, y′, u, v induces a P6. �

(5) X is complete to S5.
Suppose that v ∈ X and u ∈ S5 are not adjacent. Let y′ ∈ S(2, 3) be a neighbour of v.
By (h), y′ and u are adjacent. Then u, 5, v, y′ induces a C4. �

It follows from (P1)-(P7), (a)-(d), (f), (h) and (2)-(5) that (X,S(2, 3)) is a homogeneous
pair of sets in G.
(6) For each connected component A of Y , each vertex in S(5, 1, 2) ∪ S(3, 4, 5) is either

complete or anti-complete to A.
Let A be an arbitrary component of Y . Suppose that s ∈ S(5, 1, 2) ∪ S(3, 4, 5) distin-
guishes an edge aa′ in A, say s is adjacent to a but not adjacent to a′. we may assume
by symmetry that s ∈ S(5, 1, 2). Then a′, a, s, 2, 3, 4 induces a P6, a contradiction. �

(7) Each component of Y has a neighbour in both S(5, 1, 2) and S(3, 4, 5).
Suppose that a component A of Y does not have a neighbour in one of S(5, 1, 2) and
S(3, 4, 5), say S(5, 1, 2). Then S5 ∪ S(3, 4, 5) ∪ {5} is a clique cutset of G by (4). �
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(8) Each component of Y is a clique.
Let A be an arbitrary component of Y . By (7), A has a neighbour s ∈ S(5, 1, 2) and
r ∈ S(3, 4, 5). Note that s and r are not adjacent. Moreover, {s, r} is complete to A by
(6). Now (8) follows from the fact that G is C4-free. �

(9) Y is complete to S5.
Suppose, by contradiction, that v ∈ Y and u ∈ S5 are not adjacent. By (7), v has a
neighbour s ∈ S(5, 1, 2) and r ∈ S(3, 4, 5). Then v, s, u, r induces a C4. �

It follows from (P1), (h), (5) and (9) that each vertex in S5 is a universal vertex in G
and so S5 = ∅. Let S′(3, 4, 5) = {s ∈ S(3, 4, 5) : s has a neighbour in Y } and S′′(3, 4, 5) =
S(3, 4, 5) \ S′(3, 4, 5). Note that S′′(3, 4, 5) is anti-complete to Y . We now show further
properties of Y and S′(3, 4, 5).

(10) S′(3, 4, 5) is complete to S(2, 3, 4).
Suppose, by contradiction, that r′ ∈ S′(3, 4, 5) is not adjacent to s ∈ S(2, 3, 4). By the
definition of S′(3, 4, 5), r has a neighbour v ∈ Y . Then v, r, 4, s, 2, 1 induces a P6. �

(11) Each vertex in S(5, 1, 2) is either complete or anti-complete to Y .
Let t′ ∈ S(5, 1, 2) be an arbitrary vertex. Suppose that t′ has a neighbour u ∈ Y . Let A
be the component of Y containing u. Then t′ is complete to A by (6). It remains to show
that t′ is adjacent to each vertex u′ ∈ Y \ A. By (7), u has a neighbour s ∈ S(3, 4, 5).
Note that C ′ = u, t,′ y, 3, s induces a C5. Moreover, x and s are not adjacent for otherwise
x, s, u, t′ induces a C4. This implies that x is adjacent only to t′ on C ′. On the other
hand, u′ is not adjacent to any of u, 3 and y. This implies that u′ is adjacent to either
s or t′ by Theorem 9. If u′ is not adjacent t′, then u′ is adjacent to s. This implies
that u′, s, 3, y, t′, x induces a P6 or C6, depending on whether u′ and x are adjacent.
Therefore, u′ is adjacent to t′. Since u′ is an arbitrary vertex in Y \A, this proves (11). �

(12) S′(3, 4, 5) is anti-complete to x.
Suppose not. Let s ∈ S′(3, 4, 5) be adjacent to x. By definition, s has a neighbour
y′ ∈ Y . Note that x and y′ are not adjacent by (P5). By (6) and (7), y has a neighbour
t ∈ T = S(5, 1, 2). So, t is adjacent to x. But now s, y′, t, x induces a C4. �

It follows from (P1)-(P7), (d), (2), (4), (10), (11) and (12) that (Y, S′(3, 4, 5)) is a
homogeneous pair of sets in G. Let S′(5, 1, 2) = {s ∈ S(5, 1, 2) : s is complete to Y }. Then
S(5, 1, 2) \ S′(5, 1, 2) is anti-complete to Y by (11). It follows from (3) that both S′(5, 1, 2)
and S(5, 1, 2) \ S′(5, 1, 2) are homogeneous cliques in G. So, |S(5, 1, 2)| ≤ 2. Now V (G) is
partitioned into a subset V0 = C∪S(5, 1, 2)∪{x} of vertices of size at most 8, two homogeneous
pairs of sets (X,S(2, 3)) and (Y, S′(3, 4, 5)), and a subset V ′ = S′′(3, 4, 5) ∪ S(2, 3, 4).

We now apply Theorem 8 to finish off the proof by showing that each of G[X ∪ S(2, 3)],
G[Y ∪ S′(3, 4, 5)], and G[V ′] has bounded clique-width. First of all, G[V ′] has clique-width 4
by Theorem 6. Secondly, note that no vertex in S(1, 2) can have two non-adjacent neighbours
in X since G is C4-free. If there is an induced P4 = y′, x1, x2, x3 such that y′ ∈ S(2, 3) and
xi ∈ X, then x3, x2, x1, y

′, 3, 4 induces a P6 in G. Now if P = x1, x2, x3, x4 is an induced P4
in G[X], any neighbour y1 of x1 is not adjacent to x3 and x4. But then P ∪ {y1} contains
such a labelled P4 in G[X ∪S(2, 3)]. Therefore, G[X ∪S(2, 3)] with the partition (X,S(2, 3))
satisfies all the conditions of Theorem 7 and so has clique-width at most 4. Finally, note
that each vertex in S(3, 4, 5) can have neighbours in at most one component of Y due to (7),
(11) and the fact that G is C4-free. It then follows from (6)-(8) that G[Y ∪ S′(3, 4, 5)] with
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the partition (Y, S′(3, 4, 5)) satisfies all the condition in Theorem 7 (where A = S′(3, 4, 5)
and B = Y ) and so has clique-width at most 4. This completes our proof. J

We are now ready to prove our main theorem.

Proof of Theorem 4. Let G be a (C4, P6)-free atom. Let G′ be the graph obtained from G

by removing twin vertices and universal vertices. It follows from Theorem 10–Theorem 13
that if G′ contains an induced C5 or C6, then G′ has bounded clique-width. Therefore,
we can assume that G′ is also (C5, C6)-free and therefore G′ is chordal. It then follows
from a well-known result of Dirac [15] that G′ is a clique whose clique-width is 2. Finally,
cw(G) = cw(G′) by Theorem 5 and this completes the proof. J

4 The Hardness Result

A graph is a split graph if its vertex set can be partitioned into two disjoint sets C and I
such that C is a clique and I is an independent set. The pair (C, I) is called a split partition
of G. A split graph is complete if it has a complete split partition, that is, a partition (C, I)
such that C and I are complete to each other. A list assignment of a graph G = (V,E) is
a function L that prescribes, for each u ∈ V , a finite list L(u) ⊆ {1, 2, . . . } of colours for
u. The size of a list assignment L is the maximum list size |L(u)| over all vertices u ∈ V .
A colouring c respects L if c(u) ∈ L(u) for all u ∈ V . The List Colouring problem is to
decide whether a given graph G has a colouring c that respects a given list assignment L.
We sketch a proof of our hardness result, in which we construct a graph G′ that is neither
(sP2 + P8)-free nor (sP2 + P4 + P5)-free for any s ≥ 0. Hence, a different construction is
needed for tightening our hardness result (if possible).

I Theorem 14. Colouring is NP-complete for (C4, 3P3, P3 + P6, 2P5, P9)-free graphs.

Proof. (Sketch) We reduce from List Colouring on complete split graphs with a list
assignment of size at most 3. It is known that List Colouring is NP-complete for this
graph class [20].

Let G be a complete split graph with a list assignment L of size at most 3. From (G,L)
we construct an instance (G′, k) of Colouring as follows. Let k ≤ 3|V (G)| be the size
of the union of all lists L(u). Let (C, I) be a complete split partition of V (G). Let G′ be
the graph of size O(|V (G)|k) obtained from G as follows. Take a clique X on k vertices
x1, . . . , xk. For each u ∈ V (G), introduce a clique Yu of size k−|L(u)| such that every vertex
of Yu is adjacent to u and to every xi with i ∈ L(u) (so, each vertex in every Yu is adjacent
to exactly one vertex of V (G), namely vertex u). By construction, G has a colouring that
respects L if and only if G′ has a k-colouring. Moreover, it can be readily checked that G′ is
(C4, 3P3, P3 + P6, 2P5, P9)-free. J

5 Conclusions

We gave an almost complete dichotomy for Colouring restricted to (C4, Pt)-free graphs
and leave open only the cases when 7 ≤ t ≤ 8. We believe the techniques developed in this
paper could be useful for solving open questions regarding Colouring on other hereditary
graph classes. The natural candidate class for a polynomial-time result of Colouring
is the class of (C4, P7)-free graphs. However, this may require significant efforts for the
following reason. Lozin and Malyshev [38] determined the complexity of Colouring for
H-free graphs for every finite set of graphs H consisting only of 4-vertex graphs except when
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H is {K1,3, 4P1}, {K1,3, 2P1 + P2}, {K1,3, 2P1 + P2, 4P1} or {C4, 4P1}. Solving any of these
open cases would be considered as a major advancement in the area. Since (C4, 4P1)-free
graphs are (C4, P7)-free, polynomial-time solvability of Colouring on (C4, P7)-free graphs
implies polynomial-time solvability for Colouring on (C4, 4P1)-free graphs. As a first step,
we aim to apply the techniques of this paper to (C4, 4P1)-free graphs.

We recall that the complexity of Colouring on (Cs, Pt)-free graphs is known for all
s ≥ 5 and t ≥ 1 (Theorem 1) and that the complexity of Colouring on (C3, Pt)-free
graphs is also known due to the results of [5] and [30] except if 7 ≤ t ≤ 21. The class of
(C3, P7)-free graphs is also a natural class to consider. Interestingly, every (C3, P7)-free graph
is 5-colourable. This follows from a result of Gravier, Hoàng and Maffray [23] who proved
that for any two integers r, t ≥ 1, every (Kr, Pt)-free graph can be coloured with at most
(t− 2)r−2 colours. On the other hand, 3-Colouring is polynomial-time solvable for P7-free
graphs [3]. Hence, in order to solve Colouring for (C3, P7)-free graphs we may instead
consider 4-Colouring for (C3, P7)-free graphs. This problem seems also highly non-trivial.
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Abstract
We study the problem of sorting N elements in presence of persistent errors in comparisons: In
this classical model, each comparison between two elements is wrong independently with some
probability p, but repeating the same comparison gives always the same result. The best known
algorithms for this problem have running time O(N2) and achieve an optimal maximum disloca-
tion of O(logN) for constant error probability. Note that no algorithm can achieve dislocation
o(logN), regardless of its running time.

In this work we present the first subquadratic time algorithm with optimal maximum disloca-
tion: Our algorithm runs in Õ(N3/2) time and guarantees O(logN) maximum dislocation with
high probability. Though the first version of our algorithm is randomized, it can be derandomized
by extracting the necessary random bits from the results of the comparisons (errors).
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1 Introduction

We study the problem of sorting N distinct elements under recurrent random comparison
errors. In this classical model, each comparison is wrong with some fixed (small) probability
p, and correct with probability 1 − p. The probability of errors are independent over all
possible pairs of elements, but errors are recurrent: Repeating the same comparison several
times is useless since the result is always the same, i.e., always wrong or always correct.

Because of errors, different sorting algorithms can have different guarantees to output
a “nearly sorted” sequence. To measure the quality of an output sequence in terms of
sortedness, a common way is to consider the dislocation of an element, which is the difference
between its position in the output and its position in the correctly sorted sequence. In
particular, one can consider the maximum dislocation of any element in the permutation or
the total dislocation of a permutation, i.e., the sum of the dislocations of all n elements. Of
course, the running time is also an important criteria for evaluating sorting algorithms.

Regarding the maximum dislocation and the running time, in the recurrent random
comparison errors, this is the state of the art:

Several algorithms [3, 12, 9] guarantee maximum dislocation O(logN) with high prob-
ability, though their running time is quadratic or even larger (see Table 1).
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36:2 Optimal Dislocation with Persistent Errors in Subquadratic Time

Table 1 The running time of previous algorithms which guarantee O(logN) maximum dislo-
cation (with high probability) and our result. The constant c(p) in [3] depends on both the error
probability p, and the success probability of the algorithm, and it is typically quite large. The
algorithms in [12, 9] have different guarantees on the total dislocation.

Braverman and Mossel [3] Klein et al [12], Geissmann et al [9] This work
Time O(N3+c(p)) O(N2) Õ(N3/2)

No algorithm (even randomized) can achieve maximum dislocation o(logN) with high
probability, regardless of its running time [9].

This suggests naturally the following question:

Is there any algorithm with subquadratic running time which achieves optimal
maximum dislocation O(logn) with high probability?

In this paper we give an affirmative answer to this question.

1.1 Our contribution

We present the first subquadratic time algorithm with optimal maximum dislocation, namely,
an algorithm that runs in Õ(N3/2) time and returns a sequence of maximum dislocation
O(logN) with high probability (see Table 1). The latter is optimal because, in the model
with persistent errors, no algorithm (even randomized) can achieve maximum dislocation
o(logN) with high probability [9]. Intuitively speaking, our algorithm (Recursive Win-
dow Sort) first picks a random permutation and then performs a number of deterministic
operations which use the algorithm in [9] as a subroutine. All recursive steps are determin-
istic and they consist of an algorithm that approximately sorts an input sequence whenever
it is well shuffled and the errors are well spread. The latter condition holds with high prob-
ability in the error model we consider, and the starting random permutation serves to have
a well shuffled input. The correctness of Recursive Window Sort combines a technical
condition that the algorithm in [9] guarantees, combined with an intermediate “merge step”
which works well on well shuffled inputs (see Section 2 for an high level description of the
algorithm and the main ideas).

Though our first algorithm is randomized, it can be “derandomized” in the following
sense. By using the results of the comparison errors, the algorithm itself can generate the
necessary (almost) random bits to be used in the computation. Note that this is far from
trivial for two reasons: (i) The outcome of the comparisons are also used during the com-
putation and (ii) The result of a comparison may tell something about the result of another
comparison. Our second major contribution is a deterministic algorithm (Derandomized
Recursive Window Sort) which still runs in Õ(N3/2) and that returns a sequence of
maximum dislocation O(logN) with high probability (over the random comparison errors).

Connections with prior work

The algorithm by Braverman and Mossel [3] constructs the maximum likehood permutation,
whose computation requires a rather large (though polynomial) running time. Their method
in fact uses only O(N logN) comparisons and is applicable to any p < 1/2, while the faster
algorithms by Klein et al [12] and Geissmann et al [9] work for p smaller than some absolute
small constant (e.g., in [9] p < 1/16).
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Ajtai et al [1] provide algorithms using subquadratic time (and number of comparisons)
when errors occur only between elements whose difference is at most some fixed threshold.
Damaschke [6] gives also a subquadratic time algorithm, by assuming that at most k errors
occur. The algorithm returns a sequence up to O(k) inversions and it is based on finding
a solution for the feedback arc set (FAST) problem. Coppersmith and Rurda [5] provide
a simple algorithm 5-approximation for the weighted FAST problem, if the weights satisfy
probability constraints.

An easier error model is the one with non-recurrent errors, meaning that the same
comparison can be repeated and the errors are independent with some probability p < 1/2.
For this model, Feige et al. [7] gave a sorting algorithm running in O(N log(N/q)) steps,
where 1 − q is the success probability of the algorithm. Alonso et al. [2] and Hadjicostas
and Lakshamanan [11] studied the classical Quicksort and recursive Mergesort algorithms,
respectively. Sorting by repeatedly performing random swaps results in Markovian processes
which have been studied by Geissmann et al [8, 10].

Finally, computing with errors is often considered in the framework of a two-person game
called Rényi-Ulam Game (see Pelc’s survey [14] and Cicalese’s monograph [4]).

1.2 Preliminaries
In this section, we describe the key features of the Window Sort algorithm [9] which will
be used a a subroutine of our main algorithm (see Algorithm 1). To this end, we first
introduce some notation used throughout the paper.

We consider the problem of sorting N distinct integers which, under the error model
considered here, is equivalent to sort a sequence containing the integers {1, 2, . . . , N}. For
any sequence S, and any element x in the sequence, we define its rank as the number of
elements smaller than x in S, i.e., rank(x, S) 4= |{y ∈ S| y < x}| . Note that this gives the
correct position of x (its rank plus 1) in the correctly sorted sequence, and it only depends
on the elements in S (not in the sequence order). In the following we will use κ ≥ 1 to denote
a global constant that only depends on the error probability p. For ease of presentation, we
assume that p < 1

32 , although our algorithm can be adapted to work for p < 1
16 (which is a

condition needed to successfully run Window Sort). We say that a comparison between
an (unordered) pair of elements x, y, with x < y, is an error if x is (incorrectly) reported to
be larger than y.

I Definition 1. We define ERRORS(x,w, S) as the set of errors among the comparis-
ons between element x and every other element y in S with rank(y, S) ∈ [rank(x, S) −
4w, rank(x, S) + 4w].

I Definition 2. For a set of elements S, we say that the comparison errors are well spread iff,
for all x ∈ S and for all w such that κ log |S| ≤ w ≤ n, we have |ERRORS(x,w, S)| ≤ w/4.

I Definition 3 (Success). We say that 〈S,W 〉, where S is a sequence and W a window
size, satisfies the Success condition if
1. The maximum dislocation of S is at most W ;
2. The comparison errors in S are well spread.

This condition guarantees that the output of Window Sort will have maximum dislo-
cation O(log |S|), where the initial window size determines its running time:

I Lemma 4 ([9]). Window Sort on a sequence S with a starting window size W returns
a sequence having maximum dislocation at most κ logn in O(|S| ·W ) time whenever 〈S,W 〉

STACS 2018



36:4 Optimal Dislocation with Persistent Errors in Subquadratic Time

Algorithm 1: Window Sort (on a sequence S of n distinct elements and initial
window size W ).

Initialization: The initial window size is w = W . Each element x has two variables
wins(x) and computed_rank(x) which are set to zero.

repeat
1. foreach x at position l = 1, 2, 3, . . . , n in S do

foreach y whose position in S is in [l − 2w, l − 1] or in [l + 1, l + 2w] do
if x > y then

wins(x) = wins(x) + 1

computed_rank(x) = max{l − 2w, 0}+ wins(x)

2. Place the elements into S′ ordered by non-decreasing computed_rank,
break ties arbitrarily.

3. Set all wins to zero, S = S′, and w = w/2.
until w < 1;

satisfies the Success condition. Moreover, the expected total dislocation of the returned
sequence is O(n).

I Lemma 5. For any sequence S of n elements chosen independently of the errors, the
probability (over the comparison errors) that errors are well spread is at least 1− 1/n8.

2 Warm up

In this section we informally describe some of the ideas used in our algorithm. As a warm
up, we consider a simplified (non-optimized) version which is described in Figure 1 and
consists of the following steps:
1. Start with a random permutation S of the input sequence and split this sequence S into

β blocks of the same size.1
2. Run Window Sort on each block Bi to obtain a sequence Si.
3. Combine all the sequences Si together into a sequence S′ as follows: The first element in

each Si will be placed (in arbitrary order) in one of the first β positions of S′, the second
element in each Si will be placed in a position between β + 1 and 2β in S′, and so on.

4. Run Window Sort on this new sequence S′.
At this point two observations are in place. First, we did not specify yet some parameters,
namely, the number β of blocks (and thus their size N/β), nor the initial window size when
we call Window Sort. Both these parameters need to be chosen carefully in order to
achieve the desired performance and, in our more complex scheme, they will vary at every
recursive call. Second, the initial step where we pick a random permutation of the input (the
elements to be sorted) can be implemented more efficiently by distributing directly these
elements into the desired number of blocks.

Saving in the running time

One intuition why this scheme should be faster than Window Sort, is that in the first part
this algorithm is called on smaller blocks and the running time is thus Õ(N2/β), since each

1 For the sake of simplicity, here and in the rest of the paper, we assume that |S| is a multiple of the
block size.
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S = random permutation of input sequence

split sequence in blocks

run Window Sort on each block

run Window Sort

· · ·

· · ·

· · ·

· · ·

1st element in each block

output sequence

· · · · · ·

2nd element in each block
· · · · · · · · ·

goes in first new block,

goes in second new block, etc.

on the resulting sequence

Figure 1 The one-level recursion scheme.

block takes Õ((N/β)2) time. The last call to Window Sort can be fast if S′ has already
a bounded maximum dislocation, since in this case we can start the algorithm with a small
initial window size.

Need for initial random permutation

To see why we perform this initial step, consider the version in which we start with the
sorted sequence, that is, S = 〈1, 2, . . . , N〉. We claim that, in this case, it is very likely that
the sequence S′ obtained after recombining the blocks has large dislocation. Indeed, suppose
all the calls to Window Sort sort perfectly each block. Then, S1 = 〈1, 2, . . . , N/β〉 and
S2 = 〈N/β+1, . . . , 2N/β〉, causing element 2 to be placed in S′ in position at least N/β+1.

Correctness argument

In order to get the desired bound on the maximum dislocation, we essentially need to show
that every call to Window Sort on some subsequence of elements will be “successful”,
that is, the output will have a bounded maximum dislocation. Note that these calls are not
independent since the results of the comparisons (which depend on the errors) determine
the sequence S′ in the last call to Window Sort. It turns out, that for any fixed subset of
elements and any fixed window size that is large enough (i.e., logarithmic inN), this property
holds with high probability (w.r.t. N). Moreover, the input sequence S′ in the last call of
Window Sort involves all elements, while the other β calls for the blocks involve randomly
chosen subsets of elements (independent of the errors). As all these subsets are polynomially
many (we choose β accordingly below), all these calls to Window Sort succeed with high
probability too (union bound).

3 The algorithm

We now describe the full version of our algorithm, which we call Recursive Window
Sort. Intuitively, our algorithm is a recursive version of the scheme described in Section 2
(see Figure 1), where the only randomized part is the initial shuffling of the input sequence,
which is performed only once. We refer to this random permutation of the input sequence as
S. All recursive steps are deterministic and they consist of an algorithm that approximately
sorts an input sequence whenever it is well shuffled and the errors are well spread.

We next describe the recursive steps of Recursive Window Sort. We denote by N the
total number of elements to sort. The behavior of our recursive algorithm varies according

STACS 2018



36:6 Optimal Dislocation with Persistent Errors in Subquadratic Time

Algorithm 2: Recursive Window Sort (on N distinct elements).
Let S be a random permutation the N input elements
Run Recursive Step on S (with initial depth d = 0)
return the resulting sequence

Algorithm 3: Recursive Step (on a sequence S of nd distinct elements at depth
d).

Initialization: the maximum depth is h=logN , the values βd and Wd are chosen as in (1)
if d=h then

Run Window Sort on S′ = S with window size nd
return the resulting sequence

else
Partition S into bd

4= nd
βd

blocks B1, B2, . . . , Bbd each containing βd elements
foreach block Bi do

Run Recursive Step on Bi with depth d+ 1 to obtain B′i = 〈b′i,1, b′i,2, . . . , b′i,βd
〉

foreach j = 1, 2, . . . , βd do
B′′j = 〈b′1,j , b′2,j , . . . , b′bd,j

〉
Let S′ = 〈s′1, s′2, . . . , s′nd

〉 = 〈B′′1 , B′′2 , . . . , B′′βd
〉

Run Window Sort on S′ with window size Wd

return the resulting sequence

to the current depth of recursion. The maximum depth of the recursion is h = logN .2 In
general, a recursive step at depth d sorts an input sequence S of nd elements3, by splitting
S into blocks of size βd and recursing on these blocks. Then, it recombines the elements
from the blocks in a zip fastener fashion into a single sequence S′, and runs Window Sort
on S′ with window size Wd. We formally describe such a recursive step in Algorithm 3 and
Recursive Window Sort in Algorithm 2.

In order to optimize the running time, we shall set the parameters as follows:

βd
4= n

1− 1
2h−d+1−1

d and Wd
4= 4κ nd√

βd
logN. (1)

3.1 Running time
We begin by providing an upper bound on the running time of Recursive Window Sort.

I Lemma 6. The overall running time of Recursive Window Sort is Õ(N 3
2 ).

Proof. Recall that the running time of Window Sort on an instance of n elements
with starting window size W is upper bounded by c′nW logn for some constant c′ ≥ 1
(Lemma 4). Consider an execution of our algorithm whose depth d defines an index
i = h − d. We now prove by induction on i that its running time Ti is upper bounded
by c(i+ 1)n1+2i/(2i+1−1)

d logN , where c = 4κc′. (Notice that c is a global constant that does
not depend on i.)

2 To avoid being distracted by rounding, we assume that h is an integer.
3 Here nd is a function of both N and d.
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If i = 0 then d = h and the running time coincides with the one of Window Sort, i.e.,
it is less than c′n2

d ≤ cn
1+20/(21−1)
d . This proves the base case.

For i > 0 the overall running time is bounded by the sum of: (i) the time required to
perform bd = nd

βd
recursive calls with depth d+1 (i.e., having index is h−(d+1) = (h−d)−1 =

i− 1), on instances of size βd = nd+1, and (ii) the time required to run Window Sort on
an instance of size nd and initial window size Wd = 4κ nd√

βd

logN . By inductive hypothesis,

each of the recursive calls requires time Ti−1 ≤ c i n
1+ 2i−1

(2i−1)
d+1 logN = ciβ

1+ 2i−1
2i−1

d logN . Thus

Ti ≤
nd
βd
· ciβ

1+ 2i−1
2i−1

d logN + 4κc′ n
2
d√
βd

logN = c

(
indβ

2i−1
2i−1
d + n

3
2 + 1

2i+2−2
d

)
logN

= c

(
in

1+ 2i

2i+1−1
d + n

1+ 2i

2i+1−1
d

)
logN = c(i+ 1)n

1+ 2i

2i+1−1
d · logN.

This completes the proof of the inductive step. By setting i = h, and for a sufficiently large
N , we obtain Th ≤ c(1 + logN)N1+ N

2N−1 · logN ≤ 2c(logN)2N
3
2 + 1

4N−2 . Since N
1

4N−2 =
2

log N
4N−2 = O(1) we conclude that Th = O(N3/2 log2 N). J

3.2 Correctness
Here we will formally prove the correctness of Recursive Window Sort. To this aim,
we shall first give a sufficient condition for which, if all executions at depth d + 1 return
sequences of dislocation κ logN , then also the execution at depth d returns a sequence of
dislocation at most κ logN .

I Definition 7 (Good Blocks). We say that an execution of Recursive Step at depth
d < h has Good Blocks if the sequence S to which we apply the recursion satisfies
the following condition: For any element x in S,

∣∣∣Lx − βd

nd
Gx

∣∣∣ ≤ 2
√
βd logN , for Gx =

rank(x, S) and Lx = rank(x,Bj), where Bj is the block of length βd = nd+1 containing x.

Note that the input of each execution (recursive call) of Recursive Step is a fixed subset
of elements of the initial sequence which does not depend on the comparison errors.

I Lemma 8. Consider an execution of Recursive Step at depth d < h and suppose that
the following conditions hold:
1. The execution has Good Blocks (Definition 7);
2. All the executions at depth d+ 1 return a sequence with maximum dislocation κ logN ;
3. The comparison errors are well spread.
Then, the considered execution returns a sequence with maximum dislocation κ logN .

Proof. By hypothesis 3 together with Lemma 4, it suffices to show that the sequence
S′ obtained before invoking Window Sort has maximum dislocation at most Wd =
4κ nd√

βd

logN .4 Consider an element x ∈ S, let Bj be the block containing x, and let L̃x be
the number of elements preceding x in B′j (its position in B′j minus 1). By the hypothesis on

4 Notice that if the errors in S are well spread, then they are also well spread in S′ since the order of the
elements is irrelevant in Definition 2.
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36:8 Optimal Dislocation with Persistent Errors in Subquadratic Time

the executions at depth d+ 1, we know that |L̃x − Lx| ≤ κ logN and, since the considered
execution has Good Blocks, we can use triangle inequality to write∣∣∣∣L̃x − βd

nd
Gx

∣∣∣∣ ≤ 2
√
βd logN + κ logN ≤ 3κ

√
βd logN.

Let G̃x be the number of elements preceding x in S′ (its position minus 1), so that |G̃x−Gx|
is the dislocation of x in S′. By definition of S′ we have

G̃x ≥
nd
βd
L̃x ≥ Gx −

3κnd√
βd

logN,

and similarly

G̃x ≤
nd
βd
L̃x + nd

βd
≤ Gx + 3κnd√

βd
logN + nd

βd
≤ Gx + 4κnd√

βd
logN .

Therefore we have shown that
∣∣∣G̃x −Gx∣∣∣ ≤ 4κnd√

βd

logN , which concludes the proof. J

I Lemma 9. The probability that all executions of Recursive Step at depth d < h have
(jointly) Good Blocks is at least 1− 1

N2 .

Proof. Fix an element x and a depth d < h. Let S and Bj be the sequence of size nd and its
block of size bd = nd+1 containing x. (Both S and Bj are random variables as they depend
on the initial random permutation of all N elements.) Since S is a subsequence of a random
permutation we can study the distribution of Lx by considering the following:
1. After the random permutation of the N input elements is chosen (thus S and Bj are

determined), we randomly permute the elements of S again apart from x (which stays
in its position in S and in Bj);

2. We view the previous item as the following experiment. An urn contains Gx black balls
(elements smaller than x) and nd − Gx − 1 white balls (elements bigger than x). Out
of these nd − 1 balls, choose βd − 1 at random and consider the number of chosen black
balls (the local rank Lx).

It is well known that, permuting a subsequence of a randomly chosen permutation, gives
again a randomly chosen permutation. Therefore the modification of Item 1 is equivalent
to the original algorithm. A random permutation of the elements in S determines which of
them fall into Bj and thus Item 1 is equivalent to Item 2. The number of chosen black balls
is the local rank Lx of x. We hence have that Lx is distributed as an hypergeometric random
variable of parameters nd − 1, Gx, and βd − 1 and we can use the following tail bound [15]:

Pr(|Lx − E[Lx]| ≥ t(βd − 1)) ≤ 2e−2t2(βd−1) ,

where E[Lx] = βd−1
nd−1Gx. By choosing t = 2

√
logN
βd−1 , we obtain

Pr(|Lx −
βd
nd
Gx| ≥ 3

√
βd logN) ≤ Pr(|Lx −

βd − 1
nd − 1Gx| ≥ 2

√
βd logN)

≤ Pr(|Lx − E[Lx]| ≥ 2
√
βd logN) ≤ Pr(|Lx − E[Lx]| ≥ 2

√
βd − 1 logN) ≤ 2

N4 .

Notice that the overall number of elements x for which the above condition must hold
is upper bounded by N logN . Indeed, there are h = logN recursion levels and each level
defines a partition of the N elements into blocks (i.e., the total number of elements at each
level is N). By the union bound, the probability that all the executions are good is at least
1− (N logN) 2

N4 >
1
N2 . J
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The following two lemmas allow us to use Lemma 9 in a recursive fashion.

I Lemma 10. For every d = 0, . . . , h, it holds that nd ≥ N
1
2 .

I Lemma 11. The errors of all the sequences S′ are (jointly) well spread with probability
at least 1− 1

N2 .

We are now ready to prove the final theorem of this section.

I Theorem 12. Recursive Window Sort returns a sequence with maximum dislocation
κ logN with probability at least 1 − 1

N2 . Moreover, its running time is Õ(N 3
2 ) and the

expected total dislocation of the returned sequence is O(n).

Proof. We assume that (i) all the recursive executions of Recursive Step have Good
Blocks and that (ii) all the sequences S′ used as input for Window Sort have well spread
errors. By Lemma 9 and Lemma 11 this happens with probability at least 1− 2

N2 ).
We prove the following claim by induction on i = h−d: all the executions of Recursive

Step at depth d return a sequence having maximum dislocation κ logN .
If i = 0, then d = h. Consider any execution of Recursive Step at depth h and let

S be its input. Notice that Window Sort is invoked on S with window size nd = |S|,
meaning that both conditions for Definition 3 are met and hence, by Lemma 4, Window
Sort returns a sequence having maximum dislocation κ lognd ≤ κ logN .

If i > 0, then d < h and we once again focus on any single execution of Recursive
Step at depth d having input S. By inductive hypothesis all the executions at depth
d + 1 returned a sequence having maximum dislocation κ logN . This, combined with our
assumptions, allows us to invoke Lemma 8 which proves the first claim.
To conclude the proof, notice that the running time is bounded by Lemma 6 and that, by
Lemma 4, the sequence returned by the execution of Window Sort at depth d = 0 has
expected total dislocation O(n). J

4 Derandomization

Recursive Window Sort requires as input a random permutation of the N elements.
In this section, we show how to derandomize the algorithm. In particular, we show how
to generate “almost random” bits from the outcome of element comparisons, which can be
thought as as biased coins tosses. The derandomized Recursive Window Sort is then as
follows: We extract a (random) subset of elements and use them to generate random bits.
Then, we use these bits to generate a random permutation of the remaining elements, which
allows us to invoke Recursive Step on this permutation. Finally, we reinsert the extracted
elements into the approximately sorted sequence, so that the maximum dislocation remains
O(logN). Notice that the sequence returned by Recursive Step (indirectly) depends
on the set of extracted elements though the results of their comparisons. We circumvent
this problem by providing an algorithm that is able to reinsert a single element in any
sequence having dislocation O(logN) as long as errors are well spread. We then show how
this algorithm can be used to reinsert all the extracted elements without any asymptotic
increase in the dislocation. For any two elements x and y we write x <̃ y (resp. x >̃ y) to
denote the fact that x compared smaller (resp. larger) than y.

4.1 (Re-)Inserting one element
The first key ingredient is an algorithm which reinserts an element in a sequence of n elements
of maximum dislocation O(logn) so that this bound on the dislocation is maintained (up to
a multiplicative constant depending on p).
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36:10 Optimal Dislocation with Persistent Errors in Subquadratic Time

Algorithm 4: InsertPosition (on a sequence S = 〈s0, . . . , sn−1〉 of n distinct
elements and on an element x not in S).

// Compute a “penalty” function for each possible position.
1. For every index i = 0, . . . , n:

a. Let Si−
4= {si−c2 logn, . . . , si−1} and Si+

4= {si, . . . , si+c2 logn−1}.
b. Let penaltyi(x, S) 4= defeats (x, Si−) + wins (x, Si+).
// Return the position of minimal penalty.

2. Return any index i∗ ∈ arg mini=0,...,n penaltyi(x, S).

I Definition 13 (single insertion). The single insertion problem is defined as follows. We are
given an arbitrary sequence5 of n distinct elements, S = 〈s0, . . . , sn−1〉, whose maximum
dislocation is at most c1 logn, for some c1 ≥ 1, and another element x distinct from all these
elements. The goal is to insert x in a position i∗ which still guarantee c2 logn maximum
dislocation, for c2 := 7c1

p . That is, the sequence S′ = 〈s0, . . . , si∗−1, x, si∗ , . . . , sn−1〉 has
maximum dislocation at most c2 logn.

In the following, we consider these two quantities:

wins(x, Y ) 4= |{y ∈ Y : x >̃ y}| and defeats(x, Y ) 4= |{y ∈ Y : x <̃ y}| ,

where x is an arbitrary element and Y an arbitrary subset of elements. Algorithm Insert-
Position (see Algorithm 4 above) solves the single insertion problem with high probability:

I Theorem 14. Let S be a sequence of n elements having maximum dislocation c1 logn.
With probability at least 1− 3

n2 algorithm InsertPosition returns an index i∗ such that the
sequence S′ = 〈s0, . . . , si∗−1, x, si∗ , . . . , sn−1〉 has maximum dislocation at most 7c1

p logn.

Intuitively, the proof of this result is based on the following two facts:
1. When i is away from the true (correct) rank of x in S, there is a large penalty (Lemma 15);
2. When i is equal to the true (correct) rank of x in S, the penalty is small (Lemma 16).

I Lemma 15. If |i− r| ≥ c2 logn then penaltyi(x, S) ≥ 1−p
2 (c2 − 2c1) logn with probability

at least 1− 2
n13 .

I Lemma 16. penaltyr(x, S) ≤ 1−p
2 (c2 − 2c1) logn with probability at least 1− 2

n2 .

Proof of Theorem 14. By Lemma 16 and by union bound on Lemma 15, we conclude
that with probability at least 1 − 3

n2 , penaltyr(x, S) < penaltyi(x, S) for every i with
|i− r| ≥ c2 logn. In this case, the algorithm returns a index i∗, such that |i∗− r| < c2 logn.
Furthermore, the dislocation of each element between i∗ and r in S changes by at most 1,
and the dislocation of the other elements is unchanged. J

4.2 Generating almost random bits
The result r ∈ {<̃, >̃} of comparison between two distinct elements x, y ∈ S can be seen
as a biased coin if we label its faces with 0 4= <̃ and 1 4= >̃: Since the comparison fails

5 Note that S can be adversarial and can also be chosen as a function of the comparison results, of the
true order of the elements, and of x.
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with probability p, but we do not know the correct answer, the coin is biased towards one
of its faces, i.e., either it lands on 0 with probability 1 − p and on 1 with probability p or
vice-versa. Moreover, the coin can be tossed at most once, since errors (or lack of thereof)
are persistent. Consider now a collection C of coins whose faces are labeled 0 and 1 and
let χC ∈ {0, 1} denote the outcome of the coin flip involving coin C ∈ C. For any subset
C = {C1, C2, . . . } ⊆ C we compute the exclusive or the results χ(C) 4= χC1⊕χC2⊕χC3⊕· · ·
(where χ(C) = 0 if C = ∅).

The next lemma shows that we can generate an almost random bits with a sufficiently
large number of biased coin tosses (comparisons):

I Lemma 17. For any choice of the coin biases, and any subset C = {C1, C2, . . . , } ⊆ C
such that |C| = Ω(logN), 1

2 −
1
N4 ≤ P (χ(C) = 0) ≤ 1

2 + 1
N4 . (For a suitable hidden constant

that depends on p).

Notice that the above lemma holds for any choice of the coin biases (i.e., regardless of
true order between the compared elements), therefore we can write the following

I Corollary 18. For any collection {C(1), C(2), . . . , C(η)} of pairwise disjoint subset of C,
each of size O(logn), and any r ∈ {0, 1}η we have that(

1
2 −

1
N4

)η
≤ P

(
(χ(C(1), . . . , χ(C(η))) = r

)
≤
(

1
2 + 1

N4

)η
.

Finally, we show that we are able to generate random integers in an interval that closely
resemble a discrete uniform distribution.

I Lemma 19. Let ` ≤ N . It is possible to generate a number z in 0, . . . , `−1 using O(log2 N)
comparison results. With probability at most 1

N3 , z will be a spurious result and we say that
the fail event happens. If the fail event does not happen, then z is uniformly distributed in
0, . . . , `− 1.

4.3 Derandomized Iterated Windowsort
We are now in a position to describe our deterministic algorithm Derandomized Recurs-
ive Window Sort (see Algorithm 5) and its analysis. We have already seen above how
to perform and analyze most of the algorithm’s steps. We will now give proofs for rein-
serting many elements at the same time in Step 7, and then present our main theorem for
Derandomized Recursive Window Sort. For the rest of this section we let c3 = 7κ

p .
Moreover, we will say that Derandomized Recursive Window Sort fails if the fail event
of Lemma 19 happens at least once during the execution of the algorithm. The following
two lemmas bound the dislocation of the sequence S(4) obtained by reinserting the elements
in R after Recursive Window Sort is invoked.

I Lemma 20. Suppose Derandomized Recursive Window Sort does not fail. Then,
with probability at least 1− 1

N2 , all the sets Ri = {r ∈ R : i ≤ rank(r, S(1)) ≤ i+ 2c3 logN},
for 0 ≤ i < N , contain at most 6 elements each.

Proof. If there exists a set Ri that contains 7 or more elements, then there exists a corres-
ponding set Sj ⊆ S(0) that satisfies: (i) |Sj | ≤ 2c3 logN + 8, and (ii) |Ri ∩ Sj | ≥ 7.6

6 Indeed, it suffices to choose Sj = {x ∈ S(0) : j ≤ rank(x, S(0)) ≤ j + 2c3 logn +7}, where j = i+ |{r ∈
R : rank(r, S(1)) < i}|.
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Algorithm 5: Derandomized Recursive Window Sort (on a sequence S =
〈s0, . . . , sn−1〉 of n distinct elements).

// Next step generates Ω(N) comparisons outcomes.
1. Let s0 be the first element in S. Compare s0 to every element in S(0) = S \ {s0}

// This requires O(log4 N) comparison outcomes.
2. Choose a set R of log3 n (distinct) random elements from S(0) (see Lemma 19).

// Next step generates Ω(N log3 N) comparison outcomes.
3. Compare each element in R with each element in S(1) = S(0) \R

// This requires O(N log2 N) comparison outcomes (using, e.g., Fisher–Yates shuffle [13]).
4. Obtain a random permutation S(2) of the elements in S(1) (see Lemma 19).
5. Invoke Recursive Step on S(2) with initial depth 0 to obtain sequence S(3)

6. For each element x ∈ R, compute its position i∗x in S(3) using Algorithm 4.
7. Insert (simultaneously) each x ∈ R in position i∗x of S(3) to obtain S(4)

(break ties arbitrarily).
8. Insert s0 in S(4) using Algorithm 4 to obtain S(5). Return S(5).

We show that the probability that any single set Si exists is at most 1
n3 , so that the

claim will immediately follow by using the union bound on the (at most N) values of i.
Notice that, since R is a random subset of elements of S(0), the probability that 7 or

more elements from R belong to Si can be upper bounded by the probability of success of
the following experiment: An urn contains |S(0)| = N − 1 balls, |R| of which are black; we
draw η = |Si| = 2c3 logN + 8 balls without replacement and we succeed if the number X of
drawn black balls is 7 or more.

Since X is distributed as an hypergeometric random variable of parameters N − 1, |R|,
and η, we have (for sufficiently large values of N):

Pr(X ≥ 7) =
η∑
j=9

(|R|
j

)(
N−|R|−1
η−j

)(
N−1
η

) ≤
η∑
j=7
|R|j ·

(
N−1
η−j
)(

N−1
η

)
=

η∑
j=7
|R|j · (N − 1)!

(η − j)!(N − 1− η + j)! ·
η!(N − 1− η)!

(N − 1)!

=
η∑
j=7
|R|j · η!

(η − j)! ·
(N − 1− η)!

(N − 1− η + j)! ≤
η∑
j=7

(
|R| η

N − η

)j

<

η∑
j=7

N−j/2 ≤
∫ ∞
x=6

N−x/2dx = 2
N3 lnN <

1
N3 J

I Lemma 21. Suppose Derandomized Recursive Window Sort does not fail. With
probability at least 1− 3

N2 : (i) the maximum dislocation of S(4) is at most c3 logN + 6 and
(ii) the dislocations of an the element yinS(3) increases by at most 6 in S(4).

All the previous lemmas together allow us to state the main result of this section.

I Theorem 22. Algorithm 5 is a deterministic algorithm that returns, in Õ(N 3
2 ) time, a

sequence with maximum dislocation O(logN) and total dislocation O(n) with probability at
least 1− 1

N .
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Abstract
Recently, Aspnes and Ruppert (DISC 2016) defined the following simple random experiment to
determine the impact of concurrency on the performance of binary search trees: n randomly
permuted keys arrive one at a time. When a new key arrives, it is first placed into a buffer of
size c. Whenever the buffer is full, or when all keys have arrived, an adversary chooses one key
from the buffer and inserts it into the binary search tree.

The ability of the adversary to choose the next key to insert among c buffered keys, models a
distributed system, where up to c processes try to insert keys concurrently. Aspnes and Ruppert
showed that the expected average depth of nodes in the resulting tree is O(logn + c) for a
comparison-based adversary, which can only take the relative order of arrived keys into account.
We generalize and strengthen this result. In particular, we allow an adversary that knows the
actual values of all keys that have arrived, and show that the resulting expected average node
depth is Davg(n) + O(c), where Davg(n) = 2 lnn − Θ(1) is the expected average node depth
of a random tree obtained in the standard unbuffered version of this experiment. Extending
the bound by Aspnes and Ruppert to this stronger adversary model answers one of their open
questions.
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1 Introduction

Consider the following random procedure, in which distinct keys from a totally ordered
universe are inserted into an (internal) binary search tree (BST). Multiple keys arrive in
random order, and whenever a key arrives, it is first placed into a buffer of fixed size c. Upon
each key arrival, an adversary may remove one of the keys from the buffer, and insert it into
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the BST. (The adversary may also decide not to insert a key, if the buffer is not full.) We
are interested in performance affecting properties of the resulting BST, such as its height or
average node depth.

This random experiment has recently been studied by Aspnes and Ruppert [1], to
understand how concurrency influences the performance of search trees in a distributed
setting: In an asynchronous shared memory system, multiple processes may concurrently try
to insert keys into a BST data structure.

The order in which concurrent insertions succeed can depend on unpredictable system
factors. For example, cache effects or memory locality on NUMA architectures can heavily
influence the speed with which synchronization primitives, and thus insertions take effect.
Events such as context switches can delay the operations by some processes, while other
processes that may have locked parts of the data structure may be able to execute several
operations in rapid succession. Therefore, the order in which concurrent data structure
operations succeed can be arbitrary, and is usually analyzed under worst-case assumptions.
For randomized algorithms or random inputs, an adversary is used to model how this order is
influenced by random events. In analogy to the worst-case analysis of sequential algorithms,
it is natural to make pessimistic adversary assumptions, i.e., consider the worst conceivable
influence that random events can have on the operation order.

A buffered search tree with buffer size c as described above, models such a distributed
scenario, where up to c processes insert random keys concurrently. At any point, there are up
to c insert operations pending (corresponding to the keys in the buffer), and the adversary
decides which of those insert operations succeeds first.

Aspnes and Ruppert [1] analyzed the buffered search tree for a comparison based adversary,
which can base its decisions only on the relative order of the keys that have arrived so far.
They showed that for a random arrival sequence of n distinct keys, the resulting BST has an
expected average node depth of O(c+ logn), and that this bound is asymptotically tight.
They also proved that there is a comparison based adversary that can achieve an expected
height of Ω

(
c · log(n/c)

)
.

Note that the height of a BST corresponds to the worst-case search time, and the average
node depth corresponds to the average-case search time for successful searches.

Contrary to the distributed case (buffered tree), in the sequential setting the expected
height and the expected average node depth are known up to constant additive terms. For
example, the expected average node depth of a BST obtained by inserting keys {1, . . . , n} in
random order is [6]

Davg(n) = 2(1 + 1/n)Hn − 2, where ln(n+ 1) < Hn < (lnn) + 1.

It seems appropriate to also analyze height and average depth as precisely as possible for a
distributed setting.

The adversary considered by Aspnes and Ruppert [1] does not fully reflect a worst-case
scenario, as it can make decisions only based on the relative order of elements, but cannot
distinguish their absolute values. It is not clear whether adversarial decisions based on, for
example, the pairwise differences between consecutive keys in the ordered list of buffered
elements, can lead to a significantly increased average node depth. Consequently, Aspnes
and Ruppert suggested that “it might be interesting to see whether even stronger malicious
adversaries could force the height or average depth of random trees to grow higher by using
the actual values of he keys” [1]. They suggested an example for a buffer size of c = 3, where
keys are drawn uniformly at random from the interval [0, 1]: If the first three keys chosen
are 0.03, 0.45, and 0.54, then a good strategy for an adversary that can see absolute values
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would be to insert 0.03 as the root. On the other hand, if the initial three keys in the buffer
were 0.46, 0.55, and 0.97, the adversary would be better off by inserting 0.97, first.

Results. We provide a negative answer to the question posed by Aspnes and Ruppert [1],
whether an adversary can achieve a significantly increase in the average node depth by using
knowledge about the values of keys in the buffer. At the same time, we refine Aspnes and
Ruppert’s upper bound of O(logn+c) on the expected average node depth, to Davg(n)+O(c).
As a result, a buffer of size c = o(logn) does not negatively affect the constant factor in the
expected average node depth.

We consider a strong adversary, which can at any time base its next insertion decision
on the exact values of all keys that have arrived so far. In a distributed system, where the
buffer corresponds to pending concurrent insert operations, this translates to the strongest
reasonable adversary, namely one which can base its decisions on all past random events,
but not future ones.

Consider an arrival sequence of n arbitrary distinct keys chosen from a totally ordered
universe and permuted randomly. Let ∆(n, c) denote the expected average node depth
obtained for a buffered BST given the strong adversary, if the buffer has size c. Note that
c = 1 corresponds to the unbuffered case, as the adversary has to move a key from the buffer
whenever the buffer is full. Hence, ∆(n, 1) = Davg(n) is the expected average node depth in
the standard sequential case. We will prove the following result.

I Theorem 1. ∆(n, c) = ∆(n, 1) +O(c), for any c ∈ {2, . . . , n}.

Note that the result of Aspnes and Ruppert [1] states that ∆′(n, c) = O(∆′(n, 1) + c), where
∆′ is defined as ∆ but for the weaker comparison based adversary.

Related Work. Binary search trees are among the most fundamental data structures, and
their properties have been studied extensively. It has been known for a long time that the
expected average depth of nodes for trees obtained by inserting a random permutation of n
distinct elements is O(logn) [2, 10]. Many additional details, such as higher moments, are
known about the distribution of node depths [6]. Other parameters of random BSTs have
also been determined precisely. For example, a sequence of works [9, 3, 8] determined the
expected height as (4.311 . . . ) · logn− (1.953 . . . ) · log logn+O(1).

The buffered search tree scenario considered in this paper was introduced by Aspnes and
Ruppert [1]. They describe it in terms of a card game, where a player takes c cards from a
shuffled deck of n cards, then chooses one of the cards in her hand to insert into the BST,
and replaces that card with a new one from the deck. This continues until the deck has been
depleted, upon which the player inserts all remaining cards in her hand into the tree. The
authors point out that a complementary approach is the smoothed analysis of the expected
BST height [7].

Concurrent Data Structure Context. To understand the context of this work, it is helpful
to know how efficient concurrent data structures, such as binary search trees, may be
implemented. There are several techniques to avoid conflicts, when multiple processes access
a search tree (or other data structure) concurrently. The simplest one is to use “coarse
grained locking”, where a mutual exclusion algorithm (lock) protects the entire data structure.
This way, only one process can access the data structure at a time, while other processes
have to wait.

STACS 2018
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But such lock-based solutions are inefficient, and not fault tolerant. The “Read-Copy-
Update” technique is an example of a more efficient and fault tolerant solution: The address
of the root of the tree is stored in a Compare-And-Swap (CAS) object C. This is a standard
shared memory primitive that supports a C.CAS(old, new) operation, which atomically
changes the value of C to new, provided its current value is old. To insert a node v, a process
first creates a copy of the search path from the root to the node u of which v will become a
child. Then the process executes a C.CAS(old, new) operation, where old is the address of
the original root, and new is the address of the root on the search path copy. This CAS only
succeeds, if no other insertion took effect (i.e., no other CAS succeeded) in the meantime.
If it fails, the process repeats its insertion attempt. This method is lock-free, guaranteeing
progress even if processes crash. If the tree only supports insertions and no other update
operations (such as deletions), then more efficient implementations based on fine grained
synchronization are possible (e.g., using one CAS object or lock for each child pointer).

There are several other common solutions, e.g., based on transactional memory. But most
of these solutions have in common that the speed of an insertion attempt may depend on
the length of the search path. Since “fast” attempts have a higher chance of being successful,
it is reasonable to assume that the order of concurrent insertions depends on the values of
the involved keys.

2 Analysis

Our analysis works for a slightly stronger adversary, which in addition to the keys in the
buffer, also knows the set (but not the order) of all future keys to arrive. In other words, the
adversary knows at any point the ranks of the keys that have arrived so far, with respect to
the set of all keys in the complete arrival sequence. In that setting we can assume w.l.o.g.
that the key arrival sequence is a random permutation over {1, . . . , n}. The first c − 1 of
the keys are stored in a buffer. For each following key k that arrives, first k is inserted to
the buffer, and then one of the c keys in the buffer is removed and inserted into the tree.
(It is obvious that the adversary can gain no advantage by inserting a key from the buffer
“early”, i.e., when the buffer is not full and more keys are going to arrive.) After all keys
have arrived, the c keys remaining in the buffer are inserted into the tree as well.

Proof Overview. We use the fact that the average node depth in any tree is equal to the
average number of descendants of all nodes in the tree. Let k1, . . . , kn denote the keys in
the order in which they arrive (so, k1, . . . , kn is a random permutation of {1, . . . , n}). We
bound the expected number of descendants of each key ki in the final tree. For i < c we use
the trivial bound of n on the number of descendants of ki. Next we focus on the case i ≥ c.
We bound the expected number of descendants of ki in the final tree, given the current tree
and the set of keys in the buffer just before ki arrives; at that time, the value of ki is not
yet determined, so it is equally likely to be any of the remaining keys. We observe that the
number of descendants of ki in the final tree is maximized if key ki is inserted to the tree as
soon as it arrives, rather than stored in the buffer and inserted at a later time. So, it suffices
to bound the expected number of descendants ki would have, if it were inserted immediately.
This expected value depends only on the set of the i− 1 keys that arrived before ki, and the
subset of them that have been inserted into the tree; in particular, it does not depend on
the order in which keys arrived or the order in which keys were inserted into the tree. From
this bound on the conditional expectation on the number of descendants of ki, given the
i− 1 keys that arrived before ki and the i− c keys already in the tree, we obtain a bound
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on the corresponding unconditional expectation, by letting the first i− 1 keys be random,
and assuming that an arbitrary (worst-case) (i− c)-subset of them has been inserted into
the tree. From this bound for each i ≥ c (and the trivial bound of n for i < c), and from
the linearity of expectation, we obtain a bound on the expectation of the average number of
descendants of all nodes.

Detailed Proof. We now present the detailed proof of Theorem 1. As already mentioned,
k1, . . . , kn is a random permutation of {1, . . . , n} denoting the order in which keys arrive.
We assume w.l.o.g. that no key is inserted into the tree, unless the buffer is full or all keys
have arrived. I.e., the insertions evolve in rounds as follows: In round j ∈ {1, . . . , c− 1}, key
kj is added to the buffer. In round j ∈ {c, . . . , n}, first key kj is added to the buffer, and
then some key `j is removed from the buffer and inserted into the search tree. Finally, in
each round j ∈ {n+ 1, . . . , n+ c− 1}, one key `j is removed from the buffer and inserted
into the tree.

For i ∈ {0, . . . , n+ c− 1}, let Xi be the set of keys that have arrived by the end of round
i, and let Yi be the set of keys that the tree contains at the end of round i (X0 = Y0 = ∅).
Then Xi = {k1, . . . , ki} for i ∈ {0, . . . , n}, and Xi = {1, . . . , n} for i > n. Moreover, Yi = ∅
for i ∈ {1, . . . , c− 1}, and Yi = {`c, . . . , `i} for i ∈ {c, . . . , n+ c− 1}. At the end of round
i, the set of keys in the buffer is Xi \ Yi. This set contains i elements at the end of round
i ∈ {0, . . . , c−1}, c−1 elements at the end of round i ∈ {c, . . . , n}, and n+ c− i−1 elements
at the end of round i ∈ {n+ 1, . . . , n+ c− 1}. Hence,

|Xi \ Yi| = min{i, c− 1, n+ c− i− 1}. (1)

Let x1
i , . . . , x

i
i denote the elements of Xi ordered by increasing key values. For convenience

we also define x0
i = 0 and xi+1

i = n+ 1. Further, let Y ′i = Yi ∪ {0, n+ 1}.
We are interested in bounding the number of descendants of each key in the final tree.

For i ∈ {0, . . . , n− 1}, define the random variable

δci = min
{
y ∈ Y ′i | y > ki+1

}
−max

{
y ∈ Y ′i | y < ki+1

}
.

As we will show below in the proof of Claim 2, the number of descendants of ki+1 in the
search tree with buffer size c is at most δci −2. Moreover, for c = 1, the number of descendants
is exactly δ1

i − 2. Since the average node depth of a search tree equals the average number
of descendants of each node, we can upper bound the expected average node depth as the
expected average of all values δci − 2. And for c = 1, these two quantities match.

I Claim 2.

(a) ∆(n, 1) = 1
n
·
n−1∑
i=0

E[δ1
i ]− 2; and

(b) ∆(n, c) ≤ 1
n
·
n−1∑
i=0

E[δci ]− 2, for any c ≥ 2.

Proof. For i ∈ {0, . . . , n− 1} let desc(i) denote the set of descendants of key ki in the final
search tree, and let depth(j) denote the depth of node kj in the final tree. Then the average
node depth of the final tree is

1
n
·
n∑
j=1

depth(j) = 1
n
·
n∑
j=1

∣∣{i ∈ {1, . . . , n} : kj ∈ desc(i)
∣∣ = 1

n
·
n∑
j=1
|desc(j)|.
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We will now show for any i ∈ {0, . . . , n− 1} that |desc(i+ 1)| ≤ δci − 2, and moreover, for a
buffer of size c = 1, |desc(i+ 1)| = δ1

i − 2. The claim follows immediately from that.
Key ki+1 arrives in the buffer in round i + 1. Suppose it is moved into the tree in

round j + 1 ≥ i + 1. Then at that point the tree contains the elements in Yj . When
that happens, the largest element in the tree that is smaller than ki+1 (if it exists) is
aj = max{y ∈ Yj | y < ki+1}, and the smallest element in the tree that is larger than ki+1
(if it exists) is bj = min{y ∈ Yj | y > ki+1}. The search path to the position where ki+1 gets
inserted goes through aj and bj . Hence, in the final tree, the search path to any descendant
of ki+1 also goes through those two nodes. Moreover, any key that is larger than aj and
smaller than bj will follow the search path to ki+1 and become a descendant of ki+1. Define
aj = 0 respectively bj = n+ 1 if Yj contains no element smaller respectively larger than ki+1.
Then we obtain desc(i+ 1) = {aj + 1, . . . , bj − 1} \ {ki+1}, and thus

|desc(i+ 1)| = bj − aj − 2.

Now observe that if the buffer has size c = 1, then j = i, because key ki gets inserted
into the tree in the same round as it arrives. Since ai = max

{
y ∈ Y ′i | y < ki+1

}
and

bi = min
{
y ∈ Y ′i | y > ki+1

}
(recall that Y ′i = Yi ∪ {0, n+ 1}) we obtain δ1

i = bi − ai, and so
|desc(i+ 1)| = δ1

i − 2.
For c > 1 we may have j > i, but in any case Yi ⊆ Yj . Hence, ai ≤ aj and bi ≥ bj , and

so we obtain δci = bi − ai ≥ bj − aj = |desc(i+ 1)| − 2. J

Later, in Claim 4, we will bound the expectation of δci , given Xi and Yi. To do so, we
will use the following simple observation.

I Claim 3. For any i ∈ {c− 1, . . . , n− 1}, δci ≤ max
j∈{0,...,i−c+1}

(xj+ci − xji ).

Proof. Let yai = max
{
y ∈ Y ′i | y < ki+1

}
. Then ya+1

i = min
{
y ∈ Y ′i | y > ki+1

}
, and

δci = ya+1
i − yai . Since Y ′i ⊆ Xi ∪{0, n+ 1}, elements yai and ya+1

i are both in Xi∪{x0
i , x

i+1
i }.

Let ` ∈ {0, . . . , i} such that x`i = yai , and r ∈ {`+ 1, . . . , i+ 1} such that xri = ya+1
i .

First assume that r − ` > c. Since yai and ya+1
i appear consecutively in the ordered list

of elements in Yi, none of x`+1
i , . . . , xr−1

i is in Yi. Recall that Xi \ Yi is the set of elements in
the buffer at the end of round i. Hence, all r − `− 1 ≥ c elements x`+1

i , . . . , xr−1
i are in the

buffer at the end of round i. But at the end of a round, the buffer can contain at most c− 1
elements, and we have a contradiction.

Therefore, r− ` ≤ c. Then there exists an index j ∈ {0, . . . , `} with j + c ∈ {r, . . . , i+ 1}.
In this case xji ≤ x`i = yai and xj+ci ≥ xri = ya+1

i , and thus xj+ci − xji ≥ y
a+1
i − yai = δci . This

proves the claim. J

For a set S = {s1, . . . , sm} ⊆ {1, . . . , n}, where s1 < · · · < sm, let

γ(S) =
m∑
i=0

(si+1 − si)2, where s0 = 0 and sm+1 = n+ 1.

For any i ∈ {0, . . . , n− 1} we will now bound the expected value of δci as a function of
γ(Yi), given the sets Xi and Yi. That bound is tight for the case c = 1.

I Claim 4. For any i ∈ {c− 1, . . . , n− 1},

(a) E[δci | Xi, Yi] ≤
γ(Yi)− n− 1

n− i
;

(b) E[δ1
i | Xi] = γ(Xi)− n− 1

n− i
.
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Proof. Let z = i− c+ 1 = |Yi|, let the set of ordered elements in Yi be y1
i , . . . , y

z
i , and let

y0
i = 0 and yz+1

i = n+ 1. Therefore,
z∑
j=0

(yj+1
i − yji ) = yz+1

i − y0
i = n+ 1. (2)

Let σ(i) be the unique index in {0, . . . , z} such that yσ(i)
i < ki+1 < y

σ(i)+1
i . Then yσ(i)

i =
max

{
y ∈ {y0

i , . . . , y
z+1
i } | y < ki+1

}
and y

σ(i)+1
i = min

{
y ∈ {y0

i , . . . , y
z+1
i } | y > ki+1

}
.

Hence,

δci = y
σ(i)+1
i − yσ(i)

i .

Recall that Xi is the set of keys arrived by the end of round i. Hence, given Xi, the
element ki+1, which arrives in round i+ 1, is uniformly distributed over {1, . . . , n} \Xi (the
tag (∗) below indicates where this fact is being used). Therefore,

E[δci | Xi, Yi] =
z∑
j=0

Pr(σ(i) = j) | Xi, Yi) · (yj+1
i − yji )

=
z∑
j=0

Pr
(
ki+1 ∈ {yji + 1, . . . , yj+1

i − 1}
∣∣∣Xi, Yi

)
· (yj+1

i − yji )

(∗)=
z∑
j=0

|{yji + 1, . . . , yj+1
i − 1} \Xi|

|{1, . . . , n} \Xi|
· (yj+1

i − yji )

≤
z∑
j=0

yj+1
i − yji − 1

|{1, . . . , n} \Xi|
· (yj+1

i − yji ) (3)

=
z∑
j=0

(yj+1
i − yji )2 − yj+1

i + yji
n− i

(2)=
z∑
j=0

(yj+1
i − yji )2

n− 1 − n+ 1
n− i

= γ(Yi)− n− 1
n− i

. (4)

This proves Part (a) of the claim.
For Part (b) note that if the buffer has size c = 1, then Xi = Yi. Hence,

{yji + 1, . . . , yj+1
i − 1} contains no element in Xi, and so inequality (3) above holds as

an equality. Now Part (b) follows from substituting xji with yji and Xi with Yi in the above
bound. J

According to Claim 2, we have

∆(n, c)−∆(n, 1) ≤ 1
n

n−1∑
i=0

(E[δci − δ1
i ]).

In the following we will bound the expectation of the maximum of γ(Yi) − γ(Xi) for all
sets Yi ⊆ Xi of size i − c + 1, for i ∈ {c − 1, . . . , n − 1}. This implies an upper bound on
E[γ(Yi)− γ(Xi)], and thus by Claim 4 on E[δci − δ1

i ].

I Lemma 5. For any i ∈ {c− 1, . . . , n− 1},

E[δci − δ1
i ] = O

(
n2c2 + n2c log2 i

i2(n− i)

)
.
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First we show a high probability upper bound on the differences xj+di − xji , for all values
of j ∈ {0, . . . , i} and d ∈ {1, . . . , i − j + 1} in Claim 6 below. This allows us to bound for
a random set S ⊆ {1, . . . , n} of m elements, the expectation of

(
γ(S \ C) − γ(S)

)
for the

“worst” subset C of S of a given size. This bound is stated in Lemma 7 below. Using this
bound, we will then prove Lemma 5.

I Claim 6. Let S be a set of m ∈ {1, . . . , n} elements chosen at random from {1, . . . , n}
without replacement. Let s1, . . . , sm be the elements of S in sorted order, and let s0 = 0 and
sm+1 = n+ 1. Then for any d ∈ {1, . . . ,m+ 1} and j ∈ {0, . . . ,m− d+ 1},

Pr
(
sj+d − sj >

8n(d+ lnm)
m

)
< e−3d ·m−3.

Proof. Let

b = 8n(d+ lnm)/m.

The distribution of the difference sj+d−sj does not depend on j (see Claim 9 in the appendix),
so we can assume j = 0. Thus, it suffices to show

Pr(sd > b) < e−3d ·m−3. (5)

If b > n, then the claim is trivially true, so assume b ≤ n. Let Rt, t ∈ {1, . . . ,m}, be an
indicator random variable, where Rt = 1 if and only if the t-th element chosen for S has a
value of at most b. Further, let R = R1 + · · ·+Rm. Then Pr(Rt = 1) = b/n, and so

E[R] =
m∑
t=1

E[Rj ] = m · b
n

= 8(d+ lnm).

Recall that s0, s1, . . . , sm+1 is an increasing sequence. Therefore, R is the smallest index in
{1, . . . ,m} such that sR+1 > b. Hence, sd > b is equivalent to R < d, so according to (5) it
suffices to show that

Pr(R < d) < e−3d ·m−3. (6)

The random variables Rt are negatively associated [5, Section 3.1(c)], so we can use Chernoff
Bounds [4, Theorem 3.1] to obtain

Pr(R < d) = Pr
(
R <

E[R]
8 − lnm

)
≤ Pr

(
R < E[R](1− 7/8)

)
< e−(7/8)2·E[R]/2

≤ e−(7/8)2·8(d+lnm)/2 < e−3(d+lnm) = e−3d ·m−3.

This proves (6), and thus the claim. J

I Lemma 7. Let S be a set of m ∈ {1, . . . , n} elements chosen at random from {1, . . . , n}
without replacement. Then for any τ ∈ {1, . . . ,m},

E

max
C⊆S
|C|=τ

γ(S \ C)− γ(S)

 = O

(
n2τ2 + n2τ log2 m

m2

)
.

Proof. Let s1, . . . , sm be the elements of S in sorted order, and let s0 = 0 and sm+1 = n+ 1.
Define the following event,

Event A: ∀d ∈ {1, . . . ,m+ 1}, i ∈ {0, . . . ,m− d+ 1} : si+d − si ≤
8n(d+ lnm)

m
.
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Using the union bound and applying Claim 6, we obtain

Pr(¬A) = Pr
(
∃d ∈ {1, . . . ,m+ 1}, i ∈ {0, . . . ,m− d+ 1} : si+d − si >

8n(d+ lnm)
m

)
≤
m+1∑
d=1

m−d+1∑
i=0

Pr
(
si+d − si >

8n(d+ lnm)
m

)
≤
m+1∑
d=1

m−d+1∑
i=0

e−3d ·m−3 = O(m−2). (7)

Now consider an arbitrary set C = {si1 , . . . , siτ } ⊆ S. Let I = {i1, . . . , iτ}, and partition
I into maximal subsets I1, . . . , I` of consecutive indices. Further, for j ∈ {1, . . . , `} let
αj = min Ij − 1 and dj = |Ij |+ 1. Thus,

C =
⋃̀
j=1
{sαj+1, sαj+2, . . . , sαj+dj−1},

and so for S′ = S ∪ {s0, sm+1},

S′ \ C = {s0, s1, . . . , sα1 , sα1+d1 , sα1+d1+1, . . . , sα2 , sα2+d2 , . . . , sα` , sα`+d` , . . . , sm+1}.

Each pair (si, si+1) over S′ \C contributes (si+1−si)2 to the sum γ(S \C), and it contributes
the same amount to the sum γ(S). On the other hand, each pair (sαj , sαj+dj ) over S′ \ C
contributes (sαj+dj − sαj )2 to γ(S \ C), while the corresponding contribution to γ(S) is
potentially much smaller (precisely it is

∑dj
t=1(sαj+t − sαj+t−1)2). Therefore, ignoring these

latter contributions to γ(S), we can upper bound the difference γ(S \ C)− γ(S) as follows:

γ(S \ C)− γ(S) ≤
∑̀
j=1

(sαj+dj − sαj )2.

Now, if event A occurs, then sαj+dj − sαj ≤ 8n(dj + lnm)/m, and so in this case

γ(S \ C)− γ(S) ≤
∑̀
j=1

(
8n(dj + lnm)

m

)2
≤
∑̀
j=1

128n2 (dj2 + ln2 m
)

m2 , (8)

where the last inequality was obtained by using the fact that (a + b)2 ≤ 2(a2 + b2). Now
recall that dj = |Ij | + 1, so d1 + · · · + d` − ` = |I1 ∪ · · · ∪ I`| = |C| = τ , and ` ≤ |C| = τ

(because C contains ` sets of consecutive indices. Therefore,

d1 + · · ·+ d` = τ + ` ≤ 2τ, and d1
2 + · · ·+ d`

2 ≤ (d1 + · · ·+ d`)2 = (τ + `)2 ≤ 4τ2. (9)

Observe that if event A occurs, bound (8) is true for every set C ⊆ S of size τ . Thus, if A
occurs, then combining (8) and (9), we obtain

max
C⊆S
|C|=τ

γ(S \ C)− γ(S) ≤
128n2 (4τ2 + ` ln2 m

)
m2 ≤

128n2 (4τ2 + τ ln2 m
)

m2 . (10)

If event A does not occur, then we can use the trivial bound

max
C⊆S
|C|=τ

γ(S \ C)− γ(S) ≤ max
C⊆S
|C|=τ

γ(S \ C) ≤ γ(∅) = (n+ 1)2. (11)
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According to (7), event ¬A occurs with probability O(m−2). Hence, (10) and (11) imply

E[ max
C⊆S
|C|=τ

γ(S \ C)− γ(S)] ≤
128n2 (4τ2 + τ ln2 m

)
m2 + (n+ 1)2 ·O(m−2)

= O

(
n2 (τ2 + τ log2 m

)
m2

)
. J

We can now prove Lemma 5.

Proof of Lemma 5. Let τ = c− 1, and recall i ∈ {c− 1, . . . , n− 1}. According to Claim 4,

E[δci − δ1
i | Xi, Yi] ≤

γ(Yi)− γ(Xi)
n− i

.

Recall that Xi is a set of i elements in {1, . . . , n} chosen uniformly at random without
replacement. Moreover, Yi ⊆ Xi is chosen by the adversary, where |Xi \ Yi| = τ by (1).
Hence, from Lemma 7 (substituting Xi for S and i for m) we obtain

E[δci − δ1
i ] ≤ 1

n− i
·E

max
C⊆Xi
|C|=τ

γ(Xi \ C)− γ(Xi)

 = O

(
1

n− 1 ·
n2τ2 + n2τ log2 i

i2

)
.

Since τ < c, the claim follows. J

For large i, close to n, the bound in Lemma 5 is too weak. Instead we use the following
result which holds for i ≥ n/2:

I Lemma 8. Let c < n/2 and i ∈ {dn/2e, . . . , n− 1}. Then E[δci ] = O(c+ logn).

Proof. Define

Event B : ∀j ∈ {0, . . . , i− c+ 1} : xj+ci − xji ≤ 16(c+ lnn).

If B occurs, then by Claim 3, δci ≤ 16(c+ lnn). On the other hand, if B does not occur,
then we will use the trivial bound δci ≤ n− i < n. We will show below that

Pr(¬B) = O(n−2). (12)

Hence, we obtain

E[δci ] ≤ 16(c+ lnn) + n ·O(n−2) = O(c+ lnn).

Next we prove (12).
Recall that k1, . . . , ki are the first i elements that arrive, i.e., they are chosen uniformly

at random without replacement from {1, . . . , n}. Moreover, x1
i , . . . , x

i
i is the sorted order of

those elements. Thus, by Claim 6, for any j ∈ {0, . . . , i− c+ 1},

Pr
(
xj+ci − xji >

8n(c+ ln i)
i

)
< e−3c · i−3.

Using the assumption of this lemma, n/2 ≤ i < n, and a union bound on j, we obtain

Pr
(
∃j ∈ {0, . . . , i− c+ 1} : xj+ci − xji > 16(c+ lnn)

)
< e−3c ·(n/2)−3(i−c+2) = O(n−2).

This proves (12), and thus the lemma. J
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We now combine Lemmas 5 and 8 to prove our main result, i.e., ∆(n, c) = ∆(n, 1) +O(c).

Proof of Theorem 1. Clearly, ∆(n, c) < n for all c. Therefore, if c ≥ n/2, the theorem is
trivially true. Hence, assume c < n/2, and let

b = n− cn

2(c+ logn) > n− cn

2c = n/2 > c.

According to Claim 2, we have

∆(n, c)−∆(n, 1) ≤ 1
n
·
n−1∑
i=0

E[δci − δ1
i ]. (13)

It may be useful to recall the reason for inequality (13). As explained in the proof of Claim 2,
δ1
i is equal to the number of descendants of node ki+1 in the final tree in case the buffer size
is 1, and δci is an upper bound for the same if the buffer has size c. Hence, the average of
all values δci − δ1

i upper bounds the difference in the average number of descendants of all
nodes between the two final trees, which in turn is equal to the difference of the average
node depth between the two final trees.

We bound the sum above separately for 0 ≤ i ≤ c− 1, c ≤ i ≤ b, and b < i ≤ n− 1.

From the trivial bounds δci ≤ n+ 1 and δ1
i ≥ 0, we get

∑
0≤i≤c−1

E[δci − δ1
i ] ≤

∑
0≤i≤c−1

E[δci ] ≤ c(n+ 1). (14)

By Lemma 8, we have E[δci ] = O(c+ logn) for i ∈ {dn/2e, . . . , n− 1}, thus

∑
b<i≤n−1

E[δci − δ1
i ] = O

(
(n− b) · (c+ logn)

)
= O (cn) . (15)

To bound the remaining sum of E[δci − δ1
i ], for c− 1 ≤ i ≤ b, first recall the following basic

facts for any real z ≥ 0 and integers 1 ≤ a ≤ `:

∞∑
i=a

1
i2

≤ 1
a

+ 1
a2 ;

`∑
i=a

1
i

≤ 1
a

+ ln(`/a);
∞∑

i=1

(log i)2

i2
converges; and ln(1 + z) ≤ z. (16)
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By Lemma 5,

∑
c≤i≤b

E
[
δc

i − δ1
i

]
= O

(∑
c≤i≤b

n2c2 + n2c log2 i

i2(n− i)

)

= O

 ∑
c≤i≤n/2

n2c2 + n2c log2 i

i2(n− i) +
∑

n/2<i≤b

n2c2 + n2c log2 i

i2(n− i)


= O

 ∑
c≤i≤n/2

nc2 + nc log2 i

i2

+O

 ∑
n/2<i≤b

c2 + c log2 n

n− i


= O

(
nc ·

∞∑
i=c

(
c

i2
+ log2 i

i2

))
+O

(c2 + c log2 n)
∑

n−b≤j<n/2

1
j


(16)= O (nc) +O

(
(c2 + c log2 n) ·

(
1

n− b
+ ln n/2

n− b

))
= O(nc) +O

(
(c2 + c log2 n) ·

(
1 + ln c+ logn

c

))
(16)= O(nc) +O

(
(c2 + c log2 n) ·

(
1 + logn

c

))
= O(nc) +O

(
c2 + c log2 n+ c logn+ log3 n

)
= O(nc). (17)

Combining (13), (14), (15), and (17), we obtain ∆(n, c)−∆(n, 1) = O(c). This completes
the proof of Theorem 1. J
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A Appendix

In the following we provide a basic claim to facilitate our analysis. We believe that this
simple observation should be known, but we could not find a reference for it.

I Claim 9. Let S be a set of m ∈ {1, . . . , n} elements chosen at random from {1, . . . , n}
without replacement. Let s1, . . . , sm be the elements of S in sorted order, and let s0 = 0,
sm+1 = n+ 1. Then for any d ∈ {1, . . . ,m+ 1} and j ∈ {0, . . . ,m− d+ 1}, the distribution
of sj+d − sj is identical to the distribution of sd − s0.

Proof. Fix d ∈ {1, . . . ,m+ 1}. Choose a set S′ of m+ 1 elements in {0, . . . , n} at random
without replacement, and let s′0, . . . , s′m be the chosen elements in sorted order. Considering
the elements as chosen from the mod(n+ 1) ring {0, . . . , n}, it is obvious by symmetry that
all random variables Zj = (s′(j+d) mod (m+1)− s

′
j) mod (n+ 1), j ∈ {0, . . . ,m}, are identically

distributed. In particular, each variable Zj , j ∈ {0, . . . ,m} has the same distribution as Z0.
Then letting si = s′i − s′0, we have that s1, . . . , sm have the same distribution as if they

were chosen from {1, . . . , n} at random without replacement and then sorted. Moreover, for
j ∈ {0, . . . ,m− d} we have sj ≤ sj+d ≤ n, so

sj+d − sj = (sj+d − sj) mod (n+ 1) = (s′j+d − s′j) mod (n+ 1)
= (s′(j+d) mod (m+1) − s

′
j) mod (n + 1) = Zj .

And since s0 ≡ sm+1 (mod n+ 1), we obtain for j = m− d+ 1 using the same calculation
as above

sj+d − sj = (s0 − sj) mod (n+ 1) = (s′(j+d) mod (m+1) − s
′
j) mod (n+ 1) = Zj .

Since all random variables Zj = sj+d − sj , for j ∈ {0, . . . ,m − d + 1}, have the same
distribution as Z0, the claim follows. J
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38:2 String Periods in the Order-Preserving Model

1 Introduction

Study of strings in the order-preserving model (op-model, in short) is a part of the so-called
non-standard stringology. It is focused on pattern matching and repetition discovery problems
in the shapes of number sequences. Here the shape of a sequence is given by the relative
order of its elements. The applications of the op-model include finding trends in time series
which appear naturally when considering e.g. the stock market or melody matching of two
musical scores; see [32]. In such problems periodicity plays a crucial role.

One of motivations is given by the following scenario. Consider a sequence D of numbers
that models a time series which is known to repeat the same shape every fixed period of
time. For example, this could be certain stock market data or statistics data from a social
network that is strongly dependent on the day of the week, i.e., repeats the same shape
every consecutive week. Our goal is, given a fragment S of the sequence D, to discover
such repeating shapes, called here op-periods, in S. We also consider some special cases
of this setting. If the beginning of the sequence S is synchronized with the beginning of
the repeating shape in D, we refer to the repeating shape as to an initial op-period. If the
synchronization takes place also at the end of the sequence, we call the shape a full op-period.
Finally, we also consider sliding op-periods that describe the case when every factor of the
sequence D repeats the same shape every fixed period of time.

Order-preserving model. Let Ja..bK denote the set {a, . . . , b}. We say that two strings
X = X[1] . . . X[n] and Y = Y [1] . . . Y [n] over an integer alphabet are order-equivalent
(equivalent in short), written X ≈ Y , iff ∀i,j∈J1..nK X[i] < X[j]⇔ Y [i] < Y [j].

I Example 1. 5 2 7 5 1 3 10 3 5 ≈ 6 4 7 6 3 5 9 5 6.

Order-equivalence is a special case of a substring consistent equivalence relation (SCER) that
was defined in [37].

For a string S of length n, we can create a new string X of length n such that X[i] is
equal to the number of distinct symbols in S that are not greater than S[i]. The string X is
called the shape of S and is denoted by shape(S). It is easy to observe that two strings S, T

are order-equivalent if and only if they have the same shape.

I Example 2. shape(5 2 7 5 1 3 10 3 5) = shape(6 4 7 6 3 5 9 5 6) = 4 2 5 4 1 3 6 3 4.

Periods in the op-model. We consider several notions of periodicity in the op-model,
illustrated by Fig. 1. We say that a string S has a (general) op-period p with shift s ∈ J0..p−1K
if and only if p < |S| and S is a factor of a string V1V2 · · ·Vk such that:

|V1| = · · · = |Vk| = p, V1 ≈ · · · ≈ Vk, and S[s + 1..|S|] is a prefix of V2 · · ·Vk.

The shape of the op-period is shape(V1). One op-period p can have several shifts; to avoid
ambiguity, we sometimes denote the op-period as (p, s). We define Shiftsp as the set of all
shifts of the op-period p.

An op-period p is called initial if 0 ∈ Shiftsp, full if it is initial and p divides |S|, and
sliding if Shiftsp = J0..p−1K. Initial and sliding op-periods are particular cases of block-based
and sliding-window-based periods for SCER, both of which were introduced in [37].

Models of periodicity. In the standard model, a string S of length n has a period p iff
S[i] = S[i + p] for all i = 1, . . . , n− p. The famous periodicity lemma of Fine and Wilf [26]
states that a “long enough” string with periods p and q has also the period gcd(p, q). The
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0 0 3 2 1 1 3 2 1 1 4 3 1 1 2 5 1 1 3 4 1 1 2 4

Figure 1 The string to the left has op-period 4 with three shifts: Shifts4 = J0..0K ∪ J2..3K. Due
to the shift 0, the string has an initial—therefore, a full—op-period 4. The string to the right has
op-period 4 with all four shifts: Shifts4 = J0..3K. In particular, 4 is a sliding op-period of the string.
Notice that both strings (of length n = 12) have (general, sliding) periods 4, but none of them has
the order-border (in the sense of [36]) of length n− 4.

exact bound of being “long enough” is p + q − gcd(p, q). This result was generalized to
arbitrary number of periods [9, 31, 40].

Periods were also considered in a number of non-standard models. Partial words, which
are strings with don’t care symbols, possess quite interesting Fine–Wilf type properties,
including probabilistic ones; see [4, 5, 6, 38, 39, 30]. In Section 2, we make use of periodicity
graphs introduced in [38, 39]. In the abelian (jumbled) model, a version of the periodicity
lemma was shown in [15] and extended in [7]. Also, algorithms for computing three types of
periods analogous to full, initial, and general op-periods were designed [19, 24, 25, 33, 34, 35].
In the computation of full and initial op-periods we use some number-theoretic tools initially
developed in [33, 34]. Remarkably, the fastest known algorithm for computing general periods
in the abelian model has essentially quadratic time complexity [19, 35], whereas for the
general op-periods we design a much more efficient solution. A version of the periodicity
lemma for the parameterized model was proposed in [2].

Op-periods were first considered in [37] where initial and sliding op-periods were introduced
and direct generalizations of the Fine–Wilf property to these kinds of op-periods were
developed. A few distinctions between the op-periods and periods in other models should
be mentioned. First, “to have a period 1” becomes a trivial property in the op-model.
Second, all standard periods of a string have the “sliding” property; the first string in Fig. 1
demonstrates that this is not true for op-periods. The last distinction concerns borders. A
standard period p in a string S of length n corresponds to a border of S of length n − p,
which is both a prefix and a suffix of S. In the order-preserving setting, an analogue of a
border is an op-border, that is, a prefix that is equivalent to the suffix of the same length.
Op-borders have properties similar to standard borders and can be computed in O(n) time
[36]. However, it is no longer the case that a (general, initial, full, or sliding) op-period must
correspond to an op-border; see [37].

Previous algorithmic study of the op-model. The notion of order-equivalence was intro-
duced in [32, 36]. (However, note the related combinatorial studies, originated in [22], on
containment/avoidance of shapes in permutations.) Both [32, 36] studied pattern matching
in the op-model (op-pattern matching) that consists in identifying all consecutive factors of
a text that are order-equivalent to a given pattern. We assume that the alphabet is integer
and, as usual, that it is polynomially bounded with respect to the length of the string, which
means that a string can be sorted in linear time (cf. [16]). Under this assumption, for a
text of length n and a pattern of length m, [32] solve the op-pattern matching problem
in O(n + m log m) time and [36] solve it in O(n + m) time. Other op-pattern matching
algorithms were presented in [3, 14].

An index for op-pattern matching based on the suffix tree was developed in [18]. For a
text of length n it uses O(n) space and answers op-pattern matching queries for a pattern of
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length m in optimal, O(m) time (or O(m + Occ) time if we are to report all Occ occurrences).
The index can be constructed in O(n log log n) expected time or O(n log2 log n/ log log log n)
worst-case time. We use the index itself and some of its applications from [18].

Other developments in this area include a multiple-pattern matching algorithm for
the op-model [32], an approximate version of op-pattern matching [28], compressed index
constructions [12, 21], a small-space index for op-pattern matching that supports only short
queries [27], and a number of practical approaches [8, 10, 11, 13, 23].

Our results. We give algorithms to compute:
all full op-periods in O(n) time;
the smallest non-trivial initial op-period in O(n) time;
all initial op-periods in O(n log log n) time;
all sliding op-periods in O(n log log n) expected time or O(n log2 log n/ log log log n) worst-
case time (and linear space);
all general op-periods with all their shifts (compactly represented) in O(n log n) time and
space. The output is the family of sets Shiftsp represented as unions of disjoint intervals.
The total number of intervals, over all p, is O(n log n).

In the combinatorial part, we characterize the Fine–Wilf periodicity property (aka interaction
property) in the op-model in the case of coprime periods. This result is at the core of the
linear-time algorithm for the smallest initial op-period.

Structure of the paper. Combinatorial foundations of our study are given in Section 2.
Then in Section 3 we recall known algorithms and data structures for the op-model and
develop further algorithmic tools. The remaining sections are devoted to computation of the
respective types of op-periods: full and initial op-periods in Section 4, the smallest non-trivial
initial op-period in Section 5, all (general) op-periods in Section 6, and sliding op-periods in
Section 7. Some proofs have been omitted due to space constraints; they can be found in the
preprint [29].

2 Fine–Wilf Property for Op-Periods

The following result was shown as Theorem 2 in [37]. Note that if p and q are coprime, then
the conclusion is void, as every string has the op-period 1.

I Theorem 3 ([37]). Let p > q > 1 and d = gcd(p, q). If a string S of length n ≥ p + q − d

has initial op-periods p and q, it has initial op-period d. Moreover, if S has length n ≥ p+q−1
and sliding op-periods p and q, it has sliding op-period d.

The aim of this section is to show a periodicity lemma in the case that gcd(p, q) = 1.

2.1 Preliminary Notation
For a string S of length n, by S[i] (for 1 ≤ i ≤ n) we denote the ith letter of S and by S[i..j]
we denote a factor of S equal to S[i] . . . S[j]. If i > j, S[i..j] denotes the empty string ε.

A string which is strictly increasing, strictly decreasing, or constant, is called strictly
monotone. A strictly monotone op-period of S is an op-period with a strictly monotone shape.
Such an op-period is called increasing (decreasing, constant) if so is its shape. Clearly, any
divisor of a strictly monotone op-period is a strictly monotone op-period as well. A string S

is 2-monotone if S = S1S2, where S1, S2 are strictly monotone in the same direction.
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S =

q q q

p p p
i

j

k

Figure 2 Op-periods (p, i) and (q, j) synchronized at position k.

Below we assume that n > p > q > 1. Let a string S = S[1..n] have op-periods (p, i) and
(q, j). If there exists a number k ∈ J1..n− 1K such that k mod p = i and k mod q = j, we say
that these op-periods are synchronized and k is a synchronization point (see Fig. 2).
I Remark. The proof of Theorem 3 can be easily adapted to prove the following.

I Theorem 4. Let p > q > 1 and d = gcd(p, q). If op-periods p and q of a string S of length
n ≥ p + q − 1 are synchronized, then S has op-period d, synchronized with them.

2.2 Periodicity Theorem For Coprime Periods
For a string S, by trace(S) we denote a string X of length |S| − 1 over the alphabet {+, 0, -}
such that:

X[i] =


+ if S[i] < S[i + 1]
0 if S[i] = S[i + 1]
- if S[i] > S[i + 1].

I Observation 5.
(1) A string is strictly monotone iff its trace is a unary string.
(2) If S has an op-period p with shift i, then trace(S) “almost” has a period p, namely,

trace(S)[j] = trace(S)[k] for any j, k ∈ J1..n − 1K such that j = k (mod p) and j 6= i

(mod p). (This is because both trace(S)[j] and trace(S)[k] equal the sign of the difference
between the same positions of the shape of the op-period of S.)

I Example 6. Consider the string 7 5 8 1 4 6 2 4 5. It has an op-period (3, 1) with shape 2 3 1.
The trace of this string is:

- + - + + - + +

The positions giving the remainder 1 modulo 3 are shown in gray; the sequence of the
remaining positions is periodic.

It turns out that the existence of two coprime op-periods makes a string “almost” strictly
monotone. One can use periodicity graphs [38, 39] to show the following result.

I Theorem 7. Let S be a string of length n that has coprime op-periods p and q with shifts
i and j, respectively, such that n > p > q > 1. Then:
(a) if n > pq, then S has a strictly monotone op-period pq;
(b) if 2p < n ≤ pq and the op-periods are synchronized, then S is 2-monotone;
(c) if p+q < n ≤ 2p and the op-periods are synchronized, then (q, j) is a strictly monotone

op-period of S;
(d) if n > max{2p, p+2q} and the op-periods are not synchronized, then S is strictly mono-

tone;
(e) if n > 2p, the op-periods are not synchronized, and p is initial, then S is strictly

monotone;
(f) if p+q < n ≤ 2p and p is initial, then (q, j) is a strictly monotone op-period of S.
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3 Algorithmic Toolbox for Op-Model

For a string S of length n, we introduce a table op-PREF[1..n] such that op-PREF[i] is
the length of the longest prefix of S[i..n] that is equivalent to a prefix of S. It is a direct
analogue of the PREF array used in standard string matching (see [20]) and can be computed
similarly in O(n) time using one of the standard encodings for the op-model that were used
in [14, 18, 36].

I Lemma 8. For a string of length n, the op-PREF table can be computed in O(n) time.

Let us mention an application of the op-PREF table that is used further in the algorithms.
We denote by op-LPPp(S) (“longest op-periodic prefix”) the length of the longest prefix of a
string S having p as an initial op-period.

I Lemma 9. For a string S of length n, op-LPPp(S) for a given p can be computed in
O(op-LPPp(S)/p + 1) time after O(n)-time preprocessing.

Proof. We start by computing the op-PREF table for S in O(n) time. We assume that
op-PREF[n + 1] = 0. To compute op-LPPp(S), we iterate over positions i = p + 1, 2p + 1, . . .

and for each of them check if op-PREF[i] ≥ p. If i0 is the first position for which this condition
is not satisfied (possibly because i0 > n−p+1), we have op-LPPp(S) = i0 +op-PREF[i0]−1.
Clearly, this procedure works in the desired time complexity. J

For a string S, we define a longest common extension query op-LCP(i, j) in the order-
preserving model as the maximum k ≥ 0 such that S[i..i+k−1] ≈ S[j..j+k−1]. Symmetrically,
op-LCS(i, j) is the maximum k ≥ 0 such that S[i− k + 1..i] ≈ S[j − k + 1..j].

Similarly as in the standard model [17], LCP-queries in the op-model can be answered
using lowest common ancestor (LCA) queries in the op-suffix tree; see the following lemma.

I Lemma 10. For a string of length n, after preprocessing in O(n log log n) expected time or
in O(n log2 log n/ log log log n) worst-case time one can answer op-LCP-queries in O(1) time.

The factor S[i..i+2p−1] is called an order-preserving square (op-square) iff S[i..i+p−1] ≈
S[i + p..i + 2p− 1]. For a string S of length n, we define the set

op-Squaresp = {i ∈ J1..n− 2p + 1K : S[i..i + 2p− 1] is an op-square}.

Op-squares were first defined in [18] where an algorithm computing all the sets op-Squaresp

for a string of length n in O(n log n +
∑

p |op-Squaresp|) time was shown.
We say that an op-square S[i..i + 2p− 1] is right shiftable if S[i + 1..i + 2p] is an op-square

and right non-shiftable otherwise. Similarly, we say that the op-square is left shiftable if
S[i − 1..i + 2p − 2] is an op-square and left non-shiftable otherwise. Using the approach
of [18], one can show the following lemma.

I Lemma 11. All the (left and right) non-shiftable op-squares in a string of length n can be
computed in O(n log n) time.

4 Computing All Full and Initial Op-Periods

For a string S of length n, we define op-PREF′[i] for i = 0, . . . , n as:

op-PREF′[i] =
{

n if op-PREF[i + 1] = n− i

op-PREF[i + 1] otherwise.
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Algorithm 1: Computing All Initial Op-Periods of S.
1 T := op-PREF′;
2 for j := n down to 2 do
3 foreach prime divisor q of j do
4 P [j/q] := min(P [j/q], P [j]);
5 for p := 1 to n do
6 if P [p] ≥ p then p is an initial op-period;

Here we assume that op-PREF[n + 1] = 0. In the computation of full and initial op-periods
we heavily rely on this table according to the following obvious observation.

I Observation 12. p is an initial op-period of a string S of length n if and only if
op-PREF′[ip] ≥ p for all i = 1, . . . , bn/pc.

4.1 Computing Initial Op-Periods
Let us introduce an auxiliary array P [0..n] such that:

P [p] = min{op-PREF′[ip] : i = 1, . . . , bn/pc}.

Straight from Observation 12 we have:

I Observation 13. p is an initial period of S if and only if P [p] ≥ p.

The table T could be computed straight from definition in O(n log n) time. We improve
this complexity to O(n log log n) by employing Eratosthenes’s sieve. The sieve computes,
in particular, for each j = 1, . . . , n a list of all distinct prime divisors of j. We use these
divisors to compute the table via dynamic programming in a right-to-left scan, as shown in
Algorithm 1.

I Theorem 14. All initial op-periods of a string of length n can be computed in O(n log log n)
time.

Proof. By Lemma 8, the op-PREF table for the string—hence, the op-PREF′ table—can be
computed in O(n) time. Then we use Algorithm 1. Each prime number q ≤ n has at most
n
q multiples below n. Therefore, the complexity of Eratosthenes’s sieve and the number of
updates on the table T in the algorithm is

∑
q∈Primes,q≤n

n
q = O(n log log n); see [1]. J

4.2 Computing Full Op-Periods
Let us recall the following auxiliary data structure for efficient gcd-computations that was
developed in [34]. We will only need a special case of this data structure to answer queries
for gcd(x, n).

I Fact 15 (Theorem 4 in [34]). After O(n)-time preprocessing, given any x, y ∈ {1, . . . , n},
the value gcd(x, y) can be computed in constant time.

Let Div(i) denote the set of all positive divisors of i. In the case of full op-periods we
only need to compute P [p] for p ∈ Div(n). As in Algorithm 1, we start with T = op-PREF′.
Then we perform a preprocessing phase that shifts the information stored in the array from
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Algorithm 2: Computing All Full Op-Periods of S.
1 T := op-PREF′;
2 for i := 1 to n do
3 k := gcd(i, n);
4 P [k] := min(P [k], P [i]);
5 foreach i ∈ Div(n) in decreasing order do
6 foreach d ∈ Div(i) do
7 P [d] := min(P [d], P [i]);
8 foreach p ∈ Div(n) do
9 if P [p] ≥ p then p is a full op-period;

indices i 6∈ Div(n) to indices gcd(i, n) ∈ Div(n). It is based on the fact that for d ∈ Div(n),
d | i if and only if d | gcd(i, n). Finally, we perform right-to-left processing as in Algorithm 1.
However, this time we can afford to iterate over all divisors of elements from Div(n). Thus
we arrive at the pseudocode of Algorithm 2.

I Theorem 16. All full op-periods of a string of length n can be computed in O(n) time.

Proof. We apply Algorithm 2. The complexity of the first for-loop is O(n) by Fact 15. The
second for-loop works in O(n) time as the sizes of the sets Div(n), Div(i) are O(

√
n) and

the elements of these sets can be enumerated in O(
√

n) time as well. J

5 Computing Smallest Non-Trivial Initial Op-Period

If a string is not strictly monotone itself, it has O(n) such op-periods and they can all be
computed in O(n) time. We use this as an auxiliary routine in the computation of the
smallest initial op-period that is greater than 1.

I Theorem 17. If a string of length n is not strictly monotone, all of its strictly monotone
op-periods can be computed in O(n) time.

Let us start with the following simple property.

I Lemma 18. The shape of the smallest non-trivial initial op-period of a string has no
shorter non-trivial full op-period.

Proof. A full op-period of the initial op-period of a string S is an initial op-period of S. J

Now we can state a property of initial op-periods, implied by Theorem 7, that is the basis of
the algorithm.

I Lemma 19. If a string of length n has initial op-periods p > q > 1 such that p + q < n

and gcd(p, q) = 1, then q is strictly monotone.

Proof. Let us consider three cases. If n > pq, then by Theorem 7(a), both p and q are
strictly monotone. If 2p < n ≤ pq, then Theorem 7(e) implies that S[1..pq − 1] is strictly
monotone, hence p and q are strictly monotone as well. Finally, if p + q < n ≤ 2p, we have
that q is strictly monotone by Theorem 7(f). J
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Algorithm 3: Computing the Smallest Non-Trivial Initial Op-Period of S.
1 if S has a non-trivial strictly monotone op-period then
2 return smallest such op-period; . Theorem 17

3 p := the length of the longest monotone prefix of S plus 1;
4 while p ≤ n do
5 k := op-LPPp(S);
6 if k = n then return p;
7 p := max(p + 1, k − p− 1);
8 return min(pmon, n);

I Theorem 20. The smallest initial op-period p > 1 of a string S of length n can be computed
in O(n) time.

Proof. We follow the lines of Algorithm 3. If S is not strictly monotone itself, we can
compute the smallest non-trivial strictly monotone initial op-period of S using Theorem 17.
Otherwise, the smallest such op-period is 2. If S has a non-trivial strictly monotone initial
op-period and the smallest such op-period is q > 1, then none of 2, . . . , q − 1 is an initial
op-period of S. Hence, we can safely return q.

Let us now focus on the correctness of the while-loop. The invariant is that there is
no initial op-period of S that is smaller than p. If the value of k = op-LPPp(S) equals n,
then p is an initial op-period of S and we can safely return it. Otherwise, we can advance
p by 1. There is also no smallest initial op-period p′ such that p < p′ < k − p− 1. Indeed,
Lemma 19 would imply that p is strictly monotone if gcd(p, p′) = 1 (which is impossible due
to the initial selection of p) and Theorem 3 would imply an initial op-period of S[1..p′] that
is smaller than p′ and divides p′ if gcd(p, p′) > 1 (which is impossible due to Lemma 18).
This justifies the way p is increased.

Now let us consider the time complexity of the algorithm. The algorithm for strictly
monotone op-periods of Theorem 17 works in O(n) time. By Lemma 9, k can be computed
in O(k/p + 1) time. If k ≤ 3p, this is O(1). Otherwise, p at least doubles; let p′ be the new
value of p. Then O(k/p + 1) = O((p + p′ − 1)/p + 1) = O(p′ + 1). The case that p doubles
can take place at most O(log n) times and the total sum of p′ over such cases is O(n). J

6 Computing All Op-Periods

An interval representation of a set X of integers is X = Ji1..j1K∪ Ji2..j2K∪· · ·∪ Jik..jkK where
j1 + 1 < i2, . . . , jk−1 + 1 < ik; k is called the size of the representation.

Our goal is to compute a compact representation of all the op-periods of a string that
contains, for each op-period p, an interval representation of the set Shiftsp.

For an integer set X, by X mod p we denote the set {x mod p : x ∈ X}. The following
technical lemma provides efficient operations on interval representations of sets.

I Lemma 21.
(a) Assume that X and Y are two sets with interval representations of sizes x and y,

respectively. Then the interval representation of the set X ∩ Y can be computed in
O(x + y) time.

(b) Assume that X1, . . . , Xk ⊆ J0..nK are sets with interval representations of sizes x1, . . . , xk

and p1, . . . , pk be positive integers. Then the interval representations of all the sets
X1 mod p1, . . . , Xk mod pk can be computed in O(x1 + · · ·+ xk + k + n) time.

STACS 2018
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Algorithm 4: Computing a Compact Representation of All Op-Periods.
1 Compute op-Squaresp for all p = 1, . . . , n; . Lemma 22
2 for p := 1 to n do
3 Np := J1..n− 2p + 1K \ op-Squaresp;
4 k := op-LCP(1, p + 1); ` := op-LCS(n, n− p);
5 if k = n− p then Bp := Cp := J1..nK;
6 else Bp := J1..kK; Cp := Jn− ` + 1..nK;
7 for p := 1 to n simultaneously do
8 Np := {(x− 1) mod p : x ∈ Np}; Bp := Bp mod p; Cp := Cp mod p; . Lemma 21(b)
9 Shifts1 := J0K;

10 for p := 2 to n do
11 Ap := J0..p− 1K \ Np;
12 Shiftsp := Ap ∩ Bp ∩ Cp; . Lemma 21(a)
13 return Shiftsp for p = 1, . . . , n;

I Lemma 22. For a string of length n, interval representations of the sets op-Squaresp for
all 1 ≤ p ≤ n/2 can be computed in O(n log n) time.

Proof. Let us define the following two auxiliary sets.

Lp = {i ∈ J1..n− 2p + 1K : S[i..i + 2p− 1] is a left non-shiftable op-square}
Rp = {i ∈ J1..n− 2p + 1K : S[i..i + 2p− 1] is a right non-shiftable op-square}.

By Lemma 11, all the sets Lp and Rp can be computed in O(n log n) time. In particular,∑
p |Lp| = O(n log n).
Let us note that, for each p, |Lp| = |Rp|. Thus let Lp = {`1, . . . , `k} andRp = {r1, . . . , rk}.

The interval representation of the set op-Squaresp is J`1..r1K ∪ · · · ∪ J`k..rkK. Clearly, it can
be computed in O(|Lp|) time. J

We will use the following characterization of op-periods.

I Observation 23. p is an op-period of S with shift i if and only if all the following conditions
hold:
(A) S[i + 1 + kp..i + (k + 2)p] is an op-square for every 0 ≤ k ≤ (n− 2p− i)/p,
(B) op-LCP(1, p + 1) ≥ min(i, n− p),
(C) op-LCS(n, n− p) ≥ min((n− i) mod p, n− p).

I Theorem 24. A representation of size O(n log n) of all the op-periods of a string of length
n can be computed in O(n log n) time.

Proof. We use Algorithm 4. The sets Ap, Bp, and Cp describe the sets of shifts i that satisfy
conditions (A), (B), and (C) from Observation 23, respectively.

A crucial role is played by the set Np of all positions which are not the beginnings of
op-squares of length 2p. It is computed as a complement of the set op-Squaresp.

Operations “mod” on sets are performed simultaneously using Lemma 21(b). All sets
Ap, Bp, Cp have O(n log n)-sized representations. This guarantees O(n log n) time. J
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Figure 3 A string S = 0 12 6 1 11 6 2 10 6 3 9 6 4 8 6 5 7 6 is graphically illustrated above (the ith point
has coordinates (i, S[i])). We have SH 6 = ABCABCABCA, where A = 1 5 3 2 4 3, B = 5 3 1 4 3 2,
and C = 3 1 5 3 2 4. The shortest period of SH 6 is 3. Hence, 6 is a sliding op-period of S. Moreover,
Lemma 27b implies that 3 is a period of SH 3, hence a sliding op-period of S.

7 Computing Sliding Op-Periods

For a string S of length n, we define a family of strings SH 1, . . . , SH n such that SH k[i] =
shape(S[i..i + k− 1]) for 1 ≤ i ≤ n− k + 1. Note that the characters of the strings are shapes.
Moreover, the total length of strings SH k is quadratic in n, so we will not compute those
strings explicitly. Instead, we use the following observation to test if two symbols are equal.

I Observation 25. SH k[i] = SH k[i′] if and only if op-LCP(i, i′) ≥ k.

Sliding op-periods admit an elegant characterization based on SH k; see Figure 3.

I Lemma 26. An integer p, 1 ≤ p ≤ n, is a sliding op-period of S if and only if p ≤ 1
2 n and

p is a period of SH p, or p > 1
2 n and S[1..n− p] ≈ S[p + 1..n].

For a string X, we denote the shortest period of X by per(X).

I Lemma 27. Suppose that p = per(SH k[1..`]) < `. Then
(a) p is also a period of SH k′ [1..` + k − k′] for 1 ≤ k′ ≤ k,
(b) q = per(SH k[1..` + 1]) satisfies p = q or p + q > `.
We introduce a two-dimensional table PER, where:

PER[k, `] = per(SH k[1..`]) if per(SH k[1..`]) ≤ 1
3`, and PER[k, `] = ⊥(undefined) otherwise.

The size of PER is quadratic in n. However, Algorithm 5 computes PER column after
column, keeping only the current column P = PER[·, `]. The total number of differences
between consecutive columns is linear. Hence, any requested O(n) values PER[k, `] can be
computed in O(n) time. We also use an analogous table PERR for the reverse string SR.

I Lemma 28. Algorithm 5 is correct, that is, it satisfies the invariant.

Proof. First, observe that the invariant is satisfied after the first iteration. This is because
per(SH k[1..1]) = 1 for each k and the initial values are not changed during this iteration.

Thus, our task is to prove that the invariant is preserved after each subsequent `th
iteration. Let t = min{k : PER[k, `− 1] = ⊥} and t′ = min{k : PER[k, `] = ⊥}.
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Algorithm 5: Computation of PER[·, `] from PER[·, `− 1].
1 P [1..n] := [⊥, . . . ,⊥]; t := 1; `′ := 3;
2 for ` := 1 to n do
3 if t > 1 and SH t−1[`] 6= SH t−1[`− P [t− 1]] then
4 t := t− 1; P [t] := ⊥; `′ := 2`;
5 if ` ≥ `′ then
6 while per(SH t[1..`]) = 1

3 ` do
7 P [t] := 1

3 `; t := t + 1; `′ := 2`;
. Invariant: P [k] = PER[k, `] , t = min{k : P [k] = ⊥}, and per(SH t[1..`]) ≥ 1

3 `′.

Algorithm 6: Computing the sliding op-periods p ≤ 1
2 n.

1 p := 1;
2 while p ≤ 1

2 n do
3 if (q := PER[p, n− 2p + 1]) = PERR[p, n− 2p + 1] 6= ⊥ then
4 if p is a period of SH p[1..p + q] then report p;
5 p := min{p′ > p : p′ is a period of SH p[1..p + 2q]}
6 else if PER[p, d 3

4 (n− 2p + 1)e] = PERR[p, d 3
4 (n− 2p + 1)e] 6= ⊥ then p := p + 1;

7 else
8 if p is a period of SH p then report p;
9 p := min{p′ > p : p′ is a period of SH p};

First, we consider the values PER[k, `] for k < t. For this, we assume t > 1 and denote
p = PER[t− 1, `− 1]. Since p is a period of SH t−1[1..`− 1], Lemma 27a yields that p is also
a period of SH k[1..`] for k < t− 1. We apply Lemma 27b for p′ = per(SH k[1..`− 1]). Since
p′ + p ≤ ` − 1, we conclude that p′ = per(SH k[1..`]), i.e., PER[k, ` − 1] = p′ = PER[k, `].
Now, we consider the value PER[t− 1, `]. Lemma 27b, applied for p = per(SH t−1[1..`− 1])
and q = per(SH t−1[1..`]), yields p = q or p + q ≥ `. To verify the first case, we check whether
SH t−1[`] = SH t−1[`− p]. In the second case, we conclude that q ≥ 2

3 `, so PER[t− 1, `] = ⊥
(and `′ := 2` is also set correctly).

Next, we consider the values PER[k, `] for k ≥ t. Since PER[k, ` − 1] = ⊥, we have
PER[k, `] = ⊥ or PER[k, `] = 1

3 `. More precisely, PER[k, `] = ⊥ for k ≥ t′ and PER[k, `] =
1
3 ` for t ≤ k < t′. Thus, we check if per(SH k[1..`]) = 1

3 ` for subsequent values k ≥ t. Since
per(SH t[1..`]) ≥ 1

3 `′, no verification is needed if ` < `′. To complete the proof, we need
to show that the update `′ := 2` is valid if t′ > t. For a proof by contradiction suppose
that r := per(SH t′ [1..`]) < 2

3 `. By Lemma 27a, r is a period of SH t[1..`]. Since r + 1
3 ` ≤ `,

Periodicity Lemma yields 1
3 ` | r, and thus r = 1

3 `, which contradicts the definition of t′. J

I Lemma 29. Algorithm 5 can be implemented in time O(n) plus the time to answer O(n)
op-LCP queries in S.

I Lemma 30. Algorithm 6 is correct, that is, it reports all sliding op-periods p ≤ 1
2 n of S.

Proof. Let pi be the value of p at the beginning of the ith iteration of the while-loop and let
`i = n− 2pi + 1. We shall prove that pi is reported if and only if it is a sliding op-period
and that there is no sliding op-period strictly between pi and pi+1.

First, suppose that q = per(SH pi [1..`i]) = per(SH pi [pi + 1..pi + `i]) ≤ 1
3 `i, i.e., we are

in the first branch. If SH pi
[1..q] = SH pi

[pi + 1..pi + q], then we must have SH pi
[1..`i] =
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SH pi [pi + 1..pi + `i], i.e., pi is a period of SH pi = SH pi [1..pi + `i] and pi is a sliding op-period
due to Lemma 26. Moreover, any sliding op-period p′ > pi must be a period of SH pi

(and,
in particular, of SH pi

[1..pi + 2q]) due to Lemma 27a. Consequently, p′ ≥ pi+1, as claimed.
In the second branch we only need to prove that SH pi [1..`i] 6= SH pi [pi + 1..pi + `i]. For a

proof by contradiction, suppose that we have an equality. The condition from Line 6 means
that the length-d 3

4 `ie prefix and suffix of SH pi
[1..`i] = SH pi

[pi + 1..pi + `i] has the common
shortest period q ≤ 1

3d
3
4 `ie ≤ d 1

4 `ie. The prefix and the suffix overlap by at least d 1
2 `ie

characters, so we actually have q = per(SH pi
[1..`i]) = per(SH pi

[pi + 1..pi + `i]). Hence, in
that case we would be in the first branch.

Finally, in the third branch we directly use Lemma 26 to check if pi is a sliding op-period.
Moreover, if p′ > pi is also a sliding op-period, then p′ is a period of SH pi

, i.e., p′ ≥ pi+1. J

Let us observe that PER[k, `] and PERR[k, `] is used in Algorithm 6 only for ` = n−2k+1
or ` =

⌈ 3
4 (n− 2k + 1)

⌉
. These O(n) values can be computed in O(n) time using Algorithm 5.

In [29] we show the following lemma.

I Lemma 31. Algorithm 6 can be implemented in time O(n) plus the time to answer O(n)
op-LCP and op-LCS queries in S.

I Theorem 32. All sliding op-periods of a string of length n can be computed in O(n) space
and O(n log log n) expected time or O(n log2 log n/ log log log n) worst-case time.

Proof. First, we apply Lemma 10 so that op-LCP and op-LCS queries can be answered in
O(1) time. Next, we run Algorithm 6 to report sliding op-periods p ≤ 1

2 n. Then, we iterate
over p > 1

2 n and report p if op-LCP(1, p + 1) = n− p. Correctness follows from Lemmas 30
and 26. The overall time is O(n) (Lemma 31) plus the preprocessing time of Lemma 10. J
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Abstract
A binary VCSP is a general framework for the minimization problem of a function represen-
ted as the sum of unary and binary cost functions. An important line of VCSP research is to
investigate what functions can be solved in polynomial time. Cooper–Živný classified the tract-
ability of binary VCSP instances according to the concept of “triangle,” and showed that the
only interesting tractable case is the one induced by the joint winner property (JWP). Recently,
Iwamasa–Murota–Živný made a link between VCSP and discrete convex analysis, showing that
a function satisfying the JWP can be transformed into a function represented as the sum of two
M-convex functions, which can be minimized in polynomial time via an M-convex intersection
algorithm if the value oracle of each M-convex function is given.

In this paper, we give an algorithmic answer to a natural question: What binary finite-valued
CSP instances can be solved in polynomial time via an M-convex intersection algorithm? We
solve this problem by devising a polynomial-time algorithm for obtaining a concrete form of the
representation in the representable case. Our result presents a larger tractable class of binary
finite-valued CSPs, which properly contains the JWP class.
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1 Introduction

The valued constraint satisfaction problem (VCSP) provides a general framework for discrete
optimization (see [24] for details). Informally, the VCSP framework deals with the minimiza-
tion problem of a function represented as the sum of “small” arity functions, which are called
cost functions. It is known that various kinds of combinatorial optimization problems can be
formulated in the VCSP framework. In general, the VCSP is NP-hard. An important line of
research is to investigate what restrictions on classes of VCSP instances ensure polynomial
time solvability. Two main types of VCSPs with restrictions are structure-based VCSPs and
language-based VCSPs (see e.g., [4, 24]). Structure-based VCSPs deal with restrictions on
the hypergraph structure representing the appearance of variables in a given instance. For
example, Gottlob–Greco–Scarcello [7] showed that, if the hypergraph corresponding to a
VCSP instance has a bounded hypertree-width, then the instance can be solved in polynomial
time. Language-based VCSPs deal with restrictions on cost functions that appear in a
VCSP instance. Kolmogorov–Thapper–Živný [13] gave a precise characterization of tractable
valued constraint languages via the basic LP relaxation. Kolmogorov–Krokhin–Rolínek [12]
gave a dichotomy for all language-based VCSPs (see also [1, 25] for a dichotomy for all
language-based CSPs).

Hybrid VCSPs, which deal with a combination of structure-based and language-based
restrictions, have emerged recently [4]. Among many kinds of hybrid restrictions, a binary
VCSP, VCSP with only unary and binary cost functions, is a representative hybrid restriction
that includes numerous fundamental optimization problems. Cooper–Živný [2] showed that
if a given binary VCSP instance satisfies the joint winner property (JWP), then it can be
minimized in polynomial time. The same authors classified in [3] the tractability of binary
VCSP instances according to the concept of “triangle,” and showed that the only interesting
tractable case is the one induced by the JWP (see also [4]). Furthermore, they introduced
cross-free convexity as a generalization of JWP, and devised a polynomial-time minimization
algorithm for cross-free convex instances F , provided a “cross-free representation” of F is
given.

In this paper, we introduce a novel tractability principle going beyond triangle and
cross-free representation for binary finite-valued CSPs, from now on denoted by VCSPs. A
binary VCSP is formulated as follows, where D1, D2, . . . , Dr (r ≥ 2) are finite sets.
Given: Unary cost functions Fp : Dp → R for p ∈ {1, 2, . . . , r} and binary cost functions

Fpq : Dp ×Dq → R for 1 ≤ p < q ≤ r.
Problem: Find a minimizer of F : D1 ×D2 × · · · ×Dr → R defined by

F (X1, X2, . . . , Xr) :=
∑

1≤p≤r
Fp(Xp) +

∑
1≤p<q≤r

Fpq(Xp, Xq). (1)

Our tractability principle is built on discrete convex analysis (DCA) [18, 20], which is a theory
of convex functions on discrete structures. In DCA, L-convexity and M-convexity play primary
roles; the former is a generalization of submodularity, and the latter is a generalization
of matroids. A variety of polynomially solvable problems in discrete optimization can be
understood within the framework of L-convexity/M-convexity (see e.g., [20, 21, 22]). Recently,
it has also turned out that discrete convexity is deeply linked to tractable classes of VCSPs.
L-convexity is closely related to the tractability of language-based VCSPs. Various kinds of
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submodularity induce tractable classes of language-based VCSP instances [13], and a larger
class of such submodularity can be understood as L-convexity on certain graph structures [9].
On the other hand, Iwamasa–Murota–Živný [11] have pointed out that M-convexity plays
a role in hybrid VCSPs. They revealed the reason for the tractability of a VCSP instance
satisfying the JWP from a view point of M-convexity. We here continue this line of research,
and explore further applications of M-convexity in hybrid VCSPs.

A function f : {0, 1}n → R ∪ {+∞} is called M-convex [15, 20] if it satisfies the following
generalization of the matroid exchange axiom: for x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈
dom f and i ∈ {1, 2, . . . , n} with xi > yi, there exists j ∈ {1, 2, . . . , n} with yj > xj such
that f(x) + f(y) ≥ f(x−χi +χj) + f(y+χi−χj), where, for a function f : D → R∪{+∞},
the effective domain is denoted as dom f := {x ∈ D | f(x) < +∞}, and χi is the ith
unit vector.4 An M-convex function can be minimized in a greedy fashion similarly to the
greedy algorithm for matroids. Furthermore, a function f : {0, 1}n → R ∪ {+∞} that is
representable as the sum of two M-convex functions is called M2-convex. As a generalization
of matroid intersection, the problem of minimizing an M2-convex function, called the M-
convex intersection problem, can also be solved in polynomial time if the value oracle of each
constituent M-convex function is given [16, 17]; see also [19, Section 5.2]. Our proposed
tractable class of VCSPs is based on this result.

Let us return to binary VCSPs. The starting observation for relating VCSP to DCA is
that the objective function F on D1 ×D2 × · · · ×Dr can be regarded as a function f on
{0, 1}n by the following correspondence between the domains:

Dp := {1, 2, . . . , np} 3 i ←→ (0, . . . , 0,
i

1̌, 0, . . . , 0︸ ︷︷ ︸
np

) (p ∈ {1, 2, . . . , r}). (2)

With this correspondence, the minimization of F can be transformed to that of f . A binary
VCSP instance F is said to be M2-representable if the function f obtained from F via the
correspondence (2) is M2-convex.

It is shown in [11] that a binary VCSP instance satisfying the JWP can be transformed to
an M2-representable instance,5 and two M-convex summands can be obtained in polynomial
time. Here the following natural question arises: What binary VCSP instances are M2-
representable? In this paper, we give an algorithmic answer to this question by considering
the following problem:
Testing M2-Representability
Given: A binary VCSP instance F .
Problem: Determine whether F is M2-representable or not. If F is M2-representable, obtain

a decomposition f = f1 + f2 of the function f into two M-convex functions f1 and f2,
where f is the function transformed from F via (2).

Our main result is the following:

I Theorem 1.1. Testing M2-Representability can be solved in O(n5) time.

4 Although M-convex functions are defined on Zn in general, we only need functions on {0, 1}n here.
M-convex functions on {0, 1}n are equivalent to the negative of valuated matroids introduced by
Dress–Wenzel [5, 6].

5 In [11], a binary VCSP instance satisfying the JWP was transformed into the sum of two M\-convex
functions. It can be easily seen that this function can also be transformed into the sum of two M-convex
functions.
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An M2-convex function f can be minimized in polynomial time if such a decomposition can
be obtained in polynomial time. Thus we obtain the following corollary of Theorem 1.1.

I Corollary 1.2. An M2-representable binary VCSP instance can be minimized in polynomial
time.

Our result provides us with cross-free representations, and presents a new tractable class
of binary VCSPs that goes beyond JWP. A nice feature of our contribution is that the
tractability based on M2-representability is independent of a particular representation (1) of
a given instance, while the tractability based on JWP or cross-free convexity depends on a
representation; see the full version [10] of this paper.

Our approach to a polynomial-time algorithm for Testing M2-Representability is
outlined as follows:

We establish a unique representation theorem of M2-convex functions arising from binary
VCSP instances (Theorem 2.2).
With this result, our problem can be separated into two subproblems named Decom-
position and Laminarization. The former is the problem of obtaining the unique
representation of a given M2-convex function, and the latter is the problem of making a
laminar family from a given family of subsets by means of certain transformations.
We devise a polynomial-time algorithm for each problem, Decomposition and Lamin-
arization (Theorems 4.2 and 5.8).

The proofs are omitted due to space limitation. The full version [10] of this paper will
give the proofs as well as more general results and application to pseudo-Boolean function
optimization.

Organization. In Section 2, we introduce the representation theorem (Theorem 2.2) of
quadratic M2-convex functions arising from VCSP instances as well as the subproblems,
Decomposition and Laminarization. In Sections 3 and 5, we present polynomial-time
algorithms for Decomposition and Laminarization, respectively.

Notation. Let Z, R, R+, and R++ denote the sets of integers, reals, nonnegative reals,
and positive reals, respectively. In this paper, functions can take the infinite value +∞,
where a < +∞, a +∞ = +∞ for a ∈ R, and 0 · (+∞) = 0. Let R := R ∪ {+∞}. For a
positive integer k, we define [k] := {1, 2, . . . , k}.

2 Towards testing M2-representability

2.1 Representation theorem
We introduce a class of quadratic functions on {0, 1}n that has a bijective correspondence
to binary VCSP instances. Let A := {A1, A2, . . . , Ar} be a partition of [n] with |Ap| ≥ 2
for p ∈ [r]. We say that f : {0, 1}n → R is a VCSP-quadratic function of type A if f is
represented as

f(x1, x2, . . . , xn) :=


∑
i∈[n]

aixi +
∑

1≤i<j≤n
aijxixj if

∑
i∈[n]

xi = r,

+∞ otherwise,
(3)

where ai ∈ R and aij ∈ R with aij := +∞⇔ i, j ∈ Ap for some p ∈ [r]. We assume aij = aji
for distinct i, j ∈ [n].



H. Hirai, Y. Iwamasa, K. Murota, and S. Živný 39:5

Suppose that a binary VCSP instance F of the form (1) is given, where we assume
Fpq = Fqp for distinct p, q ∈ [r]. The transformation of F to f based on (2) in Section 1 is
formalized as follows. Choose a partition A := {A1, A2, . . . , Ar} of [n] with |Ap| = np(= |Dp|)
and a bijective correspondence Ap → Dp. Define ai := Fp(d) if i ∈ Ap corresponds to d ∈ Dp,
aij := Fpq(d, e) if i ∈ Ap and j ∈ Aq correspond to d ∈ Dp and e ∈ Dq, respectively, and
aij := +∞ otherwise. Then the function f in (3) is a VCSP-quadratic function of type A.

The class of M2-convex VCSP-quadratic functions admits a decomposition into simpler
functions `X . For X ⊆ [n], let `X : {0, 1}n → R be defined by

`X(x) :=
∑

k−(X)<k<k+(X)

∣∣∣∣∣k −∑
i∈X

xi

∣∣∣∣∣ ,
where k−(X) is the number of indices p ∈ [r] with X ⊇ Ap, and k+(X) is the number of
indices p ∈ [r] with X ∩Ap 6= ∅. That is, `X(x) is the sum of the distances from x ∈ {0, 1}n
to hyperplanes {x ∈ Rn |

∑
i∈X xi = k} for k−(X) < k < k+(X). In the following, we

consider subsets X with k−(X) + 2 ≤ k+(X), and denote the family of such subsets X by

Π = ΠA := {X ⊆ [n] | k−(X) + 2 ≤ k+(X)}.

In other words, X ∈ Π if and only if ∅ 6= X ∩Ap 6= Ap for more than one p ∈ [r].
A family F ⊆ Π is said to be laminar if X ⊆ Y , X ⊇ Y , or X ∩ Y = ∅ holds for all

X,Y ∈ F . Define δA : {0, 1}n → R by δA(x) := 0 if
∑
i∈Ap

xi = 1 for each Ap ∈ A, and
δA(x) := +∞ otherwise. Then the following holds.

I Lemma 2.1. For any laminar family L ⊆ Π and any positive weight c : L → R++, the
function

∑
X∈L c(X)`X on {x ∈ {0, 1}n |

∑
i∈[n] xi = r} is M-convex.

Our representation theorem (Theorem 2.2) says that an M2-convex VCSP-quadratic
function is always represented as the sum of

∑
X∈L c(X)`X on {x ∈ {0, 1}n |

∑
i∈[n] xi = r}

and a linear function on dom δA. To state it precisely, there are substantial complications
to be resolved. In our setting, we are given a VCSP-quadratic function f of type A, which
is defined only on dom f = dom δA. It can happen that functions `X and `Y are identical
on dom δA (i.e., `X + δA = `Y + δA) even when X 6= Y . Thus we have to make a judicious
choice between them to demonstrate M2-representability of f .

To cope with such complications, we define an equivalence relation ∼ by: X ∼ Y ⇔
`X +δA = `Y +δA. For F ⊆ Π, let F/∼ be the set of representatives (in Π/∼) of all elements
in F . The equivalence relation is extended to subsets F ,G of Π by: F ∼ G ⇔ F/∼ = G/∼.
A subset P of Π/∼ is said to be laminar if there is a laminar family L ⊆ Π with P = L/∼. A
family F ⊆ Π is said to be laminarizable if F/∼ is laminar. For simplicity, the equivalence class
of X ∈ Π is also denoted by X, and a member of Π/∼ is also denoted by its representative X.

Our first result is a representation theorem of M2-convex functions.

I Theorem 2.2. Let f be a VCSP-quadratic function of type A = {A1, A2, . . . , Ar}. Then
f is M2-convex if and only if there exist a laminar family Pf ⊆ Π/∼ and a positive weight
cf : Pf → R++ such that

f =
∑
X∈Pf

cf (X)`X + δA + (linear function), (4)

where “(linear function)” means a function x 7→
∑
i pixi + α for some (p1, p2, . . . , pn) ∈ Rn

and α ∈ R. In addition, Pf and cf in (4) are uniquely determined.

By Theorem 2.2, an M2-convex function f has the summand f1 :=
∑
X∈L cf (X)`X on

{x ∈ {0, 1}n |
∑
i∈[n] xi = r}, where L is a laminar family with L/∼ = Pf .

STACS 2018
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2.2 Decomposition and Laminarization

To test for M2-representability by Theorem 2.2, we first solve the following problem Decom-
position, which detects non-M2-convexity of f or obtains decomposition (4).
Decomposition
Given: A VCSP-quadratic function f of type A
Problem: Either detect the non-M2-convexity of f , or obtain some P ⊆ Π/∼ and c : P →

R++ satisfying

f =
∑
X∈P

c(X)`X + δA + (linear function), (5)

where P is not required to be laminar in general, but in case of M2-convex f , P and c
should coincide, respectively, with Pf and cf in (4).

We emphasize that Decomposition may possibly output the decomposition (5) even when
the input f is not M2-convex, but if Decomposition detects the non-M2-convexity then
indeed the input f is not M2-convex.

Suppose that decomposition (5) is obtained after solving Decomposition. In this case
we have P at hand. Then we have to check for the laminarizability of an arbitrarily chosen
family F ⊆ Π with F/∼ = P. This motivates us to consider the following problem.
Laminarization
Given: F ⊆ Π
Problem: Determine whether there exists a laminar family L with F ∼ L. If it exists, obtain

a laminar family L with F ∼ L.
Laminarization is a purely combinatorial problem on a set system. Indeed, the equivalence
relation ∼ can be rephrased in a combinatorial way as follows. For X ∈ Π, define 〈X〉 :=⋃
{Ap ∈ A | ∅ 6= X ∩Ap 6= Ap}, which is the union of Ap contributing to `X + δA nonlinearly.

One can see the following.

I Lemma 2.3. For X,Y ∈ Π, X ∼ Y if and only if {〈X〉∩X, 〈X〉\X} = {〈Y 〉∩Y, 〈Y 〉\Y }.

Laminarization can be regarded as the problem of transforming a given family F to a
laminar family by repeating the following operation: replace X ∈ F with [n] \X, X ∪Ap, or
X \Ap with some Ap satisfying 〈X〉 ∩Ap = ∅.

A decomposition f = f1 + f2 into two M-convex functions f1 and f2 can be constructed
from cf and L found by Decomposition and Laminarization as f1 :=

∑
X∈L cf (X)`X on

{x ∈ {0, 1}n |
∑
i∈[n] xi = r} and f2 := f − f1. By Lemma 2.1, f1 is an M-convex function,

and f2 is a linear function on dom δA.
We devise an O(n5)-time algorithm for Decomposition in Section 3 and an O(n4)-time

algorithm for Laminarization in Section 5. Thus we obtain Theorem 1.1.

I Remark. Our representation theorem (Theorem 2.2) and decomposition algorithm (in
Section 3) are inspired by the polyhedral split decomposition due to Hirai [8]. This general
decomposition principle decomposes, by means of polyhedral geometry, a function on a finite
set D of points of Rn into a sum of simpler functions, called split functions, and a residue
term. Actually, (5) can be viewed as a specialization of the polyhedral split decomposition,
where D = dom δA, and `X + δA is a sum of split functions. We refer the reader to [8] for
details.
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3 Algorithm for Decomposition

3.1 Outline
To describe our algorithm, we need the concept of restriction of a VCSP-quadratic function.
Let f be a VCSP-quadratic function of type A = {A1, A2, . . . , Ar}. For Q ⊆ [r], let
AQ := {Ap}p∈Q and AQ :=

⋃
q∈QAq. For Q ⊆ [r], the restriction fQ : {0, 1}AQ → R of f

to Q is a VCSP-quadratic function of type AQ defined by

fQ(x) :=


∑
i∈AQ

aixi +
∑

i,j∈AQ (i < j)

aijxixj if
∑
i∈AQ

xi = |Q|,

+∞ otherwise.

I Lemma 3.1. If f is M2-convex, so is the restriction fQ for each Q ⊆ [r].

We abbreviate ΠA and ΠAQ
to Π and ΠQ, respectively. If f is M2-convex, then fQ can

also be represented in a form similar to (4), i.e.,

fQ =
∑

X∈PfQ

cfQ
(X)`X + δAQ

+ (linear function),

where `X and δAQ
are defined on {0, 1}AQ .

Our algorithm to obtain decomposition (5) is outlined as follows, where we abbreviate
{p, q} and {p} to pq and p, respectively, and also Pfpq

and cfpq
to Ppq and cpq, respectively:

We obtain a decomposition of the restriction fQ for Q = {1, 2}, {1, 2, 3}, . . . , {1, 2, 3, . . . , r}
in turn:

fQ =
∑
X∈PQ

cQ(X)`X + δAQ
+ (linear function). (6)

In the initial case for Q = {1, 2}, we can obtain the decomposition (6) by Algorithm 1
(Section 3.2).
To construct the decomposition (6) for Q = [r′] from that for Q = [r′ − 1], we first
compute (Ppr′ , cpr′) for all p ∈ [r′ − 1] by Algorithm 1 and then, with this information,
extend (P[r′−1], c[r′−1]) to (P[r′], c[r′]) by Algorithm 2 (Section 4).
We perform the above extension step for r′ = 3 to r′ = r, to arrive at the decomposition (5)
of f . This is described in Algorithm 3.

3.2 Initial case (r = 2)
To compute Ppq and cpq for all distinct p, q ∈ [r], we consider Decomposition algorithm
for the case of r = 2. Namely A = {A1, A2}. Note that Π = Π{A1,A2} = {X ⊆ [n] | ∅ 6=
X ∩ Ap 6= Ap for p = 1, 2}. A connected component with at least one edge is said to be
non-isolated.

Note that, for distinct L,L′ ∈ Π, we have L ∼ L′ ⇔ L = [n] \ L′.

I Proposition 3.2. Algorithm 1 solves Decomposition in O(n2) time.

4 General case (r ≥ 3)

To obtain the decomposition (6) of the restriction fQ forQ = {1, 2}, {1, 2, 3}, . . . , {1, 2, 3, . . . , r}
in turn, we need to extend (P[r′−1], c[r′−1]) to (P[r′], c[r′]) with the use of (Ppr′ , cpr′) (p ∈
[r′ − 1]) for r′ = 3, . . . , r. Algorithm 2 corresponds to this extension step.

The following proposition shows that Algorithm 2 works as expected.

STACS 2018
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Algorithm 1: (for Decomposition in the case of r = 2).
Input: A VCSP-quadratic function f of type {A1, A2}.
Step 0: Define α∗ := mini,j∈[n] aij and S := {i ∈ [n] | minj∈[n] aij > α∗}.
Step 1: For i ∈ [n] with bi := minj∈[n] aij−α∗ > 0, update aij ← aij−bi for j ∈ [n]\{i}

in turn.
Step 2: Let the distinct finite values of aij (i ∈ A1, j ∈ A2) be given by α1 > α2 >

· · · > αm = α∗. For α ∈ R, define a graph Gα := ([n], Eα) by Eα := {{i, j} |
i ∈ A1, j ∈ A2, α ≤ aij}. If, for some α ∈ {α1, α2, . . . , αm−1}, a (non-isolated)
connected component of Gα is not a complete bipartite graph, then output “f is not
M2-convex” and stop.

Step 3: For s ∈ [m − 1], denote by Ls the set of non-isolated connected components
L of Gαs

. For L ∈ Ls \ Ls−1 with s ∈ [m − 1], let αL := αs, where L0 := ∅.
Define a laminar family L by L :=

⋃m−1
s=1 Ls. For L ∈ L, define c : L → R++ by

c(L) := (αL − αL+) /2, where L+ is the minimal element in L properly containing L
if L is not maximal, and αL+ := α∗ if L is maximal.

Step 4: Turn c : L → R++ to L/∼ → R++ by defining the value c on an equivalence
class as the sum of c(L) over (at most two) members L in the equivalence class.
Output P := L/∼ and c.

I Proposition 4.1. If f is M2-convex, and P ′ = Pf ′ and c′ = cf ′ hold, then P = Pf and
c = cf hold. Furthermore, Algorithm 2 runs in O(n4) time.

Our proposed algorithm for Decomposition can be summarized as follows. It is noted
that, if P is laminar, then |P| is at most 2n = 2|A[r]| (see e.g., [23, Theorem 3.5]).

I Theorem 4.2. Algorithm 3 solves Decomposition in O(n5) time.

5 Algorithm for Laminarization

For a VCSP-quadratic function f of type A, suppose that we have obtained P ⊆ Π/∼ by
solving Decomposition. The next step for solving Testing M2-Representability is to
check for the laminarity of P . Take F ⊆ Π with F/∼ = P ; such F can be constructed easily
from P. The input of Laminarization is F .

5.1 Outline
For families G,H ⊆ Π, we say that G is equivalent to H if G ∼ H. It is easy to see that a
laminar family can be constructed easily from a cross-free family G by switching X 7→ [n] \X
for appropriate X ∈ G (see e.g., [14, Section 2.2]); this can be done in O(|G|) time. Thus, by
X ∼ [n] \X, our goal is to construct a cross-free family equivalent to the input family.

In this section, we devise a polynomial-time algorithm for constructing a desired cross-free
family. Our algorithm makes use of weaker notions of cross-freeness, called 2- and 3-local
cross-freeness. The existence of a cross-free family is characterized by the existence of a
2-locally cross-free family (Section 5.2). The existence of such a 2-locally cross-free family
can be checked easily by solving a 2-SAT problem. If a 2-locally cross-free family exists, a
3-locally cross-free family also exists, and can be constructed in polynomial time (Section 5.4).
From a 3-locally cross-free family, we can construct a desired cross-free family in polynomial
time by the uncrossing operations (Section 5.3). Thus we solve Laminarization.
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Algorithm 2: (for extending f ′ to f).
Input: A VCSP-quadratic function f of type A and restriction f ′ := f[r−1] given as

f ′ =
∑
X∈P′

c′(X)`X + δA[r−1] + (linear function)

for a family P ′ ⊆ Π[r−1]/∼ with |P ′| ≤ 2|A[r−1]| and a positive weight c′ on P ′.
Output: Either detect the non-M2-convexity of f , or obtain expression

f =
∑
X∈P

c(X)`X + δA + (linear function),

with P ⊆ Π/∼ satisfying |P| ≤ 2n = 2|A[r]| and a positive weight c on P.

Step 1: For each p ∈ [r − 1], execute Algorithm 1 for fpr. If Algorithm 1 returns “fpr
is not M2-convex” for some p ∈ [r − 1], then output “f is not M2-convex” and stop.
Otherwise, obtain Ppr and cpr for all p ∈ [r − 1]. Let P := ∅.

Step 2: If P ′ = ∅, go to Step 3. Otherwise, do the following: Let X0 be an element of P ′
such that 〈X0〉 is maximal. Let {p1, p2, . . . , pk} be the set of indices p ∈ [r − 1] with
〈X0〉 = A{p1,p2,...,pk}. If there exist X ∈ Π/∼ and Xi ∈ Ppir (i = 1, 2, . . . , k) such
that X ∼[r−1] X0 and X ∼pir Xi for each i ∈ [k], then go to Step 2-1. Otherwise,
go to Step 2-2.
2-1: Update as

P ← P ∪ {X}, c(X)← min{c′(X0), cp1r(X1), cp2r(X2), . . . , cpkr(Xk)},
c′(X0)← c′(X0)− c(X), cpir(Xi)← cpir(Xi)− c(X) (i ∈ [k]),
P ′ ← P ′ \ {X0} if c′(X0) = 0, Ppir ← Ppir \ {Xi} if cpir(Xi) = 0 (i ∈ [k]),

and go to Step 2.
2-2: Update as P ← P ∪ {X0}, P ′ ← P ′ \ {X0}, and c(X0)← c′(X0). Go to Step 2.

Step 3: Update as P ← P ∪
⋃
i∈[k] Ppir, and c(X)← cpir(X) for i ∈ [k] and X ∈ Ppir.

Then output P and c.

Without loss of generality, we assume that X ⊆ 〈X〉 for every X in the input F and no
distinct X,Y with X ∼ Y are contained in F , i.e., |F| = |F/∼|. For X ∈ F , let X := 〈X〉\X;
note X ∼ X. For X,Y, Z ∈ Π, we define 〈XY 〉 := 〈X〉 ∩ 〈Y 〉 and 〈XY Z〉 := 〈X〉 ∩ 〈Y 〉 ∩ 〈Z〉.
For X ∈ F and Q ⊆ [r] with AQ ⊆ 〈X〉, the partition line of X on AQ is a bipartition
{X∩AQ, X∩AQ} of AQ. We also assume that |F/∼| is at most 2n and that X ⊆ Y , X ⊆ Y ,
X ⊇ Y , or X ⊇ Y holds on 〈XY 〉 for distinct X,Y ∈ F with 〈XY 〉 6= ∅, since otherwise F
is not laminarizable.

We can also assume throughout that both 〈X〉 \ 〈Y 〉 and 〈Y 〉 \ 〈X〉 are nonempty for
all distinct X,Y ∈ F . Indeed, for each X ∈ F , we add a new set AX with |AX | = 2 to
the ground set [n] and to the partition A of [n]; the ground set will be [n] ∪

⋃
X∈F AX and

the partition will be A ∪ {AX | X ∈ F}. Define X+ := X ∪ {x}, where x is one of the two
elements of AX and F+ := {X+ | X ∈ F}. Note 〈X+〉 = 〈X〉 ∪AX and 〈X+〉 \ 〈Y+〉 6= ∅ for
all X+, Y+ ∈ F+. Then it is easily seen that there exists a cross-free family L with L ∼ F if
and only if there exists a cross-free family L+ with L+ ∼ F+.
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Algorithm 3: (for Decomposition).
Step 1: Execute Algorithm 1 for the restriction f12. If Algorithm 1 returns “f12 is not

M2-convex,” then output “f is not M2-convex” and stop. Otherwise, obtain P12 and
c12.

Step 2: For r′ = 3, . . . , r, execute Algorithm 2 for (f[r′],P[r′−1], c[r′−1]). If Algorithm 2
returns “f[r′] is not M2-convex” or |P[r′]| > 2|A[r′]| holds for some r′, output “f is
not M2-convex” and stop. Otherwise, obtain c[r′] and P[r′].

Step 3: Output P := P[r] and c := c[r].

5.2 2-local cross-freeness
For A ⊆ [n], a pair X,Y ⊆ [n] is said to be crossing on A if (X ∩ Y ) ∩ A, A \ (X ∪ Y ),
(X \ Y ) ∩A, and (Y \X) ∩A are all nonempty. A family G ⊆ Π is said to be cross-free on
A if there is no crossing pair on A in G. A family G ⊆ Π is called 2-locally cross-free if no
X,Y ∈ G is crossing on 〈X〉 ∪ 〈Y 〉. A cross-free family is 2-locally cross-free.

The LC-graph G(F) = (V (F), Ef ∪ Eb) of the input F is defined by

V (F) := {XY | X,Y ∈ F , X 6= Y },
Ef := {{XY,XZ} | Y 6= Z, (〈Y 〉 \ 〈X〉) ∩ 〈Z〉 6= ∅},
Eb := {{XY, Y X} | 〈XY 〉 6= ∅},

where XY is an abbreviation of ordered pair (X,Y ). LC stands for Local Cross-freeness.
Note that the structure of LC-graph depends only on {〈X〉 | X ∈ F}. We call an edge e ∈ Ef
a forward edge and an edge e ∈ Eb a backward edge. A backward edge e = {XY, Y X} is said
to be flipping (resp. non-flipping) if X ⊆ Y or X ⊇ Y (resp. X ⊆ Y or X ⊇ Y ) holds on
〈XY 〉.

An LC-labeling is a function s : V (F)→ {0, 1} such that

s(XY ) =


s(XZ) if {XY,XZ} is a forward edge,
s(Y X) if {XY, Y X} is a non-flipping backward edge,
1− s(Y X) if {XY, Y X} is a flipping backward edge, and

(7)

(s(XY ), s(Y X)) =


(0, 0) if X ( Y ,

(0, 1) if X ( Y ,

(1, 0) if X ) Y ,

(1, 1) if X ) Y ,

on 〈XY 〉 for backward edge {XY, Y X}. (8)

Note that (8) imposes no condition if the partition lines of X and Y on 〈XY 〉 are the same.
Node XY ∈ V (F) is said to be fixed if the value of an LC-labeling s for XY is determined
as (8), that is, if 〈XY 〉 6= ∅ and the partition lines of X and Y on 〈XY 〉 are different.

An LC-labeling s transforms the family F to another family Fs equivalent to F , which
is given by Fs := {Xs | X ∈ F} with Xs := X ∪

⋃
{〈Y 〉 \ 〈X〉 | Y ∈ F with s(XY ) =

1}. Thanks to condition (7) on forward edges, we have Xs ∩ (〈Y 〉 \ 〈X〉) = ∅ for Y ∈
F with s(XY ) = 0.

I Proposition 5.1. There exists a 2-locally cross-free family equivalent to F if and only
if there exists an LC-labeling s in G(F). To be specific, Fs is a 2-locally cross-free family
equivalent to F .
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Algorithm 4: (for constructing a cross-free family).
Input: A 3-locally cross-free family G.
Step 1: While there is a crossing pair X,Y in G, apply the uncrossing operation to

X,Y and modify G accordingly.
Step 2: Output G.

An LC-labeling is nothing but a feasible solution for the 2-SAT problem defined by the
constraints (7) and (8). Therefore we can check the existence of an LC-labeling s greedily
in O(|Ef ∪Eb|) = O(n4) time as follows, where XY is called a defined node if the value of
s(XY ) has been defined.
1. For each fixed node XY , define s(XY ) according to (8).
2. In each connected component of G(F), execute a breadth-first search from a defined node

XY , and define s(ZW ) for all reached nodes ZW according to (7). If a conflict in value
assignment to s(ZW ) is detected during this process, output “there is no LC-labeling.”

3. If there is an undefined node, choose any undefined node XY , and define s(XY ) as 0 or
1 arbitrarily. Then go to 2.

5.3 3-local cross-freeness
A family G ⊆ Π is called 3-locally cross-free if G is 2-locally cross-free and {X,Y, Z} is
cross-free on 〈X〉 ∪ 〈Y 〉 ∪ 〈Z〉 for all X,Y, Z ∈ G with 〈XY Z〉 6= ∅. A cross-free family
is 3-locally cross-free, and a 3-locally cross-free family is 2-locally cross-free, whereas the
converse is not true. We write X ⊆∗ Y to mean X ⊆ Y on 〈X〉 ∪ 〈Y 〉.

Our objective of this subsection is to give an algorithm for constructing a desired cross-free
family from a 3-locally cross-free family equivalent to the input F . The algorithm consists of
repeated applications of an elementary operation that preserves 3-local cross-freeness. The
operation is defined by (9) below, and is referred to as the uncrossing operation to X,Y .

I Proposition 5.2. Suppose that G is 3-locally cross-free. For X,Y ∈ G, define

G′ :=
{
G \ {X,Y } ∪ {X ∩ Y,X ∪ Y } if X ⊆∗ Y or Y ⊆∗ X,
G \ {X,Y } ∪ {X \ Y, Y \X} if X ⊆∗ [n] \ Y or [n] \ Y ⊆∗ X.

(9)

Then G′ is a 3-locally cross-free family equivalent to G.

Note, by the 2-local cross-freeness of G, that all X,Y ∈ G satisfy X ⊆∗ Y , Y ⊆∗ X,
X ⊆∗ [n] \ Y , or [n] \ Y ⊆∗ X. It is worth mentioning that the uncrossing operation does
not preserve 2-local cross-freeness.

I Proposition 5.3. Algorithm 4 runs in O(n2) time, and the output G is cross-free.

5.4 Constructing 3-locally cross-free family
Our final goal is to show that, for the input F equivalent to a 2-locally cross-free family,
we can always construct, in polynomial time, an LC-labeling s such that Fs is 3-locally
cross-free. In the following, we assume the existence of an LC-labeling.

The following Lemma 5.4 indicates that, more often than not, a triple X,Y, Z in any
2-locally cross-free family is cross-free on 〈X〉 ∪ 〈Y 〉 ∪ 〈Z〉.

I Lemma 5.4. Let G be a 2-locally cross-free family. A triple {X,Y, Z} ⊆ G is cross-free on
〈X〉 ∪ 〈Y 〉 ∪ 〈Z〉 if one of the following conditions holds:
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(1) 〈XY 〉 6= ∅, and {X,Y } is cross-free on 〈X〉 ∪ 〈Y 〉 ∪ 〈Z〉.
(2) 〈XY 〉 6⊆ 〈Z〉, and 〈XZ〉 or 〈Y Z〉 is nonempty.
(3) The partition lines of X,Y, Z on 〈XY Z〉 are not the same.
(4) 〈XY 〉 = 〈ZY 〉 6= ∅, and there is a path (XY,XY1, . . . , XYk) in G(G) such that {X,Yk, Z}

is cross-free on 〈X〉 ∪ 〈Yk〉 ∪ 〈Z〉.

To construct a 3-locally cross-free family, a particular care is needed for those triples
X,Y, Z with 〈XY 〉 = 〈Y Z〉 = 〈ZX〉 6= ∅ for which there exists no path (XY,XY1, . . . , XYk)
satisfying 〈XY 〉 6= 〈XYk〉 6= ∅. This motivates the notion of special nodes and special
connected components in the LC-graph G(F) defined in Section 5.2. For distinct X,Y ∈ F ,
define

R(XY ) := {Z ∈ F | There is a path (XY,XY1, . . . , XZ)},
R∗(XY ) := {Z ∈ R(XY ) | 〈XZ〉 6= ∅}.

We say that XY with 〈XY 〉 6= ∅ is special if 〈XZ〉 = 〈XY 〉 holds for all Z ∈ R∗(XY ).
For X,Y ∈ F such that both XY and Y X are special, let v(XY ) denote the connected
component (as a set of nodes) containing XY or Y X in G(F). We call such a component
special. Let v∗(XY ) denote the set of nodes ZW in v(XY ) with 〈ZW 〉 6= ∅. A special
component has an intriguing structure.

I Proposition 5.5. If both XY and Y X are special, then the following hold.
(i) v(XY ) = (R∗(XY )×R(Y X)) ∪ (R∗(Y X)×R(XY )).
(ii) v∗(XY ) = (R∗(XY )×R∗(Y X)) ∪ (R∗(Y X)×R∗(XY )).
(iii) If ZW ∈ v∗(XY ), then ZW is special and 〈ZW 〉 = 〈XY 〉.

For a special component v = v(XY ), we call 〈XY 〉 the center of v; this is well-defined by
(iii) of Proposition 5.5. For Q ⊆ [r], the Q-flower is the nonempty set with size at least two
of all special components having center AQ.

I Proposition 5.6. The Q-flower is given as {v(XiXj) | 1 ≤ i < j ≤ p} for some p ≥ 3
and distinct X1, X2, . . . , Xp ∈ F such that R(XiXj) = R(Xi′Xj) for all i, i′ < j, and
R(XiXj) ∩R(Xi′Xj′) = ∅ for all distinct j, j′ ∈ [p], i < j, and i′ < j′.

The above X1, X2, . . . , Xp are called the representatives of the Q-flower.
A component v is said to be fixed if v contains a fixed node, and said to be free otherwise.

A special component v(XY ) in the Q-flower is free if and only if the partition lines of X ′
and Y ′ on AQ are the same for all X ′ ∈ R∗(Y X) and Y ′ ∈ R∗(XY ). A free Q-flower is a
maximal set of free components in the Q-flower such that the partition lines on AQ is the
same. Now the set of free components of the Q-flower is partitioned to free Q-flowers each of
which is represented as {v(XisXit) | 1 ≤ s < t ≤ q} with a subset {Xi1Xi2 , . . . , Xiq} of the
representatives. A free Q-flower (for some Q ⊆ [r]) is also called a free flower.

We now provide a polynomial-time algorithm to construct a 3-locally cross-free family
Fs by defining an appropriate LC-labeling s.

I Proposition 5.7. The output Fs is 3-locally cross-free, and Algorithm 5 runs in O(n4)
time.

By Propositions 5.3 and 5.7, we obtain the following theorem.

I Theorem 5.8. Algorithms 4 and 5 solve Laminarization in O(n4) time.
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Algorithm 5: (for constructing a 3-locally cross-free family).
Step 0: Determine whether there exists a 2-locally cross-free family equivalent to F . If

not, then output “F is not laminarizable” and stop.
Step 1: For all fixed nodes XY , define s(XY ) according to (8). By a breath-first search,

define s on all other nodes in fixed components appropriately.
Step 2: For each component v which is free and not special, take any node XY in v.

Define s(XY ) as 0 or 1 arbitrarily, and define s(ZW ) appropriately for all nodes
ZW in v. Then all the remaining (undefined) components are special and free.

Step 3: For each free flower, which is assumed to be represented as {v(XiXj) | 1 ≤ i <
j ≤ q}, do the following:
3-1: Define the value of s(XiXj) for distinct i, j ∈ [q] so that {Xs

1 , X
s
2 , . . . , X

s
q} is

cross-free on
⋃
i∈[q]〈Xi〉.

3-2: Define s(ZW ) appropriately for all ZW ∈ v(XiXj).
Step 4: Output Fs.
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Abstract
Nonuniformity is a central concept in computational complexity with powerful connections to
circuit complexity and randomness. Nonuniform reductions have been used to study the iso-
morphism conjecture for NP and completeness for larger complexity classes. We study the power
of nonuniform reductions for NP-completeness, obtaining both separations and upper bounds for
nonuniform completeness vs uniform complessness in NP.

Under various hypotheses, we obtain the following separations:
1. There is a set complete for NP under nonuniform many-one reductions, but not under uniform

many-one reductions. This is true even with a single bit of nonuniform advice.
2. There is a set complete for NP under nonuniform many-one reductions with polynomial-

size advice, but not under uniform Turing reductions. That is, polynomial nonuniformity is
stronger than a polynomial number of queries.

3. For any fixed polynomial p(n), there is a set complete for NP under uniform 2-truth-table
reductions, but not under nonuniform many-one reductions that use p(n) advice. That is, giv-
ing a uniform reduction a second query makes it more powerful than a nonuniform reduction
with fixed polynomial advice.

4. There is a set complete for NP under nonuniform many-one reductions with polynomial advice,
but not under nonuniform many-one reductions with logarithmic advice. This hierarchy
theorem also holds for other reducibilities, such as truth-table and Turing.

We also consider uniform upper bounds on nonuniform completeness. Hirahara (2015) showed
that unconditionally every set that is complete for NP under nonuniform truth-table reductions
that use logarithmic advice is also uniformly Turing-complete. We show that under a derandom-
ization hypothesis, the same statement for truth-table reductions and truth-table completeness
also holds.
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1 Introduction

Nonuniformity is a powerful concept in computational complexity. In a nonuniform compu-
tation a different algorithm or circuit may be used for each input size [31], as opposed to a
uniform computation in which a single algorithm must be used for all inputs. Alternatively,
nonuniform advice may be provided to a uniform algorithm – information that may not be
computable by the algorithm but is computationally useful [21]. For example, nonuniformity
can be used as a substitute for randomness [1]: every randomized algorithm can be replaced
by a nonuniform one (BPP ⊆ P/poly). It is unknown whether the same is true for NP,
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40:2 Nonuniform Reductions and NP-Completeness

but the Karp-Lipton Theorem [21] states that if the polynomial-time hierarchy does not
collapse, then NP-complete problems have superpolynomial nonuniform complexity (PH
is infinite implies NP 6⊆ P/poly). Hardness versus randomness tradeoffs show that such
nonuniform complexity lower bounds imply derandomization (for example, EXP 6⊆ P/poly
implies BPP ⊆ i.o.SUBEXP [9]).

Nonuniform computation can also be used to give reductions between decision problems,
when uniform reductions are lacking. The Berman-Hartmanis Isomorphism Conjecture [11]
for NP asserts that all NP-complete sets are isomorphic under polynomial-time reductions.
Progress towards relaxations of the Isomorphism Conjecture with nonuniform reductions has
been made [2, 3, 16] under various hypotheses.

Allender et al. [5] used nonuniform reductions to investigate the complexity of sets of
Kolmogorov-random strings. They showed that the sets RKS and RKt are complete for
PSPACE and EXP, respectively, under P/poly-truth-table reductions. RKt is not complete
under polynomial-time truth-table reductions – in fact, the full polynomial-size advice is
required [30].

The Minimum Circuit Size Problem (MCSP) [20] is an intriguing NP problem. It is not
known to be NP-complete. Proving it is NP-complete would imply consequences we don’t
yet know how to prove, yet there is really no strong evidence that it isn’t NP-complete.
Recently Allender [4] has asked if the Minimum Circuit Size Problem [20] is NP-complete
under P/poly-Turing reductions.

Buhrman et al. [13] began a systematic study of nonuniform completeness. They proved,
under a strong hypothesis on NP, that every 1-tt-complete set for NP is many-one complete
with 1 bit of advice. This result has been known for larger classes like EXP and NEXP
without using any advice. They also proved a separation between uniform and nonuniform
reductions in EXP by showing that there exists a language that is complete in EXP under
many-one reductions that use one bit of advice, but is not 2-tt-complete [13]. They also
proved that a nonuniform reduction can be turned into a uniform one by increasing the
number of queries.

While Buhrman et al. [13] have some results about nonuniform reductions in NP, most of
their results are focused on larger complexity classes like EXP. Inspired by their results on
EXP, we work toward a similarly solid understanding of NP-completeness under nonuniform
reductions. We give both separation and upper bound results for a variety of nonuniform
and uniform completeness notions. We consider the standard polynomial-time reducibilities
including many-one (≤P

m), truth-table (≤P
tt), and Turing (≤P

T). We will consider nonuniform
reductions such as ≤P/h(n)

m where the algorithm computing the reduction is allowed h(n) bits
of advice for inputs of size n.

Separating Nonuniform Completeness from Uniform Completeness

We show in Section 3 that nonuniform reductions can be strictly more powerful than uniform
reductions for NP-completeness. This is necessarily done under a hypothesis, for if P = NP,
all completeness notions for NP trivially collapse. We use the Measure Hypothesis and the
NP-Machine Hypothesis – two hypotheses on NP that have been used in previous work to
separate NP-completeness notions [26, 28, 17]. The Measure Hypothesis asserts that NP
does not have p-measure 0 [23, 25], or equivalently, that NP contains a p-random set [8, 7].
The NP-Machine Hypothesis [17] has many equivalent formulations and implies that there is
an NP search problem that requires exponential time to solve almost everywhere.

We show under the Measure Hypothesis that there is a ≤P/1
m -complete set for NP that

is not ≤P
m-complete. In other words, nonuniform many-one reductions are stronger than
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many-one reductions for NP-completeness, and this holds with even a single nonuniform
advice bit.

We also show that if the nonuniform reductions are allowed more advice, we have a
separation even from Turing reductions. Under the NP-Machine Hypothesis, there is a
≤P/poly

m -complete set that is not ≤P
T-complete. That is, polynomial-size advice makes a

many-one reduction stronger for NP-completeness than a reduction that makes a polynomial
number of adaptive queries.

Separating Uniform Completeness from Nonuniform Completeness

Next, in Section 4, we give evidence that uniform reductions may be strictly stronger than
nonuniform reductions for NP-completeness.

We show under a hypothesis on NP ∩ coNP that adding just one more query makes a
reduction more powerful than a nonuniform one for completeness: if µp(NP ∩ coNP) 6= 0,
then for any c ≥ 1, there is a ≤P

2−tt-complete set that is not ≤P/nc
m -complete. This is an

interesting contrast to our separation of ≤P/poly
m -completeness from ≤P

T-completeness (which
includes ≤P

2−tt-completeness). Limiting the advice on the many-one reduction to a fixed
polynomial flips the separation the other way – and in fact, only two queries are needed.
The µp(NP ∩ coNP) 6= 0 hypothesis is admittedly strong. However, we note that strong
hypotheses on NP ∩ coNP have been used in some prior investigations [29, 18, 13].

Uniform Completeness Upper Bounds for Nonuniform Completeness

Despite the above separations, it is possible to replace a limited amount of nonuniformity by
a uniform reduction for NP-completeness. Up to logarithmic advice may be made uniform at
the expense of a polynomial number of queries:
1. A result of Hirahara [14] implies every ≤P/ log

T -complete set for NP is also ≤P
T-complete.

2. Under a derandomization hypothesis (E has a problem with high NP-oracle circuit
complexity), we show that every ≤P/ log

tt -complete set for NP is also ≤P
tt-complete. The

Valiant-Vazirani lemma [32] gives a randomized algorithm to reduce the satisfiability
problem to the unique satisifability problem. Being able to derandomize this algorithm
[22] yields a nonadaptive reduction.

These upper bound results are presented in Section 5.

Hierarchy Theorems for Nonuniform Completeness

In Section 6, we give hierarchy theorems for nonuniform NP-completeness. We separate
polynomial advice from logarithmic advice: if the NP-machine hypothesis is true, then there
is a ≤P/poly

m -complete set that is not ≤P/ log
m -complete. This also holds for other reducibilities

such as truth-table and Turing.

2 Preliminaries

All languages in this paper are subsets of {0, 1}∗. We use the standard enumeration of
binary strings, i.e. s0 = λ, s1 = 0, s2 = 1, s3 = 00, ... as an order on binary strings. For any
language A ⊆ {0, 1}∗ the characteristic sequence of A is defined as χA = A[s0]A[s1]A[s2]...
where A[x] = 1 or 0 depending on whether the string x belongs to A or not respectively. We
identify every language with its characteristic sequence. For any binary sequence X and any
string x ∈ {0, 1}∗, X � x is the initial segment of X for all strings before x.

STACS 2018



40:4 Nonuniform Reductions and NP-Completeness

We use the standard definitions of complexity classes and well-known reductions that
can be found in [10, 27]. For any two languages A and B and a function l : N → N,
we say A is nonuniform polynomial-time reducible to B with advice l(n), and we write
A ≤P/l(n)

m B, if there exists f ∈ PF and h : N→ {0, 1}∗ with |h(n)| ≤ l(n) for all n such that
(∀x) x ∈ A ↔ f

(
x, h(|x|)

)
∈ B. The string h(|x|) is called the advice, and it only depends on

the length of the input. For a class H of functions mapping N→ {0, 1}∗, we say A ≤P/H
m B

if A ≤P/l
m B for some l ∈ H. The class poly denotes all advice functions with length bounded

by a polynomial, and log is all advice functions with length O(logn). We also use ≤P/1
m for

a nonuniform reduction when |h(|x|)| = 1. Nonuniform reductions can similarly be defined
with respect to other kinds of reductions like Turing, truth-table, etc.

In most of our proofs we use resource-bounded measure [23] to state our hypotheses.
In the following we provide a brief description of this concept. For more details, see
[23, 25, 7]. A martingale is a function d : {0, 1}∗ → [0,∞) where d(λ) > 0 and ∀x ∈
{0, 1}∗, 2d(x) = d(x0) + d(x1). We say a martingale succeeds on a set A ⊆ {0, 1}∗ if
lim supn→∞ d(A � n) =∞, where A � n is the length n prefix of A’s characteristic sequence.
One can think of the martingale d as a strategy for betting on the consecutive bits of the
characteristic sequence of A. The martingale is allowed to use the first n− 1 bits of A when
betting on the nth bit. Betting starts with the initial capital d(λ) > 0, and d(A � n − 1)
denotes the capital after betting on the first (n − 1) bits. At this stage the martingale
bets some amount a where 0 ≤ a ≤ d(A � n− 1) that the next bit is 0 and the rest of the
capital, i.e. d(A � n− 1)− a, that the next bit is 1. If the nth bit is 0, then d(A � n) = 2a.
Otherwise, d(A � n) = 2(d(A � n− 1)− a). For any time bound t(n), we say a language L is
t(n)-random if no O(t(n))-computable martingale succeeds on L. A language is p-random
if it is nc-random for every c. A language is p2-random if it is 2lognc-random for some c.
A class of languages C has p-measure 0, written µp(C) = 0, if there is a c such that no
language in C is nc-random. Similarly, C has p2 -measure 0, written µp2

(C) = 0, if there is a
c such that no language in C is 2logc n-random. If C is closed under ≤P

m-reductions, then
µp(C) = 0 if and only if µp2

(C) = 0 [19].
We will use the Measure Hypothesis that µp(NP) 6= 0 and the NP-Machine Hypothesis [17]:

there is an NP machine M and an ε > 0 such that M accepts 0∗ and no 2nε-time-bounded
Turing machine computes infinitely many accepting computations of M . The Measure
Hypothesis implies the NP-Machine Hypothesis [17].

3 Separating Nonuniform Completeness from Uniform Completeness

Our first theorem separates nonuniform many-one completeness with one bit of advice from
uniform many-one completeness for NP, under the measure hypothesis. Buhrman et al. [13]
proved the same result for EXP unconditionally.

I Theorem 1. If µp(NP) 6= 0 then there exists a set D ∈ NP that is NP-complete with
respect to ≤P/1

m -reductions but is not ≤P
m-complete.

Proof. Let R ∈ NP be p-random. We use R and SAT to construct the following set:

D = 〈φ, 0〉 : φ ∈ SAT ∨ 0|φ| ∈ R〉⋃
〈φ, 1〉 : φ ∈ SAT ∧ 0|φ| ∈ R〉

It follows from closure properties of NP that D ∈ NP. It is also easy to see that SAT ≤P/1
m D

via φ → 〈φ,R[0|φ|]〉. Note that R[0|φ|] is one bit of advice, and it is 1 or 0 depending
on whether or not 0|φ| ∈ R. We will prove that D is not ≤P

m-complete for NP. To get a
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contradiction, assume that D is ≤P
m-complete. Therefore SAT ≤P

m D via some polynomial-
time computable function f . Then (∀φ) φ ∈ SAT↔ f(φ) ∈ D. Based on the value of SAT[φ]
and the second component of f(φ) we consider four cases:
1. φ ∈ SAT ∧ f(φ) = 〈ψ, 0〉, for some formula ψ.
2. φ /∈ SAT ∧ f(φ) = 〈ψ, 0〉, for some formula ψ.
3. φ ∈ SAT ∧ f(φ) = 〈ψ, 1〉, for some formula ψ.
4. φ /∈ SAT ∧ f(φ) = 〈ψ, 1〉, for some formula ψ.

In the second case above we have SAT[φ] = SAT[ψ] ∨ R[0|ψ|] and φ /∈ SAT. Therefore
SAT[ψ] ∨ R[0|ψ|] = 0 which implies R[0|ψ|] = 0. Consider the situation where the second
case happens and |ψ| ≥ |φ|/2. The following argument shows that R[0|ψ|] is computable in
25|ψ| time in this situation. We apply f to every string of length at most 2|ψ|, looking for
a formula φ of length at most 2|ψ| such that f(φ) = 〈ψ, 0〉 and φ /∈ SAT. We are applying
f which is computable in polynomial time to at most 22|ψ|+1 strings. This can be done in
23|ψ| steps. Checking if φ /∈ SAT can be done in at most 22|ψ| steps for each φ. Therefore
the whole algorithm takes at most 25|ψ| steps to terminate. If this case happens for infinitely
many ψ’s we will have a polynomial-time martingale that succeeds on R which contradicts
the p-randomness of R. As a result, there cannot be infinitely many φ’s that φ /∈ SAT,
f(φ) = 〈ψ, 0〉, and |ψ| ≥ |φ|/2. This is because if there are infinitely many such φ’s, then
there must be infinitely many n’s such that for each n there exists a φ satisfying the above
properties. Since we assumed |ψ| ≥ |φ|/2 it follows that there must be infinitely many such
ψ’s, but we proved that this cannot happen.

An analagous argument for the third case there cannot be infinitely many φ’s that
φ /∈ SAT, f(φ) = 〈ψ, 0〉, and |ψ| ≥ |φ|/2. Therefore we have:
1. For almost every φ, if φ /∈ SAT ∧ f(φ) = 〈ψ, 0〉, then |ψ| < |φ|/2.
2. For almost every φ, if φ ∈ SAT ∧ f(φ) = 〈ψ, 1〉, then |ψ| < |φ|/2.

It follows from these two facts that for almost every φ, if |ψ| ≥ |φ|/2, then SAT[φ] can be
computed in polynomial time:
1. If f(φ) = 〈ψ, 0〉 and |ψ| ≥ |φ|/2, then φ ∈ SAT.
2. If f(φ) = 〈ψ, 1〉 and |ψ| ≥ |φ|/2, then φ /∈ SAT.

Note that the only computation required in the algorithm above is computing f on φ
which can be done in polynomial time. To summarize, for every formula φ it is either the case
that when we apply f to φ the new formula ψ satisfies |ψ| < |φ|/2 or SAT[φ] is computable
in polynomial time. In the following we use this fact and the many-one reduction from SAT
to D to introduce a (logn)-tt-reduction from SAT to R.

The many-one reduction from SAT to D implies that (∀φ) φ ∈ SAT ↔ f(φ) ∈ D. In
other words:

(∀φ) f(φ) = 〈ψ1, i〉 and SAT[φ] = SAT[ψ1] �1 R[0|ψ1|] (1)

where �1 is ∨ or ∧ when i = 0 or 1 respectively.
Fix two strings a and b such that a ∈ R and b /∈ R. If |ψ1| ≥ |φ|/2 then SAT[φ] is

computable in polynomial time, and our reduction maps φ to either a or b depending on
SAT[φ] being 1 or 0 respectively. To put it differently, the right hand side of (1) will be
substituted by R[a] or R[b] respectively.

On the other hand, if |ψ1| < |φ|/2 then we repeat the same process for ψ1. We apply f
to ψ1 to get

SAT[ψ1] = SAT[ψ2] �2 R[0|ψ2|] (2)
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40:6 Nonuniform Reductions and NP-Completeness

By substituting this in (1) we will have:

SAT[φ] = (SAT[ψ2] �2 R[0|ψ2|]) �1 R[0|ψ1|] (3)

Again, if |ψ2| ≥ |ψ1|/2 then SAT[ψ1] is computable in polynomial time, and its value can be
substituted in (2) to get a reduction from SAT to R. On the other hand, if |ψ2| < |ψ1|/2
then we use f again to find ψ3 such that:

SAT[ψ2] = SAT[ψ3] �3 R[0|ψ3|] (4)

By substituting this in (3) we will have:

SAT[φ] =
(
(SAT[ψ3] �3 R[0|ψ3|]) �2 R[0|ψ2|]

)
�1 R[0|ψ1|] (5)

We repeat this process up to (logn) times where n = |φ|. If there exists some i ≤ (logn)
such that |ψi+1| ≥ |ψi|/2, then we can compute SAT[ψi] in polynomial time and substitute
its value in the following equation:

SAT[φ] =
(
(SAT[ψi] �k R[0|ψi|]) �i−1 R[0|ψi−1|]

)
... �1 R[0|ψ1|] (6)

This gives us an i-tt-reduction from SAT to R for some i < (logn).
On the other hand, if |ψi+1| < |ψi|/2 for every i ≤ (logn) then we will have:

SAT[φ] =
(
(SAT[ψ(logn)] �(logn) R[0|ψ(logn)|]) �(logn)−1 R[0|ψ(logn)−1|]

)
... �1 R[0|ψ1|] (7)

It follows from the construction that the length of ψi’s is halved on each step. Therefore
|ψ(logn)| must be constant in n. As a result SAT[ψ(logn)] is computable in constant time. If we
compute the value of SAT[ψ(logn)], and substitute it in (7) we will have a (logn)-tt-reduction
from SAT to R. In any case, we have shown that if SAT is many-one reducible to D, we can
use this reduction to define a polynomial time computable (logn)-tt-reduction from SAT
to R. This means that R is (logn)-tt-complete for NP. Buhrman and van Melkebeek [12]
showed that complete sets for NP under ≤P

nα−tt-reductions have p2-measure 0. Since this
complete degree is closed under ≤P

m-reductions, it also has p-measure 0 [19]. Therefore the
(logn)-tt-completeness of R contradicts its p-randomness, which completes the proof. J

This next theorem is based on a result of Hitchcock and Pavan [16] that separated strong
nondeterministic completeness from Turing completeness for NP. We separate nonuniform
many-one completeness with polynomial advice from Turing completeness.
I Theorem 2. If the NP-machine hypothesis holds, then there exists a ≤P/poly

m -complete set
in NP that is not ≤P

T-complete.
Proof. We follow the setup in [16]. Assume the NP-machine hypothesis holds. Then it can
be shown there exists an NP-machine M that accepts 0∗ such that no 2n3-time bounded
Turing machine can compute infinitely many of its computations. Consider the following NP
set:

A = {〈φ, a〉 | φ ∈ SAT and a is an accepting computation of M(0|φ|)} (8)

The mapping φ→ 〈φ, a〉 where a is the first accepting computation of M(0|φ|) is a ≤P/poly
m -

reduction from SAT to A. Note that a only depends on the length of φ and |a| is polynomial
in the |φ|. Therefore A is ≤P/poly

m -complete for NP. It is proved in [16] that A is not
≤P

T-complete. J

Because the measure hypothesis implies the NP-machine hypothesis, we have the following
corollary.
I Corollary 3. If µp(NP) 6= 0, then there exists a ≤P/poly

m -complete set in NP that is not
≤P

T-complete.
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4 Separating Uniform Completeness from Nonuniform Completeness

Buhrman et al. [13] showed there is a ≤P
2−tt-complete set for EXP that is not ≤P/1

m -complete.
We show the same for NP-completeness under a strong hypothesis on NP ∩ coNP; in fact,
the set is not even complete with many-one reductions that use a fixed polynomial amount
of advice. In the proof, we use the construction of a ≤P

2−tt-complete set that was previously
used to separate ≤P

2−tt-completeness from ≤P
1−tt-completeness [29] and ≤P

2−tt-autoreducibility
from ≤P

1−tt-autoredicibility [18].

I Theorem 4. If µp(NP∩ coNP) 6= 0 then for every c ≥ 1, there exists a set A ∈ NP that is
≤P

2−tt-complete but is not ≤P/nc
m -complete.

Proof. We know that µp(NP ∩ coNP) 6= 0 implies µp2
(NP ∩ coNP) 6= 0 [19]. Therefore

we can assume there exists R ∈ NP ∩ coNP that is p2-random. We fix c ≥ 1, and define
A = 0(R∩SAT)∪1(R̄∩SAT), where R̄ is R’s complement. It follows from closure properties
of NP that A ∈ NP. We can define a polynomial-time computable 2-tt-reduction from
SAT to A as follows: on input x we make two queries 0x and 1x from A, and we have
x ∈ SAT ↔ (0x ∈ A ∨ 1x ∈ A). Therefore A is ≤P

2−tt-complete in NP. We will show that
A is not ≤P/nc

m -complete. To get a contradiction, assume A is ≤P/nc
m -complete in NP. This

implies that R ≤P/nc
m A via functions f ∈ PF and h : N → {0, 1}∗ where (∀n) |h(n)| = nc.

In other words:

(∀x)R[x] = A[f
(
x, h(|x|)

)
] where |h(n)| = nc (9)

For each length n the advice an has length nc. As a result, there are 2nc possibilities for an.
For each length n we define 2nc martingales such that each martingale assumes one of these
possible strings is the actual advice for length n, and uses (9) to bet on R. We divide the
capital into 2nc equal shares between these martingales. In the worst case, the martingales
that do not use the right advice lose their share of the capital. We define these martingales
such that the martingale that uses the right advice multiplies its share by 2nc+1. We will
also show that this happens for infinitely many lengths n, which gives us a p2-strategy to
succeed on R. Note that based on the argument above, we can only focus on the martingale
that uses the right advice for each length. To say it differently, in the rest of the proof we
assume that we know the right advice for each length, but the price that we have to pay is
to show that our martingale can multiply its capital by 2nc+1.

For each length n we first compute SAT[z] for every string z of length n. In particular,
we are interested in the following set:

An = {z | |z| = n and z /∈ SAT}

If |An| < n2c we do not bet on any string of length n. It follows from paddability of SAT
that there must be infinitely many n’s such that |An| ≥ n2c. Assume n is a length where
|An| ≥ n2c, and let an be the right advice for length n. For any string x, let v(0x) = v(1x) = x.
Consider the following set:

Cn = {z | |z| = n, z /∈ SAT, and v
(
f(z, an)

)
> z}

I Claim 5. There must be infinitely many n’s where |An| ≥ n2c and |Cn| ≥ n2c − nc.

Proof. Assume the claim does not hold. Then we have: (∀∞n) |An| ≥ n2c → |Cn| < n2c−nc.
This means for almost every n if |An| ≥ n2c then there are nc + 1 strings of length n,
z1, z2, ..., znc+1, satisfying the following property:

(∀ 1 ≤ i ≤ nc + 1) R[zi] = A[f(zi, an)] ∧ v(f(zi, an)) ≤ zi (10)
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40:8 Nonuniform Reductions and NP-Completeness

It follows from the definition of A that A[y] = R̃ ∩ SAT[v(y)] where R̃ is R or R̄ depending
on whether y starts with a 0 or 1 respectively. Therefore (10) turns into:

(∀ 1 ≤ i ≤ nc + 1) R[zi] = (R̃ ∩ SAT)[v(f(zi, an))] ∧ v(f(zi, an)) ≤ zi (11)

We use (11) to define a martingale that predicts R[zi] for every 1 ≤ i ≤ nc + 1. Since we
know R[zi] = R̃[v(f(zi, an))] ∧ SAT[v(f(zi, an))] our martingale computes R̃[v(f(zi, an))] ∧
SAT[v(f(zi, an))] and bets on R[zi] and R̃[v(f(zi, an))] ∧ SAT[v(f(zi, an))] having the same
value. Now we need to show why a polynomial time martingale has enough time to compute
R̃[v(f(zi, an))] ∧ SAT[v(f(zi, an))]. Note that we know v(f(zi, an)) ≤ zi so it is either the
case that v(f(zi, an)) < zi or v(f(zi, an)) = zi. In the first case, the martingale has access
to R̃[v(f(zi, an))], and has enough time to compute SAT[v(f(zi, an))]. In the second case we
know that SAT[v(f(zi, an))] = 0 therefore R[zi] = 0. This implies that we can double the
capital for each zi. As a result, the capital can be multiplied by 2nc+1. If this happens for
infinitely many n’s we have a martingale that succeeds on R which is a contradiction. This
completes the proof of Claim 5. J

The following claim states that when applying f to elements of Cn there cannot be many
collisions. Define:

Dn = {z ∈ Cn | (∃ y ∈ Cn) y < z ∧ f(y, an) = f(z, an)}

I Claim 6. There cannot be infinitely many n’s such that |Dn| ≥ nc + 1.

Proof. To get a contradiction, assume there are infinitely many n’s such that |Dn| ≥ nc + 1.
Let t1, t2, ..., tnc+1 be the first such strings. Then we have:

(∀ 1 ≤ i ≤ nc + 1) (∃ ri) ri ∈ Cn ∧ ri < ti ∧ f(ri, an) = f(ti, an)

It follows that:

(∀ 1 ≤ i ≤ nc + 1) (∃ ri) ri ∈ Dn ∧ ri < ti ∧ R[ri] = R[ti]

We can define a martingale that looks up the value of R[ri], and bets on R[ti] based on the
equation above. This means that we can double the capital by betting on R[ti] for every
1 ≤ i ≤ nc + 1. As a result, the capital will be multiplied by 2nc+1. If this happens for
infinitely many n’s we will have a martingale that succeeds on R which is a contradiction.
This completes the proof of Claim 6. J

Assume n is a length where |Cn| ≥ n2c − nc. We have shown that there are infinitely many
such n’s. We claim that for infinitely many of these n’s, since R is p2 -random, there must be
at least (n2c − nc)/4 strings in Cn that also belong to R.

I Claim 7. (∀∞n) |Cn| ≥ (n2c − nc) → |Cn ∩R| ≥ (n2c − nc)/4.

Proof. Assume this claim does not hold. Then we have:

(∃∞n) |Cn| ≥ n2c − nc ∧ |Cn ∩R| < (n2c − nc)/4

We use this assumption to define a polynomial time martingale that succeeds on R. We
divide the original capital such that the martingale has 1/2n2 of the original capital for
each length. Note that finding n’s where |Cn| ≥ n2c − nc consists of computing SAT for
every string of length n, and counting the number of negative answers, which can be done in
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at most 23n steps, followed by applying f to these strings and comparing v(f(z, an)) and
z, which can be done in time at most 22n. This means a polynomial-time martingale has
enough time to detect Cn’s where |Cn| ≥ n2c − nc. After detecting these Cn’s we use a
simple martingale that for every string z in Cn bets 2/3 of the capital on R[z] = 0 and the
rest on R[z] = 1. It is easy to verify that in the cases where |Cn ∩R| < (n2c − nc)/4 we win
enough so the martingale succeeds on R. This completes the proof of Claim 7. J

Let n be a length where |Cn ∩R| ≥ (n2c − nc)/4, and consider the image of Cn ∩R under
f(·, an):

In = {f(z, an) | z ∈ Cn ∩R}

It follows from Claim 6 that |In| ≥ [(n2c − nc)/4]− nc. If we consider the image of In under
v(·) we have:

Vn = {v(f(z, an)) | z ∈ Cn ∩R}

It is easy to see that |Vn| ≥ |In|/2. Therefore for large enough n we have |Vn| ≥ nc + 1. Now
if we use (9) we have R[z] = R̃ ∩ SAT[v(f(z, an))]. We know that z ∈ R. This implies that
R̃[v(f(z, an))] = 1. Therefore a martingale that bets on R̃[v(f(z, an))] = 1 can double the
capital each time. Since |Vn| ≥ nc + 1 this martingale multiplies the capital by 2nc+1. As a
result, we have a martingale that succeeds on R, which completes the proof. J

5 Uniform Upper Bounds on Nonuniform Completeness

In this section, we consider whether nonuniformity can be removed in NP-completeness, at
the expense of more queries.

Buhrman et al. [13] proved that every ≤P/ log
T -complete set for EXP is also ≤P

T-complete
using a tableaux method. Hirahara [14] proved a more general result that implies the same
for NP.

I Theorem 8. (Hirahara [14]) Every ≤P/ log
T -complete set in NP is ≤P

T-complete.

Valiant and Vazirani [32] proved that there exists a randomized polynomial-time algorithm
such that given any formula φ, outputs a list of formulas l such that:
1. Every assignment that satisfies a formula in l also satisfies φ.
2. If φ is satisfiable, then with high probability at least one of the formulas in l is uniquely

satisfiable.
Klivans and van Melkebeek [22] showed that Valiant-Vazirani lemma can be derandomized
if ENP contains a problem with exponential NP-oracle circuit complexity. This yields a
deterministic polynomial-time algorithm that given any φ, outputs a list of formulas l such
that:
1. Every assignment that satisfies a formula in l also satisfies φ.
2. If φ is satisfiable, then one of the formulas in l is uniquely satisfiable.

I Theorem 9. If ENP contains a problem with NP-oracle circuit complexity 2Ω(n), then
every ≤P/ log

tt -complete set in NP is ≤P
tt-complete.

Proof. Let A be an arbitrary ≤P/1
m -complete set in NP. This case includes most of the

important details and makes describing the proof simpler. We will extend to ≤P/ log
tt case

later. We will define a ≤P
tt-reduction from SAT to A.

STACS 2018
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We define a padded version of SAT as follows:

ŜAT = {φ10n | n ∈ N and φ ∈ SAT}

Then ŜAT ∈ NP, so ŜAT ≤P/1
m A via some f ∈ PF and some h : N → {0, 1} where

(∀φ) ŜAT[φ] = A[f
(
φ, h(|φ|)

)
].

We will use ŜAT to pad formulas that have different lengths, and make them of the same
length. Fix an input formula φ over n Boolean variables x1,...,xn, and let m ∈ N be large
enough such that all formulas φ∧x1, φ∧¬x1, φ∧x1 ∧x2, . . ., and φ∧¬x1 ∧¬x2 ∧ · · · ∧¬xn
can be padded into formulas of length m. We denote the padded version of these formulas
by putting a bar on them. For example, the padded version of φ ∧ x1 is denoted by φ ∧ x1.

Before describing the rest of the algorithm, observe that the process of reducing search
to decision for a Boolean formula can be done using independent queries in the case that
the formula is uniquely satisfiable. This is due to the fact that if a formula ψ(y1, . . . , ym)
is uniquely satisfiable, then for each 1 ≤ j ≤ m exactly one of the formulas ψ ∧ xj and
ψ ∧¬xj is satisfiable. Therefore the unique satisfying assignment can be found by making m
independent queries to SAT, i.e. ψ ∧ x1, . . . , ψ ∧ xm.

Using the hypothesis to derandomize the Valiant-Vazirani algorithm [22], we have a
deterministic algorithm that on input φ(x1, . . . , xn) outputs a list containing polynomially
many formulas ψ1,...,ψm satisfying properties described above. For each formula ψj(yj1, ..., yjnj )
consider ψj ∧ yjk’s for every 1 ≤ k ≤ nj , and use padding in ŜAT to turn these formulas into
formulas of the same length. We denote the padded version of ψj ∧ yjk by ψkj for simplicity.
For each ψj we make nj independent queries to A: qj1 = f(ψ1

j , 0), . . . , qjnj = f(ψnjj , 0). For
each one of these queries if the answer is positive we set the respective variable to 1 and 0
otherwise. We repeat this process using 1 as advice, and we will have 2m assignments. We
argue that φ is satisfiable if and only if at least one of these assignments satisfies it. If φ is
not satisfiable then obviously none of these assignments will satisfy it. On the other hand, if
φ ∈ SAT then at least one of the ψj ’s must be uniquely satisfiable. In this case the process
described above will find this unique satisfying assignment. Again, by the Valiant-Vazirani
lemma we know that every assignment that satisfies at least one of the ψj ’s must also satisfy
φ, which means one of the 2m assignments produced by the algorithm above will satisfy
φ in the case that φ is satisfiable. It is evident from the algorithm that the queries are
independent. It is also easy to see that the reduction runs in polynomial time in |φ| since we
are applying a polynomial-time computable function f to arguments about the same length
as φ, and we are doing this 2m times which is polynomial in |φ|. Therefore this algorithm
defines a polynomial-time truth-table reduction from SAT to A.

If the nonuniform reduction in the theorem above uses k bits of advice instead of
considering two cases in the proof there are 2k cases to be considered. If k ∈ O(logn) then
this can be done in polynomial time. Also note that the nonuniform reduction can be a
truth-table reduction instead of a many-one reduction, and the same proof still works. J

The measure hypothesis on NP implies that ENP has high NP-oracle circuit complexity
[6, 24, 15]. Therefore we have the following.

I Corollary 10. If µp(NP) 6= 0, then every ≤P/ log
tt -complete set in NP is ≤P

tt-complete.

6 Hierarchy Theorems for Nonuniform Completeness

We proved unconditionally that every ≤P/ log
m -complete set in NP is ≤P

T-complete. On the
other hand, we showed that under the NP-machine hypothesis there exists a ≤P/poly

m -complete
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set in NP that is not ≤P
T-complete. This results in a separation of ≤P/poly

m -completeness from
≤P/ log

m -completeness under the NP-machine hypothesis.

I Theorem 11. If the NP-machine hypothesis is true, then there exists a set in NP that is
≤P/poly

m -complete, but is not ≤P/ log
T -complete.

Proof. Assume the NP-machine hypothesis. From Theorem 2, we obtain a set that is ≤P/poly
m -

complete but not ≤P
T-complete. By Theorem 8, this set cannot be ≤P/ log

T -complete. J

We have the following corollary because the measure hypothesis implies the NP-machine
hypothesis.

I Corollary 12. If µp(NP) 6= 0, then there exists a set in NP that is ≤P/poly
m -complete, but

is not ≤P/ log
T -complete.

We note that while Theorem 11 is stated for many-one vs. Turing, it applies to any
reducibility in between.

I Corollary 13. If the NP-machine hypothesis is true, then for any reducibility R where
≤P

m-reducibility implies R-reducility and R-reducility implies ≤P
T-reducibility, there is a set

in NP that is ≤P/poly
R -complete, but is not ≤P/ log

R -complete.

It is natural to ask if we can separate completeness notions above P/poly many-one. We
observe that for this, we will need stronger hypotheses than we have considered in this paper.

I Proposition 14. If there is a ≤P/poly
T -complete set that is not ≤P/poly

m -complete in NP,
then NP 6⊆ P/poly.

Proof. If NP ⊆ P/poly, then every set in NP is ≤P/poly
m -complete. J

The measure hypothesis and the NP-machine hypothesis are not known to imply NP 6⊆
P/poly. If it is possible to separate completeness notions above ≤P/poly

m , it appears an
additional hypothesis at least as strong as NP 6⊆ P/poly – such as PH is infinite – would be
needed.
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Abstract
There are many classical problems in P whose time complexities have not been improved over
the past decades. Recent studies of “Hardness in P” have revealed that, for several of such
problems, the current fastest algorithm is the best possible under some complexity assumptions.
To bypass this difficulty, the concept of “FPT inside P” has been introduced. For a problem with
the current best time complexity O(nc), the goal is to design an algorithm running in kO(1)nc

′

time for a parameter k and a constant c′ < c.
In this paper, we investigate the complexity of graph problems in P parameterized by tree-

depth, a graph parameter related to tree-width. We show that a simple divide-and-conquer
method can solve many graph problems, including Weighted Matching, Negative Cycle
Detection, Minimum Weight Cycle, Replacement Paths, and 2-hop Cover, in O(td·m)
time or O(td · (m + n logn)) time, where td is the tree-depth of the input graph. Because
any graph of tree-width tw has tree-depth at most (tw + 1) log2 n, our algorithms also run in
O(tw · m logn) time or O(tw · (m + n logn) logn) time. These results match or improve the
previous best algorithms parameterized by tree-width. Especially, we solve an open problem of
fully polynomial FPT algorithm for Weighted Matching parameterized by tree-width posed
by Fomin et al. (SODA 2017).
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1 Introduction

There are many classical problems in P whose time complexities have not been improved
over the past decades. For some of such problems, recent studies of “Hardness in P” have
provided evidence of why obtaining faster algorithms is difficult. For instance, Vassilevska
Williams and Williams [33] and Abboud, Grandoni and Vassilevska Williams [1] showed that
many problems including Minimum Weight Cycle, Replacement Paths, and Radius
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are equivalent to All Pair Shortest Paths (APSP) under subcubic reductions; that is,
if one of them admits a subcubic-time algorithm, then all of them do.

One of the approaches to bypass this difficulty is to analyze the running time by intro-
ducing another measure, called a parameter, in addition to the input size. In the theory of
parameterized complexity, a problem with a parameter k is called fixed parameter tractable
(FPT) if it can be solved in f(k) · |I|O(1) time for some function f(k) that does not depend
on the input size |I|. While the main aim of this theory is to provide fine-grained analysis
of NP-hard problems, it is also useful for problems in P. For instance, a simple dynamic
programming can solve Maximum Matching in O(3twm) time, where m is the number of
edges and tw is a famous graph parameter called tree-width which intuitively measures how
much a graph looks like a tree (see Section 2 for the definition). Therefore, it runs in linear
time for any graph of constant tree-width, which is faster than the current best O(

√
nm)

time for the general case [5, 31, 15].
When working on NP-hard problems, we can only expect superpolynomial (or usually

exponential) function f(k) in the running time of FPT algorithms. On the other hand,
for problems in P, kO(1)|I|O(1)-time FPT algorithms might be possible. Such algorithms
are called (fully) polynomial FPT algorithms, introduced by Giannopoulou, Mertzios and
Niedermeier [16]. For instance, Fomin, Lokshtanov, Pilipczuk, Saurabh and Wrochna [11]
obtained an O(tw4 · n log2 n)-time (randomized) algorithm for Maximum Matching. In
contrast to the O(3twm)-time dynamic programming, this algorithm is faster than the current
best general-case algorithm already for graphs of tw = O(n 1

8−ε). In general, for a problem
with the current best time complexity O(nc), the goal is to design an algorithm running in
O(kdnc′) time for some small constants d and c′ < c. Such an algorithm is faster than the
current best general-case algorithm already for inputs of k = O(n(c−c′)/d−ε). On the negative
side, Abboud, Vassilevska Williams and Wang [2] showed that Diameter and Radius do
not admit 2o(tw)n2−ε-time algorithms under some plausible assumptions. In this paper, we
give new or improved fully polynomial FPT algorithms for several classical graph problems.
Especially, we solve an open problem for Weighted Matching posed by Fomin et al. [11].

Our approach. Before describing our results, we first give a short review of existing work
on fully polynomial FPT algorithms parameterized by tree-width and explain our approach.
There are roughly three types of approaches in the literature. The first approach is to
use a polynomial-time dynamic programming on a tree-decomposition, which has been
mainly used for problems related to shortest paths [7, 27, 4, 32]. The second approach is
to use an O(tw3 · n)-time Gaussian elimination of matrices of small tree-width developed
by Fomin et al. [11]. The above-mentioned O(tw4 · n log2 n)-time algorithm for Maximum
Matching was obtained by this approach. The third approach is to apply a divide-and-
conquer method exploiting the existence of small balanced separators. This approach was
first used for planar graphs by Lipton and Tarjan [21]. Using the existence of O(

√
n)-size

balanced separators, they obtained an O(n1.5)-time algorithm for Maximum Matching and
an O(n1.5 logn)-time algorithm for Weighted Matching for planar graphs. For graphs of
bounded tree-width, Akiba, Iwata and Yoshida [3] obtained an O(tw · (m+ n logn) logn)-
time algorithm for 2-hop Cover, which is a problem of constructing a distance oracle, and
Fomin et al. [11] obtained an O(tw ·m logn)-time1 algorithm for Vertex-disjoint s − t

1 While the running time shown in [11] is O(tw2 ·n log n), we can easily see that it also runs in O(tw·m log n)
time. Because m = O(tw · n) holds for any graphs of tree-width tw, the latter is never worse than the
former. Note that tw · n in the running time of other algorithms cannot be replaced by m in general;
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Table 1 Comparison of previous results and our results. n and m denote the number of vertices
and edges, w denotes the width of the given tree-decomposition, and d denotes the depth of the
given elimination forest. The factor d in our results can be replaced by w · log n.

Problem Previous result Our result
Maximum Matching O(w4n log2 n) [11] O(dm)
Weighted Matching Open problem [11] O(d(m + n log n))
Negative Cycle Detection O(w2n) [27] O(d(m + n log n))
Minimum Weight Cycle — O(d(m + n log n))
Replacement Paths — O(d(m + n log n))
2-hop Cover O(w(m + n log n) log n) [3] O(d(m + n log n))

Paths. We obtain fully polynomial FPT algorithms for a wide range of problems by using
this approach. Our key observation is that, when using the divide-and-conquer approach,
another graph parameter called tree-depth is more powerful than the tree-width.

A graph G of tree-width tw admits a set S of tw + 1 vertices, called a balanced separator,
such that each connected component of G− S contains at most n

2 vertices. In both of the
above-mentioned divide-and-conquer algorithms for graphs of bounded tree-width, after
the algorithm recursively computes a solution for each connected component of G − S, it
constructs a solution for G in O(tw · (m + n logn)) time or O(tw ·m) time, respectively.
Because the depth of the recursive calls is bounded by O(logn), the total running time
becomes O(tw · (m+ n logn) logn) or O(tw ·m logn), respectively.

Here, we observe that, by using tree-depth, this kind of divide-and-conquer algorithm
can be simplified and the analysis can be improved. Tree-depth is a graph parameter which
has been studied under various names [29, 20, 6, 25]. A graph has tree-depth td if and only
if there exists an elimination forest of depth td. See Section 2 for the precise definition of
the tree-depth and the elimination forest. An important property of tree-depth is that any
connected graph G of tree-depth td can be divided into connected components of tree-depth
at most td − 1 by removing a single vertex r. Therefore, if there exists an O(m)-time or
O(m+n logn)-time incremental algorithm, which constructs a solution for G from a solution
for G−r, we can solve the problem in O(td ·m) time or O(td ·(m+n logn)) time, respectively.
Now, the only thing to do is to develop such an incremental algorithm for each problem. We
present a detailed discussion of this framework in Section 3. Because any graph of tree-width
tw has tree-depth at most (tw + 1) log2 n [24], the running time can also be bounded by
O(tw ·m logn) or O(tw · (m + n logn) logn). Therefore, our analysis using tree-depth is
never worse than the existing results directly using tree-width. On the other hand, there are
infinitely many graphs whose tree-depth has asymptotically the same bound as tree-width.
For instance, if every N -vertex subgraph admits a balanced separator of size O(Nα) for some
constant α > 0 (e.g., α = 1

2 for H-minor free graphs), both tree-width and tree-depth are
O(nα). Hence, for such graphs, the time complexity using tree-depth is truly better than
that using tree-width.

Our results. Table 1 shows our results and the comparison to the existing results on fully
polynomial FPT algorithms parameterized by tree-width. The formal definition of each
problem is given in Section 4. Because obtaining an elimination forest of the lowest depth

e.g., we cannot bound the running time of the Gaussian elimination by O(tw2 ·m), where m is the
number of non-zero elements.
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is NP-hard, we assume that an elimination forest is given as an input and the parameter
for our results is the depth d of the given elimination forest. Similarly, for the existing
results, the parameter is the width w of the given tree-decomposition. Note that, because a
tree-decomposition of width w can be converted into an elimination forest of depth O(w ·logn)
in linear time [29], we can always replace the factor d in our running time by w · logn. This
also means that we can use arbitrary approximation algorithms or heuristics for constructing
tree-decompositions for obtaining an elimination forest.

The first polynomial-time algorithms for Maximum Matching and Weighted Match-
ing were obtained by Edmonds [10], and the current fastest algorithms run in O(

√
nm)

time [5, 31, 15] and O(n(m+ n logn)) time [5], respectively. Fomin et al. [11] obtained the
O(w4n log2 n)-time randomized algorithm for Maximum Matching by using an algebraic
method and the fast computation of Gaussian elimination. They left as an open problem
whether a similar running time is possible for Weighted Matching. The general-case
algorithms for these problems compute a maximum matching by iteratively finding an aug-
menting path, and therefore, they are already incremental. Thus, we can easily obtain an
O(dm)-time algorithm for Maximum Matching and an O(d(m+ n logn))-time algorithm
for Weighted Matching. Note that the divide-and-conquer algorithms for planar matching
by Lipton and Tarjan [21] also use this augmenting-path approach, and our result can be
seen as extension to bounded tree-depth graphs. Our algorithm for Maximum Matching
is always faster than the one by Fomin et al. because we have m = O(kn) for any graph
of tree-width or tree-depth k and is faster than the general-case algorithm already when
d = O(n 1

2−ε). Our algorithm for Weighted Matching settles the open problem and is
faster than the general-case algorithm already when d = O(n1−ε).

The current fastest algorithm for Negative Cycle Detection is the classical O(nm)-
time Bellman-Ford algorithm. Planken et al. [27] obtained an O(w2n)-time algorithm by using
a Floyd-Warshall-like dynamic programming. In this paper, we give an O(d(m+n logn))-time
algorithm. While the algorithm by Planken et al. is faster than the general-case algorithm only
when w = O(m 1

2−ε), our algorithm achieves a faster running time already when d = O(n1−ε).

Both Minimum Weight Cycle (or Girth) and Replacement Paths are subcubic-
equivalent to APSP [33]. A naive algorithm can solve both problems in O(n3) time or O(n(m+
n logn)) time. For Minimum Weight Cycle of directed graphs, an improved O(nm)-time
algorithm was recently obtained by Orlin and Sedeño-Noda [26]. For Replacement Paths,
Malik et al. [22] obtained an O(m+n logn)-time algorithm for undirected graphs, and Roditty
and Zwick [28] obtained an O(

√
nm·polylogn)-time algorithm for unweighted graphs. For the

general case, Gotthilf and Lewenstein [17] obtained an O(n(m+ n log logn))-time algorithm,
and there exists an Ω(

√
nm)-time lower bound in the path-comparison model [19] (whenever

m = O(n
√
n)) [18]. In this paper, we give an O(d(m+ n logn))-time algorithm for each of

these problems, which is faster than the general-case algorithm already when d = O(n1−ε).
This result shows the following contrast to the known result of “Hardness in P”: Radius
is also subcubic-equivalent to APSP [1] but it cannot be solved in a similar running time
under some plausible assumptions [2].

2-hop cover [8] is a data structure for answering distance queries in an efficient manner.
Akiba et al. [3] obtained an O(w(m + n logn) logn)-time algorithm for constructing a 2-
hop cover answering each distance query in O(w logn) time. In this paper, we give an
O(d(m + n logn))-time algorithm for constructing a 2-hop cover answering each distance
query in O(d) time.
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Related work. Coudert, Ducoffe and Popa [9] have developed fully polynomial FPT al-
gorithms using several other graph parameters including clique-width. In contrast to the
tree-depth, their parameters are not polynomially bounded by tree-width, and therefore,
their results do not imply fully polynomial FPT algorithms parameterized by tree-width.
Mertzios, Nichterlein and Niedermeier [23] have obtained an O(m+ k1.5)-time algorithm for
Maximum Matching parameterized by feedback edge number k (= m− n+ 1 when the
graph is connected) by giving a linear-time kernel.

2 Preliminaries

Let G = (V,E) be a directed or undirected graph, where V is a set of vertices of G and E
is a set of edges of G. When the graph is clear from the context, we use n to denote the
number of vertices and m to denote the number of edges. All the graphs in this paper are
simple (i.e., they have no multiple edges nor self-loops). Let S ⊆ V be a subset of vertices.
We denote by E[S] the set of edges whose endpoints are both in S and denote by G[S] the
subgraph induced by S (i.e., G[S] = (S,E[S])).

A tree decomposition of a graph G = (V,E) is a pair (T,B) of a tree T = (X,F ) and a
collection of bags {Bx ⊆ V | x ∈ X} satisfying the following two conditions.

For each edge uv ∈ E, there exists some x ∈ X such that {u, v} ⊆ Bx.
For each vertex v ∈ V , the set {x ∈ X | v ∈ Bx} induces a connected subtree in T .

The width of (T,B) is the maximum of |Bx|−1 and the tree-width tw(G) of G is the minimum
width among all possible tree decompositions.

An elimination forest T of a graph G = (V,E) is a rooted forest on the same vertex set
V such that, for every edge uv ∈ E, one of u and v is an ancestor of the other. The depth of
T is the maximum number of vertices on a path from a root to a leaf in T . The tree-depth
td(G) of a graph G is the minimum depth among all possible elimination forests. Tree-width
and tree-depth are strongly related as the following lemma shows.

I Lemma 1 ([24, 29]). For any graph G, the following holds.

tw(G) + 1 ≤ td(G) ≤ (tw(G) + 1) log2 n.

Moreover, given a tree decomposition of width k, we can construct an elimination forest of
depth O(k logn) in linear time.

3 Divide-and-conquer framework

In this section, we propose a divide-and-conquer framework that can be applicable to a wide
range of problems parameterized by tree-depth.

I Theorem 2. Let G = (V,E) be a graph and let f be a function defined on subsets of V .
Suppose that f(∅) can be computed in constant time and we have the following two algorithms
Increment and Union with time complexity T (n,m)(= Ω(n+m)).

Increment(X, f(X), x) 7→ f(X∪{x}). Given a set X ⊆ V , its value f(X), and a vertex
x 6∈ X, this algorithm computes the value f(X ∪ {x}) in T (|X ∪ {x}|, |E[X ∪ {x}]|) time.
Union((X1, f(X1)), . . . , (Xc, f(Xc))) 7→ f(

⋃
iXi). Given disjoint sets X1, . . . , Xc ⊆ V

such that G has no edges between Xi and Xj for any i 6= j, and their values f(X1), . . .,
f(Xc), this algorithm computes the value f(

⋃
iXi) in T (|

⋃
iXi|, |E[

⋃
iX]|) time.

Then, for a given elimination forest of G of depth k, we can compute the value f(V ) in
O(k · T (n,m)) time.
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Algorithm 1 Algorithm for computing f(V ).
1: procedure Compute(S, TS) 7→ f(S) . TS is an elimination forest of G[S].
2: if S = ∅ then return f(∅)
3: T1, . . . , Tc ← the connected trees of TS

4: X1, . . . , Xc ← the sets of vertices of T1, . . . , Tc

5: for i ∈ {1, . . . , c} do
6: xi ← the root of Ti

7: fi ← Increment(Xi \ {xi}, Compute(Xi \ {xi}, Ti − xi), xi)
8: return Union((X1, f1), . . . , (Xc, fc))

Proof. Algorithm 1 describes our divide-and-conquer algorithm. We prove that for any set
S and any elimination forest TS of G[S] of depth kS , Compute(S, TS) correctly computes
the value f(S) in (2kS + 1) · T (|S|, |E[S]|) time by induction on the size of S.

The claim trivially holds when S = ∅. For a set S 6= ∅, let T1, . . . , Tc be the connected
trees of TS (c = 1 if TS is connected). For each i, let Xi be the set of vertices of Ti. From the
definition of the elimination forest, G has no edges between Xi and Xj for any i 6= j. For each
i, we compute the value f(Xi) as follows. Let xi be the root of Ti. By removing xi from Ti, we
obtain an elimination forest of G[Xi\{xi}] of depth at most kS−1. Therefore, by the induction
hypothesis, we can correctly compute the value f(Xi \ {xi}) in (2kS − 1) · T (|Xi|, |E[Xi]|)
time. Then, by applying Increment(Xi \ {xi}, f(Xi \ {xi}), xi), we obtain the value f(Xi)
in 2kS · T (|Xi|, |E[Xi]|) time. Because |S| =

∑
i |Xi| and |E[S]| =

∑
i |E[Xi]| hold, the total

running time of these computations is 2kS ·
∑
i T (|Xi|, |E[Xi]|) ≤ 2kS ·T (|S|, |E[S]|). Finally,

by applying the algorithm Union, we obtain the value f(S) in (2kS + 1) · T (|S|, |E[S]|)
time. J

Note that the algorithm Union is trivial in most applications. We have only one non-
trivial case in Section 4.5 in this paper. From the relation between tree-depth and tree-width
(Lemma 1), we obtain the following corollary.

I Corollary 3. Under the same assumption as in Theorem 2, for a given tree decomposition
of G of width k, we can compute the value f(V ) in O(k · T (n,m) logn) time.

4 Applications

4.1 Maximum matching
For an undirected graph G = (V,E), a matching M of G is a subset of E such that no edges
in M share a vertex. In this section, we prove the following theorem.

I Theorem 4. Given an undirected graph and its elimination forest of depth k, we can
compute a maximum-size matching in O(km) time.

As mentioned in the introduction, we use the augmenting-path approach, which is also
used for planar matching [21]. Let M be a matching. A vertex not incident to M is called
exposed. AnM -alternating path is a (simple) path whose edges are alternately out of and inM .
An M -alternating path connecting two different exposed vertices is called an M -augmenting
path. If there exists an M -augmenting path P , by taking the symmetric difference M∆E(P ),
where E(P ) is the set of edges in P , we can construct a matching of size |M |+1. In fact, M is
the maximum-size matching if and only if there exist no M -augmenting paths. Edmonds [10]
developed the first polynomial-time algorithm for computing an M -augmenting path by
introducing the notion of blossom, and an O(m)-time algorithm was given by Gabow and
Tarjan [14].
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I Lemma 5 ([14]). Given an undirected graph and its matching M , we can either compute a
matching of size |M |+ 1 or correctly conclude that M is a maximum-size matching in O(m)
time.

For S ⊆ V , we define f(S) as a function that returns a maximum-size matching of G[S]. We
now give Increment and Union.

Increment(X, f(X), x). Because the size of the maximum matching of G[X ∪ {x}] is at
most the size of the maximum matching of G[X] plus one, we can compute a maximum
matching of G[X ∪ {x}] in O(|E[X ∪ {x}]|) time by a single application of Lemma 5.

Union((X1, f(X1)), . . . , (Xc, f(Xc))). Because there exist no edges between Xi and Xj

for any i 6= j, we can construct a maximum matching of G[
⋃
iXi] just by taking the union

of f(Xi).

Proof of Theorem 4. The algorithm Increment(X, f(X), x) correctly computes f(X∪{x})
in O(|E[X ∪ {x}]|) time and the algorithm Union((X1, f(X1)), . . . , (Xc, f(Xc))) correctly
computes f(

⋃
iXi) in O(|

⋃
iXi|) time. Therefore, from Theorem 2, we can compute a

maximum-size matching of G in O(km) time. J

4.2 Weighted matching
Let G = (V,E) be an undirected graph with an edge-weight function w : E → R. A weight
of a matching M , denoted by w(M), is simply defined as the total weight of edges in M . A
matching M of G is called perfect if G has no exposed vertices (or equivalently |M | = n

2 ). A
perfect matching is called a maximum-weight perfect matching if it has the maximum weight
among all perfect matchings of G. We can easily see that other variants of weighted matching
problems can be reduced to the problem of finding a maximum-weight perfect matching even
when parameterized by tree-depth. In this section, we prove the following theorem.

I Theorem 6. Given an edge-weighted undirected graph admitting at least one perfect
matching and its elimination forest of depth k, we can compute a maximum-weight perfect
matching in O(k(m+ n logn)) time.

In our algorithm, we use an O(n(m+n logn))-time primal-dual algorithm by Gabow [12].
In this primal-dual algorithm, we keep a pair of a matching M and dual variables (Ω, y, z),
where Ω is a laminar2 collection of odd-size subsets of V and y and z are functions y : V → R
and z : Ω→ R≥0, satisfying the following conditions:

ŷz(uv) := y(u) + y(v) +
∑

B∈Ω:u,v∈B
z(B) ≥ w(uv) for every uv ∈ E, (1)

ŷz(uv) = w(uv) for every uv ∈M, (2)

|{uv ∈M | u, v ∈ B}| =
⌊
|B|
2

⌋
for every B ∈ Ω. (3)

From the duality theory (see e.g. [13]), a perfect matching M is a maximum-weight perfect
matching if and only if there exist dual variables (Ω, y, z) satisfying the above conditions.
Gabow [12] obtained the O(n(m + n logn))-time algorithm by iteratively applying the
following lemma.

2 A collection Ω of subsets of a ground set V is called laminar if for any X, Y ∈ Ω, one of X ∩ Y = ∅,
X ⊆ Y , or X ⊆ Y holds. When Ω is laminar, we have |Ω| = O(|V |).
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I Lemma 7 ([12]). Given an edge-weighted undirected graph and a pair of a matching M
and dual variables (Ω, y, z) satisfying the conditions (1)–(3), we can either compute a pair of
a matching M ′ of cardinality |M |+ 1 and dual variables (Ω′, y′, z′) satisfying the conditions
(1)–(3) or correctly conclude that M is a maximum-size matching3 in O(m+ n logn) time.

For S ⊆ V , we define f(S) as a function that returns a pair of a maximum-size matching
MS of G[S] and dual variables (ΩS , yS , zS) satisfying the conditions (1)–(3). We now give
Increment and Union.

Increment(X, f(X), x). Let W be a value satisfying W + yX(v) ≥ w(xv) for every
xv ∈ E[X ∪{x}]. Let y : X ∪{x} → R be a function defined as y(x) := W and y(v) := yX(v)
for v ∈ X. In the subgraph G[X ∪ {x}], a pair of the matching MX and dual variables
(ΩX , y, zX) satisfies the conditions (1)–(3). Therefore, we can apply Lemma 7. If MX is
a maximum-size matching of G[X ∪ {x}], we return MX and (ΩX , y, zX). Otherwise, we
obtain a matching M ′ of size |MX |+ 1 and dual variables (Ω′, y′, z′) satisfying the conditions
(1)–(3). Because the cardinality of maximum-size matching of G[X ∪ {x}] is at most the
cardinality of maximum-size matching of G[X] plus one, the obtained M ′ is a maximum-size
matching of G[X ∪ {x}]. Therefore, we can return M ′ and (Ω′, y′, z′).

Union((X1, f(X1)), . . . , (Xc, f(Xc))). Because there exist no edges between Xi and Xj

for any i 6= j, we can simply return a pair of a maximum-size matching obtained by taking
the union

⋃
iMXi

and dual variables (Ω, y, z) such that Ω :=
⋃
i ΩXi

, y(v) := yXi
(v) for

v ∈ Xi, and z(B) = zXi(B) for B ∈ ΩXi .

Proof of Theorem 6. The algorithm Increment(X, f(X), x) runs in O(|E[X ∪ {x}]| +
|X| log |X|) time and the algorithm Union((X1, f(X1)), . . . , (Xc, f(Xc))) runs in O(|

⋃
Xi|)

time. Therefore, from Theorem 2, we can compute f(V ) in O(k(m+ n logn)) time. From
the duality theory, the perfect matching obtained by computing f(V ) is a maximum-weight
perfect matching of G. J

4.3 Negative cycle detection and potentials
Let G = (V,E) be a directed graph with an edge-weight function w : E → R. For a function
p : V → R, we define an edge-weight function wp as wp(uv) := w(uv) + p(u)− p(v). If wp
becomes non-negative for all edges, p is called a potential on G.

I Lemma 8 ([30]). There exists a potential on G if and only if G has no negative cycles.

In this section, we prove the following theorem.

I Theorem 9. Given an edge-weighted directed graph and its elimination forest of depth k,
we can compute either a potential or a negative cycle in O(k(m+ n logn)) time.

Suppose that we have a potential p. Because wp is non-negative, we can compute a shortest-
path tree rooted at a given vertex s under wp in O(m + n logn) time with Dijkstra’s
algorithm. For any s − t path, its length under wp is exactly the length under w plus a
constant p(s)− p(t). Therefore, the obtained tree is also a shortest-path tree under w. Thus,
we obtain the following corollary.

3 Note that when M is not a perfect matching, this does not imply that M has the maximum weight
among all the maximum-size matchings.
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I Corollary 10. Given an edge-weighted directed graph without negative cycles, a vertex s,
and its elimination forest of depth k, we can compute a shortest-path tree rooted at s in
O(k(m+ n logn)) time.

For S ⊆ V , we define f(S) as a function that returns either a potential pS : S → R on
G[S] or a negative cycle contained in G[S]. We now give Increment and Union.

Increment(X, f(X), x). If f(X) is a negative cycle, we return it. Otherwise, let G′ =
(X ∪{x}, E′) be the graph obtained from G[X ∪{x}] by removing all the edges incoming to x.
Let W be a value satisfying w(xv) +W − pX(v) ≥ 0 for every xv ∈ E′. Let p′ : X ∪{x} → R
be a function defined as p′(x) := W and p′(v) := pX(v) for v ∈ X. Because x has no
incoming edges in G′, p′ is a potential on G′. Therefore, we can compute a shortest-path
tree rooted at x under wp′ in O(|E[X]|+ |X| log |X|) time with Dijkstra’s algorithm. Let
R be the set of vertices reachable from x in G′ and let d : R → R be the shortest-path
distance from x under wp′ . If there exists an edge vx ∈ E[X ∪ {x}] such that v ∈ R and
d(v) + wp′(vx) < 0, G[X ∪ {x}] contains a negative cycle starting from x, going to v along
the shortest-path tree, and coming back to x via the edge vx. Otherwise, let D be a value
satisfying wp′(uv) + D − d(v) ≥ 0 for every uv ∈ E[X ∪ {x}] with u ∈ X \ R and v ∈ R.
Then, we return a function p : X ∪ {x} → R defined as p(v) := p′(v) + d(v) if v ∈ R and
p(v) := p′(v) +D if v ∈ X \R.

I Claim 1. p is a potential on G[X ∪ {x}].

Proof. For every edge uv ∈ E[X ∪ {x}], we have

wp(uv) =


wp′(uv) + d(u)− d(v) ≥ 0 if u, v ∈ R,
wp′(uv) +D − d(v) ≥ 0 if u ∈ X \R, v ∈ R,
wp′(uv) +D −D ≥ 0 if u ∈ X \R, v ∈ X \R.

Note that there are no edges from R to X \R. J

Union((X1, f(X1)), . . . , (Xc, f(Xc))). If at least one of f(Xi) is a negative cycle, we
return it. Otherwise, we return a potential p defined as p(v) := pXi

(v) for v ∈ Xi.

Proof of Theorem 9. The algorithm Increment(X, f(X), x) correctly computes f(X ∪
{x}) in O(|E[X]|+ |X| log |X|) time and the algorithm Union((X1, f(X1)), . . . , (Xc, f(Xc)))
correctly computes f(

⋃
iXi) in O(|

⋃
iXi|) time. Thus, from Theorem 2, we can compute

f(V ), i.e., either a potential on G or a negative cycle contained in G, in O(k(m+ n logn))
time. J

4.4 Minimum weight cycle
In this section, we prove the following theorem.

I Theorem 11. Given a non-negative edge-weighted undirected or directed graph and its
elimination forest of depth k, we can compute a minimum-weight cycle in O(k(m+ n logn))
time.

Note that when the graph is undirected, a closed walk of length two using the same edge
twice is not considered as a cycle. Therefore, we cannot simply reduce the undirected version
into the directed version by replacing each undirected edge by two directed edges of both
directions.

STACS 2018



41:10 On the Power of Tree-Depth for Fully Polynomial FPT Algorithms

Let G = (V,E) be the input graph with an edge-weight function w : E → R≥0. For
S ⊆ V , we define f(S) as a function that returns a minimum-weight cycle of G[S]. We
describe Increment and Union below.

Increment(X, f(X), x). Because we have a minimum-weight cycle f(X) of G[X], we only
need to find a minimum-weight cycle passing through x. First, we construct a shortest-path
tree of G[X ∪ {x}] rooted at x and let d : X ∪ {x} → R be the shortest-path distance.

When the graph is undirected, we find an edge uv ∈ E[X ∪ {x}] not contained in the
shortest-path tree minimizing d(u) + w(uv) + d(v). If this weight is at least the weight of
f(X), we return f(X). Otherwise, we return the cycle starting from x, going to u along
the shortest-path tree, jumping to v through the edge uv, and coming back to x along the
shortest-path tree. Note that this always forms a cycle because otherwise, it induces a cycle
contained in G[X] that has a smaller weight than f(X), which is a contradiction.

We can prove the correctness of this algorithm as follows. Let W be the weight of
the cycle obtained by the algorithm and let C be a cycle passing through x. Let v0 =
x, v1, . . . , v`−1, v` = x the vertices on C in order. Because a tree contains no cycles, there
exists an edge vivi+1 not contained in the shortest-path tree. Therefore, the weight of C is∑i−1
j=0 w(vjvj+1) + w(vivi+1) +

∑`−1
j=i+1 w(vjvj+1) ≥ d(vi) + w(vivi+1) + d(vi+1) ≥W .

When the graph is directed, we find an edge ux ∈ E[X ∪ {x}] with the minimum
d(u) + w(ux). If this weight is at least the weight of f(X), we return f(X). Otherwise, we
return the cycle starting from x, going to u along the shortest-path tree, and coming back to
x through the edge ux.

Union((X1, f(X1)), . . . , (Xc, f(Xc))). We return a cycle of the minimum weight among
f(X1), . . . , f(Xc).

Proof of Theorem 11. The algorithm Increment(X, f(X), x) correctly computes f(X ∪
{x}) in O(|E[X]|+ |X| log |X|) time and the algorithm Union((X1, f(X1)), . . . , (Xc, f(Xc))
correctly computes f(

⋃
iXi) in O(|

⋃
iXi|) time. Therefore, from Theorem 2, we can compute

a minimum-weight cycle in O(k(m+ n logn)) time. J

4.5 Replacement paths
Fix two vertices s and t. For an edge-weighed directed graph G = (V,E) and an edge e ∈ E,
we denote the length of the shortest s− t path avoiding e by rG(e). In this section, we prove
the following theorem.

I Theorem 12. Given an edge-weighted directed graph G = (V,E), a shortest s − t path
P , and its elimination forest of depth k, we can compute rG(e) for all edges e on P in
O(k(m+ n logn)) time.

Let v0(= s), v1, . . . , v`−1, v`(= t) be the vertices on the given shortest s − t path P in
order. For i ∈ {0, . . . , `}, we denote the length of the prefix v0v1 . . . vi by pref(vi) and the
length of the suffix vivi+1 . . . v` by suf(vi). These can be precomputed in linear time.

For S ⊆ V , we define G[S] ∪ P as a graph consisting of vertices S ∪ {v0, . . . , v`} and
edges E[S] ∪ {v0v1, . . . , v`−1v`}, and define G[S] \ P as a graph consisting of vertices S and
edges E[S] \ {v0v1, . . . , v`−1v`}. We denote the shortest-path length from u to v in G[S] \ P
by dS(u, v). For convenience, we define dS(u, v) = ∞ when u 6∈ S or v 6∈ S. We use the
following lemma.
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I Lemma 13. For any S ⊆ V and any i ∈ {0, . . . , `− 1}, rG[S]∪P (vivi+1) is the minimum
of pref(va) + dS(va, vb) + suf(vb) for a ≤ i < b.

Proof. Any s− t path avoiding vivi+1 in G[S] ∪ P can be written as, for some a ≤ i < b, a
concatenation of s− va path Q1, va − vb path Q2 that is contained in G[S] \ P , and vb − t
path Q3. Because P is a shortest s− t path in G, we can replace Q1 by the prefix v0 . . . va,
Q2 by the shortest va − vb path in G[S] \P , and Q3 by the suffix vb . . . v` without increasing
the length. Therefore, the lemma holds. J

We want to define f(S) as a function that returns a list of rG[S]∪P (vivi+1) for all
i ∈ {0, . . . , `− 1}; however, we cannot do so because the length of this list is not bounded
by |S|. Instead, we define f(S) as a function that returns a list of rG[S]∪P (vivi+1) for all i
with vi ∈ S. This succinct representation has enough information because, for any vi 6∈ S,
we have rG[S]∪P (vivi+1) = rG[S]∪P (vi−1vi) (or ∞ when i = 0). We describe Increment and
Union below.

Increment(X, f(X), x). By running Dijkstra’s algorithm twice, we compute dX∪{x}(x, v)
and dX∪{x}(v, x) for all v ∈ X ∪ {x} in O(|E[X]| + |X| log |X|) time. For vi ∈ X ∪ {x},
we define Li := mina≤i,va∈X∪{x}(pref(va) + d(va, x)) and Ri := minb>i,vb∈X∪{x}(d(x, vb) +
suf(vb)). By a standard dynamic programming, we can compute Li and Ri for all i with
vi ∈ X ∪ {x} in O(|X|) time.

From Lemma 13, rG[X∪{x}]∪P (vivi+1) = pref(va) + dX∪{x}(va, vb) + suf(vb) holds for
some a ≤ i < b. If dX∪{x}(va, vb) = dX(va, vb) holds, we have rG[X∪{x}]∪P (vivi+1) =
rG[X]∪P (vivi+1), and otherwise, we have dX∪{x}(va, vb) = dX∪{x}(va, x) + dX∪{x}(x, vb).
Therefore, we can compute rG[X∪{x}]∪P (vivi+1) by taking the minimum of rG[X]∪P (vivi+1)
and mina≤i<b(pref(va) + d(va, x) + d(x, vb) + suf(vb)) = Li +Ri.

Union((X1, f(X1)), . . . , (Xc, f(Xc))). Let X :=
⋃
iXi. Because there exist no edges

between Xi and Xj for any i 6= j, we have dX(u, v) = mini dXi
(u, v) for any u, v ∈ X.

Therefore, from Lemma 13, we have rG[X]∪P (vivi+1) = minj rG[Xj ]∪P (vivi+1). For efficiently
computing rG[X]∪P (vivi+1) for all i with vi ∈ X, we do as follows in increasing order of i.

For each Xj , we maintain a value rj so that rj = rG[Xj ]∪P (vivi+1) always holds. Initially,
these values are set to ∞. We use a heap for computing minj rj and updating rj in O(log c)
time. For processing i, we first update rj ← rG[Xj ]∪P (vivi+1) for the set Xj containing vi. We
do not need to update rj′ for any other set Xj′ because rG[Xj′ ]∪P (vivi+1) = rG[Xj′ ]∪P (vi−1vi)
holds. Then, we compute rG[X]∪P (vivi+1) = minj rj .

Proof of Theorem 12. The algorithm Increment(X, f(X), x) correctly computes f(X ∪
{x}) in O(|E[X]|+ |X| log |X|) time and the algorithm Union((X1, f(X1)), . . . , (Xc, f(Xc)))
correctly computes f(

⋃
iXi) in O(|

⋃
iXi| log c) = O(|

⋃
iXi| log |

⋃
iXi|) time. Therefore,

from Theorem 2, we can compute f(V ), i.e., rG∪P (e) = rG(e) for all edges e on P , in
O(k(m+ n logn)) time. J

4.6 2-hop cover
Let G = (V,E) be a directed graph with an edge-weight function w : E → R≥0. A 2-hop
cover of G is the following data structure (L+, L−) for efficiently answering distance queries.
For each vertex u ∈ V , we assign a set L+(u) of pairs (v, d+

uv) ∈ V ×R≥0 and a set L−(u) of
pairs (v, d−vu) ∈ V ×R≥0. We require that, for every pair of vertices s, t ∈ V , the shortest-path
distance from s to t is exactly the minimum of d+

sh + d−ht among all pairs (h, d+
sh) ∈ L+(s)
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and (h, d−ht) ∈ L−(t). The size of the 2-hop cover is defined as
∑
u∈V |L+(u)| + |L−(u)|,

and the maximum label size is defined as maxu∈V |L+(u)|+ |L−(u)|. Using a 2-hop cover of
maximum label size T , we can answer a distance query in O(T ) time. In this section, we
prove the following theorem.

I Theorem 14. Given a non-negative edge-weighted directed graph and its elimination forest
of depth k, we can construct a 2-hop cover of maximum label size 2k in O(k(m+ n logn))
time.

For S ⊆ V , we define f(S) as a function that returns a 2-hop cover of G[S]. We denote
the shortest-path distance from s to t in G[S] by dS(s, t). We denote the result of the distance
query from s to t for f(S) by qS(s, t). We now describe Increment and Union.

Increment(X, f(X), x). Let (L+, L−) be the 2-hop cover of G[X]. By running Dijkstra’s
algorithm twice, we compute the shortest-path distances from x and to x in G[X ∪ {x}].
Then, for each u ∈ X ∪{x}, we insert (x, dX∪{x}(u, x)) into L+(u) and (x, dX∪{x}(x, u)) into
L−(u). Finally, we return the updated (L+, L−) as f(X ∪ {x}).

I Claim 2. f(X ∪ {x}) is a 2-hop cover of G[X ∪ {x}].

Proof. It suffices to show that qX∪{x}(s, t) = dX∪{x}(s, t) holds for every s, t ∈ X∪{x}. The
claim clearly holds when s = x or t = x. For s, t ∈ X, let δ := dX∪{x}(s, x) + dX∪{x}(x, t).
Then, we have dX∪{x}(s, t) = min(dX(s, t), δ). From the construction of f(X ∪{x}), we have
qX∪{x} = min(qX(s, t), δ) = min(dX(s, t), δ). Therefore, the claim holds. J

Union((X1, f(X1)), . . . , (Xc, f(Xc))). Because there exist no paths connecting Xi and
Xj for any i 6= j, we can construct a 2-hop cover of G[

⋃
iXi] by simply concatenating the

2-hop covers f(X1), . . . , f(Xc).

Proof of Theorem 14. The algorithm Increment(X, f(X), x) correctly computes f(X ∪
{x}) in O(|E[X]|+ |X| log |X|) time and the algorithm Union((X1, f(X1)), . . . , (Xc, f(Xc))
correctly computes f(

⋃
iXi) in O(|

⋃
iXi|) time. Therefore, from Theorem 2, we can compute

a 2-hop cover in O(k(m + n logn)) time. Let (L+, L−) be the 2-hop cover obtained by
computing f(V ). For each element (u, d+

uv) ∈ L+(u) or (u, d−vu) ∈ L−(u), v is located on the
path from u to the root in the elimination forest. Therefore, we have |L+(u)|+ |L−(u)| ≤ 2k
for every vertex u ∈ V . J

5 Open problems

Is it possible to obtain a twO(1)m polylog(n)-time algorithm for the edge-disjoint maximum
s − t flow problem? Because it looks difficult to obtain a maximum flow for G from a
maximum flow for G − v in linear time, it will be difficult to apply our approach to this
problem. Another open question is whether the running time for (unweighted) Maximum
Matching is optimal. For this problem, as it can be solved in O(

√
nm) time, our algorithm

improves the general-case algorithm only when td = n
1
2−ε.
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Abstract
We give a first polynomial-time algorithm for (Weighted) Feedback Vertex Set on graphs
of bounded maximum induced matching width (mim-width). Explicitly, given a branch decom-
position of mim-width w, we give an nO(w)-time algorithm that solves Feedback Vertex Set.
This provides a unified algorithm for many well-known classes, such as Interval graphs and
Permutation graphs, and furthermore, it gives the first polynomial-time algorithms for other
classes of bounded mim-width, such as Circular Permutation and Circular k-Trapezoid
graphs for fixed k. In all these classes the decomposition is computable in polynomial time, as
shown by Belmonte and Vatshelle [Theor. Comput. Sci. 2013].

We show that powers of graphs of tree-width w − 1 or path-width w and powers of graphs
of clique-width w have mim-width at most w. These results extensively provide new classes of
bounded mim-width. We prove a slight strengthening of the first statement which implies that,
surprisingly, Leaf Power graphs which are of importance in the field of phylogenetic studies
have mim-width at most 1. Given a tree decomposition of width w− 1, a path decomposition of
width w, or a clique-width w-expression of a graph G, one can for any value of k find a mim-width
decomposition of its k-power in polynomial time, and apply our algorithm to solve Feedback
Vertex Set on the k-power in time nO(w).

In contrast to Feedback Vertex Set, we show that Hamiltonian Cycle is NP-complete
even on graphs of linear mim-width 1, which further hints at the expressive power of the mim-
width parameter.
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1 Introduction

A feedback vertex set in a graph is a subset of its vertices whose removal results in an
acyclic graph. The problem of finding a smallest such set is one of Karp’s 21 famous NP-
complete problems [26] and many algorithmic techniques have been developed to attack
this problem, see e.g. the survey [14]. The study of Feedback Vertex Set through
the lens of parameterized algorithmics dates back to the earliest days of the field [11] and
throughout the years numerous efforts have been made to obtain faster algorithms for this
problem [4, 8, 9, 10, 11, 12, 18, 25, 32, 33]. In terms of parameterizations by structural
properties of the graph, Feedback Vertex Set is e.g. known to be FPT parameterized by
tree-width [9] and clique-width [6], and W[1]-hard but in XP parameterized by Independent
Set and the size of a maximum induced matching [24].

In this paper, we study Feedback Vertex Set parameterized by the maximum induced
matching width (mim-width for short), a graph parameter defined in 2012 by Vatshelle [36]
which measures how easy it is to decompose a graph along vertex cuts with bounded
maximum induced matching size on the bipartite graph induced by edges crossing the cut.
One interesting aspect of this width-measure is that its modeling power is much stronger than
tree-width and clique-width, and many well-known and deeply studied graph classes such as
Interval graphs and Permutation graphs have (linear) mim-width 1, with decompositions
that can be found in polynomial time [1, 36], while their clique-width can be proportional to
the square root of the number of vertices [17]. Hence, designing an algorithm for a problem
Π that runs in XP time parameterized by mim-width yields polynomial-time algorithms for
Π on several interesting graph classes at once.

We give an XP-time algorithm for Feedback Vertex Set parameterized by mim-width,
assuming that a branch decomposition of bounded mim-width is given.1 Since such a decom-
position can be computed in polynomial time [1, 36] for the following classes, this provides a
unified polynomial-time algorithm for Feedback Vertex Set on all of them: Interval
and Bi-Interval graphs, Circular Arc, Permutation and Circular Permutation
graphs, Convex graphs, k-Trapezoid, Circular k-Trapezoid, k-Polygon, Dilworth-
k and Co-k-Degenerate graphs for fixed k. Furthermore, our algorithm can be applied
to Weighted Feedback Vertex Set as well, which for several of these classes was not
known to be solvable in polynomial time.

I Theorem 1. Given an n-vertex graph and a branch decomposition of mim-width w, we
can solve (Weighted) Feedback Vertex Set in time nO(w).

We note that some of the above mentioned graph classes of bounded mim-width also have
bounded asteroidal number, and a polynomial-time algorithm for Feedback Vertex Set
on graphs of bounded asteroidal number was previously known due to Kratsch et al. [27].
However, our algorithm improves this result. For instance, k-Polygon graphs have mim-
width at most 2k [1] and asteroidal number k [35]. The algorithm of Kratsch et al. [27]
implies that Feedback Vertex Set on k-Polygon graphs can be solved in time nO(k2)

while the our result improves this bound to nO(k) time. It is not difficult to see that in
general, mim-width and asteroidal number are incomparable.

We give results that expand our knowledge of the expressive power of mim-width. The
k-power of a graph is the graph obtained by adding an edge vw for two vertices v, w with
distance at most k. We show that powers of graphs of tree-width w− 1 or path-width w and
powers of graphs of clique-width w have mim-width at most w.

1 This problem was mentioned as an ‘interesting topic for further research’ in [24]. Furthermore, the
authors recently proved it to be W[1]-hard [21].
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I Theorem 2. Given a nice tree decomposition of width w, all of whose join bags have size
at most w, or a clique-width w-expression of a graph, one can output a branch decomposition
of mim-width w of its k-power in polynomial time.

Theorem 2 implies that leaf power graphs, of importance in the field of phylogenetic
studies, have mim-width 1. These graphs are known to be Strongly Chordal and there
has recently been interest in delineating the difference between these two graph classes, on
the assumption that this difference was not very big [28, 30]. Our result actually implies a
large difference, as it was recently shown by Mengel that there are Strongly Chordal
Split graphs of mim-width linear in the number of vertices [29].

We contrast our positive result with a proof that Hamiltonian Cycle is NP-complete
on graphs of linear mim-width 1, even when given a decomposition. Panda and Pradhan [31]
showed that Hamiltonian Cycle is NP-complete on Rooted Directed Path graphs
and we show that the graphs constructed in their reduction have linear mim-width 1. This
provides evidence that the class of graphs of linear mim-width 1 is larger than one might have
previously expected. Up until now, on all graph classes of linear mim-width 1, Hamiltonian
Cycle was known to be polynomial time (Permutation), or even linear time (Interval)
solvable. This can be compared with the fact that parameterized by clique-width, Feedback
Vertex Set is FPT [6] and Hamiltonian Cycle only admits an XP algorithm [3, 13] but
is W[1]-hard [15] (see also [16]).

Let us explain some of the essential ingredients of our dynamic programming algorithm.
A crucial observation is that if a forest contains no induced matching of size w + 1, then the
number of internal vertices of the forest is bounded by 6w (Lemma 7). Motivated by this
observation, given a forest, we define the forest obtained by removing its isolated vertices
and leaves to be its reduced forest. The observation implies that in a cut (A, B) of a graph
G, there are at most n6w possible reduced forests of some forests consisting of edges crossing
this cut. We enumerate all of them, and use these as indices of the table of our algorithm.

However, the interaction of an induced forest F in G with the edges of the bipartite
graph crossing the cut (A, B), denote this graph by GA,B , is not completely described by its
reduced forest R. Observe that there might still be edges in the graph GA,B after removing
the vertices of R; however, these edges are not contained in the forest F . We capture this
property of F by considering a minimal vertex cover of GA,B − V (R) that avoids all vertices
in F . Hence, as a second component of the table indices, we enumerate all minimal vertex
covers of GA,B − V (R), for any possible reduced forest R.

To argue that the number of table entries stays bounded by nO(w), we use the known
result that every n-vertex bipartite graph with maximum induced matching size w has nw

minimal vertex covers. Remark that in the companion paper [22], we use minimal vertex
covers of a bipartite graph in a similar way. The usage here is more complicated because we
cannot index the table by the full intersection forest, but only index by its reduced forest.

Throughout the paper, proofs of statements marked with ‘F’ are deferred to the full
version [23].

2 Preliminaries

For a graph G we denote by V (G) and E(G) its vertex and edge set, respectively. For a
vertex set X ⊆ V (G), we denote by G[X] the subgraph induced by X. We use the shorthand
G−X for G[V (G) \X]. The union and intersection of two graphs G1 and G2 are denoted
by G1 ∪G2 and G1 ∩G2, respectively. For a vertex v ∈ V (G), we denote by NG(v) the set
of neighbors of v in G. For A ⊆ V (G), let NG(A) be the set of vertices in V (G) \A having a
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neighbor in A. When G is clear from the context, we allow to remove it from the subscript.
We denote by C(G) the set of connected components of G.

For disjoint vertex sets X, Y ⊆ V (G), we denote by G[X, Y ] the bipartite subgraph of G

with bipartition (X, Y ) such that for x ∈ X, y ∈ Y , x and y are adjacent in G[X, Y ] if and
only if they are adjacent in G. A cut of G is a bipartition (A, B) of its vertex set. A set M of
edges is a matching if no two edges in M share an endpoint, and a matching {a1b1, . . . , akbk}
is induced if there are no other edges in the subgraph induced by {a1, b1, . . . , ak, bk}. A
vertex set S ⊆ V (G) is a vertex cover of G if every edge in G is incident with a vertex in S.

For a graph G and a vertex subset A of G, we define mimG(A) to be the maximum size of
an induced matching in G[A, V (G) \A]. A pair (T,L) of a subcubic tree T and a bijection L
from V (G) to the set of leaves of T is called a branch decomposition. For each edge e of T , let
T e

1 and T e
2 be the two connected components of T−e, and let (Ae

1, Ae
2) be the vertex bipartition

of G such that for each i ∈ {1, 2}, Ae
i is the set of all vertices in G mapped to leaves contained

in T e
i by L. The mim-width of (T,L) is defined as mimw(T,L) ..= maxe∈E(T ) mimG(Ae

1).
The minimum mim-width over all branch decompositions of G is called the mim-width of G

and the linear mim-width of G if T is restricted to a path with a pendant leaf at each node.
Given a branch decomposition, one can subdivide an arbitrary edge and let the newly

created vertex be the root of T , in the following denoted by r. Throughout the following
we assume that each branch decomposition has a root node of degree two. For two nodes
t, t′ ∈ V (T ), we say that t′ is a descendant of t if t lies on the path from r to t′ in T . For
t ∈ V (T ), we denote by Gt the subgraph induced by all vertices that are mapped to a leaf
that is a descendant of t. We use the shorthand Vt for V (Gt) and let V̄t

..= V (G) \ Vt.

I Definition 3 (Boundary). Let G be a graph and A, B ⊆ V (G) such that A ∩B = ∅. We
let bdB(A) be the set of vertices in A that have a neighbor in B, i.e. bdB(A) ..= {v ∈ V (A) |
N(v) ∩B 6= ∅}. We define bd(A) ..= bdV (G)\A(A) and call bd(A) the boundary of A in G.

I Definition 4 (Crossing Graph). Let G be a graph and A, B ⊆ V (G). If A ∩ B = ∅, we
define the graph GA,B

..= G[bdB(A), bdA(B)] to be the crossing graph from A to B.

For a node t in a branch decomposition, we define Gt,t̄
..= GVt,V̄t

.
We prove that given a set A ⊆ V (G), the number of minimal vertex covers in GA,V (G)\A

is bounded by nmimG(A), and furthermore, the set of all minimal vertex covers can be
enumerated in time nO(mimG(A)). This observation is crucial to argue that we only need to
store nO(w) entries at each node in the branch decomposition in our algorithm.

I Corollary 5 (Minimal Vertex Covers Lemma, F). Let H be a bipartite graph on n vertices
with a bipartition (A, B). The number of minimal vertex covers of H is at most nmimH(A),
and the set of all minimal vertex covers of H can be enumerated in time nO(mimH(A)).

3 Reduced forests

We formally introduce the notion of a reduced forest which will be crucial to obtain the
desired runtime bound of the algorithm for Feedback Vertex Set.

I Definition 6 (Reduced Forest). Let F be a forest. A reduced forest of F , denoted by R(F ),
is an induced subforest of F obtained as follows. (i) Remove all isolated vertices of F . (ii) For
each component C of F with |V (C)| = 2, remove one of its vertices. (iii) For each component
C of F with |V (C)| ≥ 3, remove all leaves of C.
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Note that if F has no component that is a single edge then the reduced forest is uniquely
defined. We give an upper bound on the size of a reduced forest R(F ) by a function of the
size of a maximum induced matching in the forest F . This is crucial in our algorithm.

I Lemma 7. Let p be a positive integer. If F is a forest whose maximum induced matching
has size at most p and F ′ is a reduced forest of F , then |V (F ′)| ≤ 6p.

Proof. We sketch the proof, and provide the details in the full version [23]. For a forest F ,
we denote by m(F ) the size of the maximum induced matching in F . We prove by induction
on m(F ). We may assume F contains no isolated vertices. If m(F ) ≤ 1, then F consists of
one component containing no path of length 4, and R(F ) contains at most 2 nodes. We may
assume m(F ) = p > 1.

If F contains a connected component C containing no path of length 4, then it contains
at most 2 internal nodes, and m(F − V (C)) = m(F )− 1. We may assume every component
C of F contains a path of length 4. Assume F contains a path v1v2v3v4v5 such that v1 and
v5 are not leaves of F , and v2, v3, v4 have degree 2 in R(F ). In this case, we define F ′ as
the forest obtained from F by removing v2, v3, v4 and adding an edge v1v5. Then we have
m(F ′) ≤ m(F )− 1. By induction hypothesis, R(F ′) contains at most 6(p− 1) nodes, and
thus R(F ) contains at most 6(p− 1) + 3 ≤ 6p nodes. We may assume there is no such a path.

Let C be a component of F . As R(C) contains at least 3 nodes, the leaves of R(C)
form an independent set. Suppose R(C) contains t leaves. Since each leaf of R(C) is
incident with a leaf of C, R(C) contains an induced matching of size at least t. Thus,
m(F − V (C)) ≤ m(F )− t. Note that R(C) contains at most t nodes of degree at least 3. By
the previous argument, there are at most 2 nodes between two nodes of degree other than 2
in R(C). Thus, R(C) contains at most t + t + 2(2t− 1) ≤ 6t nodes. The result follows by
induction hypothesis. J

Let (A, B) be a vertex partition of a graph G, and R be some forest in GA,B. In the
algorithm, we will be asking if there exists an induced forest F in G[A ∪ bd(B)] such that
F ∩GA,B has R as a reduced forest. However, this formulation turns out to be technical, as we
need to significantly consider some edges in B when we merge two partial solutions. To ease
this task, we define the following notion on an induced forest in G[A∪bd(B)]−E(G[bd(B)]).

I Definition 8 (Forest respecting a forest and a minimal vertex cover). Let (A, B) be a vertex
partition of a graph G. Let R be an induced forest in GA,B and M be a minimal vertex
cover of GA,B − V (R). An induced forest F in G[A∪ bd(B)]−E(G[bd(B)]) respects (R, M)
if it satisfies the following: (i) R is a reduced forest of F ∩GA,B and (ii) V (F ) ∩M = ∅.

Suppose R is an induced forest in GA,B . For an induced forest F of G containing V (R),
there are two necessary conditions for R to be a reduced forest of F ∩GA,B . First, if F ∩GA,B

contains a vertex v in GA,B − V (R) having at least two neighbors in R, then v should be
contained in the reduced forest. Therefore, in F ∩GA,B , every vertex in V (F ∩GA,B) \V (R)
should have at most one neighbor in R. Second, every leaf x of R should have a neighbor
y in GA,B − V (R) such that the only neighbor of y in R is x; otherwise, we would have
removed x when taking a reduced forest. Motivated by this observation we define the notion
of potential leaves, which is a possible leaf neighbor of some vertex in V (R).

I Definition 9 (Potential Leaves). Let (A, B) be a vertex partition of a graph G. Let R

be an induced forest in GA,B and M be a minimal vertex cover of GA,B − V (R). Let
H ..= GA,B . For each vertex x ∈ V (R), we define its set of potential leaves as PLR,M (x) ..=
NH(x) \NH(V (R) \ {x}) \ (M ∪ V (R)).
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A

B

RH

Figure 1 The graph R is a reduced forest of H.

For a subset A′ of A, we consider a pair of an induced forest R′ and a minimal vertex
cover M ′ of GA′,V (G)\A′ − V (R′) and we say that this pair is a restriction of a pair of R and
M for A, if they satisfy certain natural properties. In the dynamic programming, this will
be necessary when considering cuts corresponding to some node and its child.

I Definition 10 (Restriction of a reduced forest and a minimal vertex cover). Let (A1, A2, B)
be a vertex partition of a graph G. Let R be an induced forest in GA1∪A2,B and M be a
minimal vertex cover of GA1∪A2,B −V (R). An induced forest R1 in GA1,A2∪B and a minimal
vertex cover M1 of GA1,A2∪B−V (R1) are restrictions of R and M to GA1,A2∪B if they satisfy
the following:
1. V (R) ∩ A1 ⊆ V (R1) and for every v ∈ V (R) ∩ B having at least two neighbors in

V (R) ∩A1, v ∈ V (R1).
2. (V (R1) \ V (R)) ∩B = ∅ and V (R1) ∩M = ∅.
3. Every vertex in (V (R1) \ V (R)) ∩A1 has at most one neighbor in V (R) ∩B.
4. V (R) ∩M1 = ∅ and M ∩A1 ⊆M1.
5. Let v be a vertex in M ∩B incident with an edge vw in GA1,B−V (R) for some w /∈ V (R1)

that is not covered by any vertices in M \ {v}. Then either v ∈M1 or w ∈M1.

Lastly, we define a notion for merging two partial solutions.

I Definition 11 (Compatibility). Let (A1, A2, B) be a vertex partition of a graph G. Let R

be an induced forest in GA1∪A2,B, and for each i ∈ {1, 2}, let Ri be an induced forest in
GAi,A3−i∪B , and Pi be a partition of C(Ri). We construct an auxiliary graph Q with respect
to (R, R1, R2, P1, P2) in G as follows. Let Q be the graph on C(R)∪C(R1)∪C(R2) such that

for H1 and H2 contained in distinct sets of C(R), C(R1), C(R2), H1 is adjacent to H2 in
Q iff V (H1) ∩ V (H2) 6= ∅,
for H1, H2 ∈ C(Ri), H1 is adjacent to H2 iff they are contained in the same part of Pi,
C(R) is an independent set.

We say that the tuple (R, R1, R2, P1, P2) is compatible in G if Q has no cycles. We define
U(R, R1, R2, P1, P2) to be the partition of C(R) such that for H1, H2 ∈ C(R), H1 and H2 are
contained in the same part iff they are contained in the same component of Q.

I Proposition 12. Let (A1, A2, B) be a vertex partition of a graph G. Let R be an induced
forest in GA1∪A2,B and M be a minimal vertex cover of GA1∪A2,B − V (R). Let H be an
induced forest in G[A1∪A2∪bd(B)]−E(G[bd(B)]) respecting (R, M). There are restrictions
(R1, M1) and (R2, M2) of (R, M) to GA1,A2∪B and GA2,A1∪B, respectively such that

for each i ∈ {1, 2}, H ∩G[Ai ∪ bd(A3−i ∪B)]− E(G[bd(A3−i ∪B)]) respects (Ri, Mi),
every vertex in (V (R) \ (V (R1) ∪ V (R2))) ∩ B has at least two neighbors in (V (R1) ∩
A1) ∪ (V (R2) ∩A2).

Proof. For each i ∈ {1, 2}, let F ∗i
..= H ∩G[Ai ∪ bd(A3−i ∪B)]− E(G[bd(A3−i ∪B)]), and

Fi
..= F ∗i ∩GAi,A3−i∪B , and Ri be a reduced forest of Fi such that (Single-edge Rule) for a

single-edge component vw of Fi with v ∈ V (R) and w /∈ V (R), we select v as a vertex of Ri.
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We check that every vertex in S ..= (V (R) \ (V (R1) ∪ V (R2))) ∩ B has at least two
neighbors in (V (R1)∩A1)∪ (V (R2)∩A2). Suppose there exists a vertex v in S violating the
condition. As v ∈ V (R), v has at least two neighbors in V (H) ∩ (A1 ∪A2). Thus, v has a
neighbor not contained in (V (R1)∩A1)∪ (V (R2)∩A2). Let w be such a vertex, and without
loss of generality, we assume w ∈ A1. If v has a neighbor other than w in V (H) ∩A1, then
v is contained in R1. So, in H, w is the unique neighbor of v in V (H) ∩ A1. Also, since
w /∈ V (R1), v is the unique neighbor of v in F1. Then vw is a single-edge component of F1,
and by Single-edge Rule, we selected v as a vertex of R1. This contradicts v /∈ V (R1). We
conclude that every vertex in S has at least two neighbors in (V (R1) ∩A1) ∪ (V (R2) ∩A2).

Conditions 1, 2 and 3 of being a restriction follows from the definition of a restriction
and the Single-edge Rule. The details are given in the full version [23].

We now construct a minimal vertex cover M1 of GA1,A2∪B −V (R1), and verify the fourth
and fifth conditions of being a restriction. Let M ′ be the set of all vertices v in M incident
with an edge vw in GA1,A2 − V (R) where vw is not covered by M \ {v} and w /∈ V (R1).

I Claim 13. There is a minimal vertex cover M1 of GA1,A2∪B − V (R1) satisfying the
following.

V (R) ∩M1 = ∅ and M ∩A1 ⊆M1.
Let v be a vertex in M ∩B incident with an edge vw in GA1,B−V (R) for some w /∈ V (R1)
that is not covered by any vertices in M \ {v}. Then either v ∈M1 or w ∈M1.

Proof. Let Y be the set of all vertices in bd(A2) \ V (H) having a neighbor in bd(A1) \
V (R1). Let Z be the set of all vertices in bd(A1) \ V (R1) \ (M ∩A1) having a neighbor in
(V (R) \ V (R1)) ∩B. Let M ′′ be the set obtained from M ′ ∪ Y ∪ Z by removing all vertices
v ∈M ′ ∩B such that all the neighbors of v in bd(A1) \V (R1) \ (M ∩A1) are contained in Z.

By construction we can show that M ′′ is a vertex cover of GA1,A2∪B − V (R1). We take a
minimal vertex cover M1 of GA1,A2∪B − V (R1) contained in M ′′. We have V (R) ∩M1 = ∅.
Since each vertex of M ′ ∩ A covers some edge that is not covered by any other vertex in
M ′′, we have M ∩A1 = M ′ ∩A1 ⊆M1. Since every vertex in Z meets some edge incident
with V (R) \ V (R1), Z is contained in M1. If v is a vertex in M ∩B incident with an edge
vw in GA1,B − V (R) for some w /∈ V (R1) that is not covered by any vertices in M \ {v},
then v ∈ M ′ ∩ B. By construction of M ′′, either v ∈ M ′′ ∩ B or w ∈ Z. In particular if
w /∈ Z, then v is the vertex covering the edge vw, and it also remains in M1. Thus, the fifth
condition for being a restriction also holds, as required. y

By Claim 13 we know that Conditions 4 and 5 of being a restriction hold, so we conclude
that there is a restriction (R1, M1) of (R, M) where F ∗1 respects (R1, M1). J

I Proposition 14 (F). Let (A1, A2, B) be a vertex partition of a graph G. Let R be an
induced forest in GA1∪A2,B and M be a minimal vertex cover of GA1∪A2,B − V (R). Let H

be an induced forest in G[A1 ∪A2 ∪ bd(B)]−E(G[bd(B)]) respecting (R, M) and for each
i ∈ {1, 2},

let (Ri, Mi) be a restriction of (R, M) that Hi
..= H∩G[Ai∪bd(A3−i∪B)]−E(G[bd(A3−i∪

B)]) respects (guaranteed by Proposition 12), and
let Pi be the partition of C(Ri) such that for C, C ′ ∈ C(Ri), C and C ′ are in the same
part iff they are contained in the same connected component of Hi.

Then (R, R1, R2, P1, P2) is compatible.

Now, we prove a proposition regarding the merging operation of two partial solutions.
Unfortunately, when we have partial solutions H1 and H2 for A1 and A2, respectively,
G[V (H1) ∪ V (H2) ∪ V (R)] may not be a partial solution. One reason is that since M1 ∩B
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may differ from M ∩B, H1 might contain some vertex in (M \M1)∩B. To avoid a situation
where such a vertex is in R1, we require that V (R1) ∩M = ∅ (this is already included in the
condition of being a restriction). Thus, such a vertex will be a potential leaf of some vertex
in R1, and we could simply remove it to find a forest avoiding M . The second reason is that
for some vertex of V (R)∩V (A1), it might have a potential leaf in A2, but not in B, and thus
in G[V (H1) ∪ V (H2) ∪ V (R)] this vertex may not have a potential leaf as a neighbor even if
it has degree at most 1 in R. In this case, we can simply add one of the potential leaves.

I Proposition 15. Let (A1, A2, B) be a vertex partition of a graph G. Let R be an induced
forest in GA1∪A2,B and M be a minimal vertex cover of GA1∪A2,B − V (R) such that for
every vertex x of degree at most 1 in R, PLR,M (x) 6= ∅. For each i ∈ {1, 2},

let Ri be an induced forest in GAi,A3−i∪B and Mi be a minimal vertex cover of GAi,A3−i∪B−
V (Ri), and Hi be an induced forest in G[Ai ∪ bd(A3−i ∪B)]− E(G[bd(A3−i ∪B)]) re-
specting (Ri, Mi),
let Pi be the partition of C(Ri) such that for C, C ′ ∈ C(Ri), C and C ′ are in the same
part if and only if they are contained in the same connected component of Hi,
Ri and Mi are restrictions of R and M ,
every vertex in (V (R) V (R1) ∪ V (R2)) ∩B has at least two neighbors in (V (R1) ∩A1) ∪
(V (R2) ∩A2),
(R, R1, R2, P1, P2) is compatible.

There is an induced forest H in G[A1 ∪A2 ∪ bd(B)]− E(G[bd(B)]) respecting (R, M) such
that V (H) ∩ (A1 ∪A2) = (V (H1) ∩A1) ∪ (V (H2) ∩A2).

Proof. As (R, R1, R2, P1, P2) is compatible, we can verify that H∗ ..= G[V (H1) ∪ V (H2) ∪
V (R)] is a forest. Let H be the graph obtained from H∗ − (B \ V (R)) by adding a potential
leaf of each vertex in V (R) ∩ (A1 ∪ A2) of degree at most 1 in R and removing all edges
between vertices in B. We observe that H is a forest. Since H∗ is a forest, H∗ − (B \ V (R))
is a forest. Adding a potential leaf of a vertex in V (R) ∩ (A1 ∪A2) preserves the property of
being a forest, as we removed edges in G[B]. In the remainder, we prove that H respects
(R, M); that is, (i) R is a reduced forest of GA1∪A2,B ∩H, and (ii) V (H) ∩M = ∅.

Condition (ii) is easy to verify: since we remove all vertices in M when we construct H

from H∗, we have V (H) ∩M = ∅. We now verify condition (i). Let Hnew
..= H ∩GA1∪A2,B .

We first verify that every vertex of V (Hnew) \ V (R) has degree at most 1 in Hnew.

I Claim 16 (F). Every vertex of V (Hnew) \ V (R) has degree at most 1 in Hnew.

We argue that we can take R as a reduced forest of Hnew. Let v ∈ V (R). If v has degree at
least 2 in Hnew, then v is contained in any reduced forest of Hnew. Suppose v has degree at
most 1 in Hnew. Suppose v ∈ A1 ∪A2. In this case, by the construction, v is incident with
its potential leaf in Hnew, say w. It means that vw is a single-edge component in Hnew, and
we can take v as a vertex in R.

Now, suppose v ∈ B. First assume that v ∈ V (Ri) for some i ∈ {1, 2}. If v has a
neighbor in Ri, then it also has at least one potential leaf in Hi ∩ GAi,A3−i∪B, and thus
v has degree 2 in Hnew, a contradiction. Thus, v has no neighbor in Ri, and has exactly
one potential leaf, say w. By Claim 16, v is the unique neighbor of w in R, and thus
vw is a single-edge component of Hnew. Thus, we can take v as a vertex in R. Suppose
v ∈ (V (R) \ (V (R1) ∪ V (R2))) ∩B. Then by the precondition, it has at least two neighbors
in (V (R1) ∩A1) ∪ (V (R2) ∩A2) ⊆ (V (H1) ∩A1) ∪ (V (H2) ∩A2). Therefore, it is contained
in any reduced forest of Hnew. It shows that R is a reduced forest of Hnew.

Note that for each i ∈ {1, 2}, V (Hi)∩Ai avoids M ∩Ai. Furthermore, when we construct
Hnew, we removed all vertices in M ∩B. Therefore, we have V (Hnew) ∩M = ∅. J
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4 Feedback Vertex Set on graphs of bounded mim-width

We give an algorithm that solves the Feedback Vertex Set problem on graphs on n

vertices together with a branch decomposition of mim-width w in time nO(w). We observe
that given a graph G, a subset of its vertices S ⊆ V (G) is by definition a feedback vertex
set if and only if G − S, the induced subgraph of G on vertices V (G) \ S, is an induced
forest. It is therefore readily seen that computing the minimum size of a feedback vertex set
is equivalent to computing the maximum size of an induced forest, so in the remainder of
this section we solve the following problem which is more convenient for our exposition.

Maximum Induced Forest/Mim-Width
Input: A graph G on n vertices, a branch decomposition (T,L) of G, an integer k.
Parameter: w ..= mimw(T,L).
Question: Does G contain an induced forest of size at least n− k?

We solve the Maximum Induced Forest problem by bottom-up dynamic programming
over (T,L), the given branch decomposition of G, starting at the leaves of T . Let t ∈ V (T )
be a node of T . To motivate the table indices of the dynamic programming table, we now
observe how a solution to Maximum Induced Forest, an induced forest F , interacts with
the graph Gt+bd ..= G[Vt ∪ bd(V̄t)]− E(G[bd(V̄t)]). The intersection of F with Gt+bd is an
induced forest which throughout the following we denote by Ft+bd ..= F [V (Gt+bd)]. Since
we want to bound the number of table entries by nO(w), we have to focus in particular on
the interaction of F with the crossing graph Gt,t̄, denoted by Ft,t̄

..= F [V (Gt,t̄)].
However, it is not possible to enumerate all induced forests in a crossing graph as potential

table indices: Consider for example a star on n vertices and the cut consisting of the central
vertex on one side and the remaining vertices on the other side. This cut has mim-value 1
but it contains 2n induced forests, since each vertex subset of the star induces a forest on
the cut. The remedy for this issue are reduced forests, introduced in Section 3.

At each node t ∈ V (T ), we only consider reduced forests as possible indices for the table
entries. By Lemma 7, the number of reduced forests in each cut of mim-value w is bounded
by n6w. We analyze the structure of Ft,t̄ to motivate the objects that can be used to represent
Ft,t̄ in such a way that the number of all possible table entries is at most nO(w).

The induced forest Ft,t̄ has three types of vertices in Gt,t̄: (1) The vertices of the reduced
forest R(Ft,t̄) of Ft,t̄. (2) The leaves of the induced forest Ft,t̄, denoted by L(Ft,t̄). (3)
Vertices in Ft,t̄ that do not have a neighbor in Ft,t̄ on the opposite side of the boundary, in
the following called non-crossing vertices and denoted by NC(Ft,t̄).

As outlined above, the only type of vertices in Ft,t̄ that will be used as part of the
table indices are the vertices of a reduced forest of Ft,t̄. Hence, we neither know about the
leaves of Ft,t̄ nor its non-crossing vertices upon inspecting this part of the index. Suppose
v ∈ (L(Ft,t̄)∪NC(Ft,t̄))∩Vt. Then, Ft,t̄ does not use any vertex in x ∈ (N(v)∩V̄t)\V (R(Ft,t̄)):
If v is a leaf in Ft,t̄, then the presence of the edge vx would make it a non-leaf vertex and if v

is a non-crossing vertex, the presence of vx would make v a vertex incident to an edge of the
forest crossing the cut. An analogous point can be made for a vertex in (L(Ft,t̄)∪NC(Ft,t̄))∩V̄t.
We capture this property of Ft,t̄ by considering a minimal vertex cover of Gt,t̄ − V (R(Ft,t̄))
that avoids all leaves and non-crossing vertices of Ft,t̄. Such a minimal vertex cover always
exists as L(Ft,t̄) ∪NC(Ft,t̄) is an independent set in Gt,t̄.

Lastly, we have to keep track of how the connected components of Ft,t̄ (respectively,
R(Ft,t̄)) are joined together via the forest Ft+bd. This forest induces a partition of C(R(Ft,t̄))
in the following way: Two components C1, C2 ∈ C(R(Ft,t̄)) are in the same part of the
partition if and only if C1 and C2 are contained in the same connected component of Ft+bd.
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Ft,t̄

...
...

Vt

V̄t
C1

C2

C3

D1

D2

Figure 2 An example of a crossing graph Gt,t̄ together with an induced forest F and their
interaction. The forest Ft,t̄ = F [V (Gt,t̄)] is displayed to the left of the dividing line in the drawing
and the 4 vertices and 1 edge in bold form a reduced forest R of Ft,t̄. The square vertices form
a minimal vertex cover of Gt,t̄ − V (R) satisfying (3). Furthermore, Ci (i ∈ [3]) are the connected
components of R and Di (i ∈ [2]) are the connected components of F .

We are ready to define the indices of the dynamic programming table T to keep track of
sufficiently much information about the partial solutions in the graph Gt+bd. We denote
by Rt the set of all induced forests of Gt,t̄ on at most 6w vertices. For R ∈ Rt, letMt,R

be the set of all minimal vertex covers of Gt,t̄ − V (R) and Pt,R the set of all partitions of
the components of R. For an illustration of the definition of the table indices, which we
start on now, see Figure 2. For (R, M, P ) ∈ Rt ×Mt,R × Pt,R and i ∈ {0, . . . , n}, we set
T [t, (R, M, P ), i] ..= 1 (and to 0 otherwise), iff the following conditions are satisfied.

1. There is an induced forest F in G[Vt ∪ bd(V̄t)]− E(G[bd(V̄t)]) with |V (F ) ∩ Vt| = i.
2. Let Ft,t̄ = F ∩Gt,t̄, i.e. Ft,t̄ is the subforest of F induced by the vertices of the crossing

graph Gt,t̄. Then, R = R(Ft,t̄), meaning that R is a reduced forest of Ft,t̄.
3. M is a minimal vertex cover of Gt,t̄ − V (R) such that V (F ) ∩M = ∅.
4. P is a partition of C(R) such that two components C1, C2 ∈ C(R) are in the same part of

the partition iff they are contained in the same connected component of F .

Recall that r ∈ V (T ) denotes the root of T , the tree of the given branch decomposition of
G. From Property (1) we immediately observe that the table entries store enough information
to obtain a solution to Maximum Induced Forest after all table entries have been filled.
In other words, G contains an induced forest of size i if and only if T [r, (∅, ∅, ∅), i] = 1.

By definition, |Rt| = O(n6w) and by Minimal Vertex Covers Lemma, |Mt,R| = nO(w) for
each R ∈ Rt. It is well known that |Pt,R| ≤ (w/ log(w))O(w) by upper bounds on the Bell
number (see e.g. [2]). Thus, we have

I Proposition 17. There are at most nO(w) table entries in T .

We now show how to compute the table entries in T . We can easily fill in the table entries
for the leaves of T , for the details see the full version [23]. Here, we focus on how to compute
the entries in the internal nodes of T from the entries stored in the tables corresponding to
their children. Let t ∈ V (T ) be an internal node with children a and b. Using Propositions 12,
14, 15, we can show the following.

I Proposition 18 (F). Let I = [(R, M, P ), i] ∈ (Rt ×Mt,Rt
× Pt,Rt

)×{0, . . . , n} such that
for every vertex x of degree at most 1 in R, PLR,M (x) 6= ∅. Then T [t, (R, M, P ), i] = 1 if and
only if there are restrictions (Ra, Ma) and (Rb, Mb) of (R, M) to Ga,ā and Gb,b̄, respectively,
and partitions Pa and Pb of C(Ra) and C(Rb), respectively, and integers ia and ib such that
T [ta, (Ra, Ma, Pa), ia] = 1 and T [tb, (Rb, Mb, Pb), ib] = 1,
(R, Ra, Rb, Pa, Pb) is compatible and P = U(R, R1, R2, P1, P2),
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every vertex in (V (R) \V (R1)∪V (R2))∩B has at least two neighbors in (V (R1)∩A1)∪
(V (R2) ∩A2),
ia + ib = i.

Based on Proposition 18, we can proceed with the computation of the table at an internal
node t with children a and b. Let I = [(R, M, P ), i] ∈ (Rt ×Mt,Rt

× Pt,Rt
)× {0, . . . , n}.

(Step 1) We verify whether I is valid, i.e. whether it can represent a valid partial solution
in the sense of the definition of the table entries. That is, each vertex of degree at most 1 in
R has to have at least one potential leaf.

(Step 2) We consider all pairs Ia = [(Ra, Ma, Pa), ia] ∈ (Ra ×Ma,Ra
× Pa,Ra

)×{0, . . . , n}
and Ib = [(Rb, Mb, Pb), ib] ∈ (Rb ×Mb,Rb

× Pb,Rb
)× {0, . . . , n}. We check

(Ra, Ma) and (Rb, Mb) are restrictions of (R, M) to Ga,ā and Gb,b̄ respectively,
T [ta, (Ra, Ma, Pa), ia] = 1 and T [tb, (Rb, Mb, Pb), ib] = 1,
(R, Ra, Rb, Pa, Pb) is compatible and P = U(R, R1, R2, P1, P2),
every vertex in (V (R) \V (R1)∪V (R2))∩B has at least two neighbors in (V (R1)∩A1)∪
(V (R2) ∩A2),
ia + ib = i.

If there are Ia and Ib satisfying all of conditions, then we assign T [t, (R, M, P ), i] = 1, and
otherwise, we assign T [t, (R, M, P ), i] = 0. Correctness follows from Proposition 18 and the
runtime analysis is deferred to the full version [23].

In Weighted Feedback Vertex Set, we are given a graph and a function ω : V (G)→
R, we want to find a set S with minimum ω(S) such that G− S has no cycles. Similar to
Feedback Vertex Set, we can instead solve the problem of finding an induced forest F

with maximum ω(V (F )). Instead of specifying i in the table, for a table [t, (R, M, P )] we
keep the ω(V (F )∩Vt) value for an induced forest F respecting (R, M) and P with maximum
ω(V (F ) ∩ Vt), as T [t, (R, M, P )]. The procedure for a leaf node is analogous. In the internal
node, we compare all pairs (Ra, Ma, Pa) and (Rb, Mb, Pb) for children ta and tb, and take the
maximum among all sums T [ta, (Ra, Ma, Pa)] + T [tb, (Rb, Mb, Pb)]. Therefore, we can solve
Weighted Feedback Vertex Set in time nO(w) as well. We have proved Theorem 1.

5 Hamiltonian Cycle for linear mim-width 1

I Theorem 19. Hamiltonian Cycle is NP-complete on graphs of linear mim-width 1,
even if given the mim-width decomposition.

Proof. Itai et al [20] showed that given a bipartite graph G with maximum degree 3, it is
NP-complete to decide if it has a Hamiltonian cycle, while Panda and Pradhan [31] construct,
from this graph G, a rooted directed path graph H such that H has a Hamiltonian cycle if
and only if G does. The construction of [31] can be used to also output a linear mim-width 1
decomposition of H, in polynomial time. We provide the details in the full version [23]. J

6 Powers of graphs

We show that k-powers of graphs of tree-width at most w − 1 have mim-width at most w.
This is somewhat surprising because this bound does not depend on k. The following lemma
captures the property. We denote by distG(v, w) the distance between v and w in G.

I Lemma 20. Let k, w ∈ N and let (A, B, C) be a vertex partition of graph G such that
there are no edges between A and C, and B has size w. If H is the k-power of G, then
mimH(A ∪B) ≤ w.
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Proof. Let B ..= {b1, b2, . . . , bw}. For every vertex v in G, we assign a vector cv = (cv
1, . . . , cv

w)
such that cv

i = distG(v, bi). Suppose for contradiction that there is an induced matching
{y1z1, y2z2, . . . , ytzt} of size at least w + 1 in H[A∪B, C]. Since t ≥ w + 1, there are distinct
integers t1, t2 ∈ {1, 2, . . . , t} and an integer j ∈ {1, 2, . . . , w} such that

distG(yt1 , bj) + distG(zt1 , bj) ≤ k and distG(yt2 , bj) + distG(zt2 , bj) ≤ k.
Then we have either distG(yt1 , bj) + distG(zt2 , bj) ≤ k or distG(yt2 , bj) + distG(zt1 , bj) ≤ k,
which contradicts with the assumption that yt1zt2 and yt2zt1 are not edges in H. J

I Theorem 21 (F). Let k, w ∈ N and G be a graph that admits a nice tree decomposition of
width w all of whose join bags are of size at most w. Then the k-power of G has mim-width
at most w. Furthermore, given such a nice tree decomposition, we can output a branch
decomposition of mim-width at most w in polynomial time.

The following notions are of importance in the field of phylogenetic studies, i.e. the recon-
struction of ancestral relations in biology, see e.g. [7]. A graph G is a leaf power if there
exists a threshold k and a tree T , called a leaf root, whose leaf set is V (G) such that uv ∈ E

if and only if the distance between u and v in T is at most k. Similarly, G is called a min-leaf
power if uv ∈ E if and only if the distance between u and v in T is more than k. Thus, G is a
leaf power if an only if its complement is a min-leaf power. It is easy to see that trees admit
nice tree decompositions all of whose join bags have size 1 and since every leaf power graph
is an induced subgraph of a power of some tree, it has mim-width at most 1 by Theorem 21.

I Corollary 22. The leaf powers and min-leaf powers have mim-width at most 1 and given a
leaf root, we can compute in polynomial time a branch decomposition witnessing this.

We further show that powers of graphs of clique-width w have mim-width at most
w. We give the details of the proof in the full version [23]; however we remark that the
following lemma will imply this result. A graph is w-labeled if there is a labeling function
f : V (G)→ {1, 2, . . . , w}.

I Lemma 23 (F). Let k, w ∈ N and let (A, B) be a vertex partition of graph G such that
G[A] is w-labeled and two vertices in a label class of G[A] have the same neighborhood in B.
If H is the k-power of G, then mimH(A) ≤ w.

I Theorem 24 (F). Let k, w ∈ N and G be a graph of clique-width w. Then the k-power of
G has mim-width at most w. Furthermore, given a clique-width w-expression, we can output
a branch decomposition of mim-width at most w in polynomial time.

7 Conclusion

We have shown that Feedback Vertex Set admits an nO(w)-time algorithm when given
with a branch decomposition of mim-width w. Our algorithm provides polynomial-time
algorithms for known classes of bounded mim-width, and gives the first polynomial-time
algorithms for Circular Permutation and Circular k-Trapezoid graphs for fixed k.

Somewhat surprisingly, we prove that powers of graphs of bounded tree-width or clique-
width have bounded mim-width. Heggernes et al. [19] showed that the clique-width of the
k-power of a path of length k(k + 1) is exactly k. This also shows that the expressive power
of mim-width is much stronger than clique-width, since all powers of paths have mim-width
just 1. As a special case, we show that Leaf Power graphs have mim-width 1. We believe
the notion of mim-width can be of benefit to the study of Leaf Power graphs.

We conclude with repeating an open problem regarding algorithms for computing mim-
width. The problem of computing the mim-width of general graphs was shown to be
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W[1]-hard, not in APX unless NP = ZPP [34], and no algorithm for computing the mim-width
of a graph in XP time is known. As in [34], we therefore ask: Is there an XP algorithm
approximating mim-width w by some function f(w) and returning a decomposition? We
remark that it is a big open problem whether Leaf Power graphs can be recognized in
polynomial time [5, 7, 28, 30]. A positive answer to our question may be used to design such
a recognition algorithm using branch decompositions of bounded mim-width.
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Abstract
Minimizing the sum of weighted completion times on m identical parallel machines is one of the
most important and classical scheduling problems. For the stochastic variant where processing
times of jobs are random variables, Möhring, Schulz, and Uetz (1999) presented the first and
still best known approximation result, achieving, for arbitrarily many machines, performance
ratio 1 + 1

2 (1 + ∆), where ∆ is an upper bound on the squared coefficient of variation of the
processing times. We prove performance ratio 1 + 1

2 (
√

2 − 1)(1 + ∆) for the same underlying
algorithm—theWeighted Shortest Expected Processing Time (WSEPT) rule. For the special case
of deterministic scheduling (i.e., ∆ = 0), our bound matches the tight performance ratio 1

2 (1+
√

2)
of this algorithm (WSPT rule), derived by Kawaguchi and Kyan in a 1986 landmark paper. We
present several further improvements for WSEPT’s performance ratio, one of them relying on
a carefully refined analysis of WSPT yielding, for every fixed number of machines m, WSPT’s
exact performance ratio of order 1

2 (1 +
√

2)−O(1/m2).
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1 Introduction

In an archetypal machine scheduling problem, n independent jobs have to be scheduled on m
identical parallel machines or processors. Each job j is specified by its processing time pj > 0
and by its weight wj > 0. In a feasible schedule, every job j is processed for pj time units
on one of the m machines in an uninterrupted fashion, and every machine can process at
most one job at a time. The completion time of job j in some schedule S is denoted by CS

j .
The goal is to compute a schedule S that minimizes the total weighted completion time
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∑n
j=1 wjC

S
j . In the standard classification scheme of Graham, Lawler, Lenstra, and Rinnooy

Kan [7], this NP-hard scheduling problem is denoted by P ||
∑
wjCj .

Weighted Shortest Processing Time Rule. By a well-known result of Smith [24], sequen-
cing the jobs in order of non-increasing ratios wj/pj gives an optimal single-machine schedule.
List scheduling in this order is known as the Weighted Shortest Processing Time (WSPT) rule
and can also be applied to identical parallel machines, where it is a 1

2 (1 +
√

2)-approximation
algorithm; see Kawaguchi and Kyan [14]. A particularly remarkable aspect of Kawaguchi
and Kyan’s work is that, in contrast to the vast majority of approximation results, their
analysis does not rely on some kind of lower bound. Instead, they succeed in explicitly
identifying a class of worst-case instances. In particular, the performance ratio 1

2 (1 +
√

2) is
tight: For every ε > 0 there is a problem instance for which WSPT has approximation ratio
at least 1

2 (1 +
√

2)− ε. The instances achieving these approximation ratios, however, have
large numbers of machines when ε becomes small. Schwiegelshohn [20] gives a considerably
simpler version of Kawaguchi and Kyan’s analysis.

Stochastic Scheduling. Many real-world machine scheduling problems exhibit a certain
degree of uncertainty about the jobs’ processing times. This characteristic is captured
by the theory of stochastic machine scheduling, where the processing time of job j is no
longer a given number pj but a random variable pj . As all previous work in the area, we
always assume that these random variables are stochastically independent. At the beginning,
only the distributions of these random variables are known. The actual processing time
of a job becomes only known upon its completion. As a consequence, the solution to a
stochastic scheduling problem is no longer a simple schedule, but a so-called non-anticipative
scheduling policy. Precise definitions on stochastic scheduling policies are given by Möhring,
Radermacher, and Weiss [16]. Intuitively, whenever a machine is idle at time t, a non-
anticipative scheduling policy may decide to start a job of its choice based on the observed
past up to time t as well as the a priori knowledge of the jobs processing time distributions
and weights. It is, however, not allowed to anticipate information about the future, i.e., the
actual realizations of the processing times of jobs that have not yet finished by time t.

It follows from simple examples that, in general, a non-anticipative scheduling policy
cannot yield an optimal schedule for each possible realization of the processing times. We
are therefore looking for a policy which minimizes the objective in expectation. For the
stochastic scheduling problem considered in this paper, the goal is to find a non-anticipative
scheduling policy that minimizes the expected total weighted completion time. This problem
is denoted by P |pj ∼ stoch|E[

∑
wjCj ].

Weighted Shortest Expected Processing Time Rule. The stochastic analogue of the
WSPT rule is greedily scheduling the jobs in order of non-increasing ratios wj/E[pj ].
Whenever a machine is idle, the Weighted Shortest Expected Processing Time (WSEPT) rule
immediately starts the next job in this order. For a single machine this is again optimal; see
Rothkopf [18]. For identical parallel machines, Cheung, Fischer, Matuschke, and Megow [3]
and Im, Moseley, and Pruhs [10] independently show that WSEPT does not even achieve
constant performance ratio. More precisely, for every R > 0 there is a problem instance for
which WSEPT’s expected total weighted completion time is at least R times the expected
objective value of an optimal non-anticipative scheduling policy. In the special case of
exponentially distributed processing times, Jagtenberg, Schwiegelshohn, and Uetz [12] show a
lower bound of 1.243 on WSEPT’s performance. On the positive side, WSEPT is an optimal
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1 +
1
2
(1 + ∆) [17]

1 + 1
2(
√ 2− 1)(1 + ∆) [Cor. 2]

1 + 1
6 max{2, 1 + ∆} [Cor. 5]
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1+min{2,
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√
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Figure 1 Bounds on WSEPT’s performance ratio.

policy for the special case of unit weight jobs with stochastically ordered processing times,
P |pj ∼ stoch(�st)|E[

∑
Cj ]; see Weber, Varaiya, and Walrand [25]. Moreover, Weiss [26, 27]

proves asymptotic optimality of WSEPT for bounded second moments of the residual pro-
cessing time distributions. Möhring, Schulz, and Uetz [17] show that WSEPT achieves
performance ratio 1 + 1

2 (1 + ∆)(1− 1
m ), where ∆ is an upper bound on the squared coefficient

of variation of the processing times.

Further Approximation Results from the Literature. While there is a PTAS for the
deterministic problem P ||

∑
wjCj [23], no constant-factor approximation algorithm is known

for the stochastic problem P |pj ∼ stoch|E[
∑
wjCj ]. WSEPT’s performance ratio 1+ 1

2 (1+∆)
(for arbitrarily many machines) proven by Möhring et al. [17] is the best hitherto known
performance ratio. The only known approximation ratio not depending on the jobs’ squared
coefficient of variation ∆ is due to Im et al. [10], who, for the special case of unit job weights
P |pj ∼ stoch|E[

∑
Cj ], present an O(log2 n+m logn)-approximation algorithm.

The performance ratio 1 + 1
2 (1 + ∆) has been carried over to different generalizations of

P |pj ∼ stoch|E[
∑
wjCj ]. Megow, Uetz, and Vredeveld [15] show that it also applies if jobs

arrive online in a list and must immediately and irrevocably be assigned to machines, on
which they can be sequenced optimally. An approximation algorithm with this performance
ratio for the problem on unrelated parallel machines is designed by Skutella, Sviridenko, and
Uetz [22]. If these two features are combined, i.e., in the online list-model with unrelated
machines, Gupta, Moseley, Uetz, and Xie [8] develop a (8 + 4∆)-approximation algorithm.

The performance ratios are usually larger if jobs are released over time: In the offline
setting with identical machines the best known approximation algorithm has performance
ratio 2 + ∆; see Schulz [19]. This performance ratio is also achieved for unrelated machines
[22] and by a randomized online algorithm [19]. In the online setting there exist furthermore
a deterministic (max{2.618, 2.309 + 1.309∆})-approximation on identical machines [19] and
a deterministic (144 + 72∆)-approximation on unrelated machines [8].

Our Contribution and Outline. We present the first progress on the approximability of
the basic stochastic scheduling problem on identical parallel machines with expected total
weighted completion time objective P |pj ∼ stoch|E[

∑
wjCj ] since the seminal work of

Möhring et al. [17]; see Figure 1. We prove that WSEPT achieves performance ratio
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Figure 2 Graph of the function m 7→ 1 + 1
2 (
√

(2m− km)km − km)/m, which for m ∈ N gives
the worst-case approximation ratio of WSPT for P ||

∑
wjCj with m machines (dots), compared to

the machine-independent Kawaguchi-Kyan bound.

1 + 1
2 min

{√
(2m− km)km − km

m
,

1
1 + min{2,

√
2 + 2∆}

}
(1 + ∆), (1)

where km :=
⌊(

1 − 1
2
√

2
)
m
⌉
is the nearest integer to

(
1 − 1

2
√

2
)
m. Notice that, for every

number of machines m, the performance ratio given by the first term of the minimum in (1)
is bounded from above by 1 + 1

2 (
√

2− 1)(1 + ∆), and for m→∞ it converges to this bound.
As (1 + min{2,

√
2 + 2∆})−1 ≤

√
2− 1 for all ∆ > 0, when considering an arbitrary number

of machines, the second term in the minimum dominates the first term. In the following, we
list several points that emphasize the significance of the new performance ratio (1).

For the special case of deterministic scheduling (i.e., ∆ = 0), the machine-independent
performance ratio in (1) matches the Kawaguchi-Kyan bound 1

2 (1 +
√

2), which is known
to be tight [14]. In particular, we dissolve the somewhat annoying discontinuity of the
best previously known bounds [14, 17] at ∆ = 0; see Figure 1.
Again for deterministic jobs, our machine-dependent bound 1+ 1

2 (
√

(2m− km)km−km)/m
is tight and slightly improves the 30 years old Kawaguchi-Kyan bound for every fixed
number of machines m; see Figure 2.
For exponentially distributed processing times (∆ = 1), our results imply that WSEPT
achieves performance ratio 4/3. This solves an open problem by Jagtenberg et al. [12],
who give a lower bound of 1.243 on WSEPT’s performance and ask for an improvement
of the previously best known upper bound of 2− 1/m due to Möhring et al. [17].
WSEPT’s performance bound due to Möhring et al. [17] also holds for the MinIncrease
policy, introduced by Megow et al. [15], which is a fixed-assignment policy, i.e. it determines
for each job beforehand on which machine it is processed. Our stronger bound, together
with a lower bound in [22], shows that WSEPT beats every fixed-assignment policy.

The improved performance ratio in (1) is derived as follows. In Section 2 we present one of
the key results of this paper (see Theorem 1 below): If WSPT has performance ratio 1 +β for
some β, then WSEPT achieves performance ratio 1 + β(1 + ∆) for the stochastic scheduling
problem. For the Kawaguchi-Kyan bound 1 + β = 1

2 (1 +
√

2), this yields performance
ratio 1 + 1

2 (
√

2 − 1)(1 + ∆). It is also interesting to notice that the performance ratio of
Möhring et al. [17] follows from this theorem by plugging in 1 + β = 3/2− 1/(2m), which
is WSPT’s performance ratio obtained from the bound of Eastman, Even, and Isaacs [4];
see Kawaguchi and Kyan [14]. We generalize Theorem 1 to performance ratios w.r.t. the
weighted sum of α-points as objective function, where the α-point of a job j is the point in
time when it has been processed for exactly αpj time units.
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The theorems derived in Section 2 provide tools to carry over bounds for the WSPT rule
to the WSEPT rule. The concrete performance ratio for the WSEPT rule obtained this
way thus depends on good bounds for the WSPT rule. In Section 3 we derive performance
ratios for WSPT w.r.t. the weighted sum of α-points objective. For α = 1

2 this performance
ratio follows easily from a result by Avidor, Azar, and Sgall [1]. As a consequence we obtain
performance ratio 1 + 1

6 max{2, 1 + ∆} for WSEPT. By optimizing the choice of α, we finally
obtain the performance ratio 1 + 1

2 (1 + min{2,
√

2 + 2∆})−1(1 + ∆). The various bounds
derived in Sections 2 and 3 are illustrated in Figure 1. Finally, in Section 4 the analysis
of Schwiegelshohn [20] for the WSPT rule is refined for every fixed number of machines m,
entailing the machine-dependent bound for the WSEPT rule in (1).

Due to space constraints, some proofs are omitted in this extended abstract. They can
be found in the full version of this paper [11].

2 Performance ratio of the WSEPT rule

Let ∆ ≥ Var[pj ]/E[pj ]2 for all j ∈ {1, . . . , n}. In Theorems 1 and 3 we demonstrate how
performance ratios for the WSPT rule for deterministic scheduling can be carried over to
stochastic scheduling. Theorem 1 starts out from a performance ratio for WSPT with respect
to the usual objective function: the weighted sum of completion times. In Theorem 3 this is
generalized insofar as a performance ratio for WSPT with the weighted sum of α-points as
objective function is taken as a basis. Only Theorem 1 is proven in this extended abstract.

I Theorem 1. If the WSPT rule on m machines has performance ratio 1 + βm for the
problem P ||

∑
wjCj, then the WSEPT rule achieves performance ratio 1 + βm(1 + ∆) for

P |pj ∼ stoch|E[
∑
wjCj ] on m machines.

The reason why the bound for the WSPT rule does not directly carry over to the WSEPT
rule is that under a specific realization of the processing times the schedule obtained by the
WSEPT policy may differ from the WSPT schedule for this realization. Still, under every
realization the WSEPT schedule is a list schedule. Hence, usually a bound that is valid
for every list schedule is used: The objective value of a list schedule on m machines is at
most 1/m times the objective value of the list schedule on a single machine plus (m− 1)/m
times the weighted sum of processing times. This bound, holding because a list scheduling
policy assigns each job to the currently least loaded machine, is applied realizationwise
to obtain a corresponding bound on the expected values in stochastic scheduling (cf. [17,
Lemma 4.1]), which is then compared to an LP-based lower bound on the expected total
weighted completion time under an optimal scheduling policy.

In order to benefit from the precise bounds known for the WSPT rule nevertheless, we
regard the following auxiliary stochastic scheduling problem: For each job, instead of its
weight wj , we are given a weight factor ρj . The actual weight of a job is ρj times its actual
processing time, i.e., if a job takes longer, it also becomes more important. The goal is again
to minimize the total weighted completion time. For the thus defined stochastic scheduling
problem list scheduling in order of the ρj has the nice property that it creates a WSPT
schedule in every realization. So, any performance ratio of the WSPT rule directly carries
over to this list scheduling policy for the auxiliary scheduling problem. In the following proof
of Theorem 1 we first compare the expected total weighted completion time of a WSEPT
schedule for the original problem to the expected objective value of the schedule obtained by
list scheduling in order of ρj for the auxiliary problem, then apply the performance ratio
of the WSPT rule, and finally compare the expected total weighted completion time of an
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optimal schedule for the auxiliary problem to the expected objective value of the schedule
obtained by an optimal policy for the original problem. The transitions between the two
problems lead to the additional factor 1 + ∆ in the performance ratio.

Proof. Consider an instance of P |pj ∼ stoch|E[
∑
wjCj ] consisting of n jobs andm machines,

and let β := βm and ρj := wj/E[pj ] for j ∈ {1, . . . , n}. For every realization ~p = (p1, . . . , pn)
of the processing times we consider the instance I(~p) of P ||

∑
wjCj which consists of n jobs

with processing times p1, . . . , pn and weights ρ1p1, . . . , ρnpn, so that the jobs in this instance
have Smith ratios ρ1, . . . , ρn under all possible realizations. Therefore, for every realization ~p
the schedule obtained by the WSEPT policy is a WSPT schedule for I(~p). Let CWSEPT

j (~p)
denote the completion time of job j in the schedule obtained by the WSEPT policy in the
realization ~p, let C∗j (I(~p)) denote its completion time in an optimal schedule for I(~p), and
let CΠ∗

j (~p) denote j’s completion time in the schedule constructed by an optimal stochastic
scheduling policy under the realization ~p. For every realization ~p of the processing times,
since the WSEPT schedule obeys the WSPT rule for I(~p), its objective value is bounded by

n∑
j=1

(ρjpj)CWSEPT
j (~p) ≤ (1 + β) ·

n∑
j=1

(ρjpj)C∗j (I(~p)).

As the schedule obtained by an optimal stochastic scheduling policy is feasible for I(~p),
n∑
j=1

(ρjpj)C∗j (I(~p)) ≤
n∑
j=1

(ρjpj)CΠ∗
j (~p).

By putting these two inequalities together and taking expectations, we get the inequality

E

 n∑
j=1

ρjpjC
WSEPT
j

 ≤ (1 + β) · E

 n∑
j=1

ρjpjC
Π∗
j

 ,
where CWSEPT

j = CWSEPT
j ((p1, . . . ,pn)) and CΠ∗

j = CΠ∗
j ((p1, . . . ,pn)). Using the latter

inequality, we can bound the expected total weighted completion time of the WSEPT rule:

E

 n∑
j=1

wjC
WSEPT
j

 =
n∑
j=1

ρjE[pj ]E[CWSEPT
j ]

(∗)=
n∑
j=1

ρjE[pjCWSEPT
j ]−

n∑
j=1

ρjVar[pj ] = E

 n∑
j=1

ρjpjC
WSEPT
j

− n∑
j=1

ρjVar[pj ]

≤ (1 + β)E

 n∑
j=1

ρjpjC
Π∗
j

− n∑
j=1

ρjVar[pj ] = (1 + β)
n∑
j=1

ρjE[pjCΠ∗
j ]−

n∑
j=1

ρjVar[pj ]

(∗)= (1 + β) ·

 n∑
j=1

ρjE[pj ]E[CΠ∗
j ] +

n∑
j=1

ρjVar[pj ]

− n∑
j=1

ρjVar[pj ]

= (1 + β) ·
n∑
j=1

wjE[CΠ∗
j ] + β

n∑
j=1

ρjVar[pj ] ≤ (1 + β) ·
n∑
j=1

wjE[CΠ∗
j ] + ∆β

n∑
j=1

wjE[pj ]

≤ (1 + β(1 + ∆)) ·
n∑
j=1

wjE[CΠ∗
j ] = (1 + β(1 + ∆)) · E

 n∑
j=1

wjC
Π∗
j

 .
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The equalities marked with (∗) hold because for any stochastic scheduling policy Π and all j

E[pjCΠ
j ] = E[pjSΠ

j ] + E[p2
j ] = E[pj ]E[SΠ

j ] + E[pj ]2 + Var[pj ] = E[pj ]E[CΠ
j ] + Var[pj ],

where SΠ
j denotes the starting time of job j under policy Π. The independence of pj and SΠ

j

follows from the independence of the processing times and the non-anticipativity of policy Π,
and the last inequality uses the fact that E[pj ] ≤ E[CΠ∗

j ] for every job j. J

By plugging in the Kawaguchi-Kyan bound, we immediately get the following performance
ratio (see Figure 1).

I Corollary 2. The WSEPT rule has performance ratio 1 + 1
2 (
√

2 − 1) · (1 + ∆) for the
problem P |pj ∼ stoch|E[

∑
wjCj ].

For α ∈ (0, 1] the α-point CS
j (α) of a job j is the (first) point in time at which it has been

processed for αpj time units. Introduced by Hall, Shmoys, and Wein [9] in order to convert
a preemptive schedule into a non-preemptive one, the concept of α-points is often used in
the design of algorithms (see e.g. [5, 2, 6, 21]). In contrast, we use them in the definition of
an alternative objective function in order to improve the analysis of the WSEPT rule.

We consider as objective function the weighted sum of α-points
∑n
j=1 wjC

S
j (α) for

α ∈ (0, 1]. This differs only by the constant (1 − α)
∑n
j=1 wjpj from the weighted sum of

completion times. So as for optimal solutions the objective functions are equivalent. The
same applies to the stochastic variant, where the two objectives differ by (1−α)

∑n
j=1 wjE[pj ].

We now generalize Theorem 1 to the (expected) weighted sum of α-points.

I Theorem 3. If the WSPT rule has performance ratio 1 + β for the deterministic problem
P ||
∑
wjCj(α), then the WSEPT rule has performance ratio 1 + β(1 + ∆) for the problem

P |pj ∼ stoch|E[
∑
wjCj(α)] and 1 + β ·max{1, α(1 + ∆)} for P |pj ∼ stoch|E[

∑
wjCj ].

The proof relies on the same idea as the proof of Theorem 1, namely to apply the
bound for P ||

∑
wjCj(α) realizationwise to the auxiliary stochastic problem described above.

Theorem 1 follows from Theorem 3 by plugging in α = 1.

3 Performance ratios for WSPT with weighted sum of α-points
objective

In this section we derive performance ratios for P ||
∑
wjCj(α). The two classical performance

guarantees for P ||
∑
wjCj by Eastman, Even, and Isaacs [4] and by Kawaguchi and Kyan [14]

can both be generalized to this problem. While the Eastman-Even-Isaacs bound can be
established for every α ∈ (0, 1], the Kawaguchi-Kyan bound carries over only for α ∈ [ 1

2 , 1].
In return, the generalized Kawaguchi-Kyan bound is better for these α.

For a problem instance I denote by N (I) its job set, by CWSPT
j (α)(I) the α-point of

job j in the WSPT schedule for I, and by C∗j (α)(I) the α-point of job j in some fixed (‘the’)
optimal schedule for I. Hence CWSPT

j (1)(I) = CWSPT
j (I) is the completion time of j in the

WSPT schedule, and analogously for the optimal schedule. Furthermore, let MWSPT
i (I) and

M∗i (I) denote the load of the i-th machine and MWSPT
min (I) and M∗min(I) denote the load of

the least loaded machine, in the WSPT schedule and the optimal schedule for I, respectively.
Moreover, let WSPTα(I) and OPTα(I) denote the weighted sum of α-points of the schedule
obtained by the WSPT rule and of the optimal schedule, respectively. Finally, denote by
λα(I) := WSPTα(I)/OPTα(I) the approximation ratio of the WSPT rule for the instance I.
We assume that if multiple jobs have the same ratio wj/pj , the WSPT rule processes them
according to an arbitrary job order given as part of the input.
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It is a well-known fact (see e.g. [20]) that for the weighted sum of completion times
objective the worst case for the WSPT rule occurs if all jobs have the same Smith ratio wj/pj .
This generalizes to the weighted sum of α-points objective.

I Lemma 4. For every α ∈ [0, 1] and every instance I of P ||
∑
wjCj(α) there is an instance

I ′ of P ||
∑
pjCj(α) with the same number of machines and λα(I ′) ≥ λα(I).

The proof proceeds in the same way as the proof of Schwiegelshohn [20]. For unit Smith
ratio instances the WSPT rule is nothing but list scheduling according to an arbitrary given
order. Restricting to them has the benefit that the objective value of a schedule S can be
computed easily from its machine loads, namely

n∑
j=1

pjC
S
j ( 1

2 ) = 1
2

m∑
i=1

(MS
i )2. (2)

This classical observation can for example be found in the paper of Eastman et al. [4].
For the sum of the squares of the machine loads as objective function Avidor, Azar, and

Sgall [1] showed that WSPT has performance ratio 4/3. So this also holds for the weighted
sum of 1

2 -points. By plugging it in into Theorem 3, we get the following corollary.

I Corollary 5. The WSEPT rule has performance ratio 1+ 1
6 max{2, 1+∆} for the scheduling

problem P |pj ∼ stoch|E[
∑
wjCj ].

Now we generalize the bound of Eastman, Even, and Isaacs [4].

I Theorem 6 (Generalized Eastman-Even-Isaacs bound). For every α ∈ (0, 1] the WSPT rule
has performance ratio

1 + m− 1
2αm ≤ 1 + 1

2α

for the problem P ||
∑
wjCj(α).

I Remark. The generalized Eastman-Even-Isaacs bound does not lead to better performance
ratios for the WSEPT rule for P |pj ∼ stoch|E[

∑
wjCj ] than the bound of Möhring et

al. [17], as plugging in β = m−1
2αm into Theorem 3 leads to a performance ratio of

1 + m− 1
2αm ·max{1, α(1 + ∆)} ≥ 1 + 1

2(1 + ∆)
(

1− 1
m

)
.

So far, by choosing α = 1 and α = 1
2 we have derived the two performance ratios for the

WSEPT rule labeled by [Cor. 2] and [Cor. 5] in Figure 1. The proofs of Schwiegelshohn [20]
and of Avidor et al. [1] of the underlying bounds for WSPT are quite similar. Both consist of
a sequence of steps that reduce the set of instances to be examined. In every such reduction
step it is shown that for any instance I of the currently considered set there is an instance
I ′ in a smaller set for which the approximation ratio of WSPT is not better. This can be
generalized to arbitrary α ∈ [ 1

2 , 1]. The resulting performance ratios for WSPT lead by
means of Theorem 3 to a family of different performance ratios for the WSEPT rule. Note
that the performance ratio of WSEPT following from the result of Avidor et al. for α = 1

2 has
better behavior for large values of ∆, while the performance ratio following from Kawaguchi
and Kyan’s result for α = 1 is better for small ∆. This behavior generalizes to α ∈ [ 1

2 , 1]: the
smaller the underlying α, the better the ratio for large ∆ but the worse the ratio for small ∆.
Finally, we take for every ∆ > 0 the minimum of all the derived bounds.
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I Theorem 7 (Generalized Kawaguchi-Kyan bound). For every α ∈ [ 1
2 , 1] the WSPT rule has

performance ratio

1 + 1
2α+

√
8α

for P ||
∑
wjCj(α), and this bound is tight.

Combining this bound with Theorem 3 yields for every α ∈ [ 1
2 , 1] the performance ratio

1 + 1
2 max{1/(α+

√
2α), (1 + ∆)/(1 +

√
2/α)} of WSEPT for P |pj ∼ stoch|E[

∑
wjCj ]. This

is minimized at α := 1/min{2, 1+∆}, yielding the following performance ratio (see Figure 1).

I Corollary 8. For P |pj ∼ stoch|E[
∑
wjCj ] the WSEPT rule has performance ratio

1 + 1
2 ·

1
1 + min{2,

√
2(1 + ∆)}

· (1 + ∆).

Proof sketch of Theorem 7

The proof of Theorem 7 is analogous to the proof of Schwiegelshohn [20], consisting of
a sequence of reduction lemmas. Let α ∈ [ 1

2 , 1], assume that p1 ≥ · · · ≥ pn, and let
` := max{j ∈ {1, . . . ,m} | pj ≥ 1

m−j+1
∑n
j′=j pj′}. Then we call the ` jobs with largest

processing times long jobs and denote the set of long jobs by L.

I Lemma 9. For every instance I of P ||
∑
pjCj(α) and every ε > 0 there is an instance

I ′ = I ′(ε) of P ||
∑
pjCj(α) with the same number of machines such that λα(I ′) ≥ λα(I) and

1. MWSPT
min (I ′) = 1,

2. every job j with SWSPT
j (I ′) < MWSPT

min (I ′) fulfills CWSPT
j (I ′) ≤MWSPT

min (I ′) and p′j < ε,
3. in the optimal schedule for I ′ every machine is used only by a single long job or has load

M∗min(I ′).
Like in Schwiegelshohn’s paper, the lemma is proven by scaling the instance and splitting all
jobs with SWSPT

j < MWSPT
min until they satisfy the conditions. Note that the restriction to

α ≥ 1
2 is needed for this lemma because for smaller α splitting jobs increases the objective

value and can thence reduce the performance ratio.
From now on, we focus on instances I that fulfill the requirements of Lemma 9 for some

0 < ε < MWSPT
min (I). For a subset J ⊆ N of jobs we write p(J ) :=

∑
j∈J pj . We call the

jobs in S := {j ∈ {1, . . . , n} | SWSPT
j (I) < MWSPT

min } short jobs. This set is disjoint from L
because all jobs in S have processing time pj < ε, and all jobs in L have processing time
pj ≥ p` ≥ 1

m−`+1
∑n
j′=` pj′ ≥MWSPT

min > ε. Finally, we call the jobs inM := N (I) \ (S ∪ L)
medium jobs. For an instance I of the type of Lemma 9, in the optimal schedule every
machine that does not process a long job has load M∗min(I) = p(M∪S)/(m− |L|). We may
assume that every machine processes at most one non-short job (see Figure 3).

I Lemma 10. For every instance I of P ||
∑
pjCj(α) satisfying the conditions of Lemma 9

there is an instance I ′ with λα(I ′) ≥ λα(I) that still satisfies the conditions of Lemma 9 and
has the additional property that the processing times of all non-short jobs are equal.

The proof is an adapted version of the proof of Corollary 5 in the paper of Schwiegelshohn.
Since by Lemma 9 reducing ε can only increase the approximation ratio, the worst-case

approximation ratio is approached in the limit ε → 0, which we will subsequently further
investigate. In the limit the sum of the squared processing times of the short jobs is negligible,
wherefore the limits for ε→ 0 of the objective values of the WSPT schedule and the optimal
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t = 1

Figure 3 Optimal schedule and WSPT schedule for instance satisfying the conditions of Lemma 9.

schedule for an instance I(ε) of the type of Lemma 10 only depend on two variables: the
ratio s between the numbers of non-short jobs and machines and the duration x of the
non-short jobs. The limit of the objective value of the WSPT schedule is given by

lim
ε→0

WSPTα(I(ε)) = m

2 + smx(1 + αx).

For the optimal schedule the formula depends on whether the non-short jobs are medium or
long. In the first case it is given by

lim
ε→0

OPTα(I(ε)) = m

2 (sx+ 1)2 +
(
α− 1

2

)
smx2.

and in the second case by

lim
ε→0

OPTα(I(ε)) = αsmx2 + m

2(1− s) .

So we have to determine the maximum of the function

λM(s, x) :=
m
2 + smx(1 + αx)

m
2 (sx+ 1)2 + (α− 1

2 )smx2 = 2sx(αx+ 1) + 1
s2x2 + sx((2α− 1)x+ 2) + 1

on {(s, x) | 0 ≤ s < 1, 0 ≤ x ≤ 1/(1− s)} and the maximum of

λL(s, x) :=
m
2 + smx(1 + αx)
αsmx2 + m

2(1−s)
= (1− s)(2sx(αx+ 1) + 1)

2αs(1− s)x2 + 1

on the region {(s, x) | 0 ≤ s < 1, 1/(1− s) ≤ x}.
The partial derivative ∂

∂xλM is positive on the feasible region, so for every fixed s the
maximum of λM(s, ·) is attained at x = 1

1−s , corresponding to the case that the non-short
jobs are long. This case is also captured by the function λL.

For x→∞ the function λL converges to one. Hence, for every s the maximum of λL(s, ·)
must be attained at a finite point x. The partial derivative ∂

∂xλL has only one positive root,
namely xs := (αs+

√
(2(1− s) + αs)αs)/(2αs(1− s)) > 1/(1− s). By plugging this in, we

obtain λL(s, xs) = 1 + 1
2 (
√

(2(1− s) + αs)αs/α− s). The only root of the derivative of the
function s 7→ λL(s, xs) that is less than 1 is s := 1/(2 +

√
2α). Plugging this in yields the

worst-case performance ratio

1 + 1
2α+

√
8α
.

Like the proofs of Kawaguchi and Kyan [14] and of Avidor et al. [1], this proof shows
how the worst-case instances look like: They consist of short jobs of total length m and
1/(2 +

√
2α)m long jobs of length 1 +

√
2/α. For α ∈ {1/2, 1} we recover the worst case

instances of Avidor et al. and of Kawaguchi and Kyan.
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t = 1

Figure 4 Optimal schedule and WSPT schedule for instance after the transformation of Lemma 12.

4 Performance ratio of the WSPT rule for a fixed number of
machines

In this section we analyse the WSPT rule for the problem P ||
∑
wjCj with a fixed number m

of machines. The problem instances of Kawaguchi and Kyan [14] whose approximation ratios
converge to (1 +

√
2)/2 consist of a set of infinitesimally short jobs with total processing

time m, and a set of k jobs of length 1 +
√

2, where k/m → 1 −
√

2/2. Since 1 −
√

2/2 is
irrational, the worst case ratio can only be approached if the number of machines goes to
infinity. Rounding these instances for a fixed m by choosing k as the nearest integer to(
1−

√
2

2
)
m (in the following denoted by

⌊(
1−

√
2

2
)
m
⌉
) yields at least a lower bound on the

worst-case approximation ratio for P ||
∑
wjCj . As we will see, the worst-case instances for

any fixed m look almost like that except that the length of the long jobs depends on m.

I Theorem 11. For P ||
∑
wjCj the WSPT rule has performance ratio

1 + 1
2

√
(2m− km)km − km

m
, where km :=

⌊(
1−
√

2
2

)
m

⌉
.

Moreover, this bound is tight for every fixed m ∈ N.

In the remainder we summarize the proof of this theorem. Lemmas 4 and 9 hold in
particular for the weighted sum of completion times. Since the described transformations do
not change the number of machines, also for a fixed number m of machines the worst case
occurs in an instance of the form described in Lemma 9. However, we cannot apply Lemma 10
when m is fixed because the transformation in this lemma possibly changes the number of
machines. As this is not allowed in our setting, we have to find different reductions. We
first reduce to instances with at most one medium job and then reduce further to instances
where all long jobs have equal length. Similar reductions are also carried out by Kalaitzis,
Svensson, and Tarnawski [13].

I Lemma 12. For every instance I of P ||
∑
pjCj satisfying the conditions of Lemma 9 there

is an instance I ′ with the same number of machines and λ(I ′) ≥ λ(I) that still satisfies the
conditions of Lemma 9 and has the additional property that there is at most one medium job.

For the instance I shown in Figure 3 the optimal and the WSPT schedule of the reduced
instance I ′ are shown in Figure 4.

I Lemma 13. For every instance I of P ||
∑
pjCj satisfying the conditions of Lemma 12

there is an instance I ′ with the same number of machines and λ(I ′) ≥ λ(I) that still satisfies
the conditions of Lemma 12 and additionally all long jobs have equal processing time.
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t = 1

Figure 5 Optimal schedule and WSPT schedule for instance after the transformation of Lemma 13.

The reduction used in the proof of this lemma is illustrated in Figure 5.
As in Section 3 we will analyse the limit for ε→ 0. The limits of the objective values of

the WSPT schedule and the optimal schedule for an instance I(ε) of the type of Lemma 13
depend only on three variables: two real variables, namely the length x of the long jobs and
the length y of the medium job (y = 0 if no medium job exists), and one integer variable:
the number k of long jobs. They are given by

lim
ε→0

WSPT(I(ε)) = m

2 + kx(1 + x) + y(1 + y),

lim
ε→0

OPT(I(ε)) = k · x2 + (m+ y)2

2(m− k) + y2

2 .

In Figure 6 of the full version [11] these formulas are illustrated via two-dimensional Gantt
charts for the three different types of single-machine schedules used by the WSPT schedule
and the optimal schedule, respectively. In order to describe a valid scheduling instance of
the prescribed type, the values x, y, and k must lie in the domains

k ∈ {0, . . . ,m− 1}, y

∈
[
0, m

m−k−1

]
if k < m− 1,

= 0 if k = m− 1,
x ∈

[
y +m

m− k
,∞
)
.

I Lemma 14. The maximum of the ratio

λm(x, y, k) :=
m
2 + kx(1 + x) + y(1 + y)
k · x2 + (m+y)2

2(m−k) + y2

2

= (m− k)(2kx2 + 2kx+ 2y2 + 2y +m)
(m− k)(2kx2 + y2) + (y +m)2

on the feasible domains is 1 + 1
2 (
√

(2m− km)km − km)/m, and it is attained at

km :=
⌊(

1− 1
2
√

2
)
m

⌉
, ym := 0, xm := m√

(2m− km)km − km
.

The calculations leading to these values are similar to those in Section 3. This concludes the
proof of Theorem 11.

In Figure 2 the function m 7→ λm(xm, 0, km), whose values at integral m are exactly the
worst case approximation ratios for instances with m machines, is depicted. The jumps
and kinks occur when the number km of long jobs in the worst-case instance changes. By
taking the limit for m→∞, we obtain alternative proof of the performance ratio 1

2 (1 +
√

2)
by Kawaguchi and Kyan [14], avoiding the somewhat complicated transformation and case
distinction in the proof of Lemma 10 and Schwiegelshohn’s proof [20]. For increasing m the
tight performance ratio converges quite quickly to 1

2 (1 +
√

2): the difference lies in O(1/m2).
By plugging in the machine-dependent performance ratio into Theorem 1, we obtain the
following performance ratio for the WSEPT rule.
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I Corollary 15. For instances with m machines of the problem P |pj ∼ stoch|E[
∑
wjCj ] the

WSEPT rule has performance ratio

1 + 1
2 ·
√

(2m− km)km − km
m

· (1 + ∆).

This bound is better than the bound of Corollary 8 only if m and ∆ both are small. Even
for two machines, it is outdone for large ∆.
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Abstract
Given a sequence of integers, we want to find a longest increasing subsequence of the sequence.
It is known that this problem can be solved in O(n logn) time and space. Our goal in this paper
is to reduce the space consumption while keeping the time complexity small. For

√
n ≤ s ≤ n,

we present algorithms that use O(s logn) bits and O( 1
s ·n

2 · logn) time for computing the length
of a longest increasing subsequence, and O( 1

s ·n
2 · log2 n) time for finding an actual subsequence.

We also show that the time complexity of our algorithms is optimal up to polylogarithmic factors
in the framework of sequential access algorithms with the prescribed amount of space.
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1 Introduction

Given a sequence of integers (possibly with repetitions), the problem of finding a longest
increasing subsequence (LIS, for short) is a classic problem in computer science which has
many application areas including bioinfomatics and physics (see [38] and the references
therein). It is known that LIS admits an O(n logn)-time algorithm that uses O(n logn) bits
of working space [37, 17, 2], where n is the length of the sequence.
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A wide-spread algorithm achieving these bounds is Patience Sorting, devised by
Mallows [24, 25, 26]. Given a sequence of length n, Patience Sorting partitions the
elements of the sequence into so-called piles.

It can be shown that the number of piles coincides with the length of a longest increasing
subsequence (see Section 3 for details). Combinatorial and statistical properties of the piles
in Patience Sorting are well studied (see [2, 8, 33]).

However, with the dramatic increase of the typical data sizes in applications over the last
decade, a main memory consumption in the order of Θ(n logn) bits is excessive in many
algorithmic contexts, especially for basic subroutines such as LIS. We therefore investigate
the existence of space-efficient algorithms for LIS.

Our results. In this paper, we present the first space-efficient algorithms for LIS that
are exact. We start by observing that when the input is restricted to permutations, an
algorithm using O(n) bits can be obtained straightforwardly by modifying a previously
known algorithm (see Section 3.3). Next, we observe that a Savitch type algorithm [36] for
this problem uses O(log2 n) bits and thus runs in quasipolynomial time. However, we are
mainly interested in space-efficient algorithms that also behave well with regard to running
time. To this end we develop an algorithm that determines the length of a longest increasing
subsequence using O(

√
n logn) bits which runs in O(n1.5 logn) time. Since the constants

hidden in the O-notation are negligible, the algorithm, when executed in the main memory
of a standard computer, may handle a peta-byte input on external storage.

More versatile, in fact, our space-efficient algorithm is memory-adjustable in the following
sense. (See [3] for information on memory-adjustable algorithms.) When a memory bound s
with

√
n ≤ s ≤ n is given to the algorithm, it computes with O(s logn) bits of working

space in O( 1
s · n

2 logn) time the length of a longest increasing subsequence. When s = n our
algorithm is equivalent to the previously known algorithms mentioned above. When s =

√
n

it uses, as claimed above, O(
√
n logn) bits and runs in O(n1.5 logn) time.

The algorithm only determines the length of a longest increasing subsequence. To actually
find such a longest increasing subsequence, one can run the length-determining algorithm n

times to successively construct the sought-after subsequence. This would give us a running
time of O( 1

s · n
3 logn). However, we show that one can do much better, achieving a running

time of O( 1
s · n

2 log2 n) without any increase in space complexity, by recursively finding a
near-mid element of a longest increasing subsequence.

To design the algorithms, we study the structure of the piles arising in Patience Sorting
in depth and show that maintaining certain information regarding the piles suffices to simulate
the algorithm. Roughly speaking, our algorithm divides the execution of Patience Sorting
into O(n/s) phases, and in each phase it computes in O(n logn) time information on the
next O(s) piles, while forgetting previous information.

Finally, we complement our algorithm with a lower bound in a restricted computational
model. In the sequential access model, an algorithm can access the input only sequentially.
We also consider further restricted algorithms in the multi-pass model, where an algorithm has
to read the input sequentially from left to right and can repeat this multiple (not necessarily
a constant number of) times. Our algorithm for the length works within the multi-pass model,
while the one for finding a subsequence is a sequential access algorithm. Such algorithms
are useful when large data is placed in an external storage that supports efficient sequential
access. We show that the time complexity of our algorithms is optimal up to polylogarithmic
factors in these models.
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Related work. The problem of finding a longest increasing subsequence (LIS) is among the
most basic algorithmic problems on integer arrays and has been studied continuously since the
early 1960’s. It is known that LIS can be solved in O(n logn) time and space [37, 17, 2], and
that any comparison-based algorithm needs Ω(n logn) comparisons even for computing the
length of a longest increasing subsequence [17, 32]. For the special case of LIS where the input
is restricted to permutations, there are O(n log logn)-time algorithms [20, 6, 12]. Patience
Sorting, an efficient algorithm for LIS, has been a research topic in itself, especially in the
context of Young tableaux [24, 25, 26, 2, 8, 33].

Recently, LIS has been studied intensively in the data-streaming model, where the input
can be read only once (or a constant number of times) sequentially from left to right. This
line of research was initiated by Liben-Nowell, Vee, and Zhu [22], who presented an exact
one-pass algorithm and a lower bound for such algorithms. Their results were then improved
and extended by many other groups [19, 38, 18, 34, 15, 28, 35]. These results give a deep
understanding on streaming algorithms with a constant number of passes even under the
settings with randomization and approximation. (For details on these models, see the very
recent paper by Saks and Seshadhri [35] and the references therein.) On the other hand,
multi-pass algorithms with a non-constant number of passes have not been studied for LIS.

While space-limited algorithms on both RAM and multi-pass models for basic problems
have been studied since the early stage of algorithm theory, research in this field has
recently intensified. Besides LIS, other frequently studied problems include sorting and
selection [27, 7, 16, 30], graph searching [4, 14, 31, 9], geometric computation [10, 13, 5, 1],
and k-SUM [39, 23].

2 Preliminaries

Let τ = 〈τ(1), τ(2), . . . , τ(n)〉 be a sequence of n integers possibly with repetitions. For
1 ≤ i1 < · · · < i` ≤ n, the subsequence τ [i1, . . . , i`] of τ is the sequence 〈τ(i1), . . . , τ(i`)〉.
A subsequence τ [i1, . . . , i`] is an increasing subsequence of τ if τ(i1) < · · · < τ(i`). If
τ(i1) ≤ · · · ≤ τ(i`), then the sequence τ is non-decreasing. We analogously define decreasing
subsequences and non-increasing subsequences. By lis(τ), we denote the length of a longest
increasing subsequence of τ .

For example, consider a sequence τ1 = 〈2, 8, 4, 9, 5, 1, 7, 6, 3〉. It has an increasing subse-
quence τ1[1, 3, 5, 8] = 〈2, 4, 5, 6〉. Since there is no increasing subsequence of τ1 with length 5
or more, we have lis(τ1) = 4.

In the computational model in this paper, we use the RAM model with the following
restrictions that are standard in the context of sublinear space algorithms. The input is in a
read-only memory and the output must be produced on a write-only memory. We can use
an additional memory that is readable and writable. Our goal is to minimize the size of the
additional memory while keeping the running time fast. We measure space consumption in
the number of bits used (instead of words) within the additional memory.

3 Patience Sorting

Since our algorithms are based on the classic Patience Sorting, we start by describing it
in detail and recalling some important properties regarding its internal configurations.

Internally, the algorithm maintains a collection of piles. A pile is a stack of integers. It is
equipped with the procedures push and top: the push procedure appends a new element to
become the new top of the pile; and the top procedure simply returns the element on top of

STACS 2018
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Algorithm 1 Patience Sorting.
1: set ` := 0 and initialize the dummy pile P0 with the single element −∞
2: for i = 1 to n do
3: if τ(i) > top(P`) then
4: increment `, let P` be a new empty pile, and set j := `

5: else
6: set j to be the smallest index with τ(i) ≤ top(Pj)
7: push τ(i) to Pj
8: return `

the pile, which is always the one that was added last.
We describe how Patience Sorting computes lis(τ). See Algorithm 1. The algorithm

scans the input τ from left to right (Line 2). It tries to push each newly read element τ(i)
to a pile with a top element larger than or equal to τ(i). If on the one hand there is no
such a pile, Patience Sorting creates a new pile to which it pushes τ(i) (Line 4). On the
other hand, if at least one such pile exists, Patience Sorting pushes τ(i) to the oldest pile
that satisfies the property (Line 6). After the scan, the number of piles is the output, which
happens to be equal to lis(τ) (Line 8).

We return to the sequence τ1 = 〈2, 8, 4, 9, 5, 1, 7, 6, 3〉 for an example. The following
illustration shows the execution of Algorithm 1 on τ1. In each step the bold number is the
newly added element. The colored (and underlined) elements in the final piles form a longest
increasing subsequence τ1[1, 3, 5, 8] = 〈2, 4, 5, 6〉, which can be extracted as described below.

2
P1

2 8
P1 P2

4
2 8

P1 P2

4
2 8 9

P1 P2 P3

4 5
2 8 9

P1 P2 P3

1 4 5
2 8 9

P1 P2 P3

1 4 5
2 8 9 7

P1 P2 P3 P4

1 4 5 6
2 8 9 7

P1 P2 P3 P4

3
1 4 5 6
2 8 9 7

P1 P2 P3 P4

I Proposition 3.1 ([37, 17, 2]). Given a sequence τ of length n, Patience Sorting computes
lis(τ) in O(n logn) time using O(n logn) bits of working space.

3.1 Correctness of Patience Sorting
It is observed in [8] that when the input is a permutation π, the elements of each pile form a
decreasing subsequence of π. This observation easily generalizes as follows.

I Observation 3.2. Given a sequence τ , the elements of each pile constructed by Patience
Sorting form a non-increasing subsequence of τ .

Hence, any increasing subsequence of τ can contain at most one element in each pile. This
implies that lis(τ) ≤ `.

Now we show that lis(τ) ≥ `. Using the piles, we can obtain an increasing subsequence of
length `, in reversed order, as follows [2]:
1. Pick an arbitrary element of P`;
2. For 1 ≤ i < `, let τ(h) be the element picked from Pi+1. Pick the element τ(h′) that was

the top element of Pi when τ(h) was pushed to Pi+1.
Since h′ < h and τ(h′) < τ(h) in each iteration, the ` elements that are selected form an
increasing subsequence of τ . This completes the correctness proof for Patience Sorting.

The proof above can be generalized to show the following characterization for the piles.
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Algorithm 2 Computing lis(π) with O(n) bits and in O(n2) time.
1: set ` := 0 and mark all elements in π as “unused”
2: while there is an “unused” element in π do
3: increment ` and set t :=∞
4: for i = 1 to n do . this for-loop constructs the next pile implicitly
5: if π(i) is unused and π(i) < t then
6: mark π(i) as “used” and set t := π(i) . t is currently on top of P`
7: return `

I Proposition 3.3 ([8]). τ(i) ∈ Pj if and only if a longest increasing subsequence of τ ending
at τ(i) has length j.

3.2 Time and space complexity of Patience Sorting

Observe that at any point in time, the top elements of the piles are ordered increasingly from
left to right. Namely, top(Pk) < top(Pk′) if k < k′. This is observed in [8] for inputs with
no repeated elements. We can see that the statement holds also for inputs with repetitions.

I Observation 3.4. At any point in time during the execution of Patience Sorting and for
any k and k′ with 1 ≤ k < k′ ≤ `, we have top(Pk) < top(Pk′) if Pk and Pk′ are nonempty.

The observation above implies that Line 6 of Algorithm 1 can be executed in O(logn) time
by using binary search. Hence, Patience Sorting runs in O(n logn) time.

The total number of elements in the piles is O(n) and thus Patience Sorting consumes
O(n logn) bits. If it maintains all elements in the piles, it can compute an actual longest
increasing subsequence in the same time and space complexity as described above. Note
that to compute lis(τ), it suffices to remember the top elements of the piles. However, the
algorithm still uses Ω(n logn) bits when lis(τ) ∈ Ω(n).

3.3 A simple O(n)-bits algorithm

Here we observe that, when the input is a permutation π of {1, . . . , n}, lis(π) can be computed
in O(n2) time with O(n) bits of working space. The algorithm maintains a used/unused
flag for each number in {1, . . . , n}. Hence, this noncomparison-based algorithm cannot be
generalized for general inputs directly.

Let τ be a sequence of integers without repetitions. A subsequence τ [i1, . . . , i`] is the
left-to-right minima subsequence if {i1, . . . , i`} = {i : τ(i) = min{τ(j) : 1 ≤ j ≤ i}}. In other
words, the left-to-right minima subsequence is made by scanning τ from left to right and
greedily picking elements to construct a maximal decreasing subsequence.

Burstein and Lankham [8, Lemma 2.9] showed that the first pile P1 is the left-to-right
minima subsequence of π and that the ith pile Pi is the left-to-right minima subsequence of
a sequence obtained from π by removing all elements in the previous piles P1, . . . , Pi−1.

Algorithm 2 uses this characterization of piles. The correctness follows directly from
the characterization. It uses a constant number of pointers of O(logn) bits and a Boolean
table of length n for maintaining “used” and “unused” flags. Thus it uses n+O(logn) bits
working space in total. The running time is O(n2): each for-loop takes O(n) time and the
loop is repeated at most n times.
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4 An algorithm for computing the length

In this section, we present our main algorithm that computes lis(τ) with O(s logn) bits in
O( 1

s · n
2 logn) time for

√
n ≤ s ≤ n. Note that the algorithm here outputs the length lis(τ)

only. The next section discusses efficient solutions to actually compute a longest sequence.
In the following, by Pi for some i we mean the ith pile obtained by (completely) executing

Patience Sorting unless otherwise stated. (We sometimes refer to a pile at some specific
point of the execution.) Also, by Pi(j) for 1 ≤ j ≤ |Pi| we denote the jth element added to
Pi. That is, Pi(1) is the first element added to Pi and Pi(|Pi|) is the top element of Pi.

To avoid mixing up repeated elements, we assume that each element τ(j) of the piles is
stored with its index j. In the following, we mean by “τ(j) is in Pi” that the jth element
of τ is pushed to Pi. Also, by “τ(j) is Pi(r)” we mean that the jth element of τ is the rth
element of Pi.

We start with an overview of our algorithm. It scans over the input O(n/s) times. In each
pass, it assumes that a pile Pi with at most s elements is given, which has been computed
in the previous pass. Using this pile Pi, it filters out the elements in the previous piles
P1, . . . , Pi−1. It then basically simulates Patience Sorting but only in order to compute
the next 2s piles. As a result of the pass, it computes a new pile Pj with at most s elements
such that j ≥ i+ s.

The following observation, that follows directly from the definition of Patience Sorting
and Observation 3.4, will be useful for the purpose of filtering out elements in irrelevant piles.

I Observation 4.1. Let τ(y) ∈ Pj with j 6= i. If τ(x) was the top element of Pi when τ(y)
was pushed to Pj, then j < i if τ(y) < τ(x), and j > i if τ(y) > τ(x).

Using Observation 4.1, we can obtain the following algorithmic lemma that plays an
important role in the main algorithm.

I Lemma 4.2. Having stored Pi explicitly in the additional memory and given an index
j > i, the size |Pk| for all i+ 1 ≤ k ≤ min{j, lis(τ)} can be computed in O(n logn) time with
O((|Pi|+ j − i) logn) bits. If lis(τ) < j, then we can compute lis(τ) in the same time and
space complexity.

Proof. Recall that Patience Sorting scans the sequence τ from left to right and puts each
element to the appropriate pile. We process the input in the same way except that we filter
out, and thereby ignore, the elements in the piles Ph for which h < i or h > j.

To this end, we use the following two filters whose correctness follows from Observation 4.1.
(Filtering Ph with h < i.) To filter out the elements that lie in Ph for some h < i, we

maintain an index r that points to the element of Pi read most recently in the scan. Since
Pi is given explicitly to the algorithm, we can maintain such a pointer r.

When we read a new element τ(x), we have three cases.
If τ(x) is Pi(r + 1), then we increment the index r.
Else if τ(x) < Pi(r), then τ(x) is ignored since it is in Ph for some h < i.
Otherwise we have τ(x) > Pi(r). In this case τ(x) is in Ph for some h > i.

(Filtering Ph with h > j.) The elements in Ph for h > j can be filtered without
maintaining additional information as follows. Let again τ(x) be the newly read element.

If no part of Pj has been constructed yet, then τ(x) is in Ph for some h ≤ j.
Otherwise, we compare τ(x) and the element τ(y) currently on the top of Pj .

If τ(x) > τ(y), then τ(x) is in Ph for some h > j, and thus ignored.
Otherwise τ(x) is in Ph for some h ≤ j.
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Algorithm 3 Computing |Pk| for all k with i+ 1 ≤ k ≤ min{j, lis(τ)} when Pi is given.
1: set r := 0 . r points to the most recently read element in Pi
2: set ` := i . the largest index of the piles constructed so far
3: initialize pi+1, . . . , pj to ∞ . pk is the element currently on top of Pk
4: initialize ci+1, . . . , cj to 0 . ck is the current size of Pk
5: for x = 1 to n do
. filtering out irrelevant elements

6: if τ(x) is Pi(r + 1) then
7: increment r and continue the for-loop
8: else if τ(x) < Pi(r) or (` ≥ j and τ(x) > pj) then
9: ignore the element and continue the for-loop
. push τ(x) to the appropriate pile

10: if τ(x) > p` then
11: increment ` and set h := `

12: else
13: set h to be the smallest index with τ(i) < ph

14: set ph := τ(x) and increment ch

We simulate Patience Sorting only for the elements that pass both filters above. While
doing so, we only maintain the top elements of the piles and additionally store the size of
each pile. This requires at most O((j − i) logn) space, as required by the statement of the
lemma. For details see Algorithm 3.

The running time remains the same since we only need constant number of additional
steps for each step in Patience Sorting to filter out irrelevant elements. If Pj is still empty
after this process, we can conclude that lis(τ) is the index of the newest pile constructed. J

The proof of Lemma 4.2 can be easily adapted to also compute the pile Pj explicitly. For
this, we simply additionally store all elements of Pj as they are added to the pile.

I Lemma 4.3. Given Pi and an index j such that i < j ≤ lis(τ), we can compute Pj in
O(n logn) time with O((|Pi|+ |Pj |+ j − i) logn) bits.

Assembling the lemmas of this section, we now present our first main result. The
corresponding pseudocode of the algorithm can be found in Algorithm 4.

I Theorem 4.4. There is an algorithm that, given an integer s satisfying
√
n ≤ s ≤ n and

a sequence τ of length n, computes lis(τ) in O( 1
s · n

2 logn) time with O(s logn) bits of space.

Proof. To apply Lemmas 4.2 and 4.3 at the beginning, we start with a dummy pile P0 with a
single dummy entry P0(1) = −∞. In the following, assume that for some i ≥ 0 we computed
the pile Pi of size at most s explicitly. We repeat the following process until we find lis(τ).

In each iteration, we first compute the size |Pk| for i+ 1 ≤ k ≤ i+ 2s. During this process,
we may find lis(τ) < i+ 2s. In such a case we output lis(τ) and terminate. Otherwise, we
find an index j such that i+ s+ 1 ≤ j ≤ i+ 2s and |Pj | ≤ n/s. Since s ≥

√
n, it holds that

|Pj | ≤ n/
√
n =
√
n ≤ s. We then compute Pj itself to replace i with j and repeat.

By Lemmas 4.2 and 4.3, each pass can be executed in O(n logn) time with O(s logn)
bits. There are at most lis(τ)/s iterations, since in each iteration the index i increases by at
least s or lis(τ) is determined. Since lis(τ) ≤ n, the total running time is O( 1

s · n
2 logn). J

In the case of the smallest memory consumption we conclude the following corollary.
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Algorithm 4 Computing lis(τ) with O(s logn) bits in O( 1
s · n

2 logn) time.
1: set i := 0 and initialize the dummy pile P0 with the single element −∞
2: loop
3: compute the size of Pk for all k with i+ 1 ≤ k ≤ i+ 2s
4: if we find lis(τ) < i+ 2s then
5: return lis(τ)
6: let j be the largest index such that |Pj | ≤ s . i+ s+ 1 ≤ j ≤ i+ 2s
7: compute Pj and set i := j

I Corollary 4.5. Given a sequence τ of length n, lis(τ) can be computed in O(n1.5 logn) time
with O(

√
n logn) bits of space.

5 An algorithm for finding a longest increasing subsequence

It is easy to modify the algorithm in the previous section in such a way that it outputs an
element of the final pile Plis(τ), which is the last element of a longest increasing subsequence
by Proposition 3.3. Thus we can repeat the modified algorithm n times (considering only
the elements smaller than and appearing before the last output) and actually find a longest
increasing subsequence.1 The running time of this naïve approach is O( 1

s · n
3 logn).

As we claimed before, we can do much better. In fact, we need only an additional
multiplicative factor of O(logn) instead of O(n) in the running time, while keeping the space
complexity as it is. In the rest of this section, we prove the following theorem.

I Theorem 5.1. There is an algorithm that, given an integer s satisfying
√
n ≤ s ≤ n and

a sequence τ of length n, computes a longest increasing subsequence of τ in O( 1
s · n

2 log2 n)
time using O(s logn) bits of space.

I Corollary 5.2. Given a sequence τ of length n, a longest increasing subsequence of τ can
be found in O(n1.5 log2 n) time with O(

√
n logn) bits of space.

We should point out that the algorithm in this section is not a multi-pass algorithm.
However, we can easily transform it without any increase in the time and space complexity
so that it works as a sequential access algorithm.

5.1 High-level idea
We first find an element that is in a longest increasing subsequence roughly in the middle.
As we will argue, this can be done in O( 1

s · n
2 logn) time with O(s logn) bits by running the

algorithm from the previous section twice, once in the ordinary then once in the reversed way.
We then divide the input into the left and right parts at a near-mid element and recurse.

The space complexity remains the same and the time complexity increases only by
an O(logn) multiplicative factor. The depth of recursion is O(logn) and at each level of
recursion the total running time is O( 1

s · n
2 logn). To remember the path to the current

recursion, we need some additional space, but it is bounded by O(log2 n) bits.

1 This algorithm outputs a longest increasing subsequence in the reversed order. One can access the input
in the reversed order and find a longest decreasing subsequence to avoid this issue.
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Algorithm 5 Reverse Patience Sorting.
1: set ` := 0 and initialize the dummy pile Q0 with the single element +∞
2: for i = n to 1 do
3: if τ(i) < top(Q`) then
4: increment `, let Q` to be a new empty pile, and set j := `

5: else
6: set j to be the smallest index with τ(i) > top(Qj)
7: push τ(i) to Qj
8: return `

5.2 A subroutine for short longest increasing sequences
We first solve the base case in which lis(τ) ∈ O(n/s). In this case, we use the original
Patience Sorting and repeat it O(n/s) times. We present the following general form first.

I Lemma 5.3. Let τ be a sequences of length n and lis(τ) = k. Then a longest increasing
subsequence of τ can be found in O(k · n log k) time with O(k logn) bits.

Proof. Without changing the time and space complexity, we can modify the original Pa-
tience Sorting so that

it maintains only the top elements of the piles;
it ignores the elements larger than or equal to a given upper bound; and
it outputs an element in the final pile.

We run the modified algorithm lis(τ) times. In the first run, we have no upper bound. In
the succeeding runs, we set the upper bound to be the output of the previous run. In each
run the input to the algorithm is the initial part of the sequence that ends right before the
last output. The entire output forms a longest increasing sequence of τ .2

Since lis(τ) = k, modified Patience Sorting maintains only k piles. Thus each run
takes O(n log k) time and uses O(k logn) bits. The lemma follows since this is repeated k
times and each round only stores O(logn) bits of information from the previous round. J

The following special form of the lemma above holds since n/s ≤ s when s ≥
√
n.

I Corollary 5.4. Let τ be a sequence of length n and lis(τ) ∈ O(n/s) for some s with√
n ≤ s ≤ n. A longest increasing subsequence of τ can be found in O( 1

s · n
2 logn) time with

O(s logn) bits.

5.3 A key lemma
As mentioned above, we use a reversed version of our algorithm. Reverse Patience
Sorting is the reversed version of Patience Sorting: it reads the input from right to
left and uses the reversed inequalities. (See Algorithm 5.) Reverse Patience Sorting
computes the length of a longest decreasing subsequence in the reversed sequence, which is a
longest increasing subsequence in the original sequence. Since the difference between the two
algorithms is small, we can easily modify our algorithm in Section 4 for the length so that it
simulates Reverse Patience Sorting instead of Patience Sorting.

2 Again this output is reversed. We can also compute the output in nonreversed order as discussed before.
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Let Qi be the ith pile constructed by Reverse Patience Sorting as in Algorithm 5.
Using Proposition 3.3, we can show that for each τ(i) inQj , the longest decreasing subsequence
of the reversal of τ ending at τ(i) has length j. This is equivalent to the following observation.

I Observation 5.5. τ(i) ∈ Qj if and only if a longest increasing subsequence of τ starting
at τ(i) has length j.

This observation immediately gives the key lemma below.

I Lemma 5.6. Pk ∩Qlis(τ)−k+1 6= ∅ for all k with 1 ≤ k ≤ lis(τ).

Proof. Let 〈τ(i1), . . . , τ(i`)〉 be a longest increasing subsequence of τ . Proposition 3.3 implies
that τ(ik) ∈ Pk. The subsequence 〈τ(ik), . . . , τ(i`)〉 is a longest increasing subsequence of
τ starting at τ(ik) since otherwise 〈τ(i1), . . . , τ(i`)〉 is not longest. Since the length of
〈τ(ik), . . . , τ(i`)〉 is i` − k + 1 = lis(τ)− k + 1, we have τ(k) ∈ Qlis(τ)−k+1. J

Note that the elements of Pk and Qlis(τ)−k+1 are not the same in general. For example, by
applying Reverse Patience Sorting to τ1 = 〈2, 8, 4, 9, 5, 1, 7, 6, 3〉, we get Q1 = 〈3, 6, 7, 9〉,
Q2 = 〈1, 5, 8〉, Q3 = 〈4〉, and Q4 = 〈2〉 as below. (Recall that P1 = 〈2, 1〉, P2 = 〈8, 4, 3〉,
P3 = 〈9, 5〉, and P4 = 〈7, 6〉.) The following diagram depicts the situation. The elements
shared by Pk and Qlis(τ)−k+1 are colored and underlined.

3
Q1

6
3

Q1

7
6
3

Q1

7
6
3 1

Q1 Q2

7
6 5
3 1

Q1 Q2

9
7
6 5
3 1

Q1 Q2

9
7
6 5
3 1 4

Q1 Q2 Q3

9
7 8
6 5
3 1 4

Q1 Q2 Q3

9
7 8
6 5
3 1 4 2

Q1 Q2 Q3 Q4

3
1 4 5 6
2 8 9 7

P1 P2 P3 P4

5.4 The algorithm
We first explain the subroutine for finding a near-mid element in a longest increasing
subsequence.

I Lemma 5.7. Let s be an integer satisfying
√
n ≤ s ≤ n. Given a sequence τ of length

n, the kth element of a longest increasing subsequence of τ for some k with lis(τ)/2 ≤ k <
lis(τ)/2 + n/s can be found in O( 1

s · n
2 logn) time using O(s logn) bits of space.

Proof. We slightly modify Algorithm 4 so that it finds an index k and outputs Pk such
that |Pk| ≤ s and lis(τ)/2 ≤ k ≤ lis(τ)/2 + n/s. Such a k exists since the average of |Pi| for
lis(τ)/2 ≤ i < lis(τ)/2 + n/s is at most s. The time and space complexity of this phase are
as required by the lemma.

We now find an element in Pk ∩Qlis(τ)−k+1. Since the size |Qlis(τ)−k+1| is not bounded
by O(s) in general, we cannot store Qlis(τ)−k+1 itself. Instead use the reversed version of
the algorithm in Section 4 to enumerate it. Each time we find an element in Qlis(τ)−k+1, we
check whether it is included in Pk. This can be done with no loss in the running time since
Pk is sorted and the elements of Qlis(τ)−k+1 arrive in increasing order. J

The next technical but easy lemma allows us to split the input into two parts at an
element of a longest increasing subsequence and to solve the smaller parts independently.

I Lemma 5.8. Let τ(j) be the kth element of a longest increasing subsequence of a sequence τ .
Let τL be the subsequence of τ [1, . . . , j−1] formed by the elements smaller than τ(j). Similarly
let τR be the subsequence of τ [j + 1, . . . , |τ |] formed by the elements larger than τ(j). Then,
a longest increasing subsequence of τ can be obtained by concatenating a longest increasing
subsequence of τL, τ(j), and a longest increasing subsequence of τR, in this order.
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Algorithm 6 Recursively finding a longest increasing subsequence of ρ.
1: RecursiveLIS(ρ, −∞, +∞)
2: procedure RecursiveLIS(τ , lb, ub)
3: τ ′ := the subsequence of τ formed by the elements τ(i) such that lb < τ(i) < ub

. τ ′ is not explicitly computed but provided by ignoring the irrelevant elements
4: compute lis(τ ′)
5: if lis(τ ′) ≤ 3|τ ′|/s then
6: output a longest increasing subsequence of τ ′ . Lemma 5.3
7: else
8: find the kth element τ ′(j) of a longest increasing subsequence of τ ′

for some k with lis(τ ′)/2 ≤ k < lis(τ ′)/2 + |τ ′|/s
9: RecursiveLIS(τ ′[1, . . . , j − 1], lb, τ ′(j))

10: output τ ′(j)
11: RecursiveLIS(τ ′[j + 1, . . . , |τ ′|], τ ′(j), ub)

Proof. Observe that the concatenated sequence is an increasing subsequence of τ . Thus it
suffices to show that lis(τL) + lis(τR) + 1 ≥ lis(τ). Let τ [i1, . . . , ilis(τ)] be a longest increasing
subsequence of τ such that ik = j. From the definition, τ [i1, . . . , ik−1] is a subsequence of τL,
and τ [ik+1, . . . , ilis(τ)] is a subsequence of τR. Hence lis(τL) ≥ k − 1 and lis(τR) ≥ lis(τ)− k,
and thus lis(τL) + lis(τR) + 1 ≥ lis(τ). J

As Lemma 5.8 suggests, after finding a near-mid element τ(k), we recurse into τL and τR. If
the input τ ′ to a recursive call has small lis(τ ′), we directly compute a longest increasing
subsequence. See Algorithm 6 for details of the whole algorithm. Correctness follows from
Lemma 5.8 and correctness of the subroutines.

5.5 Time and space complexity
In Theorem 5.1, the claimed running time is O( 1

s · n
2 log2 n). To prove this, we first show

that the depth of the recursion is O(logn). We then show that the total running time in each
recursion level is O( 1

s · n
2 logn). The claimed running time is guaranteed by these bounds.

I Lemma 5.9. Given a sequence τ , the depth of the recursions invoked by RecursiveLIS
of Algorithm 6 is at most log6/5 lis(τ ′), where τ ′ is the subsequence of τ computed in Line 3.

Proof. We proceed by induction on lis(τ ′). If lis(τ ′) ≤ 3|τ ′|/s, then no recursive call occurs,
and hence the lemma holds. In the following, we assume that lis(τ ′) = ` > 3|τ ′|/s and that
the statement of the lemma is true for any sequence τ ′′ with lis(τ ′′) < `.

Since ` > 3|τ ′|/s, we recurse into two branches on subsequences of τ ′. From the definition
of k in Line 8 of Algorithm 6, the length of a longest increasing subsequence is less than
`/2 + |τ ′|/s in each branch. Since `/2 + |τ ′|/s < `/2 + `/3 = 5`/6, each branch invokes
recursions of depth at most log6/5(5`/6) = log6/5 `− 1. Therefore the maximum depth of
the recursions invoked by their parent is at most log6/5 `. J

I Lemma 5.10. Given a sequence τ of length n, the total running time at each depth of
recursion excluding further recursive calls in Algorithm 6 takes O( 1

sn
2 logn) time.

Proof. In one recursion level, we have many calls of RecursiveLIS on pairwise non-
overlapping subsequences of τ . For each subsequence τ ′, the algorithm spends time
O( 1

s |τ
′|2 log |τ ′|). Thus the total running time at a depth is O(

∑
τ ′

1
s |τ
′|2 log |τ ′|), which is

O( 1
sn

2 logn) since
∑
τ ′ |τ ′|2 ≤ |τ |2 = n2. J
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Finally we consider the space complexity of Algorithm 6.

I Lemma 5.11. Algorithm 6 uses O(s logn) bits of working space on sequences of length n.

Proof. We have already shown that each subroutine uses O(s logn) bits. Moreover, this space
of working memory can be discarded before another subroutine call occurs. Only a constant
number of O(logn)-bit words are passed to the new subroutine call. We additionally need to
remember the stack trace of the recursion. The size of this additional information is bounded
by O(log2 n) bits since each recursive call is specified by a constant number of O(logn)-bit
words and the depth of recursion is O(logn) by Lemma 5.9. Since log2 n ∈ O(s logn) for
s ≥
√
n, the lemma holds. J

6 Lower bound for algorithms with sequential access

An algorithm is a sequential access algorithm if it can access elements in the input array only
sequentially. In our situation this means that for a given sequence, accessing the ith element
of the sequence directly after having accessed the jth element of the sequence costs time at
least linear in |i− j|. As opposed to the RAM, any Turing machine in which the input is
given on single read-only tape has this property. Note that any lower bound for sequential
access algorithms in an asymptotic form is applicable to multi-pass algorithms as well since
every multi-pass algorithm can be simulated by a sequential access algorithm with the same
asymptotic behavior. Although some of our algorithms are not multi-pass algorithms, it is
straightforward to transform them to sequential access algorithms with the same time and
space complexity.

To show a lower bound on the running time of sequential access algorithms with limited
working space, we need the concept of communication complexity (see [21] for more details).
Let f be a function. Given α ∈ A to the first player Alice and β ∈ B to the second player Bob,
the players want to compute f(α, β) together by sending bits to each other (possibly multiple
times). The communication complexity of f is the maximum number of bits transmitted
between Alice and Bob over all inputs by the best protocol for f . Now consider the following
variant of the LIS problem: Alice gets the first half of a permutation π of {1, . . . , 2n} and
Bob gets the second half. They compute lis(π) together. It is known that this problem has
Ω(n) communication complexity (even with 2-sided error randomization) [22, 19, 38].

For sequential access algorithms, we can show the following lower bound by using the
communication complexity lower bound mentioned above.

I Theorem 6.1. Given a permutation π of {1, . . . , 4n}, any sequential access (possibly
randomized) algorithm computing lis(π) using b bits takes Ω(n2/b) time.

7 Concluding remarks

Our result raises the following question: “Do o(
√
n)-space polynomial-time algorithms for

LIS exist?” An unconditional ‘no’ answer would be surprising as it implies SC 6= P ∩ PolyL,
where SC (Steve’s Class) is the class of problems that can be solved by an algorithm that
simultaneously runs in polynomial-time and polylogarithmic-space [11, 29]. A possibly easier
question asks for the existence of a log-space algorithm. For this question, one might be able
to give some evidence for a ‘no’ answer by showing NL-hardness of (a decision version of)
LIS.

As a final remark, we would like to mention some known results that have a mysterious
coincidence in space complexity with our results. For (1 + ε)-approximation of lis(π) by



M. Kiyomi, H. Ono, Y. Otachi, P. Schweitzer, and J. Tarui 44:13

one-pass streaming algorithms, it is known that O(
√
n/ε · logn) bits are sufficient [19] and

Ω(
√
n/ε) bits are necessary [15, 18]. We were not able to find any connection here and do

not claim anything concrete about this coincidence.
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Abstract
Partially lossy queue monoids (or plq monoids) model the behavior of queues that can forget
arbitrary parts of their content. While many decision problems on recognizable subsets in the
plq monoid are decidable, most of them are undecidable if the sets are rational. In particular,
in this monoid the classes of rational and recognizable subsets do not coincide. By restricting
multiplication and iteration in the construction of rational sets and by allowing complementation
we obtain precisely the class of recognizable sets. From these special rational expressions we can
obtain an MSO logic describing the recognizable subsets. Moreover, we provide similar results
for the class of aperiodic subsets in the plq monoid.
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1 Introduction

The study of different models of automata along with their expressiveness and algorithmic
properties is one of the most important areas in automata theory. Many of these models
differ in the mechanism to store their data, e.g., there are finite memories, pushdowns, (blind)
counters, and infinite Turing tapes. Another very important mechanism is the so-called fifo
queue (or channel), where data can be written to one end and read from the other end of
its contents. If we equip these queues with a finite state automaton we obtain a Turing
complete computation model [3], which results in the undecidability of all non-trivial decision
problems on these devices. A surprising result was the decidability of some decision problems
like reachability, fair termination or control-state-maintainability if the fifo queue is allowed
to forget any part of its content at any time [8, 5, 1, 17].

To obtain some algebraic results on the behavior of these storage mechanisms we can
model them as monoid of transformations. So, a single blind counter induces (Z,+) and a
pushdown induces a polycyclic monoid [12]. Some important results on the transformation
monoid of reliable queues can be found in [11]. Furthermore, in [14] we considered the
transformation monoid of lossy queues. When studying the similarities and differences
between those two monoids in [15] we found it convenient to join both, the reliable and lossy
queues, respectively, into one model, the so-called partially lossy queues (or plqs). Those
are given by their underlying alphabet A as well as a subset U ⊆ A of letters that are
unforgettable while the letters contained in A \ U can be forgotten at any time. We denote
the corresponding transformation monoid by Q(A,U) and call it the partially lossy queue
monoid or plq monoid. Hence, with the help of plqs we can argue about reliable and lossy
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queues at the same time, which results in the unification of some proofs considering these
two models.

Another main topic in the theory of automata and formal languages is the study of
regular languages. This revealed strong relations to logic, combinatorics, and algebra. For
example, we can generalize the notion of regularity from free monoids to arbitrary monoids.
This generalization results in two notions: the rational subsets, which are a generalization of
languages that are described by regular expressions, and recognizable subsets, which are a
generalization of sets accepted by finite automata (see, e.g., [2, 22]). Kleene’s Theorem [13]
states that both notions are equivalent in the free monoid.

In Section 3 we consider some algorithmic properties of rational subsets of the plq monoid.
Such properties encountered increased attention in recent years, e.g., [16] provides a survey
on the membership problem for rational sets. Since the rational sets in the polycyclic monoid
(recall that this is the transformation monoid of a pushdown) are exactly the homomorphic
images of a special subclass of the regular languages by [24], many decision problems like
membership, intersection, universality, inclusion, and recognizability are decidable in this
monoid. In this paper we will see that the membership problem of the plq monoid is
NL-complete, but the other problems are undecidable, which we can prove by reduction from
their counterparts in the direct product of (N,+) and {a, b}∗ (cf. [20, 9]).

If the given subsets are recognizable, all of the considered decision problems in plq monoids
are decidable by known constructions from automata theory. Hence, the rational subsets
are not effectively recognizable. Especially, we will see that the class of rational subsets in
the plq monoid is not closed under intersection implying that the classes of rational and
recognizable subsets do not coincide. In contrast, in polycyclic monoids the class of rational
sets is closed under Boolean operations. However, the classes of rational and recognizable
subsets do not coincide in these monoids since there are only two recognizable sets (the
empty set and the monoid itself). But since there are even more recognizable sets in the plq
monoid and since each recognizable subset is rational as well due to McKnight’s Theorem
[18], it is a natural question to ask in which cases a rational subset is recognizable.

For trace monoids, Ochmański could prove in [21] that it suffices to restrict the usage
of the Kleene star in an appropriate way to characterize the recognizable subsets in the
trace monoid. In Section 4 of this paper we will use an approach similar to Ochmański’s
to characterize the recognizable sets in terms of special rational sets in the plq monoid.
Concretely, we will define some special restrictions on the usage of Kleene star and the
concatenation to reach this target.

Another famous characterization of the regular languages is the definability in the monadic
second-order logic MSO which was proven by Büchi in [4]. This result gave us an even
brighter understanding than rational expressions of the formalization of the behavior of finite
automata. Similar results about trace monoids can be found in [7, Chapter 10]. Hence, this
motivates to find another MSO logic describing exactly the recognizable subsets in the plq
monoid. In this paper we will give such a description.

The last result in this paper regards the connection between the aperiodic subsets, star-free
subsets, and first-order logic. Recall that a set is aperiodic if it is accepted by a counter-free
finite automaton and a set is star-free if it can be generated from finite sets by application
of Boolean operations and concatenation, only. Schützenberger’s Theorem [25] states that
both classes coincide in the free monoid. This result gives a procedure to decide whether
a given regular language is star-free. Additionally, in [10] it was proven that these classes
also coincide in trace monoids. In contrast to these two cases this equality does not hold
in the plq monoid. But we can characterize the aperiodic subsets in Q(A,U) with the help
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of the same restrictions to star-freeness of subsets as in our result regarding the rational
subsets. Finally, we prove similar to the results from [19, 7] that the aperiodic subsets in the
plq monoid can be described by first-order formulas.

2 Preliminaries

At first, we need some basic definitions. So, let A be an alphabet. A word v ∈ A∗ is a
prefix of w ∈ A∗ iff w ∈ vA∗. Similarly, v is a suffix of w iff w ∈ A∗v and v is an infix of
w iff w ∈ A∗vA∗. Furthermore, v is a subword of w (denoted by v � w) iff there are ` ∈ N
and a1, . . . , a` ∈ A such that v = a1 . . . a` and w ∈ A∗a1A

∗a2 . . . A
∗a`A

∗. Note that � is a
partial ordering on A∗.

Let S ⊆ A. Then the projection πS : A∗ → S∗ to S is the homomorphism induced by
πS(a) = a for each a ∈ S and πS(a) = ε for each a ∈ A \ S. Moreover, v is an S-prefix of
w (denoted v ≤S w) if there is a prefix w′ of w such that πS(w′) � v � w′. In other words,
we have v ≤S w if v is a subword of a prefix of w and contains all the letters from S in this
prefix, e.g., we have aa ≤{a} abaab and aa 6≤{b} abaab. Note that v ≤∅ w means that v is a
subword of w and v ≤A w means that v is a prefix of w.

2.1 Partially Lossy Queues

The partially lossy queue monoid (or plq monoid) models the behavior of a fifo-queue whose
entries come from a finite set A. The unreliability of the queue stems from the fact that it
can forget certain letters that we collect in the set A \U . In other words, letters from U ⊆ A
are non-forgettable and those from A \ U are forgettable.

So, let A be an alphabet of possible queue entries and let U ⊆ A be the set of non-
forgettable letters. The states of the queue are the words from A∗. Furthermore, we have
some basic controllable actions on these queues: writing of a symbol a ∈ A (denoted by a)
and reading of a ∈ A (denoted by a). Thereby, we assume that the set A of all these reading
operations a is a disjoint copy of A. So, Σ := A∪A is the set of all controllable operations on
the partially lossy queue. For a word u = a1 . . . an ∈ A∗ we write u for the word a1 a2 . . . an.

Formally, the action a ∈ A appends the letter a to the state of the queue. The action
a ∈ A tries to cancel the letter a from the beginning of the current state of the queue. If this
state does not start with a then the queue ends up in an error state. The lossiness of the
queue is modeled by allowing it to forget arbitrary letters from A \ U of its content at any
moment.

Since a partially lossy queue with an underlying alphabet A = {a} (independently of U)
acts like a partially blind counter, the corresponding plq monoid is the bicyclic semigroup. On
the first sight, the equality of these two transformation monoids seems to be counterintuitive.
But it might be explained by the following observation: let A be an NFA equipped with
one reliable counter. Then A accepts the same language as this NFA equipped with a lossy
counter. Hence, from now on, we may exclude this case and assume |A| ≥ 2.

Before defining the plq monoid we want to identify sequences of operations that have
the same effect on any queue. In [15, Proposition 3.21] we proved that u, v ∈ Σ∗ act equally
(denoted by u ≡ v) if, and only if, they can be transformed into each other by applying the
equations from the following definition, only.

STACS 2018
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I Definition 2.1. Let U ⊆ A be two finite sets. We define the binary relation ≡⊆ (Σ∗)2

as the least congruence on Σ∗ satisfying the following equations for a, b ∈ A, c ∈ U , and
w ∈ A∗:
(a) ba ≡ ab if a 6= b

(b) aab ≡ aab

(c) cwaa ≡ cwaa

(d) awaa ≡ awaa

Then the partially lossy queue monoid or plq monoid induced by (A,U) is the quotient
Q(A,U) := Σ∗/≡ . The natural epimorphism of ≡ is η : Σ∗ → Q(A,U) : w 7→ [w].

To handle the equivalence classes of ≡ we want to define a normal form on this congruence.
We do this by ordering the equations from Definition 2.1 from left to right, which results in
an infinite semi-Thue system called R.

Since the rules of R are length-preserving and move read actions to the left, it is
terminating. Moreover, it is locally confluent by [15] and hence confluent. Therefore, for any
word u ∈ Σ∗ there is a unique, irreducible word nf (u) with u→∗ nf (u), the so-called normal
form of u.

I Example 2.2. Let a, b ∈ A with a 6= b and q = aabbab. If a /∈ U then we have

aabbab→ aababb→ aaabbb→ aaabbb→ aaabbb

and therefore aaabbb = nf (aabbab). Otherwise, i.e., if a ∈ U , we can apply Rule c to aaabbb
and hence obtain nf (aabbab) = abaabb.

From the definition of R we obtain that a word is in normal form if it starts with
some read operations followed by a special shuffle of write and read operations where each
read action a appears directly right from a. Thereby, the infixes aa in these words are
divided by words from (A \ (U ∪ {a}))∗, only. Formally, such shuffle of u ∈ A∗ and v ∈ A∗

is defined by 〈〈u, v〉〉 = w1a1a1w2a2a2 . . . w`a`a`w`+1, where v = a1 . . . a`, a1, . . . , a` ∈ A,
u = a1w1 . . . w`a`w`+1, and wi ∈ (A \ (U ∪ {ai}))∗ for each 1 ≤ i ≤ `. Then the set of all
normal forms is

NF = {u〈〈v, w〉〉 | u, v, w ∈ A∗, v ≤U w} = A
∗ (⋃

a∈A
(A \ (U ∪ {a}))∗aa

)∗
A∗ .

From this equation we can infer that nf (u) = u1〈〈u2, u3〉〉 is characterized by three
components: The first component is the projection to the write actions π(u) := u2 = πA(u)
(note that the transitions ofR preserve the relative ordering of the write operations). Similarly,
the second is the projection to the read actions π(u) := u1u3 (note that we suppress the
overlines in this projection). Finally, the third component is the overlap π2(u) := u3 of
u. Note that the characterization of NF from above implies that π2(u) ≤U π(u) holds.
Additionally, we can define π1(u) := u1.

I Example 2.3. Recall Example 2.2. There, in case of a /∈ U we have for u = aabbab:
π(u) = aabb, π(u) = ab, π1(u) = ε, and π2(u) = ab. Otherwise, if a ∈ U we have π1(u) = ab

and π2(u) = ε.

While π1(u) is defined using the semi-Thue system R, it also has a natural meaning:
π1(u) is the shortest queue such that there is a run of the plq on execution of u that does
not end up in the error state.

By [15, Proposition 3.21] the following holds about R and nf (u):
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I Proposition 2.4. Let u, v ∈ Σ∗. Then we have

u ≡ v ⇐⇒ nf (u) = nf (v) ⇐⇒ (π(u), π(u), π2(u)) = (π(v), π(v), π2(v)) . J

With this main property in mind we can also apply π, π, π1, and π2 to equivalence classes
of ≡ (i.e., elements from Q(A,U)) instead of words from Σ∗.

Another question is the description of the normal form of uv for any u, v ∈ A∗. We have
π(uv) = u and π(uv) = v. It remains to describe the overlap π2(uv).

I Lemma 2.5. Let u, v ∈ A∗. Then π2(uv) is the longest suffix v′ of v that satisfies
v′ ≤U u. J

Since ≡ is a congruence we can infer u ≡ π1(u)π(u)π2(u) for each u ∈ Σ∗ from Lemma 2.5.

2.2 Rationality, Recognizability, and Aperiodicity
Let M be a monoid. A subset L ⊆ M is called rational if it can be constructed from
the finite subsets of M using union, concatenation, and Kleene iteration. The subset L
is recognizable if there are a finite monoid F and a homomorphism φ : M→ F such that
L = φ−1(φ(L)), i.e., if L is accepted by anM-automaton. It is well-known that the image of
a rational set under a homomorphism is rational again and that the homomorphic preimage
of a recognizable set also is recognizable. Furthermore, the class of recognizable subsets
of M is closed under Boolean operations. Moreover, in a finitely generated monoid each
recognizable set is rational by [18]. For example, this applies to Q(A,U) since this monoid
is finitely generated. The converse direction is not true in general, e.g., in Theorem 3.4 we
prove the existence of a rational subset of the plq monoid which is not recognizable. However,
in free monoids generated by some alphabet Γ a subset L ⊆ Γ ∗ is rational if, and only if, it
is recognizable by Kleene’s Theorem [13]. In this situation, we call L regular.

A recognizable set L ⊆ M is called aperiodic if there is n ∈ N such that for each
u, v, w ∈ M we have uvnw ∈ L iff uvn+1w ∈ L. It follows from [19] L is aperiodic if it
is accepted by a counter-freeM-automaton. It is an easy exercise to prove that the class
of aperiodic subsets is closed under Boolean operations and homomorphic preimages. By
Schützenberger’s Theorem [25] a language L ⊆ Γ ∗ is aperiodic iff it is star-free. Recall
that a set L ⊆M is star-free if it can be constructed from finite subsets ofM using union,
concatenation, and complementation.

2.3 Logic and Languages
In this subsection we recall the logics on words and their correspondence to languages known
from [26].

Let Γ be an alphabet. By FO we denote the set of first-order formulas built up from the
atomic formulas of the form x = y, x < y, and Qa(x) for a ∈ Γ where x and y are variables.
To simplify notation we write QS(x) instead of

∨
a∈S Qa(x) for any S ⊆ Γ .

Now let w = a1 . . . an ∈ Γ ∗. The word model for w is the relational structure w =
(dom(w), <w, (Qwa )a∈Γ ) where dom(w) = {1, . . . , n} is the set of letter positions of w, <w
is the natural order on dom(w), and Qwa = {i ∈ dom(w) | ai = a} is the set of positions
of letters labeled with a. Then we write w |= φ[p1, . . . , pn] for p1, . . . , pn ∈ dom(w) and a
formula φ ∈ FO (i.e., φ is satisfied in w) if φ evaluates to true on interpretation of =, <,Qa
as equality, <w, and Qwa , respectively, and on interpretation of the free variables in φ as pi’s.
Then the language defined by the sentence φ is L(φ) = {w ∈ Γ ∗ |w |= φ}. We say that a
language L ⊆ Γ ∗ is FO-definable if there is φ ∈ FO with L = L(φ).
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By MSO (the monadic second-order logic) we denote the second-order extension of FO
where the second-order variables are unary. Again, we say that L ⊆ Γ ∗ is MSO-definable if
there is φ ∈ MSO with L = L(φ).

Büchi’s Theorem [4] states that a language is regular iff it is MSO-definable. Moreover, a
language is star-free and hence aperiodic iff it is FO-definable by [19].

3 Algorithmic Properties of Rational Subsets

This section studies decision problems concerning the rational subsets of Q(A,U). We will
see that the classes of rational and recognizable subsets do not coincide. Especially, we prove
that we cannot decide whether a given rational subset of the plq monoid is recognizable.
Additionally, we prove that emptiness of intersection and the unique decipherability in
Q(A,U) are undecidable. Though, we will see first, that the uniform membership problem is
NL-complete.

So, let w ∈ Σ∗. Then one can show that the number of left-divisors of [w] in Q(A,U) is at
most |w|3. Recall that in a monoidM u is a left-divisor of w if there is v such that uv = w.
Hence, we can obtain a DFA with only |w|3 many states that accepts [w]. In particular,
similar to [11, Lemma 8.1] we can prove an even stronger result by using only logarithmic
space on construction of this DFA. This implies the following theorem:

I Theorem 3.1. Let A be an at least binary alphabet and U ⊆ A. Then the following rational
subset membership problem for Q(A,U) is NL-complete: Given a word w ∈ Σ∗ and an NFA
A over Σ. Is there a word v ∈ L(A) with w ≡ v?

Proof. Let w ∈ Σ∗ and let A be an NFA over Σ. Let B be the aforementioned DFA that
can be constructed using only logarithmic additional space.

Then there exists v ∈ L(A) with w ≡ v if, and only if, L(A)∩[w] 6= ∅ if, and only if, L(A)∩
L(B) 6= ∅. Using an on-the-fly construction of B, this can be decided nondeterministically in
logarithmic space. Hence, the problem is in NL.

Since the free monoid A∗ embeds into Q(A,U) and since the rational subset membership
problem for A∗ is NL-hard, we also get NL-hardness for Q(A,U). J

Now we will prove some negative algorithmic results on rational subsets of the plq
monoid. In [11, Section 8] these undecidabilities for reliable queues could be inferred from an
embedding of {a, b}∗ × {c, d}∗ into Q(A,A). Unfortunately, this does not work in arbitrary
plq monoids since this direct product does not embed into Q({a, b}, ∅) by [15, Theorem 6.14].
Though, we can prove all the undecidability results considered in [11] for any plq monoid.

Some of these results are based on an embedding of the monoid {a}∗×{c, d}∗ into Q(A,U).
Unfortunately, this does not help for the following two problems since their counterparts in
{a}∗ × {c, d}∗ are decidable. Hence, we have to prove them directly.

The first considered decision problem is the unique decipherability problem in Q(A,U),
i.e., the question whether a given finite set S freely generates S∗. To this end, we will use
the undecidability of this problem in {a, b}∗ × {c, d}∗ by encoding the elements of the given
set and adding another item.

I Theorem 3.2. Let A be an at least binary alphabet and U ⊆ A. Then, given a finite set
S ⊆ Q(A,U), it is undecidable whether S∗ is freely generated by S.

Proof. We prove this undecidability by reduction of this question for the monoid {a, b}∗ ×
{c, d}∗, which is undecidable by [6, Theorem 3.1]. So, let a, b ∈ A be distinct letters and
S = {(x1, y1), . . . , (xk, yk)}. Define the embeddings f : {a, b}∗ → A∗ and g : {c, d}∗ → A∗ by
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f(a) = g(c) = aa and f(b) = g(d) = ab. Set q0 := [bbbbb], qi := [f(xi)g(yi)] for any 1 ≤ i ≤ k,
and T := {qi | 0 ≤ i ≤ k} ⊆ Q(A,U). Then we can show that S∗ is freely generated by S iff
T ∗ is freely generated by T . J

The next problem to consider is the emptiness of intersections of rational subsets in
the plq monoid. Given two recognizable sets, this problem is decidable since the class of
recognizable subsets is effectively closed under intersection. However, we will prove that this
decidability does not hold for arbitrary rational subsets. As a corollary we can infer that the
class of rational subsets is not effectively closed under intersection. Afterwards we will prove
the existence of two rational subsets whose intersection is not rational. In consequence, the
classes of rational and recognizable subsets do not coincide. Nevertheless, each recognizable
set in Q(A,U) is rational due to [18] since the plq monoid is finitely generated.

I Theorem 3.3. Let A be an at least binary alphabet and U ⊆ A. Then the emptiness of
the intersection of two rational subsets of Q(A,U) is undecidable.

Proof. We prove this by reduction of Post’s Correspondence Problem (PCP), which is
undecidable by [23]. So, let a, b ∈ A be distinct letters and I = ((x1, y1), . . . , (xk, yk)) be an
instance of the PCP with xi, yi ∈ A∗. We define the following rational sets

XI := {pi = [aibxi] | 1 ≤ i ≤ k}+[a][b]∗ and YI := {qi = [aibyi] | 1 ≤ i ≤ k}+[a][b]∗ .

We can show then that XI ∩ YI 6= ∅ if, and only if, I has a solution. J

To prove that the rational subsets are not closed under intersection and to prove the
undecidability of the next problems we use an embedding of {a}∗ × {b, c}∗ into the plq
monoid. Let a, b ∈ A be distinct letters. Such an embedding is ψ : {a}∗ × {b, c}∗ → Q(A,U)
with ψ(a, ε) = [a], ψ(ε, b) = [ab], and ψ(ε, c) = [abb] by [15, Section 6.2].

I Theorem 3.4. Let A be an at least binary alphabet and U ⊆ A. Then the set of rational
subsets of Q(A,U) is not closed under intersection. In particular, there is a rational subset
of Q(A,U) which is not recognizable.

Proof. Consider the following rational relations:

R1 = {(am, bmcn) |m,n ∈ N} and R2 = {(am, bncm) |m,n ∈ N} .

Then ψ(R1) and ψ(R2) are rational in Q(A,U). Suppose that ψ(R1)∩ψ(R2) is rational. Then
there is a regular language S ⊆ Σ∗ with ψ(R1) ∩ ψ(R2) = η(S). Since ψ is injective we have
ψ(R1)∩ψ(R2) = ψ(R1∩R2) = ψ({(an, bncn) |n ∈ N}). Hence, π(S) = {(ab)n(abb)n |n ∈ N}
would be regular since π is a homomorphism. But this is a contradiction to the Pumping
Lemma. J

Gibbons and Rytter proved in [9] that universality and recognizability are undecidable
in {a}∗ × {b, c}∗. Since ψ is an embedding of this monoid into the plq monoid, these
undecidabilities imply the undecidability of their counterparts in the plq monoid.

I Theorem 3.5. Let A be an at least binary alphabet and U ⊆ A. Then universality,
inclusion, equality, and recognizability of rational subsets of Q(A,U) are undecidable. J
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4 Characterizations of the Recognizable Subsets

In Section 3 we have shown many decision problems on rational subsets of the plq monoid
to be undecidable. We know that all these problems are decidable if the given subsets
are recognizable from the known constructions in automata theory. Here, we want to give
characterizations of the recognizable subsets in the manner of Kleene’s and Büchi’s Theorem
[13, 4], i.e., we characterize the recognizable sets as certain rational sets and by logical means.
At first, we state the main theorem. Later in this section we give the definitions of q-rational
subsets and MSOq and prove the correctness of this theorem.

I Theorem 4.1 (Main Theorem). Let A be an at least binary alphabet, U ⊆ A, and S ⊆
Q(A,U). Then the following are equivalent:
(A) S is recognizable.
(B) S is q-rational.
(C) S is MSOq-definable.

4.1 Some Helping Characterizations
Before we prove Theorem 4.1 we state two further characterizations which turned out to be
convenient for simplification of the proof of Theorem 4.1. We know these characterizations
from [11] for the recognizable subsets in the reliable queue monoid Q(A,A) and generalize
them to plq monoids Q(A,U) with arbitrary subsets U ⊆ A. On the one hand, we prove
the correspondence of recognizability in the plq monoid to regularity in the underlying free
monoid. On the other hand, we show that each recognizable subset is a Boolean combination
of sets π−1(R), π−1(R) where R ⊆ A∗ is regular and some special sets Ω` for any ` ∈ N:

I Definition 4.2. Let q ∈ Q(A,U). Then the overlap’s bounded width of q is

ω(q) := inf{|π2(p)| : p ∈ Q(A,U), π(p) = π(q), π(p) = π(q), |π2(q)| < |π2(p)|} .

Furthermore, for ` ∈ N set Ω` := {q ∈ Q(A,U) |ω(q) > `}.

The overlap’s bounded width specifies the minimal length of the overlap of a word with
the same projections having a longer overlap. If such word does not exist then we set this
value to ∞.

I Example 4.3. Let A = U = {a, b} and q = ababaabbabab. Then there are two words with
the same projections and longer overlaps: q1 = abaabbaabbab and q2 = aabbaabbaabb. We
have |π2(q1)| = 4 and |π2(q2)| = 6. Therefore, we have ω(q) = 4, ω(q1) = 6, and ω(q2) =∞.
Hence, q ∈ Ω3 \ Ω4 holds.

From [11, Observation 9.1] we know that any non-trivial property of the overlap’s width
|π2(q)| is not recognizable in Q(A,A). An appropriate alternative for the generators of the
Boolean algebra of recognizable subsets was found in such kind of “overapproximation” of
the overlap’s length (note that ω(q) > |π2(q)| holds). Additionally, the following observations
provide some more motivation of this notion:

I Observation 4.4. Every q ∈ Q(A,U) is completely described by π(q), π(q), and ω(q). J

I Observation 4.5. Let ` ∈ N and w ∈ Σ∗. Then ω([w]) ≤ ` if, and only if, there is u ∈ A≤`
with π(w) ∈ A∗u and u ≤U π(w) such that |π2(w)| < |u|. J

Now we can state the following equivalences which can be proven similar to [11, Theo-
rem 9.4].
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I Theorem 4.6. Let A be an at least binary alphabet, U ⊆ A, and S ⊆ Q(A,U). Then the
following are equivalent:
1. S is recognizable.
2. η−1(S) ∩A∗A∗A∗ is regular.
3. S is a Boolean combination of sets of the form π−1(R) or π−1(R) for some regular

R ⊆ A∗ and the sets Ω` for some ` ∈ N. J

4.2 From Recognizability to Q-Rational Subsets
In this subsection we prove that each recognizable subset in the plq monoid is q-rational. To
this end, we first need to define this notion which is a restriction to the rational expressions.
We need this restriction since we cannot translate Kleene’s Theorem [13] to plq monoids
due to Theorem 3.4. Though, we can use Ochmański’s approach from [21] to generate the
recognizable subsets. Concretely, we restrict the Kleene star and the concatenation of the
plq monoid in an appropriate way. We call the sets generated by those operations q-rational
and prove that these are exactly the recognizable subsets in the plq monoid.

At first, we prove that the class of recognizable subsets is not closed under iteration:
I Remark. Let S = {[aa]}, which is trivially recognizable. Then η−1(S∗)∩A∗A∗ ⊆ Σ∗ is the
set of all words anan with n ∈ N by Rule d in Definition 2.1. This language is not regular.
Hence, η−1(S∗) is also not regular and therefore S∗ is not recognizable.

This is a very similar situation as in trace monoids. Here, Ochmański proved in [21] that
it suffices to restrict iteration to obtain some kind of rational expressions that are generating
all the recognizable subsets [21]. Unfortunately, the class of recognizable subsets in the plq
monoid also is not closed under product.
I Remark. Let S = {[a]}∗ and T = {[a]}∗, which are recognizable. Then η−1(S · T ) ∩
A
∗
A∗A

∗ ⊆ Σ∗ is the set of all words u1u2u3 with u1, u2, u3 ∈ a∗ and u1 = ε or |u2| ≤ |u3|
by Rule d in Definition 2.1. Since this language is not regular, S · T is not recognizable.

Hence, we have to restrict the use of the monoid’s product in the construction of the
so-called q-rational subsets. Next, we will define these subsets and afterwards we prove that
these are a suitable restriction of rationality to describe exactly the recognizable subsets. But
at first, we say that a subset of Q(A,U) is q+-rational if it can be obtained by the following
rules:
(1+) π−1(ε), π−1(∅) = ∅, and π−1(a) for any a ∈ A are q+-rational
(2+) if S1, S2 ⊆ Q(A,U) are q+-rational then S1 ∪ S2, S1 · S2, and S∗1 are q+-rational
Similarly, by replacing π−1 by π−1 in the rules above, we define the class of q−-rational
subsets of Q(A,U).

I Observation 4.7. Let S ⊆ Q(A,U). Then S is q+-rational (q−-rational) if, and only if,
there is some regular R ⊆ A∗ with S = π−1(R) (S = π−1(R), resp.). J

Finally, a subset of Q(A,U) is q-rational if it can be constructed from the following rules:
(1) if S1 ⊆ Q(A,U) is q+- or q−-rational it also is q-rational
(2) if S1, S2 ⊆ Q(A,U) are q-rational then S1 ∪ S2 and Q(A,U) \ S1 are q-rational
(3) if S1 ⊆ Q(A,U) is q+-rational and S2 ⊆ Q(A,U) is q−-rational such that π(S2) is finite

(i.e., S2 is obtained without usage of the ∗-operator) then S1 · Q(A,U) · S2 is q-rational

I Example 4.8. Let S = {q ∈ Q(A,U) |π(q) ∈ (ab)∗, π(q) = b}. Then S is q-rational since
we have S = π−1(b) ∩ (π−1(a) · π−1(b))∗. Note that the class of q-rational subsets also is
closed under intersection due to Rule 2, i.e., this class is a Boolean algebra.
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At first sight, the choice of Rule 3 seems to be some kind of random. But we can remove
neither the factor Q(A,U), which appears as separator in this product, nor the finiteness of
π(S2). Additionally, we cannot simply remove this rule since the set {[aa]} cannot be built
by application of the Rules 1 and 2, only.

Now we can prove the implication “A⇒B” in Theorem 4.1. To do this, we utilize
Theorem 4.63. Concretely, we do this by induction on the syntax tree of such kind of
expression that each recognizable subset is q-rational. The most complicated case in this
proof is to show that Ω` is q-rational. For this proof we need the following lemma:

I Lemma 4.9. Let ` ∈ N, q ∈ Q(A,U) and u = a1 . . . a` ∈ A∗. Then we have u ≤U π(q)
and π2(q) ∈ A∗u if, and only if, q ∈ π−1

(∏`
i=1(A \ U)∗ai

)
· Q(A,U) · π−1(u). J

Finally, we can state the following implication:

I Proposition 4.10. Let S ⊆ Q(A,U) be recognizable. Then S is q-rational.

Proof. We use Theorem 4.63 to prove the claim by induction. At first, if S = π−1(R) or
S = π−1(R) where R ⊆ A∗ is regular, then S is q-rational by Observation 4.7.

Next, let ` ∈ N and S = Ω`. Then by Observation 4.5 and Lemma 4.9 we have

Ω` =
⋂

u∈A≤`

(Q(A,U) \
(
π−1(WuA

∗) ∩ π−1(A∗u)
)
∪ π−1(Wu) · Q(A,U) · π−1(u)) ,

where Wu =
∏k
i=1(A \ U)∗ai with u = a1 . . . ak. Since the sets π−1(WuA

∗), π−1(A∗u),
π−1(Wu), and π−1(u) are q-rational by Observation 4.7, Ω` is q-rational as well.

Finally, the class of q-rational subsets is closed under Boolean operations. J

4.3 From Q-Rational Subsets to Logic
The second implication from Theorem 4.1 states that each q-rational subset is definable
in a special monadic second-order logic which we call MSOq. Here, we try to exhibit the
knowledge from the preceding subsection such that this logic defines exactly the recognizable
subsets. In fact, we have to add some modifications to Büchi’s MSO-logic from [4]. At first,
we should understand p ≤w q as follows: the letter a on position p in w cannot be moved to
the right of the letter b on position q without violating any of the rules from Definition 2.1
(recall that R only swaps letters). In other words, for any v ∈ [w] the letter a appears left
from b in v. Additionally, we have to restrict comparisons of write and read operations:
I Remark. It is not possible to compare arbitrary letters in w without any restrictions. For
example, let

φ = ∃x, y : (QA(x) ∧ ∀z : (QA(z)→ z ≤ x) ∧QA(y) ∧ ∀z : (QA(z)→ y ≤ z) ∧ ¬x ≤ y) ,

i.e., w satisfies φ iff the first read action can be moved to the right of the last write action.
Then we have L(φ)∩ a∗a∗a∗ = {aka`am | k = 0 or m ≥ `}. Since this language is not regular,
the subset of Q(A,U) of the elements satisfying φ is not recognizable either.

By FOq we denote the set of all first-order formulas build up from the atomic formulas of
the form x = y, x <+ y, x <− y, P`(x) for ` ∈ N+, and Qa(x) for a ∈ A where x and y are
variables. Additionally, by MSOq we denote the monadic second-order extension of FOq.

Now let w = a1 . . . an ∈ Σ∗. The plq model for w is the relational structure w̃ :=
(dom(w), <w+, <w−, (Pw` )`∈N+ , (Qwa )a∈Σ) where dom(w) = {1, . . . , n}, Qwa = {i | ai = a}, <w+
and <w− are the natural orderings on QwA =

⋃
a∈AQ

w
a and Qw

A
, respectively, and

Pw` = {i ∈ QwA | ∀v1, v2 ∈ Σ∗ : (w ≡ v1v2 ∧ π(v1) = π(a1 . . . ai))→ |π(v2)| < `} ,
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i.e., we have i ∈ Pw` iff ai ∈ A and the `th last read action in w is left from ai and cannot
be moved to the right of ai. This is conform to the approaches known from [4, 7] since the
relations <w+, <w−, and Pw` specify which letter have to appear to the left of another one in
any word equivalent to w. Hence, we can infer that w̃ identifies the equivalence class [w]:

I Lemma 4.11. Let v, w ∈ Σ∗. Then we have v ≡ w if, and only if, ṽ ∼= w̃. J

Therefore, we can define the plq model q̃ := ñf (q) for q ∈ Q(A,U).
Now let φ ∈ MSOq. The set defined by φ is S(φ) = {q ∈ Q(A,U) | q̃ |= φ}. We say that

S ⊆ Q(A,U) is MSOq-definable (FOq-definable) if there is φ ∈ MSOq (φ ∈ FOq, respectively)
with S = S(φ).

I Remark. The sets Pw` also are conform to the special product in the definition of q-rational
subsets into logics. In particular, we have S(∃x : ¬P`(x)) = π−1(A+) · Q(A,U) · π−1(A`).

Now we prove that each q-rational subset is MSOq-definable. In the proof of implication
“B⇒C” in Theorem 4.1 we need the following notion: Let φ, ξ(x) ∈ MSO. Then there is a
formula φ|ξ ∈ MSO which restricts the quantifiers in φ to values satisfying ξ(x). Thereby, we
have φ|ξ ∈ FO iff φ, ξ ∈ FO.

Finally, we can state:

I Proposition 4.12. Let S ⊆ Q(A,U) be q-rational. Then S is MSOq-definable.

Proof. If S is q+-rational then we have S = π−1(R) for some regular R ⊆ A∗. By [4] there
is an MSO-formula φ with L(φ) = R. Then by replacing of all occurrences of < in φ by <+
we obtain an MSOq-formula φ′ with S(φ′|QA(x)) = π−1(L(φ)) = S.

Similarly, we can prove that S is MSOq-definable if S is q−-rational (here, we replace <
by <− and restrict to QA).

If S = S1 ∪ S2 or S = Q(A,U) \ S1, where S1, S2 are q-rational there are φ1, φ2 ∈ MSOq
with S(φ1) = S1 and S(φ2) = S2. Then we have S = S(φ1∨φ2) and S = S(¬φ1), respectively.

Finally, let S = π−1(R) · Q(A,U) · π−1(F ) where R ⊆ A∗ is regular and F ⊆ A∗ is finite.
W.l.o.g. we can assume that F = {w} holds. Then there are MSOq-formulas φR and φF
defining π−1(R) and π−1(F ), respectively. Set

φ := ∃x1, x2 : φR|x≤+x1 ∧ φF |x2≤−x ∧ ¬P|w|(x1) .

Then we have S = S(φ). J

4.4 From Logic to Recognizability
Finally, we have to prove that each MSOq-definable subset is recognizable. To do this, we
utilize Theorem 4.62. In other words, given φ ∈ MSOq we construct a formula ψ ∈ MSO
such that η−1(S(φ)) ∩ A∗A∗A∗ = L(ψ) ∩ A∗A∗A∗ holds. Since the right-hand side of this
equation is regular by [4], we can infer that S(φ) is recognizable.

The translation of formula P`(x) is the most complicated case in our construction since
write and read actions commute in certain contexts given in Definition 2.1. Concretely, we
will translate ¬P`(x) since it seems to be easier to understand. Hence, we start with this
case. At first, we prove that there is an FO-formula describing the words in which the last `
read actions are U -prefixes of the write actions:

I Lemma 4.13. Let ` ∈ N. There is a sentence overlap` ∈ FO such that w ∈ L(overlap`) if,
and only if, there is u ∈ A` with u ≤U π(w) and π2(w) ∈ A∗u for any w ∈ Σ∗.
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Proof. There is an NFA A which guesses the last ` read actions, verifies afterwards whether
these are a U -prefix of the write actions, and checks whether each of the last ` read actions
appear after their corresponding write action. This NFA can be constructed without usage
of any counters. Hence, its accepted language is aperiodic. By [19] there is a formula
overlap` ∈ FO with L(overlap`) = L(A). J

Now let w ∈ A∗A∗A∗ and p ∈ dom(w). Then we express p /∈ Pw` as follows:
If we have p ∈ Qw

A
we are ready. So, assume p ∈ QwA from now on. At first, we choose the

last ` read actions from w. Let q1, . . . , q` be their positions.
If p < q1 then we are ready. So, assume q1 < p from now on. Then there are two words

u, v ∈ Σ∗ such that w ≡ uv, u ends with the letter on position p in w, and v starts with the
letter on position q1 in w. Since ≡ is a congruence we can assume that v = π1(v)π(v)π2(v)
holds. Let π(v) = b1 . . . b`. Then bi can be moved to the left-hand side of the letter on
position p in w if, and only if, uv does not satisfy overlap`−i+1.

Finally, there may be some letters bi from π1(v) that can be moved to the right in w.
This is possible if, and only if, one of the following two cases hold: on the one hand, this
is possible if bi . . . b` 6≤U π(w). On the other hand, if bi . . . b` ≤U π(w) and the write action
corresponding to bi appears right from position p in w.

All of the above mentioned requirements can be expressed in MSO-formulas. Hence, we
can construct co-P`(x) ∈ MSO such that w |= co-P`[p] if, and only if, p /∈ Pw` . Therefore, we
can state the following:

I Proposition 4.14. Let S ⊆ Q(A,U) be MSOq-definable. Then S is recognizable.

Proof. Let S ⊆ Q(A,U) be MSOq-definable. Then there is φ ∈ MSOq with S = S(φ). We
construct φ′ ∈ MSO by the following modifications of φ:

replace “x <+ y” by “x < y ∧QA(x) ∧QA(y)”
replace “x <− y” by “x < y ∧QA(x) ∧QA(y)”
replace “P`(x)” by “¬co-P`[x]”

Then we can prove that w̃ |= φ if, and only if, w |= φ′ for any w ∈ A∗A∗A∗. Hence, by Büchi’s
Theorem [4] η−1(S) ∩A∗A∗A∗ is regular, i.e., S is recognizable due to Theorem 4.6. J

5 Characterizations of the Aperiodic Subsets

In the previous section we have seen a Kleene- and Büchi-type characterization of the
recognizable subsets in the plq monoid. Another more involved task is to describe the
aperiodic subsets in the plq monoid. Schützenberger has proven in [25] that the aperiodic
subsets in the free monoid are exactly the star-free languages. This result gives us a decision
procedure to decide whether a given regular language is star-free. Another similar result for
trace monoids can be found in [10]. These two results cannot be translated to plq monoids
since the class of aperiodic subsets is not closed under product. Though, we will see that
we can restrict the use of the product to describe exactly the aperiodic subsets of the plq
monoid.

Another characterization of the aperiodic languages was proven by [19]: similar to
Büchi’s Theorem [4] McNaughton and Papert proved that these are exactly the FO-definable
languages. Here, we will see that analogously the aperiodic subsets in the plq monoid are
the FOq-definable subsets.

Before we give these characterizations we have to define the restriction of star-freeness.
We say that a subset of Q(A,U) is q-star-free if it can be constructed by the Rules 1-3 in
which we replace “S = S∗1” by “S = Q(A,U) \ S1” in the rules 2 and (2−).
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Similarly, to Theorem 4.1 we can state and prove the following result:

I Theorem 5.1. Let A be an at least binary alphabet, U ⊆ A, and S ⊆ Q(A,U). Then the
following are equivalent:
(A) S is aperiodic.
(B) L is q-star-free.
(C) L is FOq-definable. J
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Abstract
This paper investigates the size in bits of the LZ77 encoding, which is the most popular and
efficient variant of the Lempel–Ziv encodings used in data compression. We prove that, for a
wide natural class of variable-length encoders for LZ77 phrases, the size of the greedily construc-
ted LZ77 encoding on constant alphabets is within a factor O( logn

log log logn ) of the optimal LZ77
encoding, where n is the length of the processed string. We describe a series of examples showing
that, surprisingly, this bound is tight, thus improving both the previously known upper and lower
bounds. Further, we obtain a more detailed bound O(min{z, logn

log log z }), which uses the number
z of phrases in the greedy LZ77 encoding as a parameter, and construct a series of examples
showing that this bound is tight even for binary alphabet. We then investigate the problem on
non-constant alphabets: we show that the known O(logn) bound is tight even for alphabets of
logarithmic size, and provide tight bounds for some other important cases.
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1 Introduction

The Lempel–Ziv encoding [23] (LZ77 for short) is one of the most popular and efficient
compression techniques used in data compression, stringology, and algorithms in general.
The LZ77 encoding lies at the heart of common compressors such as gzip, 7zip, pkzip, rar,
etc. and serves as a basis for modern compressed text indexes on highly repetitive data (e.g.,
see [12, 15, 18]).

Numerous papers on LZ77 have been published during the last 40 years. In these works,
it was proved that LZ77 is superior compared to many other compression schemes both in
practice and in theory. For instance, in [14, 24, 22] it was shown that LZ77 is asymptotically
optimal with respect to different entropy-related measures; further, in [4] it was proved that
many other reference based encoders (including LZ78 [24]) use polynomially (in the length
of the uncompressed data) more space than LZ77 in the worst case and, in a sense, are
never significantly better than LZ77. However, many problems related to LZ77 are still not
completely solved. In this paper we investigate how good is the popular greedy LZ77 encoder
in a class of practically motivated models with variable-length encoders for LZ77 phrases;
to formulate the problem that we study more accurately, let us first discuss what is known
about different LZ77 encoders.

LZ77 is a dictionary based compression scheme that replaces a string with phrases that
are actually references to strings in a dictionary. Each phrase of an LZ77 encoding can be
viewed as a triple 〈d, `, c〉, where ` is the length of the phrase, d is the distance to a string
of length `−1 from the dictionary such that this string is a prefix of the phrase, and c is
the last letter of the phrase (the precise definition follows); we use the definition from [23]
but all our results can be adapted for the version of LZ77 from [21], in which phrases are
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encoded by pairs 〈d, `〉 (throughout the paper, we provide the reader with separate remarks
in cases where such adaptation is not straightforward). The same string can have many
different LZ77 encodings. It is well known that the greedily constructed LZ77 encoding,
which builds the encoding from left to right making each phrase as long as possible during
this process, is optimal in the sense that it produces the minimal number of phrases among
all LZ77 encodings of this string (see [4, 20, 21]). The same optimality property holds for
the versions of LZ77 with “sliding window” [9], which is a restriction that is important for
practical applications.

However, in practice, compressors usually use variable-length encoders for phrases and,
in this case, it is not clear whether the greedy LZ77 encoder is optimal in the sense that
it outputs the minimal number of bits. The question of finding an optimal LZ77 encoding
for variable-length phrase encoders was raised in [19] and the first attempts to solve this
problem were given in [11]. The authors of [11] also conducted the first theoretical studies to
find how bad is the greedy LZ77 encoding compared to an optimal LZ77 encoding. Such
questions make sense only if we state formally which kinds of phrase encoders are used
in the LZ77 encoder. As in [11], we investigate encoders that encode each phrase 〈d, `, c〉
using Θ(log d+ log `+ log c) bits1 (see a more formal discussion below). This class of phrase
encoders includes a broad range of practically used encoders and, among others, Elias’s [10]
and Levenshtein’s [17] encoders, which produce asymptotically optimal universal codes for
the numbers d, `, c; we refer the reader to [11] for further discussions on the motivation.

In the described model, there are two ways how to optimize the size of the produced
LZ77 encoding. The first way is to minimize d in the triples 〈d, `, c〉. This problem was
addressed already in [11] for the greedy LZ77 encoder, where one must find the rightmost
occurrence of the referenced part of each phrase; several improvements on this result of [11]
and related questions were given in [1, 2, 3, 8, 16]. The second way is to consider both
parameters ` and d, i.e., to build an optimal LZ77 encoding. There are very few works in this
direction (see [7] and [11]) and there is still a room for improvements in such results. Due to
the overall difficulty of the problem of finding an optimal LZ77 encoding, real compressors
usually construct an LZ77 encoding greedily. Thus, this raises the following question: how
bad can the produced greedy LZ77 encoding be compared to an optimal LZ77 encoding?

For a given string of length n, denote by LZgr and LZopt the sizes in bits of, respectively,
the greedily constructed and an optimal LZ77 encodings from the special class of encodings
that we consider in this paper (see clarifications in Section 2). We investigate the ratio LZgr

LZopt
.

Upper bounds on this ratio are provided in terms of the parameters n, z, and σ, where z
is the number of phrases in the greedy LZ77 encoding of the considered string (it is well
known that any other LZ77 encoding contains at least z phrases; see [4, 20, 21]) and σ is
the alphabet size. We are also interested in upper bounds that use only the parameter
n. In [11] it was proved that LZgr

LZopt
= O(logn) and there is a series of examples on which

LZgr
LZopt

= Ω( logn
log logn ). In this paper we improve these results and our bounds in many cases are

tight in the sense that there are series of examples on which these bound are attained; our
main contributions are summarized in Table 1.

First, we study the case of constant alphabets and completely solve it. Namely, in
Theorem 7, we find the following detailed upper bound on the ratio LZgr

LZopt
(note that this

bound is also applicable for arbitrary alphabets): LZgr
LZopt

= O(min{z, logn
log logσ z

}). In the case of
constant alphabets this upper bound degenerates to O(min{z, logn

log log z}). In Theorem 10 we

1 Throughout the paper all logarithms have base 2 if it is not explicitly stated otherwise.
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Table 1 Upper bounds on LZgr/LZopt; tight bounds are denoted by Θ.

parameter n parameters n, z, σ

σ = O(1) Θ( log n
log log log n

) Θ(min{z, log n
log log z

})
arbitrary σ Θ(logn) O(min{z, log n

log logσ z
})

construct a series of examples on the binary alphabet showing that this simplified bound is
tight, thus closing the problem for constant alphabets. Theorem 10 actually provides a more
elaborate lower bound Ω(min{z, logn

log logσ z+logσ}), which is applicable for arbitrary alphabets.
From these general results, we deduce in Corollary 8 that LZgr

LZopt
= O( logn

log log logn ) for constant
alphabets, and this upper bound is tight.

Then, we consider the case of arbitrary alphabets. It is shown in Theorem 12 that the
upper bound O(logn) on the ratio LZgr

LZopt
is tight even if the input alphabet has logarithmic

size. Thus, we solve the problem in the general case and find that the tight upper bounds,
expressed in terms of n, for constant and arbitrary alphabets differ by Θ(log log logn) factor.

As a side note, for polylogarithmic alphabets and z ≥ 2logε n, where ε > 0 is an arbitrary
constant, we obtain in Corollary 11 the upper bound O( logn

log logn ) and show that this bound is
tight for such alphabets and such z. Informally, the strings for which the condition z ≥ 2logε n

holds (which includes the case z ≥ nδ, where δ > 0 is an arbitrary constant) can be called
“non-extremely compressible” strings. Thus, we, in a sense, solve the problem in the arguably
most important case of “non-extremely compressible” strings drawn from polylogarithmic
alphabets.

The paper is organized as follows. In the following Section 2 we introduce some basic
notions used throughout the text and, in particular, formally define LZ77 parsings and
encodings. Section 3 describes a detailed upper bound on the ratio of the sizes in bits of the
greedy and optimal LZ77 encodings. In Section 4 it is shown that, on constant alphabets,
this bound is tight. The material of these two sections provides a complete solution of
the problem for constant alphabets, which turns out to be quite simple. We then consider
arbitrary alphabets in Section 5 and find tight bounds for several important cases, including
the general case of arbitrary alphabet and arbitrary z, for which, as it turns out, the known
O(logn) bound is tight. Finally, we conclude with some remarks and open problems in
Section 6.

2 Preliminaries

A string s over an alphabet Σ is a map {1, 2, . . . , n} → Σ, where n is referred to as the length
of s, denoted by |s|. In this paper we assume that the alphabet is a set of non-negative integers
that are less than or equal to n, which is a common and natural assumption in the problem
under investigation. We write s[i] for the ith letter of s and s[i..j] for s[i]s[i+1] · · · s[j]. A
string u is a substring of s if u = s[i..j] for some i and j; the pair (i, j) is not necessarily
unique and we say that i specifies an occurrence of u in s starting at position i. A substring
s[1..j] (resp., s[i..n]) is a prefix (resp. suffix) of s. We say that substrings s[i..j] and s[i′..j′]
overlap if j ≥ i′ and i ≤ j′. For any i, j, the set {k ∈ Z : i ≤ k ≤ j} (possibly empty) is
denoted by [i..j].

An LZ77 parsing of a given string s is a parsing s = f1f2 · · · fz such that all the strings
f1, . . . , fz (called phrases) are non-empty and, for any i ∈ [1..z], either fi is a letter, or
|fi| > 1 and the string fi[1..|fi|−1] has an earlier occurrence starting at some position
j ≤ |f1f2 · · · fi−1| (note that this occurrence can overlap fi).

STACS 2018
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The greedy LZ77 parsing is a special LZ77 parsing built by the greedy procedure that
constructs all phrases from left to right by choosing each phrase fi as the longest sub-
string starting at given position such that fi[1..|fi|−1] has an earlier occurrence in the
string (see [23]). For instance, the greedy LZ77 parsing of the string s = abababbbaba is
a.b.ababb.baba. The following lemma is straightforward.

I Lemma 1. All phrases in the greedy LZ77 parsing of a given string (except, possibly, for
the last phrase) are distinct.

It is also well-known that, for a given string, the greedy LZ77 parsing has the minimal
number of phrases among all LZ77 parsings (e.g., see [4, 20, 21]). This implies that, when
each phrase of the parsing is encoded by a fixed number of bits, the greedy LZ77 parsing
is optimal, i.e., it produces an encoding of the minimal size in bit. However, the greedy
LZ77 parsing does not necessarily produce an encoding of the minimal size when one uses a
variable-length encoder for phrases; the latter is usually the case in most common compressors.
Let us clarify what kinds of variable-length phrase encoders we are to consider in this paper.

A given LZ77 parsing f1f2 · · · fz is encoded as follows. Each phrase fi is represented
by a triple 〈d, `, c〉, where ` = |fi|, c = fi[|fi|], and d = |f1f2 · · · fi−1| − j for j that is the
position of an earlier occurrence of fi[1..|fi|−1] (assuming that d = 0 if |fi| = 1). We choose
three encoders ed, e`, ec, each of which maps non-negative integers to bit strings. We then
transform each triple 〈d, `, c〉 into the binary string ed(d)e`(`)ec(c) and concatenate all these
binary strings, thus producing an LZ77 encoding corresponding to the given LZ77 parsing.

In this paper we consider only encoders ed, e`, ec that map any positive integer x to a bit
string of length Θ(log(x+ 1)). This family of encoders includes most widely used encoders
such as Elias’s [10] and Levenshtein’s [17] ones (see [11] for further motivation). We fix three
encoders ed, e`, ec satisfying the above property and, hereafter, assume that all considered
LZ77 encodings are obtained using these ed, e`, ec.

We say that an LZ77 encoding is optimal if it has the minimal size in bits. It is shown
below that, unlike the case of fixed-length phrase encoders, for the family of phrase encoders
under investigation, the LZ77 encoding generated by the greedy LZ77 parsing (which is
called the greedy LZ77 encoding) is not necessarily optimal. Among all possible greedy LZ77
encodings we always consider those that occupy the minimal number of bits; usually, such
encoding is obtained by the minimization of the numbers d in the triples 〈d, `, c〉 representing
the phrases of the greedy LZ77 parsing.
I Remark. Most common compressors actually use a different variant of the LZ77 parsing
(which was introduced in [21]), defining each phrase fi as either a letter or a string that has
an earlier occurrence (note that in the definition of LZ77 parsings only the prefix fi[1..|fi|−1]
of fi must have an earlier occurrence). We call this variant a nonclassical LZ77 parsing (as
it differs from the original parsing proposed in [23]). The greedy nonclassical LZ77 parsing is
defined by analogy with the greedy LZ77 parsing. In encoding corresponding to a nonclassical
LZ77 parsing each phrase is represented either by a pair 〈d, `〉 that is defined analogously to
the triples 〈d, `, c〉, or by one letter. This variant of LZ77 is very similar to the one that we
investigate and, moreover, all our results can be adapted for this variant. In the sequel, we
provide separate remarks that explicitly show how to generalize our results to nonclassical
LZ77 parsings if it is not straightforward.

3 Upper Bound

Our proof of the upper bound on the ratio between the sizes of the greedy and optimal LZ77
encodings is as follows: first, we obtain an upper bound U on the size of the greedy LZ77
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encoding, then we find a lower bound L on the size of any LZ77 encoding, and finally, we
derive the estimation U

L on the ratio. The details follow.
Let s be a string of length n. Recall that any letter of s is an integer from the range

[0..n]. Based on the above mentioned properties of the phrase encoders ed, e`, ec, one can
easily show that each phrase of any LZ77 encoding of s occupies O(logn) bits. Therefore,
we obtain the following upper bound on the size of the greedy LZ77 encoding.

I Lemma 2. Let LZgr be the size in bits of the greedy LZ77 encoding of a given string of
length n. Then, we have LZgr = O(z logn), where z is the number of phrases in the encoding.

The lower bound on any LZ77 encoding is more complicated. Lemmas 3, 4, 5 below are
well known but we, nevertheless, provide their proofs for the sake of completeness.

I Lemma 3. For any positive integers t, t1, . . . , tk such that
∑k
i=1 ti ≥ t, we have∑k

i=1 log ti ≥ log(t− k + 1).

Proof. Note that
∑k
i=1 log ti = log

∏k
i=1 ti. Since for any tj and tj′ such that tj ≥ tj′ , we

have (tj + 1)(tj′ − 1) = tjtj′ − (tj − tj′ + 1) < tjtj′ , the product
∏k
i=1 ti is minimized when

t1 = t − k + 1 and t2 = t3 = · · · = tk = 1 (recall that every number ti must be a positive
integer). Therefore, we obtain

∑k
i=1 log ti ≥ log(t− k + 1). J

I Lemma 4. Any phrase of an LZ77 parsing of a string can overlap with at most two phrases
of the greedy LZ77 parsing of the same string.

Proof. Suppose, for the sake of contradiction, that a phrase f of an LZ77 parsing overlaps
with at least three phrases of the greedy LZ77 parsing. Then, f [1..|f |−1] must contain a
phrase f ′ of the greedy LZ77 parsing as a proper substring. But then the string f ′ occurs
in an earlier occurrence of the string f [1..|f |−1] and, therefore, the greedy construction
procedure could choose a longer phrase during the construction of the phrase f ′, which is a
contradiction. J

I Lemma 5. In the greedy LZ77 parsing of any string of length n over an alphabet of size
σ ≥ 2, at least z − 2

√
z phrases have length ≥ 1

2 logσ z, where z is the number of phrases.

Proof. Denote by f1f2 · · · fz the greedy LZ77 parsing of a given string of length n over an
alphabet of size σ. By Lemma 1, all the phrases f1, . . . , fz−1 are distinct. Therefore, for
any ` > 0, at most

∑`
i=0 σ

i = σ`+1−1
σ−1 of these phrases have length at most `. Since for any

` < 1
2 logσ z, we have

∑`
i=0 σ

i <
√
zσ−1
σ−1 , the number of phrases with length at least 1

2 logσ z
must be greater than (z − 1)−

√
zσ−1
σ−1 . Thus, it remains to prove that 1 +

√
zσ−1
σ−1 ≤ 2

√
z. It

is easy to show that, for σ ≥ 2, the function
√
zσ−1
σ−1 decreases as σ grows. Hence, we deduce

1 +
√
zσ−1
σ−1 ≤ 1 + 2

√
z−1

2−1 = 2
√
z. J

I Lemma 6. Let LZopt be the size in bits of an optimal LZ77 encoding of a string of length
n over an alphabet of size σ ≥ 2. Then, we have LZopt = Ω(logn+ z log logσ z), where z is
the number of phrases in the greedy LZ77 parsing of this string.

Proof. Denote by f1f2 · · · fz′ the LZ77 parsing corresponding to an optimal LZ77 encoding
of the string under consideration. By the definition of the phrase encoders, we have LZopt ≥
Ω(
∑z′

i=1 log |fi|). It follows from Lemma 3 that LZopt ≥ Ω(log(n − z′)). Since, obviously,
LZopt ≥ z′, the latter implies LZopt ≥ Ω(z′ + log(n− z′)) ≥ Ω(logn).

Denote by f ′1f
′
2 · · · f ′z the greedy LZ77 parsing of the same string. Let S be the set

of all phrases in this parsing with lengths at least 1
2 logσ z. By Lemma 5, we have |S| ≥

STACS 2018
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z − 2
√
z = Θ(z). Consider a phrase f ′ ∈ S. Let fg, fg+1, . . . , fh be all phrases in the parsing

f1f2 · · · fz′ that overlap with the phrase f ′. Since |fgfg+1 · · · fh| ≥ |f ′|, Lemma 3 implies that
(h−g)+log |fg|+log |fg+1|+· · ·+log |fh| ≥ (h−g)+log(|f ′|−(h−g)) ≥ Ω(log |f ′|). Thus, the
encodings of the phrases fg, fg+1, . . . , fh all together occupy Ω(log |f ′|) bits. By Lemma 4,
any phrase fi of the parsing f1 · · · fz′ overlaps with at most two phrases of the parsing
f ′1 · · · f ′z. Therefore, the encodings of all phrases f1, . . . , fz′ occupy 1

2Ω(
∑
f ′∈S log |f ′|) ≥

Ω(|S| log logσ z) = Ω(z log logσ z) overall bits. J

I Theorem 7. Let z be the number of phrases in the greedy LZ77 parsing of a given
string of length n drawn from an alphabet of size σ. Denote by LZgr and LZopt the sizes in
bits of, respectively, the greedy and optimal LZ77 encodings of this string. Then, we have
LZgr
LZopt

= O(min{z, logn
log logσ z

}).

Proof. By Lemmas 2 and 6, LZgr
LZopt

≤ O(z logn)
Ω(logn+z log logσ z)

= O( z logn
logn+z log logσ z

). Since
z logn

logn+z log logσ z
≤ z logn

logn = z and z logn
logn+z log logσ z

≤ logn
log logσ z

, the result follows. J

I Corollary 8. For constant alphabet, LZgr
LZopt

= O( logn
log log logn ).

Proof. We have LZgr
LZopt

= O(min{z, logn
log log z}) due to Theorem 7. The functions z 7→ z and

z 7→ logn
log log z , respectively, increase and decrease as z grows. Therefore, the maximum of

the function min{z, logn
log log z} is reached when z = logn

log log z . Solving this equation, we obtain
z = Θ( logn

log log logn ), which proves the result. J

I Remark. To generalize the described results to nonclassical LZ77 parsings, one should use,
instead of Lemma 1, the following straightforward lemma.

I Lemma 9. Suppose that s = f1f2 · · · fz is the greedy nonclassical LZ77 parsing of a given
string s; then, all the strings fi · fi+1[1], for i ∈ [1..z−1], are distinct.

The rest can be easily reconstructed by analogy.

4 Lower Bound

We now construct a series of example showing that, for several important cases, the upper
bound given in Theorem 7 is tight. In particular, on constant alphabets, i.e., when σ = O(1),
Theorem 10 complements Theorem 7 showing that the bound O(min{z, logn

log log z}) is tight.
Further, putting z = logn

log log logn and σ = 2 in Theorem 10, we show that the upper bound
given in Corollary 8 is tight.

I Theorem 10. For any given integers n > 1, σ ∈ [2..n], and z ∈ [σ.. n
logσ n

], there is a string
of length n over an alphabet of size σ such that the number of phrases in the greedy LZ77
parsing of this string is Θ(z) and the sizes LZgr and LZopt of, respectively, the greedy and
optimal LZ77 encodings of this string are related as LZgr

LZopt
≥ Ω(min{z, logn

log logσ z+logσ}).

Proof. If σ ≥ n/4, then any LZ77 encoding of a string of length n containing σ distinct
letters obviously occupies Θ(σ log σ) = Θ(n logn) bits and, hence, the statement of the
theorem, which degenerates to LZgr

LZopt
≥ Ω(1), trivially holds. Assume that σ < n/4.

We first consider the case σ ≥ 3 as it is simpler. Suppose that the alphabet is the set
[1..σ]. Denote b = 1 and τ = σ − 1 (b is a special letter-separator with small code and τ
is the size of the set [1..σ] \ {b} = [2..σ]). Let m be the minimal integer such that τm ≥ z,
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i.e., m = dlogτ ze. Note that m = Θ(logσ z). In [5] it is shown that all τm possible strings
of length m over the alphabet [2..σ] can be arranged in a sequence s1, s2, . . . , sτm (called
a τ -ary Gray code [5, 13]) such that, for any i ∈ [2..τm], the strings si−1 and si differ in
exactly one position. Moreover, we can choose such sequence so that sτm = am, where a is
an arbitrary letter from [2..σ].

Let k and ` be positive integers such that k < τm and ` > m. Our example is the
following string (the numbers k and ` will be adjusted below so that k = Θ(z) and ` ≥ 1

2n):

s = s1s2 · · · sk · a` · bs1bs2b · · · skb.

Let us consider the greedy LZ77 parsing of s and the corresponding greedy LZ77 encoding.
Since the letter b first occurs in the substring a`b, the greedy construction procedure builds
the parsing of s1bs2b · · · skb starting from the first position of this substring. Since k < τm

and sτm = am, it follows from the definition of the sequence s1, . . . , sk that, for any i ∈ [1..k],
the longest prefix of the string sibsi+1b · · · skb that has an earlier occurrence in s is si and
this earlier occurrence is a substring of the prefix s1s2 · · · skam of s. Therefore, the greedy
algorithm decomposes the suffix s1bs2b · · · skb into k phrases sib, for i ∈ [1..k]. It is easy to
see that each of these phrases is encoded in Ω(log `) bits (this is the number of bits required
to encode the distance between the phrase and its earlier occurrence). Hence, the size in bits
of the greedy LZ77 encoding of s is LZgr ≥ Ω(k log `).

Now let us consider a better encoding of the same string s. For simplicity, we omit the
description of the encoding of the prefix s1s2 · · · sk as it is very similar to the encoding of the
suffix s1bs2b · · · skb discussed below. First, we parse the substring a`b into two phrases a and
a`−1b, which are encoded in O(log `+ log σ) bits (the referenced part a`−1 of a`−1b is self-
referential). Then, we encode the substring s1b as in the greedy approach by one phrase taking
O(log `) bits (recall that ` > m and b = 1 and, hence, the length |s1b| = m+1 and the letter b
are encoded in O(log `) bits). Now we consecutively encode each substring sib, for i ∈ [2..k], as
follows. Suppose that the strings si and si−1 differ at position j, i.e., si−1[1..j−1] = si[1..j−1]
and si−1[j+1..m] = si[j+1..m]. We decompose sib into two phrases si[1..j] and si[j+1..m]b.
Since the strings si[1..j−1] and si[j+1..m] both are substrings of the string si−1 and have
length O(m), the encoding of the produced two phrases occupies O(logm + log σ) bits.
Hence, the whole suffix s1bs2b · · · skb can be encoded in O(k logm+ k log σ) bits; the prefix
s1s2 · · · sk can be encoded similarly in O(k logm+k log σ) bits. Thus, we obtain an encoding
of the string s that occupies O(log `+ k logm+ k log σ) bits. Therefore, the size in bits of
the optimal LZ77 encoding of s is LZopt = O(log `+ k logm+ k log σ).

Recall that m = Θ(logσ z). Combining the estimations on LZgr and LZopt, we ob-
tain LZgr

LZopt
≥ Ω(k log `)

O(log `+k(logm+logσ)) ≥ Ω( k log `
log `+k(log logσ z+logσ) ). Since k log `

log `+k(log logσ z+logσ) ≥
k log `

2·max{log `,k(log logσ z+logσ)} = 1
2 min{k, log `

log logσ z+logσ}, we obtain LZgr
LZopt

≥
Ω(min{k, log `

log logσ z+logσ}). Note that the number of phrases in the greedy LZ77 parsing
of s is Θ(k) and |s| = `+ 1 + k(2m+ 1). We put ` = n− k(2m+ 1)− 1 so that |s| = n. Since
z ∈ [2.. n

logσ n
] and m = Θ(logσ z), we have k(2m+1) ≤ O(n) if k = Θ(z). Then, it is straight-

forward that the parameter k can be chosen so that k = Θ(z) and ` = n−k(2m+1)−1 ≥ 1
2n.

Hence, we derive LZgr
LZopt

≥ Ω(min{z, logn
log logσ z+logσ}). (If not all letters of the alphabet [1..σ]

indeed occur in the constructed string, we append all unused letters to the end of s and
reduce ` appropriately; as σ < n/4, we have ` ≥ 1

4n in the end.)
Now assume that σ = 2. Let {0, 1} be the alphabet. Similarly to the above analysis, we

fix a sequence s1, . . . , s2m of all binary strings of length m = dlog ze such that, for i ∈ [2..2m],
si−1 and si differ in exactly one position, and we choose two parameters ` > 4m and k < 2m,
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which will be adjusted later so that ` ≥ 1
2n and k = Θ(z). It is well known that one can fix

the sequence s1, . . . , s2m so that s2m = 0m. Our example is defined as follows:

s = s10m1s20m1 · · · sk0m10`1s10m1c1s20m1c2 · · · sk0m1ck,

where ck = 1 and, for i ∈ [1..k−1], ci = 0 if si+1[1] = 1, and ci = 1 otherwise.
Since, for any i ∈ [1..k], si 6= 0m (as si = 0m iff i = 2m, and k < 2m) and ` > 4m, the

greedy LZ77 parser necessarily makes a phrase that is a suffix of the substring 0`1 and, then,
parses the suffix s10m1c1s20m1c2 · · · sk0m1ck from the first position. It is straightforward
that, for any i ∈ [1..k], the string 0m1 has only one occurrence in the strings 1si0m1 and
1ci−1si0m1 (for i > 1). Therefore, for any i ∈ [1..k], the string si0m1 has only one occurrence
in the prefix s10m1s20m1 · · · sk0m1 and the string si0m1ci has only one occurrence in the
whole string s. Then, the greedy parser parses the suffix s10m1c1s20m1c2 · · · sk0m1ck into k
phrases si0m1ci, for i ∈ [1..k]. This parsing produces an encoding of size Ω(k log `) bits. At
the same time, there is an LZ77 encoding for s of size O(log `+ k logm) bits. The further
analysis is very similar to the analysis of the case σ ≥ 3: we put ` = n − k(4m + 3) − 1
so that |s| = n, and we adjust k so that k = Θ(z) and ` ≥ 1

2n, which is possible because
m ≤ log z + 1 and z ≤ n

logn . We omit the details as they are analogous. J

I Remark. The condition σ ≤ z ≤ n
logσ n

from Theorem 10 is justified by the following
observations. First, it is obvious that any LZ77 parsing has at least σ phrases and, hence,
the inequality σ ≤ z holds. Secondly, by Lemma 5, at least z − 2

√
z phrases in the greedy

LZ77 parsing have length at least 1
2 logσ z, where z is the total number of phrases; hence,

we obtain z logσ z ≤ O(n) and, solving this inequality, z = O( n
logσ n

), which justifies the
condition z ≤ n

logσ n
.

I Remark. Let us sketch the way in which the constructions from the proof of Theorem 10
can be adapted to nonclassical LZ77 encodings. For the case σ ≥ 3, the corresponding string
is as follows (the notation is from the proof of Theorem 10):

s = bs1bs2 · · · bskb · a` · bs1bbs2bb · · · bbskb.

The suffix bs1bbs2bb · · · bbskb of this string is greedily parsed into the phrases bsib, for i ∈ [1..k].
For the case σ = 2, the corresponding string is as follows:

s = 10s1α10s2α1 · · · 10skα · 0` · 10s1α0s2α0 · · · 0skα0,

where α = 0m+11. The suffix 10s1α0s2α0 · · · 0skα0 of s is greedily parsed into the phrases
10s1α and 0siα, for i ∈ [2..k]. We omit the detailed analysis as it is analogous to the analysis
in the proof of Theorem 10.

5 Arbitrary Alphabets

The following corollary shows that, in the case of “non-extremely compressible” string
(z ≥ 2logε n) over a polylogarithmic alphabet (σ ≤ logO(1) n), which is arguably the most
important case for practice, the upper and lower bounds from Theorems 7 and 10 degenerate
to Θ( logn

log logn ) and, hence, are tight. (Note that 2logε n = o(nδ) for any fixed constants
ε ∈ (0, 1) and δ ∈ (0, 1).)

I Corollary 11. Let z be the number of phrases in the greedy LZ77 parsing of a given string
of length n drawn from an alphabet of size σ. Suppose that σ ≤ logO(1) n and z ≥ 2logε n, for
a fixed constant ε ∈ (0, 1). Denote by LZgr and LZopt the sizes in bits of, respectively, the
greedy and optimal LZ77 encodings of this string. Then, we have LZgr

LZopt
≤ O( logn

log logn ) and this
upper bound is tight.
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Proof. The result follows from Theorems 7 and 10 since log logn ≥ log logσ z ≥
log logε n

O(log logn) = Θ(log logn). J

Now let us consider bounds on the ratio LZgr
LZopt

that are independent of the parameters z
and σ.

In [11] it was proved that O(logn) is an upper bound on the ratio LZgr
LZopt

. It turns out that
this bound is tight on sufficiently large non-constant alphabets. Precisely, a series of examples
on which LZgr

LZopt
= Ω(logn) can be constructed on an alphabet of size O(logn). Therefore,

the upper bound O( logn
log log logn ) on the ratio LZgr

LZopt
, which, by Corollary 8, holds for constant

alphabets and is tight, does not hold, in general, even for alphabets of logarithmic size. In
examples showing this, we use the following well-known combinatorial structure.

A Steiner system S(t, k, n) is a set S of size n and a family of k-element subsets of S,
called blocks, such that each subset of S of size t is contained in exactly one block. We are
particularly interested in the Steiner systems S(2, 22i−1

, 22i), which can be constructed for
any positive integers i (the structure is realized on a finite affine plane of order 22i−1 and
the blocks are lines in the plane; see [6]). It is well known that the number of blocks in the
Steiner system S(2, 22i−1

, 22i) is
(22i

2
)
/
(22i−1

2
)
.

I Theorem 12. For any integer n > 1, there is a string of length n over an alphabet of size
O(logn) such that the sizes LZgr and LZopt of, respectively, the greedy and optimal LZ77
encodings of this string are related as LZgr

LZopt
≥ Ω(logn).

Proof. Let us first discuss a high-level idea of our construction. Consider the following
string:

t · b1cb′1 · b2cb′2 · · · bkcb′k · cΘ(n) · td · b1cb′1d · b2cb′2d · · · bkcb′kd,

where t = a1a2 · · · aσ−2 is a string consisting of σ−2 distinct letters, the sets {bi, b′i} run
through all k =

(
σ−2

2
)
two-element subsets of the set {a1, a2, . . . , aσ−2}, and c and d are two

special letters with constant codes (say, 0 and 1) that do not occur in t. The greedy LZ77
parser parses the suffix b1cb′1d · b2cb′2d · · · bkcb′kd into phrases bicb′id encoded by references to
the substrings bicb′i of the prefix t · b1cb′1 · b2cb′2 · · · bkcb′k. Each such reference takes Ω(logn)
bits and, therefore, the greedy encoding occupies Ω(

(
σ−2

2
)

logn) = Ω(σ2 logn) bits.
Obviously, any LZ77 encoding spends Θ(logn) bits to encode the substring cΘ(n). If we

were able to encode the prefix and the suffix surrounding the substring cΘ(n) in O(σ2) bits,
then we would obtain LZgr

LZopt
≥ Ω( σ2 logn

σ2+logn ) = Ω( σ2 logn
max{σ2,logn} ) = Ω(min{logn, σ2}), which is

Ω(logn) for σ = Ω(
√

logn). Unfortunately, it seems that the best encoding that one can
find for the suffix b1cb′1d · b2cb′2d · · · bkcb′kd parses each substring bicb′id into two phrases bic
and b′ic, encoding each of them by a reference to a letter in t = a1a2 · · · aσ−2, thus spending
Θ(
(
σ−2

2
)

log
(
σ−2

2
)
) = Θ(σ2 log σ) bits for the whole suffix, which is larger than Θ(σ2) by

the factor log σ. To address this issue, we construct a more sophisticated string equipped
with additional “infrastructure” that helps to “deliver” cheaply letters from a “dictionary”
substring (like t) to the places where these letters are used. Let us formalize this intuition.

Choose the minimal positive integer x such that 22x >
√

logn. The alphabet for our
example will consist of two special letters c and d with codes 0 and 1, and of the set A of 22x

letters with codes larger than 1. Obviously, the alphabet size σ = 22x + 2 is at most logn+ 2.
Let us assign to each subset S of A such that |S| = 22i , for some i ∈ [1..x], a Steiner

system S(2, 22i−1
, 22i) with the set of blocks denoted by BS . Denote by q a mapping that

maps every such S to a string q(S) = aj1daj2d · · · aj|S|d, where aj1 , aj2 , . . . , aj|S| are all letters
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from S in an arbitrarily chosen order. The basic building elements for our string are defined
recursively as follows.

r(S) = q(S)
∏
B∈BS r(B) if |S| > 2,

r(S) = bcb′cbcb′dd if S = {b, b′} for distinct letters b, b′.

Analogously, we define:

r′(S) = q(S)
∏
B∈BS r(B) if |S| > 2,

r′(S) = bcb′cbcb′dc if S = {b, b′} for distinct letters b, b′.

To break ties on the lowest levels of recursion where |S| = 2, we assume that b is the letter
from S with the smallest code.

Our string on which LZgr
LZopt

≥ Ω(logn) is s = r′(A)c`r(A), where ` is chosen so that ` = Θ(n)
(see the text below, where we discuss the lengths of r(S) and r′(S)). Let us first show that
the greedy LZ77 encoding of this string has size Ω(σ2 logn) bits.

By the definition of Steiner systems, for any subset S ⊆ A of size 22i , each pair {b, b′} of
distinct letters from S is contained in exactly one block (of size 22i−1) from BS . Then, it
is straightforward that any given pair {b, b′} of distinct letters from A occurs exactly once
as a parameter of r on the lowest level of the recursion r(A). An analogous claim holds for
r′(A). Hence, the string bcb′cbcb′d (we assume that the code of b is smaller than the code of
b′) occurs in s exactly twice: in the prefix r′(A) and in the suffix r(A). Further, it is easy to
see that the string bcb′ occurs in s only as a substring of bcb′cbcb′d. By a straightforward
case analysis, one can show that this implies that the greedy LZ77 parsing of s has a phrase
f containing the substring bcb′dd of r(A): f either is a phrase starting at one of the first
five positions of bcb′cbcb′dd (greedily “eating” the remaining part) or is a phrase containing
the prefix bcb′cb of bcb′cbcb′dd (the part bcb′c can be copied only from bcb′cbcb′dc in r′(A)
and, thus, again f greedily “eats” the remaining part). The encoding of f copies the part
bcb′d from the substring bcb′d of r′(A) by reference, thus spending Ω(log `) = Ω(logn) bits.
Since the two occurrences of bcb′cbcb′d in s are followed by distinct letters (c in r′(A) and d
in r(A)), the string bcb′dd must be a suffix of f . Hence, there is a one-to-one correspondence
between the pairs {b, b′} of distinct letters from A and the phrases containing the substrings
bcb′dd. Therefore, the greedy LZ77 encoding of s occupies Ω(

(|A|
2
)

logn) = Ω(σ2 logn) bits.
Now it remains to show that there is an LZ77 encoding of the string s that occupies

O(σ2 + logn) bits. This will imply that LZgr
LZopt

≥ Ω(σ2 logn)
O(σ2+logn) ≥ Ω(min{logn, σ2}), which is

Ω(logn) since, by construction, σ >
√

logn.
We decompose the substring c` of s = r′(A)c`r(A) into two phrases c and c`−1, encoding

these phrases in O(logn) bits. All other phrases in our parsing will have length either one
or two. For simplicity of the exposition, we consider only encoding of the suffix r(A); the
encoding for r′(A) is analogous and occupies asymptotically the same space.

By definition, q(A) is a prefix of r(A). The string q(A) serves as a “dictionary” of letters
similar to the string t in the preliminary example. We encode each letter of q(A) as a phrase
of length one, thus spending O(σ log σ) bits. These are the only “heavy” phrases of length
one in our encoding of r(A): all other phrases of length one will be either c or d, the letters
with codes 0 and 1, which can be encoded in O(1) bits. All phrases of length two will have
the form either ac or ad, where a ∈ A; thus, the “heavy” part of the encoding of such phrases
of length two is an O(log δ)-bit encoding of the distance δ to an occurrence of a preceding
this phrase.

Let us consider a substring r(S) = q(S)
∏
B∈BS r(B) of r(A), where S ⊆ A is a set of

size 22i that occurs in the expansion of the recursion r(A). Suppose that i > 1. Then, each
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substring r(B), for B ∈ BS , has a prefix q(B) = a1da2d · · · a|B|d, where a1, a2, . . . , a|B| are
members of B. We parse q(B) into phrases a1d, a2d, . . . , a|B|d, encoding each phrase aid by
a reference to the letter ai of the prefix q(S) of r(S). Suppose that i = 1. Then, each block
B ∈ BS is just a pair {b, b′} of distinct letters from S, and r(B) = bcb′cbcb′dd. We parse
r(B) into phrases bc, b′c, bc, b′d, d, encoding each phrase of length two by a reference to a
letter from the prefix q(S) of the string r(S).

Denote by E(i) the maximum size in bits of the encoding for the suffix
∏
B∈BS r(B) of

some string r(S), among all subsets S ⊆ A such that |S| = 22i . Then, E(i) can be expressed
by the following recursion (recall that |BS | =

(22i

2
)
/
(22i−1

2
)
):

E(i) ≤
((22i

2
)
/
(22i−1

2
))

(22i−1
α logL(i) + E(i− 1)), for i > 1,

E(1) ≤
(4

2
)
(4α logL(1) + α),

where L(i) denotes the length of the string r(S) (obviously, L depends only on the size 22i

of S) and α is a positive constant that depends on the chosen phrase encoder. Consider the
prefix q(B) of a substring r(B) of r(S), where B ∈ BS and |B| > 2. Each phrase ad from
the parsing of q(B) is encoded in O(log δ) bits, where δ is the distance to the letter a from
the prefix q(S) of r(S). Obviously, we have δ < L(i). Therefore, choosing an appropriate
constant α > 0, we can estimate the number of bits required to encode all 22i−1 phrases from
the parsing of q(B) as 22i−1

α logL(i); hence, the expression for E(i) with i 6= 1. Analogously,
the size in bits of the encoding for bcb′cbcb′dd can be estimated as 4α logL(1) + α; hence,
the expression for E(1).

Thus, the whole encoding of the string s requires O(logn+σ log σ+E(x)) bits. It remains
to show that E(x) ≤ O(σ2). Before finding a closed form for E(i), let us consider L(i), which
can be expressed by the following recursion:

L(i) = 2 · 22i +
((22i

2
)
/
(22i−1

2
))

L(i− 1), for i > 0,

L(0) = 9.

Here, L(0) = |bcb′cbcb′dd| = 9. Let us find a closed form for L(i). Note that 22z/
(22z

2
)

= 2
22z−1

for any integer z ≥ 0. Expanding the recursion for L(i), we obtain:

L(i) = 2 · 22i + (22i

2 )
(22i−1

2 )
L(i− 1)

= 22i+1 + (22i

2 )
(22i−1

2 )

(
2 · 22i−1 + (22i−1

2 )
(22i−2

2 )
L(i− 2)

)
= 22i+1 + 4·(22i

2 )
22i−1−1

+ (22i

2 )
(22i−2

2 )
L(i− 2)

= 22i+1 +
(

4·(22i

2 )
22i−1−1

+ 4·(22i

2 )
22i−2−1

+ · · ·+ 4·(22i

2 )
221−1

)
+ 9 ·

(22i

2
)

= 22i+1 +
(22i

2
) ( 4

22i−1−1
+ 4

22i−2−1
+ · · ·+ 4

221−1 + 9
)
.

The term 9 ·
(22i

2
)
appears because of the last level of the recursion L(i). Now it is easy

to see that L(i) ≤ β ·
(22i

2
)
for a constant β > 0. In particular, we obtain |r(A)| =

|r′(A)| = L(x) ≤ β ·
(22x

2
)
≤ O(σ2) (recall that σ = 22x + 2). Since, as it was noted

above, σ ≤ logn + 2, we obtain L(x) ≤ O(log2 n). Hence, for large enough n, we have
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` = n − |r(A)| − |r′(A)| = n − 2L(x) = n − O(log2 n) ≥ 1
2n, i.e., ` = Θ(n), as it was

announced above. Let us similarly estimate E(i). Denote γi = α logL(i) for brevity.

E(i) ≤ (22i

2 )
(22i−1

2 )
(22i−1

γi + E(i− 1))

= 2·(22i

2 )
22i−1−1

γi + (22i

2 )
(22i−1

2 )
E(i− 1)

= 2·(22i

2 )
22i−1−1

γi + (22i

2 )
(22i−1

2 )

(
(22i−1

2 )
(22i−2

2 )
(22i−2

γi−1 + E(i− 2))
)

= 2·(22i

2 )
22i−1−1

γi + (22i

2 )
(22i−2

2 )
22i−2

γi−1 + (22i

2 )
(22i−2

2 )
E(i− 2)

= 2·(22i

2 )
22i−1−1

γi + 2·(22i

2 )
22i−2−1

γi−1 + (22i

2 )
(22i−2

2 )
E(i− 2)

= 2·(22i

2 )
22i−1−1

γi + 2·(22i

2 )
22i−2−1

γi−1 + · · ·+ 2·(22i

2 )
221−1 γ2 +

(22i

2
)
(4γ1+α)

= 2 ·
(22i

2
) (

γi
22i−1−1

+ γi−1

22i−2−1
+ · · ·+ γ2

221−1 + 2γ1 + α
2

)
.

The term
(22i

2
)
(4γ1 + α) appear because of the last level of the recursion E(i). Note that

γi = α logL(i) ≤ α log(β ·
(22i

2
)
) = O(2i). It is well known that

∑∞
k=0

2k
22k−1

= O(1).

Therefore, E(i) can be estimated as O(
(22i

2
)
). Thus, we obtain E(x) ≤ O(

(22x

2
)
), which is

O(σ2) since σ = 22x + 2. J

I Remark. For nonclassical LZ77 encodings, we can use exactly the same example as in the
proof of Theorem 12. In this case, the substrings q(B) = a1da2d · · · a|B|d and bcb′cbcb′dd
of each string r(S) are parsed into one-letter phrases: the phrases c and d are encoded in
O(1) bits using the codes of these letters, and the phrases a1, a2, . . . , a|B|, b, b

′ are encoded
using references to letters of the prefix q(S) of r(S). The analysis of the size of thus obtained
encoding is analogous.

6 Concluding Remarks

The upper and lower bounds O(min{z, logn
log logσ z

}) and Ω(min{z, logn
log logσ z+logσ}), established

in Theorems 7 and 10, completely solve the problem for the case of constant alphabets and for
some cases of arbitrary alphabets. But the general case of arbitrary alphabets with bounds
expressed in terms of the parameters n, z, σ remains open (see Table 1 in the introduction).
Note that the examples constructed in the proof of Theorem 12 to show that LZgr

LZopt
≥ Ω(logn)

are extremely compressible strings with z = O(log2 n) and it is not clear whether the upper
bound LZgr

LZopt
≤ O(logn) remains tight if we consider “non-extremely compressible” strings

(but not necessarily on polylogarithmic alphabets).
It is interesting to consider other encoders for LZ77. Many practical compressors utilize

a type of phrase encoders that is strikingly different from ours: such encoders use entropy
compression as a component. DEFLATE and LZMA are important examples of compression
schemes using such techniques. This is a major open problem to formalize these schemes and
to conduct a similar theoretical analysis of the efficiency of the popular greedy approach.
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Abstract
We introduce a measure called width, quantifying the amount of nondeterminism in automata.
Width generalises the notion of good-for-games (GFG) automata, that correspond to NFAs of
width 1, and where an accepting run can be built on-the-fly on any accepted input. We describe
an incremental determinisation construction on NFAs, which can be more efficient than the full
powerset determinisation, depending on the width of the input NFA. This construction can be
generalised to infinite words, and is particularly well-suited to coBüchi automata in this context.
For coBüchi automata, this procedure can be used to compute either a deterministic automaton
or a GFG one, and it is algorithmically more efficient in this last case. We show this fact by
proving that checking whether a coBüchi automaton is determinisable by pruning is NP-complete.
On finite or infinite words, we show that computing the width of an automaton is PSPACE-hard.
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1 Introduction

Determinisation of non-deterministic automata (NFAs) is one of the cornerstone problems of
automata theory, with countless applications in verification. There is a very active field of
research for optimizing or approximating determinisation, or circumventing it in contexts
like inclusion of NFA or Church Synthesis. Indeed, determinisation is a costly operation, as
the state space blow-up is in O(2n) on finite words, O(3n) for coBüchi automata [16], and
2O(n log(n)) for Büchi automata [17].

If A and B are NFAs, the classical way of checking the inclusion L(A) ⊆ L(B) is to
determinise B, complement it, and test emptiness of L(A) ∩ L(B). To circumvent a full
determinisation, the recent algorithm from [3] proved to be very efficient, as it is likely to
explore only a part of the powerset construction. Other approaches use simulation games to
approximate inclusion at a cheaper cost, see for instance [8].

Another approach consists in replacing determinism by a weaker constraint that suffices
in some particular context. In this spirit, Good-for-Games automata (GFG for short) were
introduced in [9], as a way to solve the Church synthesis problem. This problem asks, given
a specification L, typically given by an LTL formula, over an alphabet of inputs and outputs,
whether there is a reactive system (transducer) whose behaviour is included in L. The
classical solution computes a deterministic automaton for L, and solves a game defined on

© Denis Kuperberg and Anirban Majumdar;
licensed under Creative Commons License CC-BY

35th Symposium on Theoretical Aspects of Computer Science (STACS 2018).
Editors: Rolf Niedermeier and Brigitte Vallée; Article No. 47; pp. 47:1–47:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2018.47
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de
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this automaton. It turns out that replacing determinism by the weaker constraint of being
GFG is sufficient in this context. Intuitively, GFG automata are non-deterministic automata
where it is possible to build an accepting run in an online way, without knowledge of the
future, provided the input word is in the language of the automaton. In [9], it is shown
that GFG automata allow an incremental algorithm for the Church synthesis problem: we
can build increasingly large games, with the possibility that the algorithm stops before the
full determinisation is needed. One of the aims of this paper is to generalise this idea to
determinisation of NFA, for use in any context and not only Church synthesis. We give an
incremental determinisation construction, where the emphasis is on space-saving, and that
allows in some cases to avoid building the full powerset construction.

The notion of width introduced in this paper generalises the GFG model, by allowing
more than one run to be built in an online way. Intuitively, width quantifies how many
states we have to keep track of simultaneously in order to build an accepting run in an
online way. The maximal width of an automaton is its number of states. The width of an
automaton corresponds to the number of steps performed by our incremental determinisation
construction before stopping. In the worst case where the width is equal to the number
of states of the automaton, we end up performing the full powerset construction (or its
generalisations for infinite words). We study here the complexity of directly computing
the width of a nondeterministic automaton, and we show that it is PSPACE-hard and in
EXPTIME.

The properties of GFG automata and links with other models (tree automata, Markov
Decision Processes) are studied in [2, 10, 11]. Colcombet introduced a generalisation of
the concept of GFG called history-determinism [5], replacing determinism for automata
with counters. It was conjectured by Colcombet [6] that GFG automata were essentially
deterministic automata with additional useless transitions. It was shown in [11] that on the
contrary there is in general an exponential state space blowup to translate GFG automata
to deterministic ones. GFG automata retain several good properties of determinism, in
particular they can be composed with trees and games, and easily checked for inclusion.

We give here the first algorithms allowing to build GFG automata from arbitrary non-
deterministic automata on infinite words, allowing to potentially save exponential space
compared to deterministic automata. Our incremental constructions look for small GFG
automata, and aim at avoiding the worst-case complexities of determinisation constructions.
Moreover, in the case of coBüchi automata, we show that the procedure is more efficient than
its analog looking for a deterministic automaton, since checking for GFGness is polynomial
[11], while we show here that the corresponding step for determinisation, that is checking
whether a coBüchi automaton is Determinisable By Pruning (DBP) is NP-complete.

As a measure of non-determinism, width can be compared with ambiguity, where the
idea is to limit the number of possible runs of the automaton. In this context unambiguous
automata play a role analogous to GFG automata for width. Unambiguous automata are
studied in [12], degrees of ambiguity are investigated in [18, 13, 14]. In the online long version
of the paper, we give examples of automata with various width and ambiguity, showing that
these two measures are essentially orthogonal.

We start by describing the width approach on finite words, and then move to infinite
words, focusing mainly on the coBüchi acceptance condition. We end by briefly describing
the picture for Büchi automata.
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2 Definitions

We will use Σ to denote a finite alphabet. The empty word is denoted ε. If i ≤ j, the set
{i, i + 1, i + 2, . . . , j} is denoted [i, j]. If X is a set and k ∈ N, we note X≤k for

⋃k
i=0 X

i.
The complement of a set X is denoted X. If u ∈ Σ∗ is a word and L ⊆ Σ∗ is a language, the
left quotient of L by u is u−1L := {v ∈ Σ∗ | uv ∈ L}.

2.1 Automata

A non-deterministic automaton A is a tuple (Q,Σ, q0,∆, F ) where Q is the set of states, Σ
is a finite alphabet, q0 ∈ Q is the initial state, ∆ : Q× Σ → 2Q is the transition function,
and F ⊆ Q is the set of accepting states.

The transition function is naturally generalised to 2Q by setting for any (X, a) ∈ 2Q × Σ
∆(X, a) the set of a-successors of X, i.e. ∆(X, a) = {q ∈ Q | ∃p ∈ X, q ∈ ∆(p, a)}.

If for all (p, a) ∈ Q× Σ there is a unique q ∈ Q such that (p, a, q) ∈ ∆, we say that A is
deterministic.

If u = a1 . . . an is a finite word of Σ∗, a run of A on u is a sequence q0q1 . . . qn such that
for all i ∈ [1, n], we have qi ∈ ∆(qi−1, ai). The run is said to be accepting if qn ∈ F .

If u = a1a2 . . . is an infinite word of Σω, a run of A on u is a sequence q0q1q2 . . . such
that for all i > 0, we have qi ∈ ∆(qi−1, ai). A run is said to be Büchi accepting if it
contains infinitely many accepting states, and coBüchi accepting if it contains finitely many
non-accepting states. Automata on infinite words will be called Büchi and coBüchi automata,
to specify their acceptance condition.

We will note NFA (resp. DFA) for a non-deterministic (resp. deterministic) automaton
on finite words, NBW (resp. DBW) for a non-deterministic (resp. deterministic) Büchi
automaton, and NCW (resp. DCW) for a non-deterministic (resp. deterministic) coBüchi
automaton.

We also mention the parity condition on infinite words: each state q has a rank rk(q) ∈ N,
and an infinite run is accepting if the highest rank appearing infinitely often is even.

The language of an automaton A, noted L(A), is the set of words on which the automaton
A has an accepting run. Two automata are said equivalent if they recognise the same language.

An automaton A is determinisable by pruning (DBP) if an equivalent deterministic
automaton can be obtained from A by removing some transitions.

An automaton A is Good-For-Games (GFG) if there exists a function σ : A∗ → Q (called
GFG strategy) that resolves the non-determinism of A depending only on the prefix of the
input word read so far: over every word u = a1a2a3 . . . (finite or infinite depending on the
type of automaton considered), the sequence of states σ(ε)σ(a1)σ(a1a2)σ(a1a2a3) . . . is a
run of A on u, and it is accepting whenever u ∈ L(A). For instance every DBP automaton
is GFG. See [2] for more introductory material and examples on GFG automata.

2.2 Games

A game G = (V0, V1, vI , E,W0) of infinite duration between two players 0 and 1 consists of:
a finite set of positions V being a disjoint union of V0 and V1; an initial position vI ∈ V ; a
set of edges E ⊆ V × V ; and a winning condition W0 ⊆ V ω.

A play is an infinite sequence of positions v0v1v2 · · · ∈ V ω such that v0 = vI and for all
n ∈ N, (vn, vn+1) ∈ E. A play π ∈ V ω is winning for Player 0 if it belongs to W0. Otherwise
π is winning for Player 1.

STACS 2018
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A strategy for Player 0 (resp. 1) is a function σ0 : V ∗× V0 → V (resp. σ1 : V ∗× V1 → V ),
describing which edge should be played given the history of the play u ∈ V ∗ and the current
position v ∈ V . A strategy has to obey the edge relation, i.e. there has to be an edge in E
from v to σP (u, v). A play π is consistent with a strategy σP of a player P if for every n
such that π(n) ∈ VP we have π(n+ 1) = σP (v0 . . . vn−1, vn).

A strategy for Player 0 (resp. Player 1) is positional if it does not use the history of the
play, i.e. it is a function V0 → V (resp. V1 → V ).

We say that a strategy σP of a player P is winning if every play consistent with σP is
winning for P . In this case, we say that P wins the game G.

A game is positionally determined if exactly one of the players has a positional winning
strategy in the game.

3 Finite words

3.1 Width of a NFA
Let A = (Q,Σ, q0,∆, F ) be a NFA, and n = |Q| be the size of A.

We want to define the width of a A as the minimum number of simultaneous states that
need to be tracked in order to be able to deterministically build an accepting run in an online
way.

In order to define this notion formally, we introduce a family of games Gw(A, k), para-
meterized by an integer k ∈ [1, n].

The game Gw(A, k) is played on Q≤k, starts in X0 = {q0}, and the round i of the game
from a position Xi ∈ Q≤k is defined as follows:

Player 1 chooses a letter ai+1 ∈ Σ.
Player 0 moves to a subset Xi+1 ⊆ ∆(Xi, ai+1) of size at most k.

A play is winning for Player 0 if for all r ∈ N, whenever a1a2 . . . ar ∈ L(A), Xr contains
an accepting state.

I Definition 1. The width of a NFA A, denoted width(A), is the least k such that Player 0
wins Gw(A, k).

Intuitively, the width measures the “amount of non-determinism” in an automaton: it
counts the number of simultaneous states we have to keep track of, in order to be sure to
find an accepting run in an online way.

I Fact 2. A NFA A is GFG if and only if width(A) = 1.

3.2 Partial powerset construction
We give here a generalisation of the powerset construction, following the intuition of the
width measure.

We define the k-subset construction of A to be the subset construction where the size of
each set is bounded by k. Formally, it is the NFA Ak = (Q≤k,Σ, {q0},∆′, F ′) where:

∆′(X, a) :=
{
{∆(X, a)} if |∆(X, a)| ≤ k
{X ′ | X ′ ⊆ ∆(X, a), |X ′| = k} otherwise

F ′ := {X ∈ Q≤k | X ∩ F 6= ∅}

I Lemma 3. Ak has less than nk

(k − 1)! + 1 states.
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Proof. The number of states of Ak is (at most) |Q≤k| =
∑k

i=0
(

n
i

)
. Using the fact that(

n
i

)
≤ ni

i! , we can bound the number of states of Ak by
∑k

i=0
ni

i! ≤
∑k

i=0
nk

k! ≤ 1+
∑k

i=1
nk

k! =
nk

(k−1)! + 1. J

The following lemma shows the link between width and the k-powerset construction.

I Lemma 4. width(A) ≤ k if and only if Ak is GFG.

Proof. Winning strategies in Gw(A, k) are in bijection with GFG strategies for Ak. J

3.3 GFG automata on finite words
We recall here results on GFG automata on finite words.

We start with a Lemma characterizing GFG strategies. Let A = (Q,Σ, q0,∆, F ) be a
NFA recognising a language L, and σ : Σ∗ → Q be a potential GFG strategy. If q ∈ Q, we
denote L(q) the language accepted from q in A, i.e. L(q) is the language of A with q as
initial state.

I Lemma 5. σ is a GFG strategy if and only if for all u ∈ Σ∗, L(σ(u)) = u−1L

We now go to the main result of this section. This result has first been proved in [1], and
then a more general version allowing lookahead was proved using a game-based approach in
[15].

I Theorem 6. [1, 15] A NFA A is GFG if and only if it is DBP. Moreover, it is in O(n2) to
determine whether a NFA of size n is GFG, and to compute an equivalent DFA by removing
transitions.

3.4 Incremental determinisation procedure
We can now describe an incremental determinisation procedure, aiming at saving resources
in the search of a deterministic automaton. In the process, we also compute the width of the
input NFA.

The algorithm goes as follows:

Algorithm 1:
k = 0
Repeat
k := k + 1
Construct Ak

Until Ak is GFG
Compute an equivalent DFA D from Ak by removing transitions
Return D, k

The usual determinisation procedure uses the full powerset construction, i.e. assumes
that we are in the case of maximal width. In a second step, the deterministic automaton can
be minimized easily.

Our method here is to approach this construction “from below”, and incrementally
increase the width until we find the good one. In some cases, this allows to compute directly
a smaller automaton, and avoiding using the full powerset construction of exponential state
complexity.

STACS 2018
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Figure 1 Example: 2-subset construction is enough.

For a NFA with n states and width k, the complexity of this algorithm is in O
(

n2k

(k−1)!2

)
,

by Lemma 3 and Theorem 6.

I Example 7. Here the language recognised by this automaton is L(A) = Σ∗aΣ≥k, and it
has width 2. Therefore, our determinisation procedure uses time O(n4) and directly builds a
DFA of size O(n2), while a classical determinisation via powerset construction would build
an exponential-size DFA.

But in some other cases, the powerset construction is actually more efficient than the
k-powerset construction, in terms of number of reachable states. It would therefore be
interesting to be able to either run the two methods in parallel, or guess which one is more
efficent based on the shape of the input NFA.

3.5 Complexity results on the width problem
In this section, we study the complexity of the width problem: given a NFA A and an integer
k, is it true that width(A) ≤ k ?

Being able to solve this problem efficiently would allow us to optimize the incremental
determinisation algorithm, by aiming at the optimal k matching the width right away instead
of trying the different width candidates incrementally.

I Theorem 8. The width problem is PSPACE-hard.

Proof. We prove this by reduction from the universality of NFA Problem (i.e. does an input
NFA accept all words?) which is known to be PSPACE-Complete.

Let A = (Q,Σ,∆, q0, F ) be a NFA that we want to check for universality. Let n = |Q|.
Let a be a letter in Σ and # be a new letter not in Σ.
We build a NFA B over Σ′ = Σ ∪ {#} as the union of two NFAs B1 and B2 as shown in

Figure 2.
Formally B1 = (Q1,Σ′, q0,∆1, F1), with Q1 = Q ∪ {q#}, F1 = {q#}, and

∆1(p, x) =


∆(p, x) if p ∈ Q and x 6= #
{q#} if (p, x) ∈ F × {#} or if (p, x) = (q#, a)
∅ otherwise.

Its language is L(B1) = L(A)#a∗.
The NFA B2 = (Q2,Σ′, pI ,∆2, {p0}) has n + 2 states as described on the picture, and

recognises the language L(B2) = Σ∗#a≥n.
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AB1 : q]

F #

#

#

a

pIstart

B2 :

pn pn−1 pn−2 p0
a# a a a

aΣ

Figure 2 Automaton B.

We define B = (QB,Σ′, {q0, pI},∆B, FB) as the union of B1 and B2. We allow here
multiple initial states for simplicity, but it is straigthforward to adapt the construction in
order to have a unique initial state.

The intuition here is that if A is universal, then B2 is useless in B as L(B) = L(B1) =
Σ∗#a∗, and width(B) = width(A) ≤ n. However, if A is not universal, then B is forced to
use its B2 component, inducing a width at least n+ 1. This is formalized in the following
lemma.

I Lemma 9. width(B) ≤ n ⇐⇒ L(A) = Σ∗.

Proof. (⇒) Suppose width(B) ≤ n but ∃u ∈ Σ∗ \L(A). Let Cn be the n-subset construction
of B. By Lemma 4, Cn is GFG, let σ : Σ∗ → (QB)≤n be a GFG strategy of Cn.

Consider the word w = u#an. Note that w ∈ L(B2) \ L(B1). Let X ∈ (QB)≤n be
the subset reached by σ on w, i.e. X = σ(w). Notice that since u /∈ L(A), we have
X ⊆ (Q2 \ {pI}), i.e. X ⊆ {p0, p1, . . . , pn}. Since |X| ≤ n, there is i ∈ [0, n] such that
pi /∈ X = σ(w). This means that p0 /∈ σ(wai), hence σ(wai) is not accepting. But this word
is in L(B) (as it is in L(B2)), this contradicts the fact that σ is a GFG strategy. Therefore it
must be the case that L(A) = Σ∗.

(⇐) We now assume that L(A) = Σ∗. A GFG strategy in Cn is given by following the
powerset construction in B1, and ignoring B2. This shows that width(B) ≤ n. J

This constitutes a polynomial reduction from universality to the width problem, so
the width problem is PSPACE-hard. Actually, we even showed that the particular case of
checking n-width of an automaton of size 2n+ 3 is PSPACE-hard. J

I Theorem 10. The width problem is in EXPTIME.

Proof. To show the EXPTIME upper bound, it suffices to build the game Gw(A, k) of
exponential size. Solving such a game is polynomial in the size of the game, so this algorithm
runs in exponential time. Also note that the algorithm given in section 3.4 computes the
width of a NFA in EXPTIME. J

We currently do not know if the width problem is complete for PSPACE or EXPTIME,
and we leave this problem open.

STACS 2018
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I Remark. Although the present section deals with finite words, all results are immediately
transferable to safety and reachability automata on infinite words. These automata have
special acceptance conditions, which are particular cases of both Büchi and coBüchi conditions.
Any infinite run is accepting in a safety automaton, and a run is accepting in a reachability
automaton if it contains an accepting state. These dual acceptance conditions are of particular
interest in verification, as they describe very natural properties.

4 CoBüchi Automata

We now turn to the case of coBüchi automata, and their determinisation problem. Here, since
GFG and DBP are no longer equivalent [2, 11], we will also be interested in building GFG
automata. As we will see, coBüchi automata are particularly well-suited for this approach
for several reasons.

First of all, we recall that NCW and DCW have same expressive power, i.e. the
determinisation of coBüchi automata does not need to introduce more complex acceptance
conditions.

4.1 Width of ω-automata
We define here the width of automata on infinite words in a general way, as the definition is
independent of the accepting condition.

Let A = (Q,Σ, q0,∆, α) be an automaton on infinite words with acceptance condition α,
and n = |Q| be the size of A.

As before, we want to define the width of a A as the minimum number of states that
need to be tracked in order to deterministically build an accepting run in an online way.

We will use the same family of games Gw(A, k) as in Section 3.1, they will only differ in
the winning condition.

The game Gw(A, k) is played on Q≤k, starts in X0 = {q0}, and the round i of the game
from a position Xi ∈ Q≤k is defined as follows:

Player 1 chooses a letter ai+1 ∈ Σ.
Player 0 moves to a subset Xi+1 ⊆ ∆(Xi, ai+1) of size at most k.

An infinite play is winning for Player 0 if whenever a1a2 · · · ∈ L(A), the sequence
X0X1X2 . . . contains an accepting run. That is to say there is a valid accepting run
q0q1q2 . . . of A on a1a2 . . . such that for all i ∈ N, qi ∈ Xi.

I Definition 11. The width of A, denoted width(A), is the least k such that Player 0 wins
Gw(A, k).

As before, an automaton A is GFG if and only if width(A) = 1.

4.2 GFG coBüchi automata
We recall here some results from [11] on GFG coBüchi automata.

The first result is the exponential succinctness of coBüchi GFG automata compared to
deterministic ones.

I Theorem 12 ([11]). There is a family of languages (Ln)n∈N such that for all n, Ln is
accepted by a coBüchi GFG automaton of size n, but any deterministic parity automaton for
Ln must have size in Ω

( 2n

n

)
.
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Despite this apparent complexity of GFG NCW, the next theorem shows that they can
be recognised efficiently.

I Theorem 13 ([11]). Given a NCW A, it is in PTIME to decide whether A is GFG.

The conjunction of these results make the coBüchi class particularly interesting in our
setting: the succinctness allows us to potentially save a lot of space compared to classical
determinisation, and Theorem 13 can be used to stop the incremental construction. This is
in the context where we aim at building a GFG automaton, for instance in a context where
we want to test for inclusion, or compose it with a game.

We examine later the case where GFG automata are not enough and we are aiming at
building a DCW instead.

4.3 Partial breakpoint construction
We generalize here the breakpoint construction from [16], in the same spirit as Section 3.2.

For a parameter k, we want the k-breakpoint construction to be able to keep track of at
most k states simultaneously.

Given a NCW A = (Q,Σ,∆, q0, F ), we define the k-breakpoint construction of A as the
NCW Ak = (Q′,Σ,∆′, ({q0}, {q0}), F ′), with

Q′ = {(X,Y )|X,Y ∈ Q≤k and Y ⊆ X},

∆′((X,Y ), a) :=


{(∆(X, a),∆(X, a))} if Y = ∅ and |∆(X, a)| ≤ k
{(X ′, X ′)| X ′ ⊆ ∆(X, a), |X ′| = k} if Y = ∅ and |∆(X, a)| > k

{(∆(X, a),∆(Y, a) ∩ F )} if Y 6= ∅ and |∆(X, a)| ≤ k
{(X ′, X ′ ∩ (∆(Y, a) ∩ F )) | X ′ ⊆ ∆(X, a), |X ′| = k} otherwise

F ′ := {(X,Y ) ∈ Q′ | Y 6= ∅}
That is, a run is accepting in Ak if it visits the states of the form (X, ∅) finitely many

times.

I Lemma 14. The number of states of Ak is at most
∑k

i=0
(

n
i

)
2i, which is in O

( (2n)k

k!
)
.

Proof. A state of Ak is of the form (X,Y ) with |X| ≤ k and Y ⊆ X. Therefore, there are
at most

∑k
i=0
(

n
i

)
2i such states. Since

(
n
i

)
≤ ni

i! , we can bound the number of states by∑k
i=0

nk

k! 2i ≤ nk

k! 2k+1 = O
( (2n)k

k!
)

J

I Lemma 15. L(A) = L(Ak), and width(A) ≤ k ⇐⇒ Ak is GFG.

Proof. This amounts to verifying that the automaton Ak faithfully simulates the winning
condition of Gw(A, k). The proof naturally follows from the correctness proof of the breakpoint
construction.

J

4.4 Incremental construction of GFG NCW
Supppose we are given a NCW A, and we want to build an equivalent GFG automaton.

We can do the same as in Section 3.4: incrementally increase k and test for GFGness of
Ak, which is in PTIME by Theorem 13. However in the coBüchi setting, the GFG automaton
is not necessarily DBP, and can actually be more succinct than any deterministic automaton
for the language (Theorem 12).

STACS 2018



47:10 Width of Non-Deterministic Automata

If we are in a context where we are satisfied with a GFG automaton, such as synthesis or
inclusion testing, this procedure can provide us one much more efficiently than determinisation.

Indeed, the example from [11] showing that GFG NCW are exponentially succinct
compared to deterministic automata can be easily generalized to any width. For instance
if our procedure is applied to the product of this automaton from [11] with the one from
Example 7, our construction will stop at the second step and generate a GFG automaton of
quadratic size. This shows that the incremental construction for finding an equivalent GFG
NCW can be very efficient compared to determinisation.

Directly computing the width of a NCW is PSPACE-hard and in EXPTIME, by the
same arguments as in Section 3.1.

4.5 Aiming for determinism
In cases where a GFG automaton is not enough, and we want instead to build a DCW,
we can test for DBPness instead of GFGness in the incremental algorithm. If we find the
automaton is DBP, we can remove the useless transitions, and obtain an equivalent DCW.

Notice that the number of steps in this procedure corresponds to an alternative notion of
width that can be called det-width. The det-width of an automaton A is the least k such that
Player 0 has a positional winning strategy in Gw(A, k). Det-width always matches width on
finite words by Theorem 6, but the notions diverge on infinite words.

This section studies the complexity of checking DBPness for NCW. The next theorem
shows that surprisingly, DBPness is harder to check than GFGness on NCW.

I Theorem 16. Given a NCW A, it is NP-complete to check whether it is DBP.

We first show the hardness with the following lemma.

I Lemma 17. Checking whether a NCW is DBP is NP-hard.

Proof. We prove this by reduction from the Hamiltonian Cycle problem on a directed graph,
which is known to be NP-complete.

Recall that a Hamiltonian cycle is a cycle using each vertex of the graph exactly once.
Suppose, we have a directed graph G = ([1, n], E) and we want to check whether it

contains a Hamiltonian cycle. W.l.o.g. we can assume that the graph is strongly connected,
otherwise the answer is trivially no.

We construct a NCW A = (Q,Σ,∆, q0, F ), where F is the set of accepting states, such
that A is DBP if and only if G has a Hamiltonian cycle. The components of A are defined
as follows: Q :=

⋃
i∈[1,n]{pi, qi, ri}, Σ := {a1, a2, · · · , an,#}, q0 := p1, F :=

⋃
i∈[1,n]{pi, qi},

and finally ∆ contains the following transitions, for all i ∈ [1, n]:

pi
ai−→ qi, pi

aj−→ ri for all j 6= i, qi
#−→ pi, and ri

#−→ pk if (i, k) ∈ E .

The only non-determinism in A occurs at the ri states when reading #: we then have a
choice between all the pk where (i, k) ∈ E.

We give an example for G in figure 3, where solid lines show the Hamiltonian cycle, and
the construction of A from G in figure 4, where solid lines show a determinisation by pruning
witnessing this Hamiltonian cycle.

For each i ∈ [1, n], we can think of the set of states {pi, qi, ri} as a cloud in A representing
the vertex i of the graph G.

Let Σ′ := Σ \ {#}, and L =
n⋃

i=1
(Σ′#)∗(ai#)ω. First note that, provided G is strongly

connected, we have L(A) = L. Indeed, for a run to be accepting by A, it has to visit ri
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Figure 3 An instance of G.
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Figure 4 Construction of NCW A from G of figure 3.

finitely many times for all i, i.e. after some point it has to loop between pi and qi for some
fixed i, so the input word must be in L. This shows L(A) ⊆ L. On the other hand, consider
a word w ∈ L of the form u(ai#)ω with u ∈ (Σ′#)∗. Then A will have a run on u reaching
some cloud j, and since the graph is strongly connected, the run can be extended to the
cloud i reading a word of (ai#)∗. From there, the automaton will read (ai#)ω while looping
between pi and qi. We can build an accepting run of A on any word w ∈ L, so L ⊆ L(A).

Now we shall prove that A is DBP if and only if G has a Hamiltonian cycle.
(⇒) Suppose A is DBP, and let D be an equivalent DCW obtained from A by removing

transitions. Notice that this corresponds to choosing one out-edge for each vertex of G.
This means it induces a set of disjoint cycles in G. We show that it actually is a unique
Hamiltonian cycle. Indeed, assume that some vertex of i is not reachable from 1 in G.
Equivalently, it means that some cloud i is not reachable from p1 in D. This implies that
(ai#)ω /∈ L(D), which contradicts L(D) = L(A) = L. Therefore, D is strongly connected,
and describes a Hamiltonian cycle in G.

(⇐) Conversely, if G has an Hamiltonian cycle π , we can build the automaton D
accordingly, by setting for all i ∈ [1, n], ∆D(ri, ]) = {pj} where j is the successor of i in π.
Since D is strongly connected, it still recognises L, and since it is deterministic it is a witness
that A is DBP.
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This completes the proof of the fact that A is DBP if and only if G has a Hamiltonian
cycle. Since this is a polynomial time reduction from Hamiltonian Cycle to DBPness of
NCW, we showed that checking DBPness of a NCW is NP-hard.

Note that we used n+ 1 letters here, but it is straightfoward to re-encode this reduction
using only two letters. Therefore, the problem is NP-hard even on a two-letters alphabet. It
is trivially in PTIME on a one-letter alphabet, as there is a unique infinite word. J

The second part of Theorem 16 is given by the following lemma.

I Lemma 18. Checking whether a NCW is DBP is in NP.

Proof. Suppose a NCW A is given. We want to check whether it is DBP. We do this via the
following NP algorithm.

Nondeterministically prune transitions of A to get a deterministic automaton D.
Check whether L(A) ⊆ L(D). For that, we check if L(A) ∩ L(D) = ∅

The second step of the algorithm can be done polynomially, since it amounts to finding an
accepting lasso in A×D, where D is a Büchi automaton obtained by dualizing the acceptance
condition of D. Finding such a lasso is actually in NL.

Therefore, the above algorithm is in NP, and its correctness follows from the fact that
L(D) ⊆ L(A) is always true, as any run of D is in particular a run of A.

J

4.6 Towards Büchi automata
NBW corresponds to the general case of non-deterministic ω-automata, as they allow to
recognise any regular language, and are easily computable from non-deterministic automata
with stronger accepting conditions.

We will briefly describe the generalisation of previous constructions here, and explain what
is the main open problem remaining to solve in order to obtain a satisfying generalisation. We
take Safra’s construction [17] as the canonical determinisation for Büchi automata. Safra’s
construction outputs a Rabin automaton.

The idea behind the previous partial determinisation construction can be naturally
adapted to Safra: it suffices to restrict the image of the Safra tree labellings to sets of states
of size at most k. The bottleneck of the incremental determinisation is then to test for
GFGness (or DBPness) of Rabin automata. For DBPness, the same proof as Theorem 16
shows that it is NP-complete. However for GFGness, the complexity is widely open. The
only known hardness result is the complexity of solving the games with same acceptance
condition [11], known to be in QuasiP for parity [4] and NP-complete for Rabin [7]. In both
cases, it is in P if the acceptance condition is fixed. On the other hand, the best known
upper bound for GFGness is EXPTIME [11], even for fixed condition, say parity with 3
ranks. Finding an efficient algorithm for GFGness of Rabin (or Parity) automata would be
of great interest for this incremental procedure, and would allow to efficiently build GFG
automata from NBW.
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Abstract
We present two structural results concerning the longest common prefixes of non-empty languages.
First, we show that the longest common prefix of the language generated by a context-free
grammar of size N equals the longest common prefix of the same grammar where the heights of
the derivation trees are bounded by 4N . Second, we show that each non-empty language L has a
representative subset of at most three elements which behaves like L w.r.t. the longest common
prefix as well as w.r.t. longest common prefixes of L after unions or concatenations with arbitrary
other languages. From that, we conclude that the longest common prefix, and thus the longest
common suffix, of a context-free language can be computed in polynomial time.
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1 Introduction

Let Σ denote an alphabet. On the set Σ∗ of all words over Σ, the prefix relation provides us
with a partial ordering v defined by u v v iff uu′ = v for some u′ ∈ Σ∗. The longest common
prefix (lcp for short) of a non-empty set L ⊆ Σ∗ then is given by the greatest lower boundd
L of L w.r.t. this ordering. For two words u, v ∈ Σ∗, we also denote this greatest lower

bound as u u v. Our goal is to compute the lcp when the language L is context-free, i.e.,
generated by a context-free grammar (CFG) — we therefore assume wlog. that Σ contains
at least two letters.

The computation of the lcp (sometimes also maximum common prefix) is well studied for
finite languages, in particular in the setting of string matching based on suffix arrays (e.g.,
[6]) where the string is given explicitly. Very often, strings can be efficiently compressed
using straight-line programs (SLPs) — essentially CFGs which produce exactly one word.
Interestingly, many of the standard string operations can still be done efficiently also on
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SLP-compressed strings (see, e.g., [10]). As the union of SLPs is a (acyclic) CFG, the question
of computing the lcp of a context-free language naturally arises. CFGs also represent a
popular formalism to specify sets of well-formed words. Assume that we are given a CFG for
the legal outputs of a program. This CFG might be derived from the specification as well as
from an abstract interpretation of the program. Then the lcp of this language represents a
prefix which can be output already, before the program actually has been run. This kind
of information is crucial for the construction of normal forms, e.g., of string producing
processors such as linear tree-to-string transducers [1, 8]. For these devices, the normal forms
have further interesting applications as they allow for simple algorithms to decide equivalence
[2] and enable efficient learning [9].

Obviously, the lcp of the context-free language L is a prefix of the shortest word in L.
Since the shortest word of a context-free language can be effectively computed, the lcp of L
is also effectively computable. The shortest word generated from a context-free grammar G,
however, may be of length exponential in the size of G. Therefore, it is an intriguing question
whether or not the lcp can be efficiently computed. Here, we show that the longest common
prefix can in fact be computed in polynomial time. As the words the algorithm computes
with may be of exponential length, we have to resort to compressed representations of long
words by means of SLPs [12]. We will rely on algorithms for basic computational problems
for SLPs as presented, e.g., in [10].

Our method of computing
d
L is based on two structural results. First we show in

Section 3 that it suffices to consider the finite sublanguage of L consisting of those words, for
which there is a derivation tree of height at most 4N — with N the number of nonterminals
for a CFG of L.1 This implies that (1) in the proof of our main result we can replace the
grammar by an acyclic context-free grammar, and (2) the actual fixpoint iteration to compute
the lcp will converge within at most 4N iterations. Second we show in Section 4 that for
every non-empty language L there is a subset L′ ⊆ L of at most three elements which is
equivalent to L w.r.t. the lcp after arbitrary concatenations with other words. This means
that for every word w, the language L′w has the same lcp as Lw.

We illustrate both results by examples. For the first result, i.e. the restriction to derivation
trees of bounded height, consider the language

L := {a2b(a2b)ia2b(a2ba)ia2ba2ba3 | i ∈ N0}

generated by the context-free grammar consisting of the following rules over the alphabet
Σ = {a, b, c} and the six nonterminals {S,X,A2, A1, X2, X1}:

S → X2A2bA2bA2a A2 → aA1 A1 → a X → A2b

X2 → aX1 X1 → abX X → X2A2ba

It is easy to check that here the lcp is already determined by repeating the derivation of
X to aabXaaba at most two times, which corresponds to the sublanguage consisting of all

1 To simplify the presentation we assume that the CFG is proper, i.e. we will rule out production rules of
the form A → B and A → ε (with A,B nonterminals and ε the empty word).
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words which have a derivation tree of height at most 9.
d
L = aabaabaabaabaa a (i = 0)

u aabaabaabaabaa abaabaaa (i = 1)
u aabaabaabaabaa baaabaaabaabaaa (i = 2)
u aabaabaabaabaa baabaaabaaabaaabaabaaa (i = 3)
u aabaabaabaabaa b . . . (i ≥ 4)

= aabaabaabaabaa

We remark that the bound of 4N , i.e. 24 for this example, on the height resp. the number of
iterations needed to converge is a crude overapproximation based on the pigeon-hole principle
which does not take into account the structure of the grammar. The actual computation
of the lcp may thus terminate much earlier, in particular when taking the dependency of
nonterminals into account as done in Example 18.

In order to compute the lcp recursively, we call two languages L1, L2 ⊆ Σ∗ equivalent
w.r.t. the lcp if for all words w ∈ Σ∗ we have that

d
(L1w) =

d
(L2w). In Section 4 we

show that every language L can be reduced to a sublanguage L′ consisting of at most
three words so that L and L′ are equivalent w.r.t. the lcp . In fact, this result can be
motivated by considering the special case of a language of the form L = {u, uv1} (with
u, v1 ∈ Σ∗) where we have

d
(Lw) = u(w u vω

1 ) for any w ∈ Σ∗ (see also Section 4). From
this observation one immediately obtains that for finite languages L′ = {uv1, uv2, . . . , uvk}
we have

d
(L′w) = u(w u vω

1 u vω
2 u . . . u vω

k ) and that one only needs to keep those two
uvi, uvj for which vω

i u vω
j is minimal. The result then extends to arbitrary languages.

E.g., in case of the language L = a(ba)∗ we only need the sublanguage {a, aba} (with
εω u (ba)ω := (ba)ω) as the words a and aba suffice to characterize both

d
L = a and the

period ba that generates all suffices. For comparison, in case of L = abab+ aba(ba)∗ the lcp
is aba, which can only be extended to at most abab = aba(bω u (ba)ω). We therefore need
to remember {aba, abab, ababa}: the sublanguages {aba, abab} resp. {aba, ababa} preserved
L = aba but can be extended by bω resp. (ba)ω; whereas {abab, ababa} only captures the

maximal extension of
d
L, but does not preserve

d
L itself.

In order to compute the lcp of a given context-free language L we then (implicitly) unfold
the given context-free grammar into an acyclic grammar, and compute for every nonterminal
of the unfolded grammar an equivalent sublanguage of at most three words, each compressed
by means of a SLP, instead of the actual language. From this finite representation of L we
then can easily obtain its lcp. Altogether, we arrive at a polynomial time algorithm.

Missing proofs can be found in the extended version of this article available on arxiv [11].

2 Preliminaries

Σ denotes a (finite) alphabet. We assume that Σ contains at least two letters as any context-
free language over a unary alphabet is regular. Σ∗ is the set of all finite words over Σ with ε
the empty word, Σω the set of all (countably) infinite words over Σ. We use (ω-)rational
expressions to denote words and languages, e.g. w∗ = ε + w + ww + . . . =

∑
i∈N0

wi and
wω = wwwwwwwwwww . . ..

By CΣ = {(u, v) ∈ Σ∗ × Σ∗} we denote the set of all pairs of finite words over Σ. We
define a multiplication on CΣ by (x, x̄)(y, ȳ) := (xy, ȳx̄). For (x, x̄) ∈ CΣ and w ∈ Σ∗ set
(x, x̄)w = xwx̄. As in the case of words, we set (x, x̄)0 := (ε, ε), (x, x̄)k+1 := (x, x̄)(x, x̄)k

and (x, x̄)∗ :=
∑

k≥0(x, x̄)k for all x, x̄ ∈ Σ∗ and k ∈ N0.
Note that we slightly deviate from standard notation when it comes to the prefix order

(i.e. u < w) and the common prefix (i.e. u ∧ v) of two words in order to avoid the clash with
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the notation for conjunction (∧): For u, v ∈ Σ∗ we write u v v (u @ v) to denote that u
is a (strict) prefix of v, i.e. v = uw for some w ∈ Σ∗ (w ∈ Σ+). For L ⊆ Σ∗ (with L 6= ∅)
its longest common prefix (lcp)

d
L is given by the greatest lower bound of L w.r.t. this

ordering. We simply write u u v for
d
{u, v}. Note that for any word w ∈ L there is at

least one word α ∈ L s.t.
d
L = w u α; we call any such α a witness (w.r.t. w). Note that

u is commutative and associative; concatenation distributes from the left over the lcp (i.e.
u(v u w) = uv u uw); and the lcp is monotonically decreasing on the union of languages, i.e.d

(L ∪ L′) = (
d
L) u (

d
L′). The lcp of infinite words is defined analogously.

A word p ∈ Σ∗ is called a power of a word q if p ∈ q∗; then q is called a root of p; if p 6= ε

is its own shortest root, p it is called primitive. Two words u, v are conjugates if the is a
factorization u = pq and v = qp. We recall two well-known results:

I Lemma 1 (Commutative Words, [3]). Let u, v ∈ Σ∗ be two words. If uv = vu, then u, v ∈ p∗
for some primitive p ∈ Σ∗.

I Lemma 2 (Periodicity Lemma of Fine and Wilf, [5]). Let u, v ∈ Σ+ be two non-empty words.
If |uω u vω| ≥ |u|+ |v| − gcd(|u| , |v|), then uv = vu.

Combining these two lemmata yields the following result which is a useful tool in the
proofs to follow (see also lemma 3.1 in [3] for a more general version of this result):

I Corollary 3. Let u, v ∈ Σ∗ with uv 6= vu.
Then uω u vω = uv u vu with |uv u vu| < |u|+ |v| − gcd(|u| , |v|).

Proof. Since the bound of the size of |uv u vu| follows from Lemma 2 we only have to show
that uvuvu = uωuvω. If |u| = |v|, then uv 6= vu implies u 6= v and uvuvu = uuv = uωuvω.

W.l.o.g. we assume that |u| < |v|. As uv 6= vu, we have ε 6= u. Let v u uω = uku′ @ uk+1

with v = uku′v′ and u = u′u′′. It follows that uv u vu = uuku′v′ u uku′v′u = uk(uu′v′ u
u′v′u) = uku′(u′′u′v′ u v′u′u′′).

If v′ 6= ε, we have u′′u′v′uv′u′u′′ = u′′uv′ = ε, and thus uvuvu = uku′ = vuuω = vωuuω.
So assume v′ = ε, i.e. v @ uω with k > 0 as |u| < |v|. As uv = uku′u′′u′ 6= uku′u′u′′ = vu,

also u′u′′ 6= u′′u′. Hence uv u vu = uku′(u′′u′ u u′u′′) = uk+1u u vv = uω u vω, which
concludes the proof. J

Here is a short example for the last corollary:

I Example 4. Let u = aab, v = aaba = ua. Then uvuvu = aabaabauaabaaab = aabaa = va

and uω uvω = aabaabaabuω uaabaaabavω = aabaa with |aabaa| = |u|+ |v|−gcd(|u| , |v|)−1.
I.e. the bound is sharp. Note that this example also shows, that even if uv 6= vu and
ε 6= u @ v, we still can have v @ uv u vu.

We briefly discuss properties of the lcp for very simple regular languages. These will be used
several times in the proofs of Section 3 in order to bound the height of the derivation trees
we need to consider:

I Lemma 5. Let y 6= ε, then w u yw = w u yiw =
d
y∗w = w u yω for all i > 0.

Proof. Let w u yω = yky′ @ yk+1 with w = yky′w′. Then for any i > 0 we have w u yiw =
wuyk+iy′w′ = wuyω where the last equality holds as i > 0 and wuyk+1 = wuyω @ yk+1. J

I Lemma 6. If w 6v yw, then
d
y∗w = w u yiw @ w for all i > 0.

Proof. Since w 6v yw, we have w 6= ε and y 6= ε. By Lemma 5 we thus have
d
y∗w = wuyiw

for any i > 0, in particular for i = 1. Define w = yky′w′ as in Lemma 5. As w 6v yw, we
have w′ 6= ε and thus w u yw = yky′ @ w. J
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We assume that the reader is familiar with context-free grammars (CFGs). We briefly
introduce the notation we use for CFGs in the following. A context-free grammar G is given
by a tuple G = (Σ, V, P, S) where Σ is the alphabet of terminals, V is the set of nonterminals
(also: variables), P ⊆ V × (V ∪Σ)∗ is the set of production rules where a rule p = (A, γ) ∈ P
is also written as A → γ, and S the axiom. The language generated by G is denoted by
L(G). G is proper if A→ ε 6∈ P and A→ B 6∈ P for all A,B ∈ V ; G is in Chomsky normal
form (CNF) if all rules are of the form A→ a ∈ V × Σ or A→ BC ∈ V → V V . For every
CFG G a proper CFG resp. a CFG in CNF G′ can be constructed in time polynomial in the
size of G such that L(G) \ {ε} = L(G′) [7]. As ε

?
∈ L(G) is decidable in time polynomial in

the size of G, and trivially
d
L = ε if ε ∈ L, we will assume that ε 6∈ L(G) and that G is

proper from here on. For some proofs we assume in fact that G is in CNF but only in order
to simplify notation.

3 LCP of a context-free language

Our main result in this section, Theorem 10, is that for every context-free language L = L(G)
generated by the given CFG G its lcp

d
L is equal to the lcp of its finite sublanguage L′

which contains only the words w ∈ L which possess a derivation tree w.r.t. G whose height
(considering only nonterminals) is at most four times the number of nonterminals of G. For
the main result we require the following technical theorem (see the following example).
I Theorem 7. Let L = (x, x̄)[(y1, ȳ1) + . . .+ (yl, ȳl)]∗w for (x, x̄), (y1, ȳ1), . . . , (yl, ȳl) ∈ CΣ
and w ∈ Σ∗. Then:

l
L =

l
(x, x̄)[(y1, ȳ1)≤2 + . . .+ (yk, ȳl)≤2]w

Furthermore, if
d
L = xwx̄uxy2wȳ2x̄ @ xwx̄uxywȳx̄ for some (y, ȳ) ∈ {(y1, ȳ1), . . . , (yl, ȳl)},

then w.r.t. this y there exists some primitive q ∈ Σ∗ and some k > 0 such that

yw = wqk ∧ qȳ 6= ȳq ∧
l
L = xwx̄ u xywqȳx̄ ∧ xwqk(ȳ u qω) v

l
L @ xwqk+1(ȳ u qω)

The proof of the main theorem of this section, Theorem 10, crucially depends on the
observation that in the case

d
L @ xwx̄ u xywȳx̄, all the words yi are powers of the same

primitive word p with pw = wq and all that is needed to obtain a witness is one additional
power of p resp. its conjugate q (with pw = wq) to which Theorem 7 refers to. We give an
example in order to clarify the statement of Theorem 7 in the case of l = 2 ∧ y1y2 = y2y1
which is central to Theorem 10:
I Example 8. We write (y, ȳ) for (y1, ȳ1) and (z, z̄) for (y2, ȳ2), respectively. Let (x, x̄) =
(ε, ababaaa) = (ε, qqaaa), (y, ȳ) = (ab, abaab) = (q, qaab), (z, z̄) = (ab, abaac) = (q, qaac),
and w = ε with q = ab = y = z. We then have:

xwx̄ = ababaaa

xywȳx̄ = ababaabababaaa

xzwz̄x̄ = ababaacababaaa

xyywȳȳȳx̄ = abababaababaabababaaa

xyzwz̄ȳx̄ = abababaacabaabababaaa

xzywȳz̄x̄ = abababaababaacababaaa

xzzwz̄z̄x̄ = abababaacabaacababaaa

x(y + z)≥3 . . . = ababab . . .

xywqȳx̄ = abababaabababaaa

xzwqz̄x̄ = abababaacababaaad
L = ababa
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So in this example, any word except for xywȳx̄ and xzwz̄x̄ is a witness for the lcp w.r.t.
xwx̄. W.r.t. the proof of Theorem 10 it is important that also in general we can pick a
witness which either is derived using only (y, ȳ) or (z, z̄) but not both, and that we need to
use (y, ȳ) resp. (z, z̄) at most twice in order to get one additional copy of the conjugate q of
the primitive root of both y and z.

To give an impression of the proof of Theorem 7 we show the case l = 1. The complete proof
of Theorem 7 can be found in the appendix of [11].

I Lemma 9. Let L = (x, x̄)(y, ȳ)∗w. Then:
d
L =

d
(x, x̄)(y, ȳ)≤2w.

If
d
L @ xwx̄ u xywȳx̄, then there is some primitive q and some k > 0 s.t.

yw = wqk ∧ qȳ 6= ȳq ∧
l
L = xwx̄ u xywqȳx̄ ∧ xwqk(ȳ u qω) v

l
L @ xwqk+1(ȳ u qω)

Proof. Recall that for any z ∈ L there is some witness z′ ∈ L s.t.
d
L = zuz′. Our main goal

is to show that w.r.t. xwx̄ we find a witness within {xyiwȳix̄ | i = 0, 1, 2}. What makes the
proof technically more involved is that for Theorem 10 we need a stronger characterization
of the case when xyywȳȳx̄ is the only witness in this set.

If y = ε ∨ ȳ = ε, then L is actually regular and Lemma 5 already tells us that xywȳx̄
is a witness (w.r.t. xwx̄). So wlog. y 6= ε 6= ȳ. If w 6v yw, then

d
y∗w = w u yw @ w by

Lemma 6 and thus
d
L = x(w u yw), i.e. xywȳx̄ is again a witness.

From now on we assume that w v yw. Then there is some conjugate µ of y defined by
wµ = yw, and xw is a prefix of

d
L as xyiwȳix̄ = xwµiȳix̄. Wlog. we therefore assume

xw = ε from now on so that L becomes {yiȳix̄ | i ∈ N0}.
Let q be the primitive root of y s.t. y = qk for a suitable k > 0 (as y 6= ε). By choosing

j > |x̄| / |y| we obtain
d
L v x̄u yj ȳj x̄ = x̄u qkj @ qω, i.e.

d
L @ qω. We therefore factorize

x̄ and ȳ w.r.t. qω: Let x̄ = qnq′x̄′ with x̄ u qω = qnq′ @ qn+1; and let ȳ = qk′
q̂ȳ′ with

ȳ u qω = qk′
q̂ @ qk′+1. The words of L have thus the form yiȳix̄ = qik

(
qk′
q̂ȳ′
)i

qnq′x̄′.
If q (resp. y) and ȳ commute, then ȳ = qk′ by Lemma 1 (as q is primitive) for some

suitable k′ ∈ N. Then L = (yȳ)∗x̄ = (qk+k′)∗qnq′x̄′ with
d
L = qnq′, and yȳx̄ is again a

witness w.r.t. x̄. We thus also assume qȳ 6= ȳq from here on.
If qnq′ v qk+k′

q̂, then
d
L v qnq′ and qyȳx̄ is a witness w.r.t. x̄: by choice of n we

have x̄ u qω = x̄ u qn+1, by qnq′ v qk+k′
q̂ we also have qn+1 v qk+k′+1; from this we obtain

x̄ u qyȳx̄ = x̄ u qk+k′+1q̂x̄ = x̄ u qn+1 = qnq′. Thus, also yyȳȳx̄ is a witness w.r.t x̄. Assume
now that qk+k′

q̂ @ qnq′ and thus qk+k′
q̂ v

d
L. If

d
L = qk+k′

q̂, then x̄ u yȳx̄ = qk+k′
q̂

has to hold, i.e. yȳx̄ has to be a witness. Thus assume qk+k′
q̂ @

d
L. If ȳ′ 6= ε, then, as

qk+k′
q̂ @ qnq′, we have that qnq′ u qk+k′

q̂ȳ′ = qk+k′
q̂ so that yȳx̄ is again a witness. Hence

assume ȳ′ = ε resp. ȳ = qk′
q̂ for the remaining. As q and ȳ do not commute, also q and q̂ do

not commute implying qq̂ @ q̂ q @ qq̂. Thus

qk+k′
q̂ @

d
L v yȳx̄ u yyȳȳx̄ = qk+k′(q̂qnq′x̄′ u qkq̂ȳx̄)

n≥k>0∧q̂@q= qk+k′(q̂q u qq̂) @ qk+k′
qq̂

That is either yȳx̄ or yyȳȳx̄ has to be a witness w.r.t. x̄ as
d
L @ qω and as we can extend

qk+k′
q̂ by at most |q| − 1 symbols, i.e. we need at most one additional copy of q which is

again given by yywȳȳx̄ as k > 0. In particular, we have again that, if yyȳȳx̄ is a witness,
then so is qyȳx̄. J

Using Theorem 7, we now can show that we only need to consider a finite sublanguage of
L instead of L itself:
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A

A

A

A

x y1 y2 y3 w ȳ3 ȳ2 ȳ1 x̄

bπ α′

Figure 1 Factorization of a witness α = (x, x̄)(y1, ȳ1)(y2, ȳ2)(y3, ȳ3)w = πbα′ w.r.t. a nonterminal
A occurring at least four times a long the dashed path in a derivation tree of α leading to a letter
either within the lcp π =

d
L or to the lcp-defining letter b (the leaf of the dotted path).

I Theorem 10. Let L = L(G) be given by a proper CFG G = (Σ, V, P, S). Let L̂ ⊆ L be the
finite language of all words of L for which there is a derivation tree w.r.t. G of height2 at
most 4N with N = |V |. Then:

d
L =

d
L̂.

Proof. Let N be the number of nonterminals of G. Let σ ∈ L be a shortest word, and α ∈ L
a shortest word with

d
L = σ u α. Set π :=

d
L.

We claim that there is at least one such α (for any fixed σ) that has an derivation tree
w.r.t. G of height less than 4N .If σ = α, we are done as σ has a derivation tree of height less
than N . So assume σ 6= α s.t. σ = πaσ′ and α = πbα′ with a 6= b and a, b ∈ Σ. Then fix any
derivation tree t of α w.r.t. G.

In fact, we will show the stronger claim that any path from the root of t to any letter of
πb has length at most 3N (i.e. all the paths leading to the separating letter b or a letter left
of it, see Figure 1); note that any path that leads to a letter right of b (i.e. into α′) has to
enter a subtree of height less than N as soon as it leaves the path leading to b because of the
minimality of α. Hence, if all the paths leading to b or a letter left of b have length less than
3N , the longest path in the derivation tree must have length at most 4N .

So assume for the sake of contradiction that there is a path leading to a letter within πb
that has at least length 3N i.e. consists of at least 3N + 1 nonterminals. Then there is one
nonterminal A that occurs at least four times leading to a factorization

α = (x, x̄)(y1, ȳ1)(y2, ȳ2)(y3, ȳ3)w

Note that xx̄ 6= ε, yiȳi 6= ε (i = 1, 2, 3), and w 6= ε as G is proper. As this path ends at b
or left of it, we have xy1y2y3 v π. With (x, x̄)(yi, ȳi)(yj , ȳj)w ∈ L for any i, j ∈ {1, 2, 3} we
thus obtain that xyiyj v π and xyjyi v π and thus yiyj = yjyi for all i, j ∈ {1, 2, 3}. So
yi = pki for the same primitive p using Lemma 1.

Let L′ = (x, x̄)[(y1, ȳ1) + (y2, ȳ2) + (y3, ȳ3)]∗w so that {xwx̄, α} ⊆ L′. By construction
L′ ⊆ L and thus

d
L v

d
L′ v xwx̄ u α. As xwx̄ is shorter than α, it cannot be a witness,

so πa v xwx̄ and π = xwx̄ u α. Hence
l
L = σ u α = π = xwx̄ u α w

l
L′ w

l
L i.e.

l
L =

l
L′

2 We measure the height of a derivation tree only w.r.t. nonterminals along a path from the root to a leaf.
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It therefore suffices to consider L′ in the following; in particular, α has to be a witness
w.r.t. xwx̄ of minimal length, too. (From here on, witness will always be w.r.t. xwx̄.) By
virtue of Theorem 7 we have

d
L′ =

d
(x, x̄)[(y1, ȳ1)≤2 + (y2, ȳ2)≤2 + (y3, ȳ3)≤2]w. Note thatd

L′ @ xwx̄ u xyiwȳix̄ for any i = 1, 2, 3 as |xyiwȳix̄| < |α| and thus xyiwȳix̄ cannot be a
witness by minimality of α. So for some I ∈ {1, 2, 3}

l
L′ = xwx̄ u xyIyIwȳI ȳI x̄ v α

i.e. xyIyIwȳI ȳI x̄ has to be also a witness. Set (y, ȳ) := (yI , ȳI) and L′′ = (x, x̄)(y, ȳ)∗w so
that L′′ ⊆ L′ ⊆ L and

d
L =

d
L′ =

d
L′′ as

xwx̄ u xyywȳȳx̄ =
l
L v

l
L′ v

l
L′′ v xwx̄ u xyywȳȳx̄ @ xywȳx̄

As xywȳx̄ is not a witness, Theorem 7 tells us that there is some q satisfying

yw = wqk∧qȳ 6= ȳq∧
l
L =

l
L′′ = xwx̄uxywqȳx̄∧xwqk(ȳuqω) v

l
L @ xwqk+1(ȳuqω)

From this, we obtain: 1. As we already know that yi = pki (as they commute), it follows
that p and q are conjugates with pw = qw s.t. yiw = wqki . 2. As xwqk v

d
L @ xwqω, we

find some m ≥ 0 and q̇ @ q s.t. π =
d
L = xwqkqmq̇ and, thus, πa = xwqkqmq̇a v xwx̄

and πb = xwqkqmq̇b v xyywȳȳx̄. (Here, b might change, yet it cannot become a as
xyywȳȳx̄ is a witness.) Additionally, from π = xwx̄u xyywȳȳx̄ @ xwqk+1(ȳ u qω) we obtain
πc v xwqk+1(ȳu qω), i.e. qmq̇c v qȳu qω @ qω and thus q̇c v q. Hence, any word with prefix
xwqk+1(ȳ u qω) is a witness.

If there was at least one j ∈ {1, 2, 3} \ {I} with kj > 0 s.t. yj = pkj 6= ε, then
(x, x̄)(yj , ȳj)(y, ȳ)w would be a witness shorter than α as yj would give us at least one copy
of q:

(x, x̄)(yj , ȳj)(y, ȳ)w = xyjywȳȳj x̄

w xwqk+kj ȳ (as yw = wqk and yjw = wqkj )
w xwqk+kj (ȳ u qω)
w xwqk+1(ȳ u qω) (as kj > 0 and qk+1(ȳ u qω) @ qω)

So for all remaining j ∈ {1, 2, 3} \ {I} we have yj = ε and thus ȳj 6= ε as G is proper and
thus yj ȳj 6= ε. By Lemma 5

d
xwȳ∗j x̄ = xwx̄u xwȳj x̄, hence πa v xwȳ∗j x̄, i.e. qk+mq̇a v ȳω

j .
If qmq̇b v ȳj for some j ∈ {1, 2, 3} \ {I} (recall q̇b v q), then as a 6= b

xwx̄ u (x, x̄)(y, ȳ)(yj , ȳj)w
(as yj = ε)

= xw(x̄ u qkȳj ȳx̄) = xw(qk+mq̇a u qk+mq̇b) = π

i.e. xyyjwȳj ȳx̄ would be a shorter witness than α. Hence ȳj v qmq̇ @ qk+mq̇a for both
j ∈ {1, 2, 3} \ {I}. Thus:∣∣qω u ȳω

j

∣∣ ≥ ∣∣qk+mq̇
∣∣ ≥ |q|+ |qmq̇| > |q|+ |ȳj | − gcd(|q| , |ȳj |)

By the periodicity lemma of Fine and Wilf (Lemma 2) this implies ȳj = qk′
j for some k′j > 0

(as q primitive), and, subsequently as the final contradiction, that xyIyjwȳj ȳI x̄ would be a
shorter witness. J

4 Small Equivalent Subsets of Languages

In this section we formally introduce a notion of equivalence of languages w.r.t. longest
common prefixes. The first main result of this section is that every non-empty language has
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an equivalent subset consisting of at most three elements. In case of acyclic context-free
languages, such a subset can be computed in polynomial time. In combination with Theorem
10, we can lift the restriction on acyclicity. This enables us to ultimately conclude that the
longest common prefix of a context-free language can be computed in polynomial time.

I Definition 11. Two languages L,L′ are equivalent w.r.t the lcp (short: L ≡ L′) iffd
(Lw) =

d
(L′w) for all words w ∈ Σ∗.

We observe that L is equivalent to L′ w.r.t. the lcp also after union or concatenation
from the left or right with arbitrary other languages. Formally, this amounts to the following
properties:

I Lemma 12. For all non-empty languages L,L′, L̂ with L ≡ L′ we have:
1.

d
(LL̂) =

d
(L′L̂)

2.
d

(L̂L) =
d

(L̂L′)
3.

d
(L ∪ L̂) =

d
(L′ ∪ L̂)

Proof. The argument is as follows:
1.

d
(LL̂) =

d
w∈L̂(

d
(Lw)) =

d
w∈L̂(

d
(L′w)) =

d
(L′L̂);

2.
d

(L̂L) =
d

(L̂(
d
L)) =

d
(L̂(

d
L′)) =

d
(L̂L′);

3.
d

(L ∪ L̂) =
d
L u

d
L̂ =

d
L′ u

d
L̂ =

d
(L′ ∪ L̂). J

The next lemma gives us an explicit formula for
d

(Lw) for the special case of the
two-element language L = {u, uv}.

I Lemma 13. Assume that u, v ∈ Σ∗ with v 6= ε. For all words w ∈ Σ∗,
d

({u, uv}w) =
u(w u vω) holds.

Proof.
d

({u, uv}w) = uw u uvw. If w and v are incomparable or w is a prefix of v,
w u vw = w u v = w u vω, and the claim follows. Thus, it remains to consider the case
that v v w. Then w = viw′ for some i so that v is no longer a prefix of w′. Thend

({u, uv}w) =
d

({u, uv}viw′) = uvi(w′ u vw′) = uvi(w′ u vω) = u(w u vω). J

The explicit formula from Lemma 13 can be used to identify small equivalent sublanguages.

I Theorem 14. For every non-empty language L ⊆ Σ∗ there is a language L′ ⊆ L consisting
of at most three words such that L ≡ L′.

Proof. If L is a singleton language, we choose L′ = L. So assume that L contains at least
two words with lcp u. If the lcp u of L is not contained in L then we choose L′ as consisting
of the two minimal words w1, w2 so that u = w1 u w2. It remains to consider the case where
the lcp u of L is contained in L. Then we have for each word w ∈ Σ∗,

d
(Lw) =

d
({uv | uv ∈ L}w)

=
d
{
d

({u, uv}w) | uv ∈ L, v 6= ε}
=

d
{u(w u vω) | uv ∈ L, v 6= ε} (Lemma 13)

= u(w u
d
{vω | uv ∈ L, v 6= ε})

(1)

If L is ultimately periodic, then all words in L are of the form uvi
0 for some v0 ∈ Σ+ and

i ≥ 0, and (vi
0)ω = vω

0 . Thus,
d

(Lw) = u(w u vω) for any uv ∈ L with v 6= ε. Hence,
L ≡ L′ = {u, uv} for any such v.

STACS 2018
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If L is not ultimately periodic, then we choose words uv1, uv2 ∈ L so that the lcp of vω
1

and vω
2 has minimal length. Then

d
({u, uv1, uv2}w) = u(w u vω

1 u vω
2 )

= u(w u
d
{vω | uv ∈ L, v 6= ε})

by the minimality of vω
1 u v2ω. Therefore, L ≡ L′ = {u, uv1, uv2}. J

Since for any non-empty words w1, w2 given by SLPs, an SLP for wω
1 uwω

2 = w1w2uw2w1
(if w1 6= w2) can be computed in polynomial time3, we have:

I Corollary 15. For every non-empty finite L ⊆ Σ∗ consisting of words each of which is
represented by an SLP, a subset L′ ⊆ L consisting of at most three words can be calculated
in polynomial time such that L ≡ L′.

Proof. The proof distinguishes the same cases as in the proof of Theorem 14 and relies
on polynomial algorithms on SLPs [10]. If L contains at most three words we are done.
Since the words in L are given as SLPs, we can calculate (a SLP for) the lcp u of the words
in L. Next, we determine whether u is in L. This can again be checked in polynomial
time. If this is not the case, then we can select two words w1, w2 ∈ L so that u = w1 u w2
giving us L′ = {w1, w2} in polynomial time. So, now assume that u is in L. Next, we
check whether or not L is ultimately periodic, i.e., whether for any non-empty words v1, v2
with uv1, uv2 ∈ L, vω

1 = vω
2 . By Lemma 2 this is the case iff v1v2 = v2v1. The latter can

be checked in polynomial time as concatenation and equality of SLPs can be calculated in
polynomial time. If this is the case, then we obtain L′ = {u, uv} for some uv ∈ L with v 6= ε

in polynomial time.
It remains to consider the case where the lcp u is contained in L and L is not ultimately

periodic. Then we need to determine words uv1 and uv2 in L with v1 6= ε 6= v2 such that
vω

1 u vω
2 has minimal length. Since vω

1 u vω
2 = v1v2 u v2v1 (see Corollary 3), such a pair can

be computed in polynomial time as well. Therefore, L′ = {u, uv1, uv2} can be computed in
polynomial time. J

The following lemma explains that equivalence of two non-empty languages of cardinalities
at most 3 can be decided in polynomial time.

I Lemma 16. Let L1, L2 ⊆ Σ∗ denote non-empty languages consisting of at most three
words each, which are all given by SLPs. Then L1

?≡ L2 can be decided in polynomial time.

Proof. If one of the two languages contains just a single word, then L1 ≡ L2 iff L1 = L2 —
which can be decided in polynomial time. Otherwise, we first compute

d
L1 and

d
L2. If

these differ, then by definition L1 cannot be equivalent to L2. Therefore assume now that
u =

d
L1 =

d
L2 is the common lcp .

Obviously, Li and Li ∪ {u} are equivalent w.r.t. the lcp (i = 1, 2). Thus, for testing
equality, we may add u to L1 resp. L2, if it is missing, and reduce L1 resp. L2 subsequently
to languages of at most three words.

3 Lohrey [10] gives an overview over the classical algorithms for SLPs. The fully compressed pattern
matching problem for SLPs is in PTIME [10, Theorem 12], i.e. we can test whether one SLP is a factor
of another SLP. Especially we can test whether one SLP is a prefix of another SLP. As we can build an
SLP for any prefix of an SLP in polynomial time we can use a binary search to compute the lcp of two
SLPs in polynomial time.
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From Equation 1 follows that L1 ≡ L2 if
d
{vω

1 | uv1 ∈ L1, v1 6= ε} =
d
{vω

2 | uv2 ∈
L2, v2 6= ε}. This is the case if either vω

1 = vω
2 for all uv1 ∈ L1 and uv2 ∈ L2 or for

uvi, uv
′
i ∈ Li, vi 6= ε 6= v′i with wi = vω

i u v′
ω
i is minimal for Li (i = 1, 2), w1 = w2 holds.

In the first case vω
1 = vω

2 for all uv1 ∈ L1 and uv2 ∈ L2 can be checked in polynomial
time according to the periodicity lemma of Fine and Wilf (cf. Corollary 3). In the second
case w1, w2 can be computed and compared in polynomial time as all words are given as
SLPs. Thus, we ultimately arrive at a polynomial time decision procedure. J

I Remark. Note that in light of the equivalence test, we can choose distinct letters a, b ∈ Σ, and
equivalently replace the language L1 = {uv1, uv2} with L′1 = {ua, ub} whenever v1 6= ε 6= v2
and v1 u v2 = ε, and the language L2 = {u, uv1, uv2} by the language L′2 = {u, uwa, uwb}
whenever w = v1v2 u v2v1 6= v1v2 holds. This reduced representation allows for an easier
computation.

Now we have all pre-requisites to prove the main theorem of our paper.

I Theorem 17. Assume that G is a proper context-free grammar with L = L(G) non-empty.
Then the longest common prefix of L can be calculated in polynomial time.

Proof. Assume w.l.o.g. that G is a CFG in Chomsky normal form as this simplifies the
notation. For the actual fixed-point iteration this is not required. Then we calculate

d
L(G)

as follows. We build (implicitly, see the following remark) an acyclic CFG Ĝ in polynomial
time such that L(Ĝ) consists of all words of L(G) for which there is a derivation tree of
height at most 4N where N is the number of nonterminals in G. To this end, we tag the
variables with a counter that bounds the height of the derivation trees. In more detail,
for every rewriting rule A → BC of G and every i ∈ {1, . . . , 4N} we add to Ĝ the rule
A(i) → B(i−1)C(i−1), and for every rule A→ a of G and every i ∈ {0, 1, . . . , 4N} we add the
rule A(i) → a to Ĝ. In a derivation tree w.r.t. Ĝ every path starting at some node labeled by
A(i) has thus length at most i as i has strictly decreases when moving down to towards the
leaves, hence, a node labeled by A(i) can only be the root of a (sub-)tree of height at most i.
Further, every derivation tree of Ĝ becomes a derivation tree of G by simply replacing A(i)

by A. As every rule of G is copied at most 4N + 1 times with N the number of nonterminals
of G, the size of Ĝ grows at most quadratically with the size of G. In particular, Ĝ is still
proper and in CNF. For more details, see e.g. section 3 in [4].

By Theorem 10, we know that
d
L(G) =

d
L(Ĝ). By construction, Ĝ is also in Chomsky

normal form. For i from 0 to (at most) 4N (with N still the number of variables of the
original grammar G – as Ĝ is acyclic we only need to compute [A(i)] once when proceeding
bottom-up), we then compute in every iteration for every nonterminal A(i) (for the currently
value of i) first the language

[A(i)]′ := {a ∈ Σ∗ | A(0) → a ∈ P} ∪
⋃

A→BC∈G

[B(i−1)] · [C(i−1)]

By induction on i, we may assume that the languages [B(i−1)], [C(i−1)] (a) have already been
computed, (b) consist of at most three words, and (c) every word is given as an SLP. Note
that the cardinality of every language [A(i)]′ is polynomial in the size of G. By virtue of
Corollary 15, we therefore can reduce [A(i)]′ in polynomial time to a language [A(i)] ⊆ [A(i)]′
with [A(i)] ≡ [A(i)]′ and

∣∣[A(i)]
∣∣ ≤ 3. By construction, we then have

[A(i)] ≡ {w ∈ Σ∗ | A(i) ⇒∗ w}

Since Ĝ has polynomially many nonterminals only, the overall algorithm runs in polynomial
time. J
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I Remark. Note that we can drop the assumption that the grammars G and likewise Ĝ are
in Chomsky normal form if the right-hand sides of all rules have bounded lengths. Then the
cardinality of the languages [A(i)]′ are still polynomial. Further, instead of spelling out the
grammar Ĝ explicitly, we may perform a round robin fixpoint iteration where in every round
we first compute

[A]′ :=
⋃

A→w1B1w2B2...wkBkwk+1

{w1} · [B1] · {w2} · [B2] · · · {wk} · [Bk] · {wk+1}

with initially [A] := {w ∈ Σ∗ | A → w ∈ G}, then updating [A] so that [A] ⊆ [A]′ with
[A] ≡ [A]′ and |[A]| ≤ 3. Theorem 10 guarantees that the lcp is attained after at most 4N
iterations. Using standard approaches like work lists, we only need to recompute [A] if there
is some rule A → γBδ in G and [B] has changed since the last recomputation of [A]. As
shown in Lemma 16 we can easily check if [B] 6≡ [B]′ in every round and accordingly insert
A into the work list.

We demonstrate this simplified version of the algorithm described in Theorem 17 by an
example.

I Example 18. Consider the following grammar G with the following rules:

S → Aababaac | ababaac A→ abAabaab | abAabaac | ababaab | ababaac

The round robin fixpoint iteration would proceed by iteratively evaluating the equations

[A]′ := {abwabaab, abwabaac, ababaab, ababaac | w ∈ [A]}
[S]′ := {wababaac, ababaac | w ∈ [A]}

and recomputing the languages [A] and [S] so that [A] ≡ [A]′ and [S] ≡ [S]′ and both [A]
and [S] consist of at most three words where we further reduce the words of [A] and [S]
as described in the remark following Lemma 16. As [A] does not depend on [S], we can
postpone the computation of [S] until after [A] has converged. In the first round, we have:

[A]′ = {ababaab, ababaac}

and thus update [A] to [A] := {(ab)2aab, (ab)2aac}. For the second round, we obtain

[A]′ = ab{(ab)2aab, (ab)2aac}abaab ∪ ab{(ab)2aab, (ab)2aac}abaac ∪ {(ab)2aab, (ab)2aac}
≡ {(ab)3a(ab)2aab, (ab)2aab} ≡ {(ab)3, (ab)2aa} =: [A]

which is already the fixpoint as an additional iteration would show. Therefore we obtain

[S]′ = {(ab)3, (ab)2aa}(ab)2aac ∪ {(ab)2aac}
≡ {(ab)3(ab)2aac, (ab)2aac} ≡ {(ab)3, (ab)2aa} =: [S]

So
d
L = (ab)3 u (ab)2aa = (ab)2a.

5 Conclusion

We have shown that the longest common prefix of a non-empty context-free language can be
computed in polynomial time. This result was based on two structural results, namely, that
it suffices to consider words with derivation trees of bounded height, and second that each
non-empty language is equivalent to a sublanguage consisting of at most three elements. For
the actual algorithm, we relied on succinct representations of long words by means of SLPs.
It remains as an intriguing open question whether the presented method can be generalized
to more expressive grammar formalisms.
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Abstract
The Surjective H-Colouring problem is to test if a given graph allows a vertex-surjective
homomorphism to a fixed graph H. The complexity of this problem has been well studied for
undirected (partially) reflexive graphs. We introduce endo-triviality, the property of a structure
that all of its endomorphisms that do not have range of size 1 are automorphisms, as a means to
obtain complexity-theoretic classifications of Surjective H-Colouring in the case of reflexive
digraphs. Chen [2014] proved, in the setting of constraint satisfaction problems, that Surjective
H-Colouring is NP-complete if H has the property that all of its polymorphisms are essentially
unary. We give the first concrete application of his result by showing that every endo-trivial
reflexive digraph H has this property. We then use the concept of endo-triviality to prove, as
our main result, a dichotomy for Surjective H-Colouring when H is a reflexive tournament:
if H is transitive, then Surjective H-Colouring is in NL, otherwise it is NP-complete. By
combining this result with some known and new results we obtain a complexity classification for
Surjective H-Colouring when H is a partially reflexive digraph of size at most 3.

2012 ACM Subject Classification Mathematics of computing→ Graph coloring, Theory of com-
putation→ Problems, reductions and completeness, Theory of computation→ Graph algorithms
analysis

Keywords and phrases Surjective H-Coloring, Computational Complexity, Algorithmic Graph
Theory, Universal Algebra, Constraint Satisfaction

Digital Object Identifier 10.4230/LIPIcs.STACS.2018.49

Funding BL was supported by NSERC and FRQNT. DP was supported by The Leverhulme
Trust (RPG-2016-258).

Acknowledgements We thank Jan Bok for fruitful discussions as well as three anonymous re-
viewers for useful comments.

1 Introduction

The classical homomorphism problem, also known as H-Colouring, involves a fixed struc-
ture H, with input another structure G, of the same signature, invoking the question as to
whether there is a function from the domain of G to the domain of H that is a homomorphism
from G to H. The H-Colouring problem is an intensively studied problem, which has
additionally attracted attention in its guise of the constraint satisfaction problem (CSP),
especially since the seminal paper of Feder and Vardi [14]. Their well-known conjecture,
recently proved by Bulatov [4] and Zhuk [32], stated that every CSP(H) has complexity
either in P or NP-complete, omitting any Ladner-like complexities in between.
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List H-Colouring H-Retraction H-Compaction Surj H-Colouring H-Colouring

Figure 1 Relations between Surjective H-Colouring and its variants (from [15]). An arrow
from one problem to another indicates that the latter problem is polynomial-time solvable for a
graph H whenever the former is polynomial-time solvable for H. Reverse arrows do not hold for the
leftmost and rightmost arrows, as witnessed by the reflexive 4-vertex cycle for the rightmost arrow
and by any reflexive tree that is not a reflexive interval graph for the leftmost arrow (Feder, Hell
and Huang [11] showed that the only reflexive bi-arc graphs are reflexive interval graphs). It is not
known whether the reverse direction holds for the two middle arrows.

This paper concerns the computational complexity of the surjective homomorphism
problem, also known in the literature as Surjective H-Colouring [15, 16] and H-Vertex-
Compaction [30]. This problem requires the homomorphism to be surjective. It is a
cousin of the list homomorphism problem and is even more closely related to the retraction
and compaction problems. Indeed, the H-Compaction problem, hitherto defined only for
graphs H, takes as input a graph G and asks if there exists a function f from V (G) to V (H) so
that for each non-loop edge (x, y) ∈ E(H) (i.e. with x 6= y), there exists u, v ∈ V (G) so that
f(u) = x and f(v) = y. Thus, compaction can be seen as the edge-surjective homomorphism
problem.1 The problem H-Retraction takes as input a superstructure G of H and asks
whether there is a homomorphism from G to H that is the identity on H. The H-Retraction
problem is polynomially equivalent with a special type of CSP, CSP(H′), where H′ is H
decorated with constants naming the elements of its domain. Feder and Vardi [14] showed
that the task of classifying the complexities of the retraction problems is equivalent to that
for the CSPs. Hence, owing to [4, 32], H-Retraction has now been fully classified.

The list homomorphism problem, List H-colouring, allows one to express restricted
lists for each of the input structure’s elements, that are the only domain elements permitted
in a solution homomorphism. List H-colouring is also a special type of CSP, CSP(H′),
where H′ is H replete with all possible unary relations over the domain of H. Historically,
the complexities of List H-colouring were the first to be settled by Bulatov [3], following
important earlier work on graphs [9, 10, 11].

In contrast to the situation for H-Colouring, List H-Colouring and H-Retraction,
the complexity classifications for H-Compaction and Surjective H-Colouring are far
from settled, and there are concrete open cases (see 3-No-Rainbow-Colouring in the
survey [2]). Obtaining NP-hardness for compaction and surjective homomorphism problems
appears to be especially challenging. The complexity-theoretic relationship between these
various problems is drawn in Figure 1. At present it is not known whether there is a graph
H so that H-Retraction, H-Compaction and Surjective H-Colouring do not have
the same complexity up to polynomial time reduction (see [15, 29]).

Nevertheless classification results for Surjective H-Colouring have tried to keep
pace with similar ones for H-Retraction. In [12] it is proved, among partially reflexive
pseudoforests H, where the problem H-Retraction splits between P and NP-complete. A
similar classification for Surjective H-Colouring over partially reflexive forests can be
inferred from the classification for partially reflexive trees in [16]. The quest for a classification
for H-Compaction and Surjective H-Colouring over pseudoforests is ongoing, but for
both problems already the reflexive 4-cycle took some time to classify [24, 27], as well as the
irreflexive 6-cycle [28, 31].

1 Except for the treatment of self-loops, which appears to be an idiosyncrasy that plays no vital role in
computational complexity. For some history of the definition see [27].
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The above results are for undirected graphs, whereas we focus on digraphs. A known
classification for H-Retraction comes for irreflexive semicomplete digraphs H. In [1] Bang-
Jensen, Hell, and MacGillivray proved that H-Colouring is always in P or is NP-complete
if H is irreflexive semicomplete. This is a fortiori a classification for H-Retraction since
semicomplete digraphs are cores (all endomorphisms are automorphisms), which ensures that
H-Colouring and H-Retraction are polynomially equivalent. For irreflexive semicomplete
digraphs H, the classification for Surjective H-Colouring can be read trivially from
that for H-Colouring, and they are the same. An obvious next place to look is at the
situation if H is reflexive semicomplete, where surely the classifications will not be the same
as H-Colouring is trivial in this case.

Reflexive tournaments form an important subclass of the class of reflexive semicom-
plete graphs and are well-understood algebraically [19]. In particular, the classification
for H-Retraction where H is a reflexive tournament can be inferred from the algebraic
characterisation from [19]: for a reflexive tournament H, the H-Retraction problem is in
NL if H is transitive, and it is NP-complete otherwise. This raises the question whether the
same holds for Surjective H-Colouring and whether we can develop algebraic methods
further to prove this. In fact, the algebraic method is by now well known for CSPs and their
relatives, including its use with digraphs; see the recent survey [20]. However, the algebraic
method is not so far advanced for surjective homomorphism problems. So far it only exists
in the work of Chen [7], who proved that Surjective H-Colouring is NP-complete if H
has the property that all of its polymorphisms depend only on one variable, that is, are
essentially unary. Chen’s result has not yet been put to work (even on toy open problems)
and a key driver for our research has been to find, in the wild, a place for its application.

Our Results. We give, for the first time, complexity classifications for Surjective H-
Colouring for digraphs instead of undirected graphs. To prove our results, we further
develop algebraic machinery to tackle surjective homomorphism problems. That is, in
Section 2 we introduce, after giving the necessary terminology, the concept of endo-triviality.
We show how this concept is closely related to some known algebraic concepts and explore
its algorithmic consequences in the remainder of our paper.

Firstly, in Section 3, we prove that a reflexive digraph H that is endo-trivial has the
property that all of its polymorphisms are essentially unary. Combining this result with the
aforementioned result of Chen [7] immediately yields that Surjective H-Colouring is
NP-complete for any such digraph H. This is the first concrete application of Chen’s result to
settle a problem of open complexity; it shows, for instance, that Surjective H-Colouring
is NP-complete if H is a reflexive directed cycle on k ≥ 3 vertices. As the case k ≤ 2 is trivial,
this gives a classification of Surjective H-Colouring for reflexive directed cycles, which
we believe form a natural class of digraphs to consider given the results in [24, 31].

Secondly, in Section 4 we give a complexity classification for Surjective H-Colouring,
when H is a reflexive tournament. We use endo-triviality in an elaborate and recursive
encoding of an NP-hard retraction problem within Surjective H-Colouring. In doing
this, we show that on this class, the complexities of Surjective H-Colouring and H-
Retraction coincide.

Finally, our results enable us to give a complexity classification for Surjective H-
Colouring when H is a partially reflexive digraph of size at most 3. In doing this, we
show that on this class, the complexities of Surjective H-Colouring and H-Retraction
coincide. We are not aware of an existing classification for H-Retraction on this class, but
we do build on one existing for List H-Colouring from [13].
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2 Preliminaries

Let [n] := {1, . . . , n}. For a k-tuple t and i ∈ [k], let t[i] be the ith entry in t. In a digraph G,
a forward- (resp., backward-) neighbour (or adjacent) to a vertex u ∈ V (G) is another vertex
v ∈ V (G) so that (u, v) ∈ E(G) (resp., (v, u) ∈ E(G)). The out-degree and in-degree of a
vertex are the number of its forward-neighbours and backward-neighbours, respectively. A
vertex with out-degree and in-degree both 0 is said to be isolated. A vertex with a self-loop
is reflexive and otherwise it is irreflexive. A digraph is (ir)reflexive if all its vertices are
(ir)reflexive.

The directed path on k vertices is the digraph with vertices u0, . . . , uk−1 and edges
(ui, ui+1) for i = 0, . . . , k − 2. The directed cycle on k vertices is obtained from the directed
path on k vertices after adding the edge (uk−1, u0). A digraph G is strongly connected if for
all u, v ∈ V (G) there is a directed path in E(G) from u to v (note that we take this to include
the situation u = v, but for reflexive graphs the distinction is moot). A digraph is weakly
connected if its symmetric closure (underlying undirected graph) is connected. A double-edge
in a digraph G consists in a pair of distinct vertices u, v ∈ V (G), so that (u, v), (v, u) ∈ E(G).
A digraph G is semicomplete if for every two distinct vertices u and v, at least one of (u, v),
(v, u) belongs to E(G). A digraph G is a tournament if for every two distinct vertices u and
v, exactly one of (u, v), (v, u) belongs to E(G). We demand our tournaments have more
than one vertex (to rule out certain trivial cases in proofs). A reflexive tournament G is
transitive if for every triple of vertices u, v, w with (u, v), (v, w) ∈ E(G), also (u,w) belongs
to E(G). A digraph F is a subgraph of a digraph G if V (F) ⊆ V (G) and E(F) ⊆ E(G). It
is induced if E(F) coincides with E(G) restricted to pairs containing only vertices of V (F).
A subtournament is an induced subgraph of a tournament (note that this is a fortiori a
tournament). All subgraphs we consider in this paper will be induced.

A homomorphism from a digraph G to a digraph H is a function f : V (G)→ V (H) so
that for all u, v ∈ V (G) with (u, v) ∈ E(G) we have (f(u), f(v)) ∈ E(H). We say that f is
(vertex)-surjective if for every vertex x ∈ V (H) there exists a vertex u ∈ V (G) with f(u) = x.
Let H be a digraph. A homomorphic image of H is a digraph H′ so that there is a surjective
homomorphism h : H → H′ in which, for all (x′, y′) ∈ E(H′) there exists (x, y) ∈ E(H) so
that x′ = h(x) and y′ = h(y). That is, h is vertex- and edge-surjective.

The direct product of two digraphs G and H, denoted G×H, has vertex set V (G)× V (H)
and edges ((x, y), (x′, y′)) exactly when (x, x′) ∈ E(G) and (y, y′) ∈ E(H). This product
is associative and commutative, up to isomorphism, and spawns a natural power. A k-ary
polymorphism of G is a function f : Gk → G so that when (x1, y1), . . . , (xk, yk) ∈ E(G) then
(f(x1, . . . , xk), f(y1, . . . , yk)) ∈ E(G). A polymorphism of G can be seen as a homomorphism
from the kth (direct) power of G, Gk, to G. A polymorphism f is idempotent if for all
x ∈ V (G), f(x, . . . , x) = x. The k-ary ith projection, for i ∈ [k], is the polymorphism πi

k

given by πi
k(x1, . . . , xk) = xi. A k-ary operation f is called essentially unary if there exists a

unary operation g and i ∈ [k] so that f(x1, . . . , xk) = g(xi) for all (x1, . . . , xk) ∈ Gk.
Let G be a digraph. An endomorphism of G is a homomorphism from G to itself. An

endomorphism e of G is a constant map if there exists a vertex v ∈ V (G) such that e(u) = v

for all u ∈ V (G). The endomorphism digraph GG has as its vertices the endomorphisms of G,
and there is an edge (f, g) ∈ E(GG) between endomorphisms f and g if and only if for every
edge (x, y) ∈ E(G), we have that (f(x), g(y)) ∈ E(G). We note that GG is reflexive when
G is reflexive and also make two more observations. The first one follows directly from the
definition of GG as well. The second one can, for example, be found in Section 5.2 of [21].

I Lemma 1. If (f1, g1) ∈ E(GG) and (f2, g2) ∈ E(GG), then ((f1 ◦ f2), (g1 ◦ g2)) ∈ E(GG).
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Figure 2 A tournament on six vertices (self-loops are not drawn), which retracts to the directed
3-cycle (in black) on the right-hand side, but not to the one on the left-hand side (in black as
well). However, there is no endomorphism that maps the left-hand one isomorphically to the right.
We can use this tournament to build a structure that is a counterexample to the generalisation
of Lemma 5 stating that endo-trivial and retract-trivial coincide. Let us label the vertices in the
tournament: α, β, γ (left-hand DC∗

3, clockwise from bottom) and 0, 1, 2 (right-hand DC∗
3, clockwise

from bottom). Let us build a structure B by augmenting a new 6-ary relation with tuples in
{(α, β, γ, 0, 1, 2), (α, α, α, α, β, γ), (α, α, α, α, α, α)}. The structure B is retract-trivial but is not
endo-trivial, since it has an interesting endomorphism that takes (α, β, γ, 0, 1, 2) to (α, α, α, α, β, γ).

I Lemma 2. Let G and H be two digraphs. Let φ be a homomorphism from H×G to G. Then
the function ψ defined by ψ(x)(u) = φ(x, u) for all x ∈ V (H), u ∈ V (G) is a homomorphism
from H to GG.

A bijective endomorphism whose inverse is a homomorphism is an automorphism. An
endomorphism is non-trivial if it is neither an automorphism nor a constant map. A digraph,
all of whose endomorphisms are automorphisms, is termed a core. An endomorphism e of a
digraph H fixes a subset S ⊆ V (H) if e(S) = S, that is, e(x) ∈ S for all x ∈ S, and it fixes a
subgraph F of H if e(F) = F. It fixes an induced subgraph F up to automorphism if e(F) is
an automorphic copy of F (this is a stronger condition than e(F) being isomorphic to F).
An endomorphism r of G is a retraction of G if r is the identity on the image r(G) (thus a
retraction must have at least one fixed point).

Endo-triviality and Retract-triviality. We now define the key concept of endo-triviality and
the closely related concept of retract-triviality.

I Definition 3. A digraph is endo-trivial if all of its endomorphisms are automorphisms or
constant maps.

The concept of endo-triviality also arises from the perspective of the algebra of polymorphisms.
An algebra is called minimal if its unary polynomials are either constants or the permutations
(see Definition 2.14 in [17]). For reflexive digraphs, polynomials and polymorphisms coincide.
In other words, a reflexive digraph is endo-trivial if and only if its associated algebra of
polymorphisms is minimal.

We will also need the following closely related concept.

I Definition 4. A digraph is retract-trivial if all of its retractions are the identity or constant
maps.

The concept of retract-triviality also appears in the algebraic theory but has, as far as we are
aware, not been studied in a combinatorial setting. An algebra is term-minimal if the only
retractions in its clone of terms are the identity and constants (see [26]). A reflexive digraph
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49:6 Surjective H-Colouring over Reflexive Digraphs

is retract-minimal if its associated algebra of polymorphisms is term-minimal. It follows that
on reflexive digraphs, the concepts of retract-minimality and retract-triviality coincide.

We note that every endo-trivial structure is also retract-trivial. However, the reverse
implication is not necessarily true: in Figure 2 we give an example of a structure that is
retract-trivial but not endo-trivial. This example is based on a digraph but is not itself a
digraph. It is also possible to construct a retract-trivial digraph that is not endo-trivial [25],
but on reflexive tournaments both concepts do coincide.

I Lemma 5. A reflexive tournament is endo-trivial if and only if it is retract-trivial.

Proof. (Forwards.) Trivial. (Backwards.) By contraposition, suppose e is a non-trivial
endomorphism of a reflexive tournament H. Consider e(H) and build some function e−1 from
e(H) to H by choosing e−1(y) = x if e(x) = y arbitrarily. Since H is a (reflexive) tournament,
e−1 is an isomorphism, whereupon e−1 ◦ e is the identity automorphism when restricted to
some subtournament H0 of H. Hence e−1 ◦ e is a non-trivial retraction of H (to H0). J

3 Essential Unarity and a Dichotomy for Reflexive Directed Cycles

In this section we give the first concrete application, of which we are aware, of the aforemen-
tioned result of Chen, formally stated below.

I Theorem 6 (Corollary 3.5 in [7]). Let H be a finite structure whose universe V (H) has size
strictly greater than 1. If each polymorphism of H is essentially unary, then Surjective
H-Colouring is NP-complete.

In order to this, we make use of the endomorphism graph and a result from Mároti and
Zádori [23]. Let idH denote the identity map on a digraph H.

I Lemma 7 (Lemma 2.2 in [23]). Let H be a reflexive digraph. If (idH, f) ∈ E(HH), where f
is different from idH, then H has a non-surjective retraction r such that (idH, r) ∈ E(HH).

The following lemma is crucial and will be of use in the next section as well.

I Lemma 8. Let H be a retract-trivial reflexive digraph with at least three vertices. Then
1. H has no double edge;
2. H is strongly connected; and
3. the automorphisms of H are isolated vertices in HH.

We use Lemma 8 to obtain the following structural result.

I Theorem 9. Let H be an endo-trivial reflexive digraph with at least three vertices. Then
every polymorphism of H is essentially unary.

Proof. Since H is endo-trivial, H is retract-trivial. Hence, by Lemma 8, H is strongly
connected, and furthermore the automorphisms of H are isolated vertices of HH. As H
is endo-trivial, this means that HH is the disjoint union of a copy of H that corresponds
to the constant maps and a set of isolated vertices, one for each automorphism of H.
Suppose for a contradiction that there exists an an n-ary polymorphism f of H which is
not essentially unary. We may without loss of generality assume that f depends on all
of its n variables, where n ≥ 2. By Lemma 2, the mapping F : Hn−1 → HH defined by
F (x1, . . . , xn−1)(y) = f(x1, . . . , xn−1, y) is a homomorphism. Since H is strongly connected,
so is Hn−1, and hence so is the image of F in HH. Thus this image is either contained in
the component of constants, in which case f does not depend on its last variable, else it is a
singleton, in which case f does not depend on any of its first n− 1 variables. J
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Combining Theorems 6 and 9 yields the main result of this section.

I Corollary 10. If H is an endo-trivial reflexive digraph on at least three vertices, then
Surjective H-Colouring is NP-complete.

Let DC∗k denote the reflexive directed cycle on k vertices, which is readily seen to be
endo-trivial. Corollary 10 yields the following dichotomy for reflexive directed cycles after
noting that Surjective DC∗k-Colouring is trivial for k ≤ 2.

I Corollary 11. Surjective DC∗k-Colouring is in L if k ≤ 2 and NP-complete if k ≥ 3.

It is not difficult to construct endo-trivial reflexive tournaments other than reflexive
directed cycles. In the next section though we give a combinatorial NP-hardness proof for
Surjective H-Colouring whenever H is any non-transitive reflexive tournament. As DC∗3
is such a digraph, this proof also can be used for the case H = DC∗3. However, it does not
extend to Surjective DC∗k-Colouring for k ≥ 4.

4 A Dichotomy for Reflexive Tournaments

In this section we prove our main result, namely a dichotomy of Surjective H-Colouring
for reflexive tournaments H by showing that transitivity is the crucial property for tractability.
In the next subsections we prove that Surjective H-Colouring is NP-complete when H is
a non-transitive tournament.

4.1 Two Elementary Lemmas
It is well-known that every strongly connected tournament has a directed Hamilton cycle [6].
Hence we derive the following corollary to Lemmas 5 and 8 Part 2.

I Lemma 12. If H is a reflexive tournament that is endo-trivial, then H contains a directed
Hamilton cycle.

We will also need the following lemma.

I Lemma 13. If H is a reflexive tournament that is endo-trivial, then any homomorphic
image of H of size 1 < n < |V (H)| possesses a double edge.

Proof. Suppose H has a homomorphic image of size 1 < n < |V (H)| without a double edge.
By looking at the equivalence classes of vertices identified in the homomorphic image, we can
deduce a non-trivial retraction, namely by mapping each of the vertices in an equivalence
class to any particular one of them. J

4.2 The NP-Hardness Gadget
We now introduce the gadget Cyl∗m drawn in Figure 3. We take m disjoint copies of the
directed m-cycle DC∗m arranged in a cylindrical fashion so that there is an edge from i in the
jth copy to i in the j + 1th copy (drawn in red), and an edge from i in the j + 1th copy to
i+ 1 in the jth copy (drawn in green). We consider DC∗m to have vertices {1, . . . ,m}. A key
role will be played by Hamilton cycles HCm in a strongly connected reflexive tournament
on m vertices. We consider this cycle also labelled {1, . . . ,m}, in order to attach it to the
gadget Cyl∗m. The gadget Cyl∗m is an alteration of a gadget that appears in [9] for proving
that List H-Colouring is NP-complete when H is an undirected cycle on at least four
vertices, but our proof is very different.

The following lemma follows from induction on the copies of DC∗m, since a reflexive
tournament has no double edges.
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Figure 3 The gadget Cyl∗m in the case m := 4 (self-loops are not drawn). We usually visualise
the right-hand copy of DC∗

4 as the “bottom” copy and then we talk about vertices “above” and
“below” according to the red arrows.

I Lemma 14. In any homomorphism h from Cyl∗m, with bottom cycle DC∗m, to a reflexive
tournament, if |h(DC∗m)| = 1, then |h(Cyl∗m)| = 1.

We will use another property, denoted (†), of Cyl∗m, which is that the retractions from
Cyl∗m to its bottom copy of DC∗m, once propagated through the intermediate copies, induce
on the top copy precisely the set of automorphisms of DC∗m. That is, the top copy of DC∗m
is mapped isomorphically to the bottom copy, and all such isomorphisms may be realised.
The reason is that in such a retraction, the (j + 1)th copy may either map under the identity
to the jth copy, or rotate one edge of the cycle clockwise, and Cyl∗m consists of sufficiently
many (namely m) copies of DC∗m.

Now let H be a reflexive tournament that contains a subtournament H0 on m vertices
that is endo-trivial. By Lemma 12, we find that H0 contains at least one directed Hamilton
cycle HC0. Define Spillm(H[H0,HC0]) as follows. Begin with H and add a copy of the gadget
Cyl∗m, where the bottom copy of DC∗m is identified with HC0, to build a digraph F(H0,HC0).
Now ask, for some y ∈ V (H) whether there is a retraction r of F(H0,HC0) to H so that some
vertex x in the top copy of DC∗m in Cyl∗m is such that r(x) = y. Such vertices y comprise
the set Spillm(H[H0,HC0]).

We now observe that Spillm(H[H0,HC0]) = V (H) if H retracts to H0.

I Lemma 15. If H is a reflexive tournament that retracts to a subtournament H0 with
Hamilton cycle HC0, then Spillm(H[H0,HC0]) = V (H).

4.3 Two Base Cases
Recall that if H is an endo-trivial tournament, then Surjective H-Colouring is NP-
complete due to Corollary 10. However H may not be endo-trivial. We will now show how to
deal with the case where H is not endo-trivial but retracts to an endo-trivial subtournament.
For doing this we use the above gadget, but we need to distinguish between two different
cases.

I Lemma 16 (Base Case I.). Let H be a reflexive tournament that retracts to an endo-
trivial subtournament H0 with Hamilton cycle HC0. Assume that H retracts to H′0 for
every isomorphic copy H′0 = i(H0) of H0 in H with Spillm(H[H′0, i(HC0)]) = V (H). Then
H0-Retraction can be polynomially reduced to Surjective H-Colouring.

Proof. Let G be an instance of H0-Retraction. We build an instance G′′ of Surjective
H-Colouring in the following fashion. First, take a copy of H together with G and build



B. Larose, B. Martin, and D. Paulusma 49:9

H0

H G

Figure 4 A stylised depiction of the construction in Base Case I. The central circle is the Hamilton
cycle and the eccentric circles emanating thereout are the gadgets Cyl∗m.

G′ by identifying these on the copy of H0 that they both possess as a subgraph. Let m be
the size of H0 and consider its Hamilton cycle HC0. We build G′′ from G′ by augmenting a
new copy of Cyl∗m for every vertex v ∈ V (G′) \ V (H0). Vertex v is to be identified with any
vertex in the top copy of DC∗m in Cyl∗m and the bottom copy of DC∗m is to be identified with
HC0 in H0 according to the identity function. See Figure 4 for an example. We claim that G
retracts to H0 if and only if there exists a surjective homomorphism from G′′ to H.

First suppose that G retracts to H0. Let h be a retraction from G to H0. We extend h as
follows. First we map the copy of H in G′′ to itself in H by the identity. This will ensure
surjectivity. We then map the various copies of Cyl∗m in G′′. This is always possible: because
H retracts to H0, we have Spillm(H[H0,HC0]) = V (H) due to Lemma 15. Hence, if h(x) = y

for two vertices x ∈ V (G′) \ V (H0) and y ∈ V (H), we can always find a retraction of the
graph F(H0,HC0) to H that maps x to y, and we mimic this retraction on the corresponding
subgraph in G′′. The crucial observation is that this can be done independently for each
vertex in V (G′) \ V (H0), as two vertices of different copies of Cyl∗m are only adjacent if they
both belong to G′. This leads to a surjective homomorphism from G′′ to H.

Now suppose that there exists a surjective homomorphism h from G′′ to H. If |h(H0)| = 1,
then by Lemma 14, |h(Cyl∗m)| = 1 for all copies of Cyl∗m in G′′. This means that |h(G′′)| = 1
and h is not surjective, a contradiction. Now, 1 < |h(H0)| < m is not possible either due to
Lemma 13. Thus, |h(H0)| = m and indeed h maps H0 to a copy of itself in H which we will
call H′0 = i(H0) for some isomorphism i.

We claim that Spillm(H[H′0, i(HC0)]) = V (H). In order to see this, consider a vertex
y ∈ V (H). As h is surjective, there exists a vertex x ∈ V (G′′) with h(x) = y. By construction,
x belongs to some copy of DC∗m, and thus also belongs to some copy of DC∗m in F(H0,HC0).
We can extend i−1 to an isomorphism from the copy of Cyl∗m (which has i(HC0) as its bottom
cycle) in the graph F(H′0, i(HC0)) to the copy of Cyl∗m (which has HC0 as its bottom cycle) in
the graph F(H0,HC0). We define a mapping r∗ from F(H′0, i(HC0)) to H by r∗(u) = h◦i−1(u)
if u is on the copy of Cyl∗m in F(H′0, i(HC0)) and r∗(u) = u otherwise. We observe that
r∗(u) = u if u ∈ V (H′0) as h coincides with i on H0. As H0 separates the other vertices of
the copy of Cyl∗m from V (H) \ V (H0), in the sense that removing H0 would disconnect them,
this means that r∗ is a retraction from F(H′0, i(HC0)) to H. We find that r∗ maps i(x) to
h◦ i−1(i(x)) = h(x) = y. Moreover, as x is in some copy of DC∗m in F(H0,HC0), we have that
i(x) is in some copy of DC∗m in F(H′0, i(HC0)). We may assume without loss of generality that
i(x) belongs to the top copy. We conclude that y always belongs to Spillm(H[H′0, i(HC0)]).

As Spillm(H[H′0, i(HC0)]) = V (H), we find, by assumption of the lemma, that there exists
a retraction r from H to H′0. Now i−1 ◦ r ◦ h ia the desired retraction of G to H0. J

We now need to deal with the situation in which we have an isomorphic copy H′0 = i(H0)
of H0 in H with Spillm(H[H′0, i(HC0)]) = V (H), such that H does not retract to H′0 (see
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Figure 5 An interesting tournament H on six vertices (self-loops are not drawn). This tournament
does not retract to the DC∗

3 on the left-hand side, yet Spill3(H[DC∗
3,DC3]) = V (H).

Figure 5 for an example). We cannot deal with this case in a direct matter and first show
another base case. For this we need the following lemma and an extension of endo-triviality
that we discuss afterwards.

I Lemma 17. Let H be a reflexive tournament, containing a subtournament H0 so that any
endomorphism of H that fixes H0 is an automorphism. Then any endomorphism of H that
maps H0 to an isomorphic copy H′0 = i(H0) of itself is an automorphism of H.

Proof. For contradiction, suppose there is an endomorphism h that maps H0 to an isomorphic
copy H′0 = i(H0) of itself that is not an automorphism of H. In particular, |h(H)| < |V (H)|.
Choose h−1 in the following fashion. We let h−1 of h(H0) be the natural isomorphism
of h(H0) to H0 (that inverts the isomorphism given by h from H0 to H′0). Otherwise we
choose h−1 arbitrarily, such that h−1(y) = x only if h(x) = y. Since H is a reflexive
tournament, containing precisely one edge between distinct vertices, h−1 is an isomorphism.
Moreover, h−1 ◦ h is an endomorphism of H that fixes H0 and that is not an automorphism,
a contradiction. J

Let H0 be an induced subgraph of a digraph H. We say that the pair (H,H0) is endo-trivial
if all endomorphisms of H that fix H0 are automorphisms.

I Lemma 18 (Base Case II). Let H be a reflexive tournament with a subtournament H0 with
Hamilton cycle HC0 so that (H,H0) and H0 are endo-trivial and Spillm(H[H0,HC0]) = V (H).
Then H-Retraction can be polynomially reduced to Surjective H-Colouring.

4.4 Generalising the Base Cases
We now generalise the two base cases to more general cases via some recursive procedure.
Afterwards we will show how to combine these two cases to complete our proof. We will first
need a slightly generalised version of Lemma 17, which nonetheless has virtually the same
proof.

I Lemma 19. Let H2 ⊃ H1 ⊃ H0 be a sequence of strongly connected reflexive tournaments,
each one a subtournament of the one before. Suppose that any endomorphism of H1 that fixes
H0 is an automorphism. Then any endomorphism h of H2 that maps H0 to an isomorphic
copy H′0 = i(H0) of itself also gives an isomorphic copy of H1 in h(H1).

The following two lemmas generalize Lemmas 16 and 18.
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I Lemma 20 (General Case I). Let H0,H1, . . . ,Hk,Hk+1 be reflexive tournaments, the first
k of which have Hamilton cycles HC0,HC1, . . . ,HCk, respectively, so that H0 ⊆ H1 ⊆ · · · ⊆
Hk ⊆ Hk+1. Assume that H0, (H1,H0), . . . , (Hk,Hk−1) are endo-trivial and that

Spilla0(H1[H0,HC0]) = V (H1)
Spilla1(H2[H1,HC1]) = V (H2)
...

...
...

Spillak−1
(Hk[Hk−1,HCk−1]) = V (Hk).

Assume that Hk+1 retracts to Hk and also to every isomorphic copy H′k = i(Hk) of Hk in
Hk+1 with Spillak

(Hk+1[H′k, i(HCk)]) = V (Hk+1). Then Hk-Retraction can be polynomially
reduced to Surjective Hk+1-Colouring.

I Lemma 21 (General Case II). Let H0,H1, . . . ,Hk,Hk+1 be reflexive tournaments, the first
k + 1 of which have Hamilton cycles HC0,HC1, . . . ,HCk, respectively, so that H0 ⊆ H1 ⊆
· · · ⊆ Hk ⊆ Hk+1. Suppose that H0, (H1,H0), . . . , (Hk,Hk−1), (Hk+1,Hk) are endo-trivial
and that

Spilla0(H1[H0,HC0]) = V (H1)
Spilla1(H2[H1,HC1]) = V (H2)
...

...
...

Spillak−1
(Hk[Hk−1,HCk−1]) = V (Hk)

Spillak
(Hk+1[Hk,HCk]) = V (Hk+1)

Then Hk+1-Retraction can be polynomially reduced to Surjective Hk+1-Colouring.

4.5 Final Steps for Hardness for Non-Transitive Reflexive Tournaments
We first prove, by using the lemmas from Section 4.4, that Surjective H-Colouring is
NP-complete if H is a non-transitive reflexive tournament that is strongly connected. For
our discourse it is not necessary to know precisely what is a Taylor operation, but we will
use the following result.

I Theorem 22 ([5, 22]). Let H be a finite structure so that the idempotent polymorphisms
of H omit all Taylor operations. Then H-Retraction is NP-complete.

I Corollary 23. Let H be a strongly connected reflexive tournament. Then Surjective
H-Colouring is NP-complete.

In order to deal with reflexive tournaments that are not strongly connected we need the
following strengthened version of Corollary 23.

I Corollary 24. Let H be a strongly connected reflexive tournament. Then Surjective
H-Colouring is NP-complete even for strongly connected digraphs.

We now give our main hardness result following with our main dichotomy.

I Theorem 25. Let H be a non-transitive reflexive tournament. Then Surjective H-
Colouring is NP-complete.

I Corollary 26. Let H be a reflexive tournament. If H is transitive, then Surjective
H-Colouring is in NL; otherwise it is NP-complete.

Proof. For the transitive case we can say that H-Retraction is in NL from [8], since H
enjoys the ternary median operation as a polymorphism (this has been observed, inter alia, in
[19]). It follows of course that Surjective H-Colouring is in NL also. The non-transitive
case follows from Theorem 25. J
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5 Digraphs with a most three vertices

I Theorem 27. Let H be a partially reflexive digraph of size at most 3. Then Surjective
H-Colouring is polynomially equivalent to H-Retraction. In particular, it is always in P
or is NP-complete.

6 Conclusion

We have given the first significant classification results for Surjective H-Colouring
where H comes from a class of digraphs (that are not graphs). To do this, we have developed
both a novel algebraic method and a novel recursive combinatorial method. Below we discuss
some directions for future research.

Let 3NRC be the hypergraph with vertex-set {r, g, b} and hyperedge-set {r, g, b} \
{(r, g, b), (r, b, g), (g, b, r), (g, r, b), (b, r, g), (b, g, r)}. Then 3-No-Rainbow-Colouring is
the problem Surjective 3NRC-Colouring, in which one looks for a surjective colouring
of the vertices, such that no hyperedge is rainbow-coloured (i.e. uses all colours). We recall
that the complexity of this problem is open since it arose (under a different name) in [18], see
also Question 3 in [2]. The Surjective DC∗3-Colouring problem is the digraph problem
most closely related to 3-No-Rainbow-Colouring. To explain this, when looking for
digraphs with a similar character to 3NRC, we would insist at least that the automorphism
group is transitive. This leaves just the reflexive and irreflexive directed 3-cycles and the
reflexive and irreflexive 3-cliques, that is, 3-cycles with a double edge between every pair of
vertices (admittedly, the cycles have only some of the automorphisms of the cliques). If H
is the reflexive 3-clique, then H-Retraction and Surjective H-Colouring are trivial.
If H is the irreflexive directed 3-cycle, then H has a majority polymorphism, which shows
that H-Retraction, and thus Surjective H-Colouring (see Figure 1), can be solved in
polynomial time [1]. If H is the irreflexive 3-clique, then Surjective H-Colouring is NP-
complete, as there exists a straightforward reduction from 3-Colouring. Hence H = DC∗3
was indeed the only case for which determining the complexity of Surjective H-Colouring
was not immediately obvious.

It would be great to extend our results to larger reflexive digraph classes. Reflexive
digraphs with a double edge are not endo-trivial and further fail to be endo-trivial in the
worse way, since Surjective DC∗2-Colouring is nearly trivial. Thus, our methods are
likely only to be applicable to reflexive oriented digraphs, that is, those without a double edge.
On the way, a natural question arising is exactly which reflexive digraphs are endo-trivial?

Finally, there is the question as to whether the assumption of endo-triviality can be
weakened to that of retract-triviality in Theorem 9. Endo-triviality is used right at the
beginning of the proof to show that GG is the disjoint union of a copy of G (the constant
maps) and isolated automorphisms. We do not know if retract-triviality is here sufficient.
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Abstract
We present three pumping lemmas for three classes of functions definable by fragments of weighted
automata over the min-plus semiring and the semiring of natural numbers. As a corollary we
show that the hierarchy of functions definable by unambiguous, finitely-ambiguous, polynomially-
ambiguous weighted automata, and the full class of weighted automata is strict for the min-
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1 Introduction

Weighted automata (WA) are an expressible extension of finite state automata for computing
functions over words. They have been extensively studied since Schützenberger [28], and its
decidability problems [18, 1], extensions [9], logic characterization [9, 17], and applications [22,
7] have been deeply investigated.

The class of functions defined by WA has several equivalent representations in terms of
computational models or logics. Recently Alur et al. introduced the computational model of
cost register automata (CRA) [2, 3], an alternative model for computing functions over words,
which are currently extensively studied [20, 21, 8]. The idea of this model is to enhance
deterministic finite automata with registers that can be combined by using operations over
a fixed semiring. In [2], it was shown that CRA are strictly more expressive than WA.
Interestingly, it was also shown that a natural fragment of CRA is equally expressive to WA,
which gives a new representation to understand this class of functions.

Regarding the logical representation of WA, Droste and Gastin introduced in [9] the
so-called Weighted Logics (WL), a natural extension of monadic second order logics (MSO)
from the boolean semiring to any commutative semiring. The semantics of this logics maps
any formula in MSO over strings to one or zero in the semiring, depending whether the input
satisfies the formula or not. Furthermore, WL includes sum and product quantifiers that
allow to aggregate the output of boolean formulas producing an output value in the semiring.
Although WL is far more expressive than WA, it was shown in [9] that a natural syntactic
restriction of WL is equally expressive to WA, giving the first logical characterization of WA.
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Weighted logics or, more generally, quantitative logics have found many applications in
understanding WA [10, 17], verification [5] and computational complexity [4].

The complexities of decision problems for WA have also been investigated, unfortunately
often with undecidability results [18, 1]. For this reason various fragments of WA over different
semirings have been studied. Recently, over one-letter alphabets, where WA are equivalent
to linear recurrences, some new decidability results were shown for limited fragments [23, 24].
Other restrictions of WA involve bounding their numbers of runs. Among them most studied
classes are unambiguous automata, finitely-ambiguous automata, and polynomially-ambiguous
automata, where the numbers of accepting runs is bounded by 1, a constant, a polynomial in
the size of input, respectively [29, 16, 15]. These are robust subclasses of functions inside
WA that also have found several characterization in terms of cost register automata [2] and
weighted logics [17].

Although functions defined by WA and its subclasses have been studied in terms of
representations and decidability, little is known about its expressibility. Indeed, we are not
aware of any general techniques to show if a function is definable or not by WA or any of
its subclasses. Results related to the inexpressibility of WA usually require sophisticated
arguments for each particular function [16, 20] and there is no clear path to generalize these
techniques. As a matter of fact, the strict inclusions between unambiguous, finitely-ambiguous,
polynomially-ambiguous, and the full class of WA are “well-known” to the community, but
it is hard to find references to formal proofs (see related work below). In contrast, for
regular languages or first order logics there exist elegant and useful techniques for showing
inexpressibility like, for example, the standard pumping lemma for regular languages [13] or
Ehrenfeucht-Fraïssé games for first-order logics [12, 11, 19]. One would like to have similar
techniques in the quantitative world that simplifies inexpressibility arguments of WA, cost
register automata, or even weighted logics to a small number of lines. Such techniques help
to understand the inner structure of these functions and unveil their limits of expressibility.

In this paper, we embark in the work of loading the expressibility toolbox of weighted
automata with pumping lemmas. We present three pumping lemmas, each of them for a
different class or subclass of functions defined by WA over the min-plus semiring or the
semiring of natural numbers. For every pumping lemma we show examples of functions
that do not satisfy the lemma, giving very short inexpressibility proofs. Our results do
not attempt to fully characterize the class or subclasses of weighted automata in terms of
pumping properties, nor to provide conditions that can be verified by a computer. Our goal
is to give the first tools for expressibility of weighted automata and to provide researchers
with simple arguments for showing that functions do not belong to a given class.

Related work. In [14] it is shown that over the min-plus semiring polynomially-ambiguous
automata are strictly more expressive than finite-ambiguous automata. In [16] strict inclusions
between unambiguous automata, finitely-ambiguous automata, and the full class of WA are
shown over the max-plus semiring. In both papers the strict inclusions are shown by analyzing
particular functions. Using results in [6] one can deduce that unambiguous automata are
strictly included in the other classes over the min-plus and max-plus semirings. Gathering
these results we obtain strict inclusions between unambiguous automata, finitely-ambiguous
automata, and the full class of WA over the min-plus semiring. However, to our knowledge,
there is no reference for a strict inclusion between polynomially-ambiguous automata and
the full class of WA.

Organization. In Section 2 we introduce weighted automata and some basic definitions.
In Section 3 and Section 4 we present and prove pumping lemmas for weighted automata over
the semiring of natural numbers and its extension using the operation min. In Section 5 we
show the pumping lemma for polynomially-ambiguous automata over the min-plus semiring.
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Some concluding remarks can be found in Section 6.

2 Preliminaries

In this section, we recall the definitions of weighted automata (WA). We start with the
definitions that are standard in this area. A monoid M = (M,⊗,1) is a set M with an
associative operation ⊗ and a neutral element 1. Standard examples of monoids are: the set
of words Σ∗ with concatenation and empty word; or the set of matrices with multiplication
and the identity matrix. A semiring is a structure S = (S,⊕,⊙,0,1), where (S,⊕,0) is a
commutative monoid, (S − {0},⊙,1) is a monoid, multiplication distributes over addition,
and 0⊙ s = s⊙ 0 = 0 for each s ∈ S. If the multiplication is commutative, we say that S is
commutative. In this paper, we always assume that S is commutative. We usually denote S
or M by the name of the semiring or monoid S or M. In this paper, we are interested in
the min-plus semiring (N ∪ {∞},min,+,∞,0) and the semiring of natural numbers with ∞
(N ∪ {∞},+, ⋅,0,1) where we assume that ∞+ n =∞ for every n ∈ N ∪ {∞} and ∞ ⋅ n =∞ if
n ≠ 0 and 0 otherwise. We denote the former by Nmin,+ and the later by N+,×. Note that N+,×
is an extension of the standard semiring of natural numbers N and all our results for N+,×
also hold for N. We use this extended version of N to easily apply some results from N+,×
to Nmin,+ (see Section 4). Given a finite set Q, we denote by SQ×Q (SQ) the set of square
matrices (vectors resp.) over S indexed by Q. The algebra induced by S over SQ×Q and SQ

is defined as usual.
We also consider two finite semirings that will be useful during proofs. We con-

sider the boolean semiring B = ({0,1},∨,∧,0,1) and the extended boolean semiring B∞ =
({0, 1,∞},∨,∧, 0, 1) such that ∞∨ n =∞ for every n ∈ {0, 1,∞}, ∞∧ 0 = 0, and ∞∧ n =∞ if
n ∈ {1,∞}. Both finite semirings will be used as abstractions of Nmin,+ and N+,×, respectively.

In this paper, we study the specification of functions from words to values, namely, from
Σ∗ to S. We say that a function f ∶ Σ∗ → S is definable by a computational system A (e.g.
by WA) if f(w) = ⟦A⟧(w) for any w ∈ Σ∗, where ⟦A⟧ is the semantics of A over words.

2.1 Weighted automata
Fix a finite alphabet Σ and a commutative semiring S. A weighted automaton (WA) over
Σ and S is a tuple A = (Q,Σ,{Ma}a∈Σ, I, F ) where Q is a finite set of states, {Ma}a∈Σ
is a set of matrices such that Ma ∈ SQ×Q and I,F ∈ SQ are the initial and the final
vectors, respectively [27, 10]. We say that a state q is initial if I(q) ≠ 0 and accepting
if F (q) ≠ 0. We usually say that an entry Ma(p, q) = s is a transition and write p a/sÐ→ q.
Furthermore, we say that a run ρ of A over a word w = a1 . . . an is a sequence of transitions:
ρ = q0

a1/s1Ð→ q1
a2/s2Ð→ ⋯ an/snÐ→ qn, where si ≠ 0 for all 1 ≤ i ≤ n and I(q0) ≠ 0. We refer to qi

as the i-th state of the run ρ. The run ρ is accepting if F (qn) ≠ 0, and the weight of an
accepting run ρ is defined by ∣ρ∣ = I(q0) ⊙ (⊙n

i=1 si) ⊙ F (qn). We define RunA(w) as the
set of all accepting runs of A over w. Finally, the output of A over a word w is defined
by ⟦A⟧(w) = It ⋅Ma1 ⋅ . . . ⋅Man ⋅ F = ⊕ρ∈RunA(w) ∣ρ∣ where It is the transpose of I and the
second sum is equal to 0 if RunA(w) is empty. For a word w = a1 . . . an we usually denote
Mw =Ma1 ⋅ . . . ⋅Man and then ⟦A⟧(w) = It ⋅Mw ⋅F . Note that Mw(p, q) provides the cost of
moving from state p to state q reading the word w.

A weighted automaton A is called unambiguous (U-WA) if ∣RunA(w)∣ ≤ 1 for every w ∈ Σ∗;
and A is called finitely-ambiguous (FA-WA) if there exists a uniform bound N such that
∣RunA(w)∣ ≤ N for every w ∈ Σ∗ [29, 16]. Furthermore, A is called polynomially-ambiguous
(PA-WA) if the function ∣RunA(w)∣ is bounded by a polynomial in the length of w [15]. We
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50:4 Pumping Lemmas for Weighted Automata

call classes of functions definable by such automata unambiguous regular, finitely-ambiguous
regular and polynomially-ambiguous regular functions. The class of functions defined by
weighted automata are called regular functions.

Note that every unambiguous WA over Nmin,+ can be defined by a polynomially-ambiguous
WA over N+,× [16, 2] (recall that ∞ is in N+,×). Therefore, the class of unambiguous regular
functions over Nmin,+ is included in the class of regular functions over N+,× (see Example 1).
This inclusion is strict since regular functions over Nmin,+ are always bounded by a linear
function in the size of the word, and it is easy to define the function f(w) = 2∣w∣ over N+,×.
Below, we give several examples of functions defined by WA over N+,× and Nmin,+ that will
be used in paper. Recall that in the latter semiring 0 =∞ and ⊙ = +. Transitions p a/sÐ→ q,
where s = 0 are omitted.

b / 0

a / 0
b / 0 a / 1

W1 over Nmin,+

a / 1b / ∞

a / 1
b / 1 a / 1

W ′
1 over N+,×

a / 1
b / 0

a / 0
b / 1

W2 over Nmin,+

b / 1 a, b / 0a, b / 0

b / 1 a / 0a / 0

W4 over Nmin,+

a / 1
b / 0

a / 0
b / 1

a / 0
b / 0

W3 over Nmin,+

a / 1
b / 0 # / 0

a / 0
b / 1

# / 0 # / 0

a / 0
b / 1

a / 1
b / 0

W5 over Nmin,+

Figure 1 Examples of weighted automata. For WA over Nmin,+ the initial and accepting states
are labeled by 0 in the corresponding vector, and ∞ otherwise. Similarly, for WA over N+,× the
initial and accepting states are labeled by 1 in the corresponding vector, and 0 otherwise.

I Example 1. Let Σ = {a, b}. Consider the function f1 that for given word w ∈ Σ∗ outputs
the length of the biggest suffix of a’s (and ∞ if the word ends in b). This is defined by W1
over Nmin,+ in Figure 1. One can easily check that W1 is unambiguous, hence f1 belongs to
unambiguous regular functions over Nmin,+. In Figure 1, W ′

1 over N+,× also defines f1.

I Example 2. Let Σ = {a, b}. Consider the function f2 that for given word w ∈ Σ∗ outputs
min{∣w∣a, ∣w∣b}, namely, counts the number of each letter and returns the minimum. This is
defined by W2 in Figure 1. The WA W2 is finitel-ambiguous, hence f2 belongs to finitely-
ambiguous regular functions.

I Example 3. Let Σ = {a, b}. Consider the function f3 that for a given word w = a1 . . . an ∈ Σ∗

outputs min0≤i≤n{∣a1 . . . ai∣a + ∣ai+1 . . . an∣b}. This is defined by W3 in Figure 1. The WA is
polynomially-ambiguous, hence f3 belongs to polynomially-ambiguous functions.

I Example 4. Let Σ = {a, b}. Consider the function f4 that for a given word w ∈ Σ∗ computes
the shortest subword of b’s (if there is none it outputs ∞). This is defined by W4 in Figure 1.
The WA is polynomially-ambiguous, hence f4 belongs to polynomially-ambiguous functions.

I Example 5. Let Σ = {a, b,#}. Consider the function f5 such that, for any w ∈ Σ∗ of the
form w0#w1# . . .#wn with wi ∈ {a, b}∗, it computes the minimum number of a’s or b’s for
each subword wi (i.e. min{∣wi∣a, ∣wi∣b}) and then it sums these values over all subwords wi,
that is, f5(w) = ∑ni=0 min{∣wi∣a, ∣wi∣b}. This is defined by W5 in Figure 1. Given that the WA
has an exponential number of runs, the function f5 is a regular function but not necessarily
a polynomially-ambiguous regular function.
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We assume that our weighted automata are always trim, namely, all their states are
reachable from some initial state (i.e., they are accessible) and they can reach some final
state (i.e., they are co-accessible). Verifying if a state is accessible or co-accessible is reduced
to a reachability test in the transition graph [25] and this can be done in NLogSpace. Thus,
we can assume without loss of generality that all our automata are trimmed.

2.2 Finite monoids and idempotents
We say that a monoid is finite if the set of its elements is finite. Let M = (M,⊗,1) be a finite
monoid. We say that ι ∈M is an idempotent if ι⊗ ι = ι. The following lemma is a standard
result for finite monoids and idempotents (e.g. see Theorem 6.37 in [26]).

I Lemma 6. Let M be a finite monoid. There exists N > 0 such that for every sequence
m1 ⊗ . . .⊗mn with mi ∈M and n ≥ N , there exist a factorization:

(m1 ⊗ . . .⊗mi)⊗ (mi+1 ⊗ . . .⊗mj)⊗ (mj+1 . . .⊗mn),

where i < j ≤ n and (mi+1 ⊗ . . .⊗mj) is an idempotent.

We will work with the finite monoid of matrices BQ×Q or BQ×Q∞ . For this, we define
abstractions, i.e., homomorphisms of NQ×Qmin,+ to BQ×Q and NQ×Q+,× to BQ×Q∞ . These are given by
the homomorphisms defined on elements of the matrices h1 ∶ Nmin,+ → B and h2 ∶ N+,× → B∞,
defined: h1(m) = 0 iff m =∞; and h2(m) = 0 if m = 0, h2(m) =∞ if m =∞ and h2(m) = 1
otherwise. For matrices M ∈ NQ×Qmin,+ or N ∈ NQ×Q+,× we denote by M̄ = h1(M) or N̄ = h2(N)
their abstractions in BQ×Q or BQ×Q∞ , respectively.

3 Regular functions without min

In this section we consider regular functions over N+,×. As a corollary of the pumping lemma
in this section we show that FA-WA are strictly more expressive than U-WA over Nmin,+
(Example 8). Moreover, we show that there are finitely-ambiguous regular functions over
Nmin,+ that cannot be defined by any regular function over N+,×.

We introduce some notation to simplify the presentation. Given u ⋅ v ⋅w = û ⋅ v̂ ⋅ ŵ, where
u, v,w, û, v̂, ŵ ∈ Σ∗, we say that û ⋅ v̂ ⋅ ŵ is a refinement of u ⋅v ⋅w if there exist u′,w′ such that
u ⋅ u′ = û, w′ ⋅w = ŵ, u′ ⋅ v̂ ⋅w′ = v, and v̂ ≠ ε. We underline the infixes v and v̂ to emphasize
the refined part.

I Theorem 7 (Pumping Lemma for regular functions over N+,×). Let f ∶ Σ∗ → N ∪ {∞} be a
regular function over N+,×. There exists N such that for all words of the form u ⋅ v ⋅w ∈ Σ∗

with ∣v∣ ≥ N , there exists a refinement û ⋅ v̂ ⋅ ŵ of u ⋅ v ⋅w such that at least one of the following
two conditions holds:

f(û ⋅ v̂i ⋅ ŵ) = f(û ⋅ v̂i+1 ⋅ ŵ) for every i ≥ N .

f(û ⋅ v̂i ⋅ ŵ) < f(û ⋅ v̂i+1 ⋅ ŵ) for every i ≥ N .

Before going into the details of the proof let us show how to use the lemma.

I Example 8. We show that f2 from Example 2 is not definable by any WA over N+,×.
Indeed, suppose it is definable and fix N from Theorem 7. Consider the word w = a(N+1)2bN

and notice that f2(w) = N . By refining w we get û ⋅ v̂ ⋅ŵ = a(N+1)2bnbmbl for some n,m, l such
that 1 ≤m ≤ N and n +m + l = N . Since n +m ⋅N + l < n +m ⋅ (N + 1) + l < (N + 1)2 it must
be the case that f2(û ⋅ v̂i ⋅ ŵ) < f2(û ⋅ v̂i+1 ⋅ ŵ) for all i ≥ N . However, f2(û ⋅ v̂i ⋅ ŵ) = (N + 1)2

for i sufficiently large, which is a contradiction.
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50:6 Pumping Lemmas for Weighted Automata

I Example 9. On the other hand, the function f1 from Example 1 satisfies Theorem 7.
Consider a word u ⋅ v ⋅ w ∈ Σ∗ and its refinement û ⋅ v̂ ⋅ ŵ. If ŵ or v̂ contain b then
f(û ⋅ v̂i ⋅ ŵ) = f(û ⋅ v̂i+1 ⋅ ŵ) because the suffix of a’s remains the same. Otherwise,
f(û ⋅ v̂i ⋅ ŵ) < f(û ⋅ v̂i+1 ⋅ ŵ) since the suffix of a’s increases when pumping. Moreover, it is
straightforward to generalize this argument and prove Theorem 7 for all U-WA over Nmin,+.

To prove Theorem 7 we use the following definitions. For a matrix M ∈ NQ×Q+,× recall that
M̄ is its homomorphic image in BQ×Q∞ (see Section 2.2). We write that M and N in NQ×Q+,×
are equivalent, denoted M ≡B∞ N , iff M̄ = N̄ . We also extend the homomorphic image and
equivalence relation from matrices to vectors. We say that D ∈ NQ×Q+,× is an idempotent if D̄
is an idempotent in the finite monoid BQ×Q∞ .

I Lemma 10. If M ≡B∞ N , then xT ⋅M ⋅y > 0 if and only if xT ⋅N ⋅y > 0 for every x, y ∈ NQ+,×.

Proof. Suppose that xT ⋅M ⋅ y > 0. By definition xT ⋅M ⋅ y = ∑p,q x(p) ⋅M(p, q) ⋅ y(q).
Then there exist p, q ∈ Q such that x(p) ⋅M(p, q) ⋅ y(q) > 0 and, in particular, M(p, q) > 0.
Given that M ≡B∞ N we conclude N(p, q) > 0 and x(p) ⋅N(p, q) ⋅ y(q) > 0, which proves
xT ⋅N ⋅ y > 0. J

Proof of Theorem 7. Let A = (Q,Σ,{Ma}a∈Σ, I, F ) be a WA over N+,× such that f = ⟦A⟧.
Without loss of generality, we assume that I(q) ≠ ∞ and Ma(p, q) ≠ ∞ for every p, q ∈ Q
and a ∈ Σ, namely, ∞ can only appear in the final vector F . Indeed, if ∞ is used in I or
some Ma, we can construct two weighted automata A′,A∞ such that A′ is the same as A
but each ∞-initial state or each ∞-transition is replaced with 0, and A∞ outputs ∞ if there
exists some run in A that outputs ∞ and 0 otherwise. Note that A′ has no ∞-transition or
∞-initial state and A∞ can be constructed in such a way that only the final vector contains
∞-values. The disjoint union of A′ and A∞ is equivalent to A.

Let N = max{∣Q∣,K} where K is the constant from Lemma 6 for the finite monoid
BQ×Q∞ . For every word u ⋅ v ⋅w ∈ Σ∗ such that v = a1 . . . an with n ≥ N , consider the output
IT ⋅Mu ⋅Mv ⋅Mw ⋅F of A over u ⋅ v ⋅w. By Lemma 6, there exists a factorization of the form:

Mv = (Ma1 ⋅ . . . ⋅Mai) ⋅ (Mai+1 ⋅ ⋯ ⋅Maj) ⋅ (Maj+1 ⋅ . . . ⋅Man)

for some i < j where Mai+1 ⋅ . . . ⋅Maj is an idempotent (i.e., M̄ai+1 ⋅ . . . ⋅ M̄aj is an idempotent).
We define the refinement û ⋅ v̂ ⋅ ŵ of u ⋅ v ⋅w such that û = u ⋅ (a1 . . . ai), v̂ = ai+1 . . . aj , and
ŵ = (aj+1 . . . an) ⋅w. Furthermore, define x = I ⋅Mu ⋅Ma1 ⋅ . . . ⋅Mai , D =Mai+1 ⋅ . . . ⋅Maj , and
y =Maj+1 ⋅ . . . ⋅Man ⋅Mw ⋅ F . Note that f(û ⋅ v̂i ⋅ ŵ) = xT ⋅Di ⋅ y for every i ≥ 0 and D is an
idempotent (i.e. D̄ is an idempotent). It remains to show the following lemma.

I Lemma 11. For every idempotent D ∈ NQ×Q+,× and x, y ∈ NQ+,× where D and x do not contain
∞-values, one of the conditions holds:

xT ⋅Di ⋅ y = xT ⋅Di+1 ⋅ y for every i ≥ ∣Q∣, or (1)
xT ⋅Di ⋅ y < xT ⋅Di+1 ⋅ y for every i ≥ ∣Q∣. (2)

We start showing that Lemma 11 holds when y = ep for some p ∈ Q, where ep(q) = 1 if q = p
and 0 otherwise. Note that z = ∑p∈Q z(p) ⋅ ep for every vector z.

We say that p is D-stable (or just stable) if D(p, p) > 0. Note that if p is stable, then
Di(p, p) > 0 for every i > 0 (recall that D is idempotent). Furthermore, D ⋅ ep = ep + z for
some z ∈ NQ+,×. Suppose that p is stable and D ⋅ ep = ep + z for some vector z. Then for i > 0:

xT ⋅Di+1 ⋅ ep = xT ⋅Di ⋅ (ep + z) = xT ⋅Di ⋅ ep + xT ⋅Di ⋅ z
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Given that D is idempotent and Di ≡B∞ D, by Lemma 10 we have that xT ⋅Di ⋅ z > 0 if, and
only if, xT ⋅D ⋅z > 0. Therefore, if xT ⋅D ⋅z > 0, we get that xT ⋅Di ⋅ep < xT ⋅Di+1 ⋅ep for every
i > 0, in particular, for every i ≥ ∣Q∣. Otherwise, xT ⋅D ⋅ z = 0 and xT ⋅Di ⋅ ep = xT ⋅Di+1 ⋅ ep
for every i > 0, in particular, for every i ≥ ∣Q∣.

Let P ⊆ Q be the set of all non-stable states in D. Consider the relation ⪯D⊆ P × P such
that p ⪯D q if p = q or D(p, q) > 0. One can easily check that ⪯D forms a partial order over
P , namely, that ⪯D is reflexive, antisymmetric, and transitive. Indeed, transitivity holds
because D is idempotent. To prove antisymmetry, note that for every non-stable states p
and q, if p ⪯D q, q ⪯D p and p ≠ q hold, then D(p, p) > 0. This is a contradiction since p is
non-stable.

Since ⪯D is a partial order, we prove the lemma for y = ep by induction over ⪯D. Formally,
we strengthen the inductive hypothesis such that conditions (1) and (2) hold for every i ≥ Nq,
where Nq = ∣{q′ ∈ P ∣ q′ ⪯D q}∣ (notice that Nq ≤ ∣Q∣ for every q). The base case is for Np = 0,
which means that p is stable. In the inductive case Np > 0 the state p is non-stable. Then

xT ⋅Di+1 ⋅ ep = xT ⋅Di ⋅ (c1 ⋅ eq1 + . . . + ck ⋅ eqk) = c1(xT ⋅Di ⋅ eq1) + . . . + ck(xT ⋅Di ⋅ eqk)

for pairwise different states q1, . . . , qk and positive values c1, . . . , ck ∈ N such that qj is either
stable or qj ≺D p. Thus all states q1, . . . , qk satisfy our inductive hypothesis.

Consider the partition of q1, . . . , qk into sets C= and C< such that C= and C< satisfy
condition (1) and (2), respectively. If C< = ∅, then for every i ≥ Np we have:

xT ⋅Di+1 ⋅ ep = c1(xT ⋅Di ⋅ eq1) + . . . + ck(xT ⋅Di ⋅ eqk)
= c1(xT ⋅Di−1 ⋅ eq1) + . . . + ck(xT ⋅Di−1 ⋅ eqk)
= xT ⋅Di ⋅ ep. (3)

Note that xT ⋅Di ⋅eqj = xT ⋅Di−1 ⋅eqj holds by the inductive hypothesis and because Np > Nqj
for every qj . Suppose otherwise, that C< ≠ ∅ and there exists a state qj that satisfies
xT ⋅Di ⋅ eqj < xT ⋅Di+1 ⋅ eqj for every i ≥ Nqj . Then it is straightforward that equality (3)
becomes a strict inequality and condition (2) holds.

We have shown that either (1) or (2) holds for y = ep. It remains to extend this to any
vector y ∈ NQ+,× (possibly with ∞). Note that

xT ⋅Di+1 ⋅ y = y(q1) ⋅ (xT ⋅Di+1 ⋅ eq1) + . . . + y(qk) ⋅ (xT ⋅Di+1 ⋅ eqk)

for some states q1, . . . , qk such that y(qj) > 0 for every j ≤ k. We consider two cases. First,
if there exists j such that y(qj) =∞ and xT ⋅Di ⋅ eqj > 0 for i ≥ N , then xT ⋅Di ⋅ y =∞ for
every i ≥ 0. Thus, xT ⋅Di ⋅ y satisfies condition (1). Second, suppose that for every j we
have y(qj) ≠∞ or xT ⋅Di ⋅ eqj = 0 for i ≥ N . It suffices to consider the case when y(qj) ≠∞
for all j. Then if some xT ⋅Di ⋅ eqj satisfies condition (2) we have that xT ⋅Di ⋅ y satisfies
condition (2). Conversely, if every xT ⋅Di ⋅ eqj satisfies condition (1) we have that xT ⋅Di ⋅ y
satisfies condition (1). J

One could try to simplify Theorem 7 changing the condition i ≥ N to i ≥ 0. Unfortunately,
we do not know if the theorem would remain true. A naive approach would be to use a
generalization of Lemma 6, but intuitively, the behavior of non-stable registers is problematic.
Examples of this behavior are very technical and we leave this for future work. We conclude
with the following remarks, straightforward from the proof. We will use them in Section 4.

I Remark 12. Changing y to y′ such that y ≡B∞ y′ does not influence whether condition (1)
or condition (2) holds in Lemma 11 (notice that here we need that the abstractions have
values in B∞ not in B). Similarly, changing x to x′ such that x ≡B∞ x′ does not influence
whether condition (1) or (2) holds.
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I Remark 13. The constant N and the refinement of w depend only on the finite monoid
BQ×Q∞ . In particular they are independent from the initial vectors I and F .

4 Finite-min regular functions

In this section we focus on regular functions over N+,× with some min allowed. Formally, we
say that f ∶ Σ∗ → N ∪ {∞} is a finite-min regular function, if there exist regular functions
f1, . . . , fm over N+,× such that f(w) = min{f1(w), . . . , fm(w)}. It is known that FA-WA are
equivalent to a finite sum of U-WA [29], hence functions defined by FA-WA over Nmin,+ are
included in the class of finite-min regular functions. As a corollary of the pumping lemma
in this section we show that PA-WA are strictly more expressive than FA-WA over Nmin,+
(Example 15 and Example 16).

We start by introducing some notation to ease the presentation. For every word w we
define an n-pumping representation

w = u0 ⋅ v1 ⋅ u1 ⋅ v2 ⋅ . . . un−1 ⋅ vn ⋅ un,

where w = u0 ⋅v1 ⋅u1 ⋅v2 ⋅ . . . vn ⋅un and vk ≠ ε for all k. We define a refinement of an n-pumping
representation as

w = u′0 ⋅ y1 ⋅ u′1 ⋅ y2 ⋅ . . . u′n−1 ⋅ yn ⋅ u′n,

if vk = xk ⋅ yk ⋅ zk, u′k = zk ⋅ uk ⋅ xk+1; where z0 = xn+1 = ε and yk ≠ ε for every k. Let
S ⊆ {1, . . . , n} such that S ≠ ∅. Let vk be a fragment of an n-pumping representation w. By
vk(S, i) we denote the word vik if k ∈ S and vk otherwise. By w(S, i) we denote the word

w = u0 ⋅ v1(S, i) ⋅ u1 ⋅ v2(S, i) ⋅ . . . un−1 ⋅ vn(S, i) ⋅ un.

In other words we pump the fragments vk for all k ∈ S.
I Theorem 14 (Pumping Lemma for finite-min regular functions). Let f ∶ Σ∗ → N ∪ {∞} be a
finite-min regular function. There exists N such that for all n-pumping representations

w = u0 ⋅ v1 ⋅ u1 ⋅ v2 ⋅ . . . un−1 ⋅ vn ⋅ un,

where n ≥ N and ∣vi∣ ≥ N for all i, there exists a refinement

w = u′0 ⋅ y1 ⋅ u′1 ⋅ y2 ⋅ . . . u′n−1 ⋅ yn ⋅ u′n,

such that for every sequence of nonempty pairwise different subsets S1, . . . , Sk ⊆ {1 . . . n} with
k ≥ N at least one of the following holds:

there exists j such that f(w(Sj , i)) < f(w(Sj , i + 1)) for i sufficiently large;
there exists j1 ≠ j2 such that f(w(Sj1 ∪ Sj2 , i)) = f(w(Sj1 ∪ Sj2 , i + 1)) for i sufficiently
large.

Before proving Theorem 14, we show how to use it with two examples.

I Example 15. We show that f3 from Example 3 is not definable by finite-min regular
functions. Indeed, fix N from Theorem 14 and consider the n-pumping representation
w = (bN ⋅aN)N . We index each pumping fragment with a pair (s, j), where j ≤ N denotes the
block and s ≤ 2 denotes the fragment in the block. First, notice that f3(w) = N ⋅(N−1) because
runs minimizing the value forW3 change the state after reading the last b in one of the blocks.
We define the sets Sj = {(1, j), (2, j)} for j ∈ {1, . . . ,N}. Clearly f3(w(Sj , i)) = N ⋅ (N − 1)
for any j and i, because the run minimizing the value changes the state after the last b in
the j-th block. On the other hand f3(w(Sj1 ∪ Sj2 , i)) < f3(w(Sj1 ∪ Sj2 , i + 1)) for all i and
j1 ≠ j2. Hence f3 does not satisfy the pumping lemma for finite-min regular functions.
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I Example 16. We show that f4 from Example 4 is not definable by finite-min regular
functions. Indeed, fix N from Theorem 14. Consider the N -pumping representation w =
(bNa)N . Then by definition f4(w) = N . In the refinement all pumping parts will be of
the form bn for 1 ≤ n ≤ N . We define the sets Sj = {1, . . . ,N} ∖ {j} for all 1 ≤ i ≤ N .
Clearly f4(w(Sj , i)) = N for any j and any i. On the other hand f4(w(Sj1 ∪ Sj2 , i)) <
f4(w(Sj1 ∪Sj2 , i+ 1)) for all i and j1 ≠ j2. Hence f4 does not satisfy the pumping lemma for
finite-min regular functions.

Proof of Theorem 14. Let f1, . . . , fm be regular functions over N+,× such that f(w) =
min{f1(w), . . . , fm(w)} for every w. Furthermore, consider Aj = (Qj ,Σ,{Mj,a}a∈Σ, Ij , Fj)
the corresponding WA for fj . LetQ = ⋃j Qj (we assume thatQ1, . . . ,Qm are pairwise disjoint)
and consider the set of matrices {Ua}a∈Σ where Ua ∈ NQ×Q+,× such that Ua(p, q) =Mj,a(p, q)
whenever p, q ∈ Qj and 0 otherwise. Then fj(w) = (I ′j)t ⋅ Uw ⋅ F ′

j for every j and w ∈ Σ∗

where I ′j and F ′
j are the extensions of Ij and Fj from Qj into Q such that I ′j(q) = Ij(q)

and F ′
j(q) = Fj(q) whenever q ∈ Qj and 0 otherwise. Notice that {Ua}a∈Σ synchronize the

behavior of f1, . . . , fm in a single set of matrices and project the output of fj with I ′j and F ′
j .

Let N = max{K,m + 1} such that K is the constant from Lemma 6 applied to BQ×Q∞ . Let
w = u0 ⋅ v1 ⋅ u1 ⋅ v2 ⋅ . . . un−1 ⋅ vn ⋅ un. For every vi we use Theorem 7 over u≤i ⋅ vi ⋅ s≥i, where
u≤i = u0 ⋅ v1 ⋅ . . . ui−1 and s≥i = ui ⋅ vi+1 ⋅ . . . un obtaining a refinement

w = u′0 ⋅ y1 ⋅ u′1 ⋅ y2 ⋅ . . . u′n−1 ⋅ yn ⋅ u′n,

where each yi comes from Theorem 7 applied to {Ua}a∈Σ. Recall that the refinement of
u≤i ⋅ vi ⋅ s≥i depends only on {Ua}a∈Σ and not on the initial final vector (Remark 13). In
particular, the refinement is the same for each function fj . Then

fj(w) = (I ′j)t ⋅Uu′0 ⋅D1 ⋅ . . . ⋅Uu′n−1
⋅Dn ⋅Uu′n ⋅ F

′
j

where Di = Uyi are idempotents.

I Lemma 17. Let S ⊆ {1, . . . , n} be a nonempty set and fix one function fj. Then
fj(w(S, i)) < fj(w(S, i + 1)) for every i ≥ N iff there exists k ∈ S such that fj(w({k}, i)) <
fj(w({k}, i + 1)) for every i ≥ N .

Proof. By definition fj(w(S, i)) = (I ′j)t ⋅Uu′0 ⋅D
s1
1 ⋅ . . . ⋅Uu′n−1

⋅Dsn
n ⋅Uu′n ⋅ F

′
j where sk = i if

k ∈ S and sk = 1 otherwise. Since all Di are idempotents then for all k the fragments before
and after Dsk

k are ≡B∞ equivalent, i.e.,

(I ′j)t ⋅Uu′0 ⋅D
s1
1 ⋅ . . . ⋅Dsk−1

k−1 ⋅Uu′
k−1

≡B∞ (I ′j)t ⋅Uu′0 ⋅D1 ⋅ . . . ⋅Dk−1 ⋅Uu′
k−1

Uu′
k
⋅Dsk+1

k+1 ⋅ . . . ⋅Dsn
n ⋅Uu′n ⋅ F

′
j ≡B∞ Uu′

k
⋅Dk+1 ⋅ . . . ⋅Dn ⋅Uu′n ⋅ F

′
j .

Hence, the lemma follows from Remark 12. J

To finish the proof we analyze f(w(S, i)) = min{f1(w(S, i)), . . . , fm(w(S, i))}. Consider
a sequence of subsets S1, . . . , Sk with k ≥ N . Suppose there is a set Sl for some l such that
for every j ≤m there exists k ∈ Sl such that fj(w({k}, i)) < fj(w({k}, i + 1)) for every i ≥ N .
It follows from Lemma 17 that f(w(Sl, i)) < f(w(Sl, i + 1)) for all i ≥ N , namely, the first
condition of the theorem holds. Suppose otherwise, and for every Sl let Xl ⊆ {1, . . . ,m}
be the set of functions such that fj(w(Sl, i)) = fj(w(Sl, i + 1)) for all j ∈ Xl and i ≥ N .
Since k ≥ N > m there exists l1, l2 such that Xl1 ∩Xl2 ≠ ∅. From Lemma 17 it follows
that for i ≥ N holds: fj(w(Sl1 ∪ Sl2 , i)) = fj(w(Sl1 ∪ Sl2 , i + 1)) for all j ∈ Xl1 ∩Xl2 ; and
fj(w(Sl1 ∪ Sl2 , i)) < fj(w(Sl1 ∪ Sl2 , i + 1)) for all j ∈ {1, . . . ,m} ∖ (Xl1 ∩Xl2). Hence for i
sufficiently large f(w(Sl1 ∪ Sl2 , i)) = minj∈Xl1∩Xl2 (fj(w(Sl1 ∪ Sl2 , i))), which concludes the
proof. J
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5 Poly-ambiguous regular functions over the min-plus semiring

In this section we focus on polynomially-ambiguous regular functions over Nmin,+. We
expect that there is a wider class of functions, definable like in the previous section, where
Theorem 18 holds but it is left for future work. A corollary from the pumping lemma in this
section is that WA are strictly more expressive than PA-WA (Example 19 and 20).

We will use the notation of n-pumping representations from Section 4. As usual, a
sequence of non-empty sets S1, . . . , Sm over {1, . . . , n} is a partition if they are pairwise
disjoint and ⋃Si = {1, . . . , n}. Furthermore, we say that S ⊆ {1, . . . , n} is a selection set of
S1, . . . , Sm if ∣S ∩ Si∣ = 1 for every i.

I Theorem 18 (Pumping Lemma for polynomially-ambiguous automata). Let f ∶ Σ∗ → N∪{∞}
be a polynomially-ambiguous regular function over Nmin,+. There exists N and a function
ϕ ∶ N→ N such that for all n-pumping representations:

w = u0 ⋅ v1 ⋅ u1 ⋅ v2 ⋅ . . . ⋅ un−1 ⋅ vn ⋅ un,

where ∣vi∣ ≥ N for every i ≤ n, there exists a refinement:

w = u′0 ⋅ y1 ⋅ u′1 ⋅ y2 ⋅ . . . u′n−1 ⋅ yn ⋅ u′n,

such that for every partition π = S1, . . . , Sm of {1, . . . , n} with m ≥ ϕ(maxi(∣Si∣)), at least
one of the following holds:

there exists j such that f(w(Sj , i)) = f(w(Sj , i + 1)) for i sufficiently large;
there exists a selection set S of π such that f(w(S, i)) < f(w(S, i + 1)) for i sufficiently
large.

I Example 19. We show that f5 from Example 5 is not definable by PA-WA. Indeed, let N
and ϕ be the constant and the function from Theorem 18. Consider the following n-pumping
representation: w = (aN ⋅ bN#)m where m ≥ ϕ(2) (here maxi(∣Si∣) = 2). We index each
pumping fragment with a pair (s, j), where j ≤m denotes the block and s ≤ 2 denotes the
fragment in the block. We define the subsets S1 . . . Sm as follows: Sj = {(1, j), (2, j)}. Clearly
for all j we have f5(w(Sj , i)) < f5(w(Sj , i + 1)). On the other hand for every selection set S
we have f5(w(S, i)) = f5(w(S, i + 1)). Hence f5 does not satisfy the Pumping Lemma above.

I Example 20. The function f5 in Example 5 is essentially the function f2 from Example 2
applied to the subwords between the symbols #, where the outputs are aggregated with +.
In a similar way one can define a min-plus automaton recognizing f6(w) = ∑i f4(wi) for any
w ∈ Σ∗ of the form w0#w1# . . .#wn with wi ∈ {a, b}∗, where f4 is the function computing
the minimal block of b’s from Example 4. We show that f6 is not definable by PA-WA
over Nmin,+. Consider the following n-pumping representation: w = (bN ⋅ a ⋅ bN#)m where
m ≥ ϕ(2) (here maxi(∣Si∣) = 2). We index each pumping fragment with a pair (s, j) like in
Example 19 and we define the subsets S1 . . . Sm as follows: Sj = {(1, j), (2, j)}. Clearly for
all j we have f6(w(Sj , i)) < f6(w(Sj , i + 1)). On the other hand for every selection set S we
have f6(w(S, i)) = f6(w(S, i + 1)).

Consider the set of matrices NQ×Qmin,+ over the min-plus semiring. Recall that here ⊕ =
min, ⊙ = +, 0 = ∞, 1 = 0, and the product of matrices M,N ∈ NQ×Qmin,+ is defined by
M ⋅N(p, q) = minr(M(p, r) +N(r, q)). Also, recall that for any M ∈ NQ×Qmin,+ we denote by M̄
the homomorphic image of M into the finite monoid BQ×Q (see Section 2.2). Similar as in
Section 3 and Section 4, we say that D ∈ NQ×Qmin,+ is an idempotent if D̄ is an idempotent in
the finite monoid BQ×Q.
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The following lemma is a special property of polynomially-ambiguous automata that we
exploit in the proof of Theorem 18. The proof is omitted here due to lack of space.

I Lemma 21. Let A = (Q,Σ,{Ma}a∈Σ, I, F ) be a polynomially-ambiguous weighted auto-
maton over the min-plus semiring. For every idempotent D ∈ {Mw ∣ w ∈ Σ∗} and for every
p, q ∈ Q, there exist constants c, d ∈ Nmin,+ and b ∈ N such that Db+i(p, q) = c ⋅ i + d for all
i ≥ 0.

Proof of Theorem 18. Consider a polynomially-ambiguous WA A = (Q,Σ,{Ma}a∈Σ, I, F )
over Nmin,+ such that f = ⟦A⟧. We take as N the constant from Lemma 6 for the finite
monoid BQ×Q. The function ϕ ∶ N → N will be determined later in the proof. Consider an
n-pumping representation w like in the statement of the lemma. Recall that the output for
the word w is defined as I ⋅Mw ⋅ F . By Lemma 6, for every vk there exists a factorization
vk = xkykzk such that Myk is an idempotent and ∣yk ∣ ≤ N . We denote Dk =Myk and define:

w = u′0 ⋅ y1 ⋅ u′1 ⋅ y2 ⋅ . . . u′n−1 ⋅ yn ⋅ u′n

such that each word yk is the infix of vk corresponding to the idempotent Dk. For the rest
of the proof we denote w≤k = u′0 ⋅ y1 ⋅ . . . u′k−1. For every S ⊆ {1 . . . n} we denote by w≤k(S, i)
the word w≤k with all yj pumped i times for all j < k such that j ∈ S.

Recall that RunA(w) is the set of all accepting runs and let ρ ∈ RunA(w). Every run
induces two states for each 1 ≤ k ≤ n: states preceding and following each word yk. In the
rest of the proof these will be the most important parts of a run. To work with them, we
define the abstraction of ρ, denoted by ρ̄ ∶ {1 . . . n}→ Q ×Q, such that ρ̄(k) = (p, q) where p
and q are the ∣w≤k ∣-th and ∣w≤k ⋅ yk ∣-th states of ρ, respectively. Similarly, for S ⊆ {1 . . . n},
i ≥ 1, and ρ ∈ RunA(w(S, i)) we define ρ̄ ∶ {1 . . . n} → Q ×Q such that ρ̄(k) = (p, q) where p
and q are the ∣w≤k(S, i)∣-th and ∣w≤k(S, i) ⋅ yk(S, i)∣-th states of ρ, respectively. We denote
by RunA(w) the set of all abstraction of runs in RunA(w). Observe that since all Dk are
idempotents, RunA(w(S, i)) = RunA(w) for all subsets S and i ≥ 1.

The next step is to prove that there exists a polynomial function p(x), depending only on
A, such that ∣RunA(w)∣ ≤ p(n). Let w′ be the word obtained from w were each u′i is replaced
with a word u′′i of length at most ∣BQ×Q∣ such that Mu′i =Mu′′i (it is straightforward to prove
that u′′i exists by pigeonhole principle). Then ∣RunA(w′)∣ ≥ ∣RunA(w)∣. Recall that ∣yi∣ ≤ N
and that N depends only on ∣BQ×Q∣. Then by definition ∣w′∣ ≤ (N + ∣BQ×Q∣) ⋅ (n+ 1) and thus
∣RunA(w′)∣ ≤ r((N + ∣BQ×Q∣) ⋅ (n + 1)), where r is the polynomial bounding the number of
runs in A. The claim follows for p(n) = r((N + ∣BQ×Q∣) ⋅ (n + 1)).

Fix a nonempty set S ⊆ {1, . . . , n} and ρ ∈ RunA(w). For every k ∈ S let bkρ̄(k), c
k
ρ̄(k)

and dkρ̄(k) be the constants from Lemma 21 such that Dbkρ̄(k)+i
k [ρ̄(k)] = ckρ̄(k) ⋅ i + dkρ̄(k) for i

sufficiently large. Since ρ is accepting then ckρ̄(k), d
k
ρ̄(k) < +∞. We show that:

1. ⟦A⟧(w(S, i)) = ⟦A⟧(w(S, i + 1)) for i sufficiently large iff there exists a run ρ ∈ RunA(w)
such that ckρ̄(k) = 0 for every k ∈ S;

2. ⟦A⟧(w(S, i)) < ⟦A⟧(w(S, i+1)) for i sufficiently large iff for every run ρ ∈ RunA(w) there
exists k such that ckρ̄(k) > 0.

Let ρ ∈ RunA(w(S, i + 1)) be a run realizing the minimum value for i ≥ i0. Given
that Dk are idempotents one can always find a run ρ′ ∈ RunA(w(S, i)) such that ρ̄′ = ρ̄
by removing one part on each yk. In particular ∣ρ′∣ ≤ ∣ρ∣, which proves ⟦A⟧(w(S, i)) ≤
⟦A⟧(w(S, i + 1)). It follows that if we prove (1) then (2) also holds. To prove (1) suppose
first ⟦A⟧(w(S, i)) = ⟦A⟧(w(S, i + 1)) for i sufficiently large. Let ρ ∈ A(w(S, i + 1)) and
ρ′ ∈ A(w(S, i)) be the previous runs realizing the minimum and its shortening, respectively.
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Since ∣yk ∣ ≤ N we assume a universal bound i0 such that bkρ̄(k) = i0 for all k in Lemma 21.
By Lemma 21 Di0+i+1

k [ρ̄(k)] = ckρ̄(k) ⋅ (i + 1) + dkρ̄(k). If ckρ̄(k) > 0 for some k then the
inequality ⟦A⟧(w(S, i0 + i)) ≤ ⟦A⟧(w(S, i0 + i + 1)) would be sharp, which is a contradiction.
For the other direction suppose there exists a run ρ ∈ RunA(w) such that ckρ̄(k) = 0 for
every k ∈ S. Then for every i ≥ 0 there exists a run ρi ∈ RunA(w(S, i0 + i)) such that
∣ρi∣ ≤ ∣ρ∣ +∑k dkρ̄(k). Since ⟦A⟧(w(S, i0 + i)) ≤ ⟦A⟧(w(S, i0 + i + 1)) ≤ ∣ρ∣ +∑k dkρ̄(k) it follows
that ⟦A⟧(w(S, i0 + i)) = ⟦A⟧(w(S, i0 + i + 1)) for i sufficiently large.

Given the previous discussion, let R̄k = {ρ̄ ∈ RunA(w) ∣ ckρ̄(k) > 0} for every k ∈ {1, . . . , n}.
The set R̄k represents indirectly the runs that will grow when pumping w({k}, i). Then,
we can restate (2) as: ⟦A⟧(w(S, i)) < ⟦A⟧(w(S, i + 1)) for i sufficiently large iff ⋃k∈S R̄k =
RunA(w).

We are ready to prove the theorem. Fix a partition S1, . . . , Sm for some m ≥ ϕ(max ∣Sl∣).
Suppose the first condition is not true, namely, for all j there exists arbitrarily big values i such
that f(w(Sj , i)) ≠ f(w(Sj , (i + 1))). From (2) it follows that f(w(Sj , i)) < f(w(Sj , i + 1))
for i sufficiently large and ⋃k∈Sj R̄k = RunA(w) for every j ≤ m. Let L = max ∣Sl∣. We
assume that L > 1, otherwise every selection S contains a whole set Sk for some k and
we are done by (2). To construct the set S = {k1, . . . , km} we define by induction the
sets Gj . Let G0 = RunA(w) and for every j ∈ {1, . . . ,m} let Gj = RunA(w) ∖ ⋃l≤j R̄kl .
Intuitively, Gj correspond to runs that are not covered by the set {k1, . . . , kj}. For the
inductive case, suppose that Gj ≠ ∅. Since ⋃k∈Sj+1 R̄k = RunA(w), by the pigeonhole
principle there exist kj+1 ∈ Sj+1 such that ∣R̄kj+1 ∩ Gj ∣ ≥ ∣Gj ∣/∣Sj+1∣. We add kj+1 to S

and so ∣Gj+1∣ ≤ ∣Gj ∣ − ∣Gj ∣/∣Sj+1∣ = ∣Gj ∣ ⋅ (∣Sj+1∣ − 1)/∣Sj+1∣ ≤ ∣Gj ∣ ⋅ (L − 1)/L. Suppose this
procedure continues until j = m and Gm ≠ ∅. Then 1 ≤ ∣RunA(w))∣ ⋅ ((L − 1)/L)m, and
∣RunA(w))∣ ≥ (L/(L−1))m. However, we know that ∣RunA(w))∣ is bounded by a polynomial
function p(n) depending on ∣A∣. Thus, it suffices to choose ϕ such that m ≥ ϕ(L) implies
(L/(L − 1))m > p(L ⋅ m) ≥ p(n) ≥ ∣RunA(w))∣ (recall that S1, . . . , Sm is a partition of
{1, . . . , n} and L ⋅m ≥ n). Therefore, Gm = ∅ and thus ⋃k∈S R̄k = RunA(w), which concludes
the proof. J

6 Conclusions

We have shown three pumping lemmas for three different classes of functions. We believe
that the last pumping lemma in Section 5 could be proved for a wider class of functions that
would contain the class N+,×, but this is left for future work. As a corollary of our results,
we showed that regular functions over Nmin,+ form a strict hierarchy, namely:

U-WA ( FA-WA ( PA-WA ( WA.

All strict inclusions, except for PA-WA ( WA, could be extracted from the analysis of
examples in [16]. However, our results provide a general machinery to prove such results.
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Abstract
An infinite bit sequence is called recursively random if no computable strategy betting along
the sequence has unbounded capital. It is well-known that the property of recursive randomness
is closed under computable permutations. We investigate analogous statements for randomness
notions defined by betting strategies that are computable within resource bounds. Suppose that
S is a polynomial time computable permutation of the set of strings over the unary alphabet
(identified with N). If the inverse of S is not polynomially bounded, it is not hard to build
a polynomial time random bit sequence Z such that Z ◦ S is not polynomial time random.
So one should only consider permutations S satisfying the extra condition that the inverse is
polynomially bounded. Now the closure depends on additional assumptions in complexity theory.

Our first main result, Theorem 4, shows that if BPP contains a superpolynomial determin-
istic time class, such as DTIME(nlogn), then polynomial time randomness is not preserved by
some permutation S such that in fact both S and its inverse are in P. Our second main result,
Theorem 11, shows that polynomial space randomness is preserved by polynomial time permuta-
tions with polynomially bounded inverse, so if P = PSPACE then polynomial time randomness is
preserved.
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51:2 Closure of Resource-Bounded Randomness Notions under P-Time Permutations

1 Introduction

Formal randomness notions for infinite bit sequences can be studied via algorithmic tests.
A hierarchy of such notions has been introduced. See e.g. Downey and Hirschfeldt [4] or
Nies [11, Ch. 3] for definitions and basic properties, and also Li and Vitányi [8]. Criteria for
good randomness notions include robustness under certain computable operations on the
bit sequences. In the simplest case, such an operation is a computable permutation of the
bits. For a permutation S of N and an infinite bit sequence Z, identified with a subset of N,
by Z ◦ S we denote the sequence Y such that Y (n) = Z(S(n)). (Note that, when viewed as
a subset of N, Z ◦ S equals S−1(Z).) We say that a class C of bit sequences is closed under
all members of a class G of permutations if Z ∈ C implies Z ◦ S ∈ C for each S ∈ G.

A central notion of randomness was introduced by Martin-Löf [9]. A Martin-Löf test is
a uniformly Σ0

1 sequence 〈Gm〉m∈N such that the uniform measure of Gm is at most 2−m.
Z fails such a test if Z ∈

⋂
mGm; otherwise Z passes the test. Z is Martin-Löf random if

it passes each such test. Clearly this randomness notion is closed under computable per-
mutations S: if Z ◦S fails a Martin-Löf-test 〈Gm〉m∈N, then Z fails the test 〈S−1(Gm)〉m∈N.
The weaker notion of Schnorr randomness [13], where one also requires that the measure
of Gm is a computable real uniformly in m, is closed under computable permutations by
a similar argument. Recursive randomness [13] (see e.g. [11, Ch. 7] as a recent reference)
is defined via failure of all computable betting strategies (martingales), rather than by a
variant of Martin-Löf’s test notion. Nonetheless, by a more involved argument, implicit in
[3, Section 4.1], it is closed under computable permutations. Also see Nies [11, Thm. 7.6.24]
and Kjos-Hanssen, Nguyen and Rute [7].

Our main purpose is to study analogues of this result in computational complexity theory.
In order to guarantee compatibility with the theory developed in Downey and Hirschfeldt [4]
and Nies [11] we view sets of numbers (i.e., infinite bit sequences), rather than sets of strings
over an alphabet of size at least 2, as our principal objects of study. We note that work
of Lutz, Mayordomo, Ambos-Spies and others, beginning in the 1980s and surveyed in
Ambos-Spies and Mayordomo [1], studied sets of strings: martingales bet on the strings in
length-lexicographical order. Such languages can be identified with bit sequences via this
order of strings, but the time bounds imposed on martingales are exponentially larger when
they bet on strings.

To be able to apply the notions of resource bounded computability to infinite bit se-
quences and permutations, we will identify such bit sequences with subsets of the set {0}∗
of unary strings (also called tally languages). We view permutations as acting on {0}∗. A
bit sequence is polynomial time random if no polynomial time computable bettings strategy
succeeds on the sequence. This notion was briefly introduced by Schnorr [13], studied im-
plicitly in the above-mentioned work of Lutz, Mayordomo, Ambos-Spies and others, and in
more explicit form in Yongge Wang’s 1996 thesis [15].

Our leading question is: under which polynomial time computable permutations S is poly-
nomial time randomness closed? If S−1 is not polynomially bounded, we build a polynomial
time random bit sequence Z such that Z ◦ S is not polynomial time random. After that,
we will assume that S satisfies the extra condition that its inverse is polynomially bounded.
Now the closure depends on additional assumptions in complexity theory:

The first result, Theorem 4, shows that if BPP contains a superpolynomial deterministic
time class, such as DTIME(nlogn), then polynomial time randomness is not preserved by
some permutation S such that both S and its inverse are in P.
The second result, Theorem 11, shows that PSPACE-randomness is preserved by poly-
nomial time permutations with polynomially bounded inverse; so if P = PSPACE then
polynomial time randomness is preserved by such permutations.
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Broadly speaking, the idea for the first result, Theorem 4, is as follows. Choose an O(nlogn)
time computable martingale M only betting on odd positions 1, 3, 5, . . . that dominates (up
to a positive factor) all polynomial time computable martingales that only bets on odd
positions. Use the hypothesis in order to take a language A ∈ BPP which tells at which
extension of a string of odd length M does not increase. Now let B be a highly random
set (albeit B can be chosen in E). Let Z be the bit sequence that copies B(n) at position
2n, and takes the value of A at the string Z(0) . . . Z(2n) at position 2n+ 1. Then one can
verify that Z is polynomial time random. If Ẑ is a rearrangement of the bits of Z so that a
sufficiently large block of bits of B is interspersed between bits determined by A, then we
can use these bits of B as random bits required in a randomised polynomial time algorithm
for A. This will show that Ẑ is not polynomial time random.

The second result, Theorem 11, closely follows Buhrman, van Melkebeek, Regan, Sivak-
umar and Strauss [3, Section 4.1], which introduces and studies resource-bounded betting
games. It actually shows that PSPACE-randomness is closed under certain polynomial time
scanning functions, which, unlike permutations, can uncover the bits of a set in an order
determined by previous bits. Each permutation in question can be seen as a scanning func-
tion of the appropriate kind. (We note that removing the resource bounds from Theorem 11
yields a proof that recursive randomness is closed under computable permutations, and in
fact under computable scanning functions that scan each position.) Thm. 5.6 in Buhrman
et al. [3] is a related result based on the same methods developed there; however, in that
result an assumption on the existence of certain pseudorandom generators is made, while
our Theorem 11 does not rest on any unproven assumptions.

We note another notion of robustness for randomness notions. One can easily adapt
all the randomness notions to an alphabet other than {0, 1}. Base invariance says that
the randomness notion is preserved when one replaces a sequence over one alphabet by a
sequence over a different alphabet that denotes the same real number. Brattka, Miller and
Nies [2] have shown this for recursive randomness, and Figueira and Nies [5] have shown it
for polynomial time randomness, each time relying on the connection of randomness of a
real with differentiability at the real of certain effective functions.

Using Figueira and Nies [5], Nies [12] provides a characterisation of polynomial time
randomness for real numbers in terms of differentiability of all polynomial time computable
nondecreasing functions on the reals.

2 Preliminaries

For a bound h, as usual DTIME(h) denotes the languages A computable in time O(h). In-
formally we often say that A is computable in time h. As in Ambos-Spies and Mayordomo [1],
we require that martingales have rational values.

I Definition 1. A martingale M is a function from {0, 1}∗ to {q ∈ Q : q > 0} satisfying
M(x) = (M(x0) + M(x1))/2 for all x ∈ {0, 1}∗. A martingale succeeds on a set Z if
lim supnM(Z � n) =∞. One says that a martingale does not bet at a position n ifM(x0) =
M(x1) for each x ∈ {0, 1}n.

One says that Z is recursively random if no computable martingale succeeds on Z.
Each polynomial in this paper will be non-constant and have natural number coefficients.

For a polynomial time version of recursive randomness, we have to be careful how to define
polynomial time computability for a martingale: as in [3], a positive rational number q is
presented by a pair 〈k, n〉 consisting of a denominator and a numerator (both written in
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51:4 Closure of Resource-Bounded Randomness Notions under P-Time Permutations

binary) such that q = k/n in lowest terms. A martingale M is polynomial time computable
if on input x one can determine M(x) in this format in polynomial time. Z is polynomial
time random if no such martingale succeeds on Z. In a similar way one defines exponential
time randomness.

A martingaleM is polynomial space computable ifM(x) can be computed in polynomial
space (including the space needed to write the output). Z is polynomial space random if no
such martingale succeeds on Z.

We first show that polynomial time randomness fails to be closed under polynomial time
computable permutations S that are “dishonest” in the sense that S(n) can be much less
than n.

I Theorem 2. Let S be a polynomial time permutation of {0}∗ such that for each polynomial
p, there are infinitely many n with p(S(n)) ≤ n. There is a polynomial time random Z

computable in time 2O(n) such that Z ◦ S is not polynomial time random.

Clearly a permutation S as in Theorem 2 exists: Let (pk)k∈N list the non-constant
polynomials with natural coefficients in such a way that for u ≤ n, O(n2) steps suffice to
verify whether pk(u) ≤ n. On input n of the form 〈k, i〉, see whether pk(〈k, 0〉) ≤ n. If not
let S(n) = 〈k, i+ 1〉. If so and n is least such, let S(n) = 〈k, 0〉. Otherwise S(n) = n.

Proof of Theorem 2. Nies [11, Section 7.4] provided a construction template for recursively
random sets, going back to Schnorr’s work. We adapt some parts of this template to the
resource bounded setting.

Let 〈Bk〉 be an effective listing of the polynomial time martingales with positive rational
values. We may assume that Bk is computable in time pk(n) = k(nk + 1).

For each n, let Bk,n be the martingale with initial capital 1 that does not bet until its
input reaches length n, and then uses the same betting factors as Bk. Thus,

Bk,n(x) = Bk(x)
Bk(x � n)

for any string x of length at least n. Let p̃k,n be a polynomial so that Bk,n(x) for |x| ≥ n

can be computed in time p̃k,n(|x|).
We inductively define a sequence of numbers. Let n0 = 0, and let nk+1 be the least

n > nk such that qk(S(n) + 1) ≤ n, where qk is a polynomial time bound for the martingale∑
r≤k 2−rBr,nr

and qk(n) ≥ n + 2. Let L =
∑
r 2−rBr,nr

. Note that L is a rational-
valued martingale, because on inputs of length at most nk, all the Br,nr

for r > k together
contribute 2−k.

Let now Z be the left-most non-ascending path of L: Z(m) = 0 if L(Z � m 0̂) ≤
L(Z � m), and Z(m) = 1 otherwise. Since L does not succeed on Z and L multiplicatively
dominates each Bk, the set Z is polynomial time random.

Note that since S ∈ P, from n we can in polynomial time recursively recover the sequence
n0, q0, n1, q1, . . . and thereby compute the maximal k such that nk < n. In particular we
can decide whether n is of the form nk+1 for some k. By definition, for n = nk+1 we have
qk(S(n) + 1) ≤ n and hence S(n) + 1 < nk+1. Since qk as a time bound is sufficient to
determine L(y) for strings y of length S(n) + 1, the bit Z ◦ S(n) can be computed in time
polynomial in n. Hence Z ◦ S is not polynomially random.

We can ensure such a set Z is computable in time 2O(n) by choosing the listing 〈Bk〉
appropriately. J
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I Remark. We note that methods involving the 〈Bk,n〉 similar to the above can be used
to show that each class DTIME(h) with superpolynomial time constructible h contains a
polynomial time random (tally) set. We have to initiate a copy 〈Bk,n〉 of Bk finitely many
times until a length n is reached such that for m ≥ n, h(m) time is sufficient to simulate its
behaviour on strings of length m.

3 If BPP Contains a Superpolynomial Time Class Then Closure Fails

I Definition 3. A permutation S of {0}∗ is called fully polynomial time computable if both
S and S−1 are polynomial time computable.

A complexity theoretic assumption considerably weaker than BPP = EXP suffices for
non-closure.

I Theorem 4. Suppose that DTIME(h) ⊆ BPP for some time constructible function h

that dominates all the polynomials. Then there are a polynomial time random set Z ∈
DTIME(23n) and a fully polynomial time computable permutation S such that Z ◦ S is not
polynomial time random.

Proof. We may assume that h(n) ≤ nlogn. It is well-known that whenever a martingale in
a certain complexity class succeeds on a set Z then there is also a successful martingale in
the same class betting only on even positions, or there is a successful martingale betting
only on the odd positions.

The construction has two steps. Firstly, by standard methods discussed at the end of
Section 2, one can build a martingale M in DTIME(h) which bets only on odd positions,
and dominates up to a multiplicative constant all polynomial time martingales betting on
odd positions. Let

A = {x ∈ {0, 1}∗ : x has odd length and M(x1) < M(x0)}.

The set A is in DTIME(h) and hence by assumption in BPP.
Secondly, let B ⊆ {0}∗ be a language on which no martingale in DTIME(24·n) succeeds.

Again by standard methods one can ensure that B is in DTIME(25·n). Define a set Z ⊆ N
as follows:

Z(2n) = B(n); Z(2n+ 1) = A(Z � 2n+ 1).

We may visualise Z as follows:

B A B A B A B A B A B A B . . .
B(0) A(Z � 1) B(1) A(Z � 3) B(2) A(Z � 5) . . .

Clearly Z ∈ DTIME(23n). It is claimed that Z is polynomial time random. As the
martingale M only bets on odd positions, Z is defined such that M never gains capital
on Z. As M is universal among the martingales computable in polynomial time with this
property, no martingale betting on the odd positions succeeds on Z.

Suppose now that L is a polynomial time martingale which bets on the even positions and
note that one can compute in time O(h(n)) from B(0), B(1), . . . , B(n) inductively the values
Z(0), Z(1), . . . , Z(2n + 1), as for every x of length 2n + 1 the value A(x) can be computed
in time h(n). Thus if L succeeds on Z then there is a new martingale N succeeding on B
which satisfies that

N(B � n+ 1) = L(Z � 2n)

STACS 2018



51:6 Closure of Resource-Bounded Randomness Notions under P-Time Permutations

and which uses that Z(2n) = B(n) while the bits of Z at odd positions on which L does not
bet can be computed as indicated above from the other bits. To computeN(x) for x of length
2n takes q(n)+

∑
i<n h(2i+1) steps for some polynomial q. So N ∈ DTIME(nO(logn)), which

contradicts the assumption that no such martingale computable in time O(24n) succeeds on
B. This verifies the claim.

Since A ∈ BPP, there is a polynomial p such that an appropriate randomised algorithm
R on input x ∈ {0, 1}2n+1 computes A(x) in time p(n), with error probability 2−4n−2, using
p(n) random bits. Now consider the sequence Ẑ consisting for n = 0, 1, . . . of p(n) bits taken
from B followed by the bit Z(2n+ 1). Again we visualise Ẑ:

B A B B B A B B B B B B A . . .

p(0) p(1) p(2)

Formally one can define Ẑ from Z as follows:

for m < p(n),
Ẑ((

∑
k<n

p(k)) + n+m) = B((
∑
k<n

p(k)) +m) = Z(2(
∑
k<n

p(k) +m));

Ẑ((
∑
k≤n

p(k)) + n) = Z(2n+ 1) = A(Z � 2n+ 1).

This mapping is given by a permutation S so that Ẑ(r) = Z(S(r)) for all positions r. So if
r = (

∑
k<n p(k)) + n+m then S(r) = 2(

∑
k<n p(k)) + 2m and if r = (

∑
k≤n p(k)) + n then

S(r) = 2n + 1, for all m,n with m < p(n). The permutation S and its inverse satisfy that
the mappings 0k 7→ 0S(k) and 0k 7→ 0S−1(k) on the unary strings {0}∗ are polynomial time
computable, thus the S is of the form as required; to see this note that for a polynomial
p also the mapping n 7→

∑
k<n p(k) is a polynomial; similarly for a function bounded by a

polynomial.
Now it will be shown that Ẑ is not polynomial time random. Note that there are 22n+1

strings of length 2n+1. Given a string of p(n) random bits, the probability that when using
these bits the randomised algorithm R computes A(x) correctly for all x ∈ {0, 1}2n+1 is at
least 1− 22n+1 · 2−4n−2 = 1− 2−2n−1. We want to show that B provides random bits that
allow R to correctly compute A for almost all inputs. Otherwise, we can build a martingale
M computable in time 210·n which succeeds on B: The martingale M splits its capital into
bins of value 2−n−1 and for each block of p(n) bits starting at

∑
k<n p(k), it takes the value

2−n−1 from the corresponding bin and bets it on the strings y consisting of p(n) bits that
do not compute all values of A(x) with x ∈ {0, 1}2n+1 correctly using R. This condition
can be checked for these bits in the time bound given as it involves running R with y as
the random bits on all strings x of length 2n+ 1 and comparing the result with A(x) for all
2p(n) choices of random bits y. After these simulations, M distributes the capital from the
bin evenly on those strings of random bits which cause R to make an error. After having
processed the bits from the block of p(n) bits, the capital in this bin remains unchanged by
future bets. The set of random strings y on which the computation of some of the A(x) in
x ∈ {0, 1}2n+1 is false has at most the probability 2−4n−2 · 22n+1 = 2−2n−1. Therefore the
capital from the bin multiplies at least by 2n+1 during the block and reaches the value 1.

For the time bound on M , whenever the input has length between
∑
k<n p(k) and∑

k≤n p(k), the martingale computes 2n+1 values A(x) for x ∈ {0, 1}2n+1 with respect
to p(n) random bits taking 2p(n) possible choices. However, for all polynomials and almost
all n, p(n) ≤

∑
k<n p(k), as the degree of the sum-polynomial of p is by one above the degree
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of p and the polynomial p is positive. Thus, for such n, when n′ =
∑
k<n p(k) is a lower

bound on the length of the input to the martingale M then p(n) ≤ n′ and 2n+ 1 ≤ n′ and
thus the whole computations can be handled in time O(23n′).

If there are infinitely many blocks in B where the random bits of this block do not
compute all A(x) with x of the corresponding length correctly, then this martingale succeeds,
contrary to the assumption on B. So, for almost all n, the block of p(n) random bits in Ẑ
before A(Z � 2n) permits to compute this value correctly.

Now this property will be used to construct a polynomial time martingale H which
succeeds on Ẑ. Let Ã(n) denote A(Z � 2n+ 1). Given p(n) random bits from B preceding
Ã(n) in Ẑ, the martingale H archives these bits without betting on them. It then bets half
of its capital on the value for Ã(n) computed from these random bits; note that due to
Ã(0), Ã(1), . . . , Ã(n− 1) and B(0), B(1), . . . , B(n) being coded in Ẑ in positions before that
of Ã(n), when the bet for Ã(n) = Z(2n + 1) has to be made, one can retrieve besides the
random bits also Z(0)Z(1) . . . Z(2n) from the history. So one can use the random bits to
compute the value almost always correctly. Thus the martingale H will only finitely often
place a wrong bet and lose some of its capital, but for almost all Ã(n) predict the value
correctly and multiply its capital by 3/2. Thus the martingale succeeds. As all the operations
above are polynomial time computable, the set Ẑ is not polynomial time random. J

The proof of Theorem 4 can be adjusted to obtain a corollary.

I Corollary 5. Let A,B ⊆ {0}∗. Suppose that A is in BPP and B is EXP-random relative
to A. Then A is polynomial time computable relative to B, and in particular not polynomial
time random relative to B.

Proof. For ease of notation, we often write A(n) in place of A(0n) and so on; however, both
A and B are viewed as subsets of {0}∗.

There is a polynomial time algorithm and a polynomial p such that the algorithm uses
p(n) random bits to compute A(n) with error probability 2−n. As in the theorem above, one
can now query B for getting the random bits and the places where the queries are asked are
different for n,m whenever n 6= m. So there is a polynomial q with q(n) + p(n) = q(n+ 1)
for all n and where the algorithm asks the bits of B at q(n), q(n) + 1, . . . , q(n) + p(n)− 1 to
compute A(n).

If now there is an error, then an exponential time martingale relative to A can make
sufficient profit, as only a slim minority of the possiblities of the bits of B from q(n) to
q(n) + p(n)− 1 are realised. This contradicts the assumption that B is random relative to
A. Hence A can be computed relative to B by this algorithm with only finitely many errors;
these can then be corrected by a finite table holding the correct values for the positions
where the algorithm makes an error. J

I Remark. In the proof of Theorem 4, Z = Ã ⊕ B is polynomial time random; however,
Ã is not polynomial time random relative to B, as the rearrangement with S shows. Note
that van Lambalgen’s Theorem [14] says that in a recursion-theoretic setting, Ã ⊕ B is
random iff (a) B is random and (b) Ã is random relative to B. Thus, under the assumption
that BPP = EXP, one of the directions of the van Lambalgen Theorem does not hold for
polynomial time randomness.

The corollary also shows that one can choose, under the assumption that BPP contains
a superpolynomial time class, sets A,B ⊆ {0}∗ such that A is polynomial time random,
B is polynomial time random relative to A and A is polynomial time computable relative
to B. Hence this assumption implies that A is a basis for polynomial time randomness
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51:8 Closure of Resource-Bounded Randomness Notions under P-Time Permutations

even though A is polynomial time random itself. This contrasts with the setting of Martin-
Löf randomness randomness in recursion theory: a basis for Martin-Löf randomness has
to be trivial and therefore cannot be random [6, 10]. On the other hand, the bases for
recursive randomness include every set below the halting problem that is not diagonally
noncomputable (DNC), but no set of PA degree [6]. Every high set computes a recursively
random set, and an incomplete high r.e. set is not DNC. So a recursively random set can be
a basis for recursive randomness.

4 If P = PSPACE Then Closure Holds

We say that Z ⊆ N is polynomial space random if no martingale computable in polynomial
space succeeds on Z. In this section we show that polynomial space randomness is closed
under fully polynomial time computable permutations in the sense of Definition 3. If P =
PSPACE this closure property applies to polynomial time randomness as well.

In fact we show a stronger closure property where the permutations are generalised to
certain non-monotonic scanning rules, which adaptively specify an order in which bits are
read. We modify the argument given by Buhrman, van Melkebeek, Regan, Sivakumar and
Strauss [3, Section 4.1], which was not concerned with polynomial space randomness, but
rather was geared to the context of Lutz’s theory of resource bounded measure. As already
mentioned, in that theory, the positions a martingale bets on are strings in some non-unary
alphabet. Such strings can be suitably encoded by natural numbers; however, the resource
bounds change when one converts such a martingale into one in the sense of our Definition 1.
The next two definitions formalise the idea of betting on bit positions in an order chosen
adaptively by the betting strategy. We take some key technical concepts from [3, Section
4.1], somewhat changing the terminology in order to make it compatible with the one of
Nies [11, Section 7.5] where non-monotonic randomness notions are studied.

I Definition 6. A scanning function is a function V : {0, 1}∗ → {0}∗ such that V (α) 6=
V (α � i) for each α ∈ {0, 1}∗ and each i < |α|. In the context of V , we will call a string α
a run of V , thinking of α as a sequence of answers to oracle queries. We will call V (α � i)
the i-th query in the run of V on α.

As before, subsets of N will be identified with languages over the unary alphabet {0}.
For Z ⊆ N let Z ◦ V ⊆ N be the set Y such that Y (i) = Z(V (Y � i)) for each i.

IDefinition 7. A non-monotonic betting strategy G is a pair (V,B) such that V is a scanning
function and B is a martingale. G succeeds on Z ⊆ {0}∗ if limnB(Z ◦ V � n) =∞.

One says that a non-monotonic betting strategy G is computable in polynomial space
if both V and B are computable in polynomial space. One says that Z ⊆ N is non-
monotonically polynomial space random if no such betting strategy succeeds on Z.

Another concept we need is that of consistency between a run α of V and a string w.

I Definition 8. For bit strings α,w, we write α ∼V w if for each j < |α|, if the j-th query
x in the run of V on α is less than |w|, then w(x) = α(j).

I Definition 9. For a function g : N→ N, one says that V is g-filling if for each n and each
run α of length g(n), we have ∀r < n ∃i V (α � i) = r.

I Lemma 10. Suppose V is g-filling. Let |α| ≥ i := g(|w|). Then α ∼V w iff α � i ∼V w.

To see this, note that by the definition of being g-filling, any query q with q < |w| has
to be asked before stage g(|w|).



A. Nies and F. Stephan 51:9

I Theorem 11. Let V be a scanning function in PSPACE that is g-filling for a polynomial
bound g. If Z is polynomial space random, then so is Z ◦ V .

Proof. Suppose Z ◦V is not polynomial space random. Let G = (V,B) be a betting strategy
in PSPACE that succeeds on Z; thus, B succeeds on Z ◦ V .

We define a martingale D in PSPACE that succeeds on Z. We may assume that g(n) ≥ n.
For t ≥ g(|w|) let

D(w) = 2|w|−t
∑

|α|=t ∧ α∼V w

B(α).

By the claim above and since B is a martingale, this definition is independent of t. Note
that among the runs α of length t, a fraction of 2−|w| satisfy that α ∼V w; so D(w) is simply
the average value of B(α) over all such α.

If we let t = g(|w|), by the hypotheses that G is in PSPACE and that g is a polynomial,
D is in PSPACE.

The rest of the argument somewhat simplifies the one of [3] in the present context.

I Lemma 12. D is a martingale.

Let w be a string of length n. If |α| = g(n + 1) and α ∼V w, then either α ∼V w0 or
α ∼V w1. Letting u = g(n+ 1), for each r = 0, 1 we have

D(wr) = 2|w|+1−u ∑
|α|=u ∧ α∼V wr

B(α).

Hence, since the definition of D(w) does not depend on the choice of t ≥ g(|w|),

D(w0) +D(w1) = 2|w|+1−u ∑
|α|=u ∧ α∼V w

B(α) = 2D(w).

I Lemma 13. D succeeds on Z.

We may assume that B(x) > 0 for each x. The Savings Lemma (see e.g. Nies [11, 7.1.14])
states that each computable martingale M can be turned into a computable martingale M̂
that succeeds on the same sets, and has the extra property that M̂(β) ≥ M̂(α)− 2 for each
strings β ⊇ α (namely, M̂ never loses more than 2). It is easy to see from the proof that
if M is computable in polynomial space, then so is M̂ . So we may assume that B has this
property.

This implies that for each c ∈ N there is a prefix α of Z ◦ V such that

B(β) ≥ c for each string β � α.

By definition of Z◦V we have α(i) = Z(V (α � i)) for each i < |α|. Let r = 1+maxi<|α| V (α �
i) be 1+ the maximum query asked in the run of V on α, and let w = Z � r. So g(r) ≥ |α|.

If β ∼V w is a string such that |β| = g(r), then β � α, for α(r) 6= β(r) for some r < |α|
would imply that β 6∼V w as w answers all such queries correctly. So B(β) ≥ c. Hence
D(w) ≥ c because D(w) is the average over values B(β) for all such β. J

I Corollary 14. Let S be a polynomial time computable permutation of {0}∗ such that S−1

is polynomially bounded. If Z is polynomial space random, then so is Z ◦ S.

Proof. The permutation S can be viewed as a scanning function VS that only looks at the
length of the input: VS(α) = S(|α|). By hypothesis on S, the scanning function VS is
polynomially filling. So Z ◦ S = Z ◦ VS is polynomial space random by the theorem. J
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The foregoing corollary can be restated in terms of randomness on languages in the
sense of [1]: Let S be a exponential time computable permutation of {0, 1}∗ such that
|S−1(x)| = O(|x|) for each string x. If a language Z is exponential space random, then so is
Z ◦ S.

We end with a question. Recall that PP denotes probabilistic polynomial time, a subclass
of PSPACE. If P = PP, is polynomial time randomness closed under permutations S of {0}∗
such that S, S−1 are polynomial time computable?
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Abstract
As online storage services become increasingly common, it is important that users’ private in-
formation is protected from database access pattern analyses. Oblivious RAM (ORAM) is a
cryptographic primitive that enables users to perform arbitrary database accesses without re-
vealing any information about the access pattern to the server. Previous ORAM studies focused
mostly on reducing the access overhead. Consequently, the access overhead of the state-of-the-art
ORAM constructions are almost at practical levels in certain application scenarios such as secure
processors. However, we assume that the server space usage could become a new important issue
in the coming big-data era. To enable large-scale computation in security-aware settings, it is
necessary to rethink the ORAM server space cost using big-data standards.

In this paper, we introduce “succinctness” as a theoretically tractable and practically relevant
criterion of the ORAM server space efficiency in the big-data era. We, then, propose two succinct
ORAM constructions that also exhibit state-of-the-art performance in terms of the bandwidth
blowup and the user space. We also give non-asymptotic analyses and simulation results which
indicate that the proposed ORAM constructions are practically effective.
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1 Introduction

Oblivious RAM (ORAM) is a cryptographic primitive that enables users to access a database
on a server without revealing the access pattern to the server. Though originally introduced
for software protection [14], ORAM is directly relevant to the present cloud computing.

In the previous studies on ORAM, researchers focused mainly on reducing the access
bandwidth cost, a performance measure used as a proxy of the access time. This is because
even the current most state-of-the-art ORAM constructions have two or three orders of
magnitude larger bandwidth cost than the ordinary (non-secure) accesses. However, in certain
settings, the ORAM access is already rather efficient. For example, Maas et al. proposed
PHANTOM [23], an ORAM-based secure processor, and reported that if PHANTOM is
deployed on the server, SQLite queries can be performed without revealing the access pattern
at the cost of 1.2–6× slowdown compared to non-secure SQLite queries. In such cases, it is
reasonable to pay more attention to performance measures other than the access speed.
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In particular, the server space usage is a very important performance measure for big-data
applications. First, there are applications where the amount of data is virtually unbounded,
and thus the limit of the available space defines the limit of the analyses. Second, due to
the cache effect, small memory usage often leads to faster computation. Third, space costs
money, especially in a cloud computing server. The second and the third points are especially
relevant if the data is meant to be stored in the main memory (by default), which is exactly
the case in ORAM application scenarios such as PHANTOM.

In most modern ORAM constructions, if the size of the original database is n bits, the
amount of the space required by the server is n+ Θ(n) bits. In this paper, we investigate
the possibility of ORAM constructions that need only n+ o(n) bits of server space. We call
such ORAM constructions succinct. This space efficiency formalization is widely used in the
field of succinct data structures and has proved to be useful to design practically relevant
space-efficient data structures in theoretically clean ways.

The main difficulty to achieve succinctness is that most existing ORAM construction
approaches rely on the use of linear amount of “dummy” data. The situation is similar to
conventional hash tables, which need extra space linear to the stored keys size. Although it
seems possible to reduce the constant factor of the extra space to some extent, it is not at all
trivial if one can achieve sublinear extra space maintaining the state-of-the-art performance
in other aspects such as access bandwidth and user space usage.

Results. Table 1 shows the performance of the proposed methods and the existing methods.
Our first construction takes n(1 + Θ( log n

B + g(n)
f1(n)/ log n ))-bit server space where n is the

database size, f1(·) is a function such that f1(n) = ω(logn) and O(log2 n), g(·) is a function
such that g(n) = ω(1) and o(

√
f1(n)/ logn), and B is the size of a block, the unit of

communication between the user and the server. The bandwidth blowup is O(log2 n) and the
user space is O(f1(n)) blocks. Our second construction has n(1+Θ( log n

B + log log n
f2(n) ))-bit server

space, O(log2 n)-bandwidth blowup and O(f2(n) +R(n))-user space where f2(·) is a function
such that f2(n) = ω(log logn) and O(log2 n), R(·) is a function with R(n) = ω(logn).

For example, if B = log2 n, R = logn log logn, f1(n) = f2(n) = logn log logn and
g(n) = log log logn, the user space is O(logn log logn) in both constructions and the server
space is n(1+Θ( log log log n

log log n )) (resp. n(1+Θ( 1
log n ))) bits in the first (resp. second) construction.

The second construction has better theoretical performance than the first one. However,
in practice, with some parameter settings, the first construction also works comparably
well as the second construction depending on which performance measure one cares (See
Section 5). The first construction is also the basis of the second construction.

If B = ω(logn), Goldreich’s construction [14] and our constructions are succinct. (Each
of these methods works as long as B ≥ c lgn for c around 3.) The assumption B = ω(logn)
is justified as follows. Stefanov et al. [38] mentioned that the typical block size is 64–256 KB
(resp. from 128B to 4KB) in cloud computing scenario (resp. software protection scenario).
Even B ≥ lg1.5 n holds if n ≤ 26501 (resp. n ≤ 297) in cloud computing (resp. software
protection) scenario with moderate block size of 64KB (resp. 128B).

We achieved exponentially smaller bandwidth blowup compared to Goldreich’s construc-
tion [14], which is the only preceding non-trivial succinct ORAM construction.

The bandwidth blowup of our constructions are smaller or equal to other non-succinct
constructions except [22], [7] and [37]. [22] is based on a very expensive procedure called
oblivious sorting and the constant factor of the bandwidth blowup is prohibitively large.
[7] has O(1)-bandwidth blowup but it requires several assumptions. First, the server needs
to perform some computation, e.g., homomorphic encryption evaluation. (In every other
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Table 1 Comparison of theoretical performance. Bandwidth blowup is the number of blocks
required to be communicated for accessing one block of data. User space includes the temporary
space needed during access procedures. n is the database size in bits and B is the block size in
bits. B must satisfy B ≥ c1 lg n and B = O(nc2) for constants c1 > 1, 0 < c2 < 1. Typically, c1

is around 3. f1(·) is an arbitrary function such that f1(n) = ω(log n) and O(log2 n). f2(·) is an
arbitrary function such that f2(n) = ω(log log n) and O(log2 n). R(·) is an arbitrary function such
that R(n) = ω(log n). g(·) is an arbitrary function such that g(n) = ω(1) and o(

√
f1(n)/ log n).

Bounds with † are amortized. The method in [7] requires additional assumptions.

Server space (#bits) Bandwidth
blowup

User space
(#block)

Goldreich [14] n(1 + Θ( log n
B

+ 1√
n

)) O(
√

n log n)† O(1)
Kushilevitz, et al. [22] n(1 + Θ(1)) O( log2 n

log log n
) O(1)

Stefanov, Shi, Song [37] n(1 + Θ(1)) O(log n) O(n)
Stefanov et al. [38] n(1 + Θ(1)) O(log2 n) O(R(n))
Devadas et al. [7] n(1 + Θ(1)) O(1) O(1)

Our result (Theorem 3) n(1 + Θ( log n
B

+ g(n)
f1(n)/ log n

)) O(log2 n) O(f1(n))
Our result (Theorem 5) n(1 + Θ( log n

B
+ log log n

f2(n) )) O(log2 n) O(f2(n) + R(n))

construction in Table 1, the server suffices to respond to read/write requests.) [7] also
requires a computational assumption (decisional composite residuosity or learning with errors
assumption), and larger block size (B = ω̃(log2 n) to ω̃(log6 n) depending on the case, where
ω̃(·) hides a polyloglog factor). [37] takes cn-bit user space where c � 1. This method is
effective for ordinary cloud computing setting but the user space is too large for secure
processor setting — the PHANTOM-like applications where server space efficiency is more
important.

Possible applications. There are several ORAM application scenarios with different require-
ments. Our methods are particularly relevant to secure processor scenario. In this scenario, it
is assumed that a special processor under the control of the user is available in a remote server
and the adversary cannot observe the activities inside the processor. The cloud service user
sends a piece of code to the trusted processor, which, in turn, executes the code on the server.
The communication between the cloud service user and the secure processor is protected by
private key encryption. ORAM is implemented inside of the trusted processor using FPGA
and it hides the processor’s access pattern to the main memory on the server. After executing
the code, the secure processor may return the (encrypted) output to the cloud service user.
One of the main advantages of this approach over the conventional ORAM application, in
which the cloud service user locally executes ORAM, is that ORAM bandwidth blowup
applies to the relatively cheap processor–memory communication rather than the costly
over-network communication. Note that, with the ORAM user-server terminology, the secure
processor (resp. the main memory) is the user (resp. the server).

In secure processor scenario,
the user space is very limited, e.g., 6MB;
The server usually does not perform complex computation;
Simple ORAM algorithms are desirable for hardware implementation;
The server space is much larger than the user space but there is some noticeable limit.
The server can use disks if needed but it greatly slows down accesses.

In most existing secure processor systems, the Path ORAM [38] or its close variants are
used [11, 23, 33, 12]. Indeed, the Path ORAM satisfies the first three requirements above.
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However, it does not capture the last one. For example, suppose 128GB database is stored
in the Path ORAM. If the block size is 128B, it takes about 10G blocks, i.e., 1.28TB (to
ensure rigorous security). Then, each ORAM access procedure takes about 31µs assuming
each memory access takes 100ns. If half of the 10G blocks are stored in the main memory
and the other half is stored in the disk, due to the randomized access pattern of the Path
ORAM, almost every ORAM access procedure ends up a disk seek, which takes milliseconds
order time. In such cases, it is reasonable to use another ORAM construction that takes, say,
half the space of the Path ORAM even though it requires twice as many memory accesses.

Tree-based ORAM. Our ORAM constructions are tree-based. In a typical tree-based
ORAM construction, N blocks are stored in a complete binary tree with N leaves on the
server. Each node of the tree can store up to Z blocks where Z is a constant. Each block is
assigned a position label, a uniformly random integer in [N ]. A block with position label i
must be stored at some node on the path from the root to the i-th leaf. This framework was
introduced by Shi et al. [36] and used in many subsequent studies [38, 13, 33, 5, 7].

Consider a particular block b. As the user continuously issues access requests, b moves
around the tree in roughly the following manner. First, when the user issues an access request
to b, b is picked out of the tree and given a new uniformly random position label. Then, b is
inserted into the tree from the root. If the user issues an access request to another block,
then, with some probability, b will move down the path to the leaf indicated by its position
label. If the next node on the path is full, b must wait for the blocks “ahead” to move down.
If the pace at which the blocks move down the tree cannot keep up with the pace at which
blocks are picked out and reinserted from the root, then, some blocks will not be able to
reenter the tree. If such “congestion” occurs, the user must maintain the overflown blocks
locally.

Note that most space in the tree is wasted: there are 2N − 1 nodes in the tree, each
with capacity Z, whereas there are only N blocks. Thus, to save server space, it is desirable
to make the tree more compact, for example, by reducing Z. However, to maintain a low
probability of “congestion”, it is desirable to make the tree larger, for example, by increasing
Z. To construct a succinct tree-based ORAM, we need to satisfy these conflicting demands.

Our ideas. One of our key ideas is the following two-stage tree layout. We first change
the tree to a complete binary tree with N/ lg1.4 N leaves (assume this is a power of 2). In
addition, we set the capacity of each leaf node to lg1.4 N + lg1.3 N while keeping the capacity
of each internal node at Z. The total size of the leaf nodes is then N +N/ lg0.1 N , and the
total size of all tree nodes except the leaves is Θ(N/ lg1.4 N). Thus, the total size of the
entire tree is N + o(N). We choose each position label from [N/ lg1.4 N ].

To see why blocks can flow around in this tree without much congestion, suppose that
the user inserts each block directly into the leaf node pointed to by the block’s position label.
Clearly, the loads of leaves in this hypothetical setting dominates the loads of leaves in the
real setting. Then, the situation would exactly be the same as the “balls-into-bins” game [24]
with N balls and N/ lg1.4 N bins. In particular, the number of blocks stored in each leaf
node is log1.4 N + Θ(log1.2 N) with high probability. Thus, every leaf node has sufficient
capacity to store all of its assigned blocks. Furthermore, the blocks in the internal nodes
flow as smoothly as in the original non-succinct ORAM construction since we did not modify
that part. Thus, the blocks flow without much congestion in the tree.

Another key idea follows naturally from the above argument, specifically from the
connection to the balls-into-bins game. A remarkable phenomenon known as “the power
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of two choices” states that, in the balls-into-bins game, if one chooses two bins uniformly
and independently for each ball, and throws the ball into the least loaded bin, the bin loads
will be distributed much more tightly around the mean than they are in the one-choice
game [1, 3, 24]. The maximum bin load corresponds to the leaf node size in tree-based ORAM
constructions. Thus, the size of the tree can be further decreased by using the two-choice
strategy to assign the position labels. This is the idea behind the construction in Section 4.

We note that the current paper is the first to apply the power of two choices to tree-based
ORAM. (Some non-tree-based constructions [30, 16, 22] use the two choices idea in the form
of cuckoo hashing [29].) Moreover, the resulting algorithms keep the simplicity of the Path
ORAM [38], which is a highly valuable asset in the relevant application scenario as mentioned
above. As for the analysis, the existing stash size analyses [38, 33] do not seem to work with
parameter regimes required for succinctness. We will give a different proof route (though it
still heavily borrows from [38, 33]) in the full version of the paper.

Our contributions. Our contributions in the current paper are as follows:
We introduce the notion of succinct oblivious RAM. This is a promising first step to
systematically design ORAM constructions with small server space usage;
We propose two succinct ORAM constructions. Not only being succinct, these con-
structions exhibit state-of-the-art performance in terms of the bandwidth blowup. The
methods are simple and easy to implement.
We also give non-asymptotic bounds and simulation results which indicate that the
proposed methods are practically effective.

Related work. In the field of succinct data structures [20, 19], the goal is to represent an
object such as a string [26, 34, 17, 9, 15, 35, 21, 10, 18, 27] or a tree [6, 25, 31, 2, 8, 28] in
such a way that a) only OPT + o(OPT ) bits are required, and b) relevant queries such as
random access or substring search are efficiently supported. Here, OPT is the information
theoretic optimum, i.e., the minimum number of bits needed to represent the object.

The current study is related to succinct data structures in the following way. Suppose a
remote server hosts a database that is implemented by a succinct data structure, and a user
wishes to access the database without revealing the access pattern to the server. The user,
of course, can apply any existing ORAM constructions. However, if ORAM increases the
database size by some constant factor, it destroys the OPT + o(OPT ) bound guaranteed by
the succinct data structure. One can apply the succinct ORAM constructions proposed in
this paper to hide succinct data structure access pattern on a remote storage device without
harming the theoretical guarantee on the data structure size.

Notations. We denote the set {0, 1, . . . n− 1} as [n] for a non-negative integer n. We write
lg x to denote the base-2 logarithm of x and ln x to denote the natural logarithm of x. We
write log x to denote the logarithm of x in the context where the base can be any positive
constant. We write poly(n) to denote nc for some constant c > 0. A negligible function of n
is defined to be a function that is asymptotically smaller than 1/nc for any constant c > 0.

2 ORAM: Preliminaries

Definition. Suppose there are three parties the user, the server and the oblivious RAM
(ORAM) simulator. Let each of B and n be a positive integer and N := n/B. (We assume
n is a multiple of B for brevity.) The value B models the unit of communication and n
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models the database size. We call a chunk of B bits a block. A logical (resp. physical) access
request is a triplet (op, addr, val), where op ∈ {read,write}, addr ∈ [N ] (resp. addr ∈ N),
val ∈ {0, 1}B . The user sends logical access requests to the ORAM simulator and receives a
block for each request. The server receives physical access requests from the ORAM simulator
and returns a block for each request in the following way: for (read, i, v), the server returns
v of the most recent request (write, i, v). The ORAM simulator takes a sequence of logical
access requests from the user and for each logical access request, it makes a sequence of
physical access requests to the server receiving a returned block for each of them, and returns
a block to the user. The ORAM simulator is possibly stateful and probabilistic. It must
respond to logical access requests online and must satisfy the following conditions:
Correctness The ORAM simulator is correct iff, for a logical access request with addr = i,

it returns v of the previous and most recent logical access request (write, i, v);1
Security The ORAM simulator is computationally (resp. information theoretically) secure iff,

for any logical access request sequences of the same length, the distributions of the addr
values of the resulting physical access requests are computationally (resp. information
theoretically) indistinguishable.

An ORAM construction is an ORAM simulator implementation. We have distinguished
the user from the ORAM simulator for exposition but in practice, an ORAM simulator is a
program run by the user. Thus, we do not distinguish them in the rest of the paper.

Encryption. In the ORAM constructions considered in this paper, the user holds a symmetric
cipher key and every block is encrypted when it is stored on the server. Though encryption
increases the database size, the increase is minor2and we ignore the space blowup due to
encryption in the rest of the paper.

Performance measures. The most popular ORAM performance measures include the space
required by the user/server and time required for each logical access.

In most ORAM constructions, the user needs to maintain a small amount of information
locally. In addition to this, in some constructions, the user temporarily need to store
more information during the access procedure. We refer the amount of the space the user
temporarily needs during access procedure as temporary space usage and the amount of the
space the user needs even if no access is made as permanent space usage.

In this paper, we pay special attention to the server space usage. In particular, we use
the following notion of succinctness as a criterion for ORAM server-space efficiency:

I Definition 1. If the server space usage of an ORAM construction representing an n-bit
database is n+ o(n) bits, the ORAM construction is said to be succinct.

As for the access efficiency, following the previous studies, we use the amount of communi-
cation between the user and the server as a proxy for the access time. We define the bandwidth
blowup of an ORAM construction to be the number of blocks that needs to be communicated
between the user and the server per logical access. In other words, the bandwidth blowup
is the ratio of communication amount needed for secure access to communication amount
needed for ordinary (insecure) access.

1 We use the convention that not only read but also write requests have return values.
2 In theory, we can guarantee the semantic security and succinctness at the same time with extra bits

of amount ω(log n) and o(B) per each block. In practice, assuming that we use “counter mode” block
cipher with 128 bits counters and the typical block sizes mentioned in Section 1, the space blowup is
1/4096–1/16384 (resp. 1/8–1/256) factor in cloud computing (resp. software protection) scenario.



T. Onodera and T. Shibuya 52:7

Asymptotic behavior of parameters. Among the ORAM-related parameters, the original
database size n and block size B are outside of the user’s control. Other parameters, e.g.,
the metadata size, can be chosen by the user. We assume that B is a function of n satisfying
B = ω(logn). (See Section 1 for the justification.) Thus, after all, n is the only free parameter
on which the other parameters depend. In all asymptotic statements in this paper, the limit
is taken as n→∞.

Sub-ORAM. We use an ORAM construction encapsulated into the following proposition
as a blackbox. Concretely, the Path ORAM [38] suffices.

I Proposition 2. Let n be the database size and B be the block size, in bits. If B ≥ 3 lgn
and B = O(nc) for some 0 < c < 1, there exists an information theoretically secure ORAM
construction such that i) the server’s space usage is n(10 + Θ( log n

B )) bits; ii) the worst-case
bandwidth blowup is O(log2 n); iii) the user’s temporary space usage is O(logn) blocks; and
iv) for any R = ω(logn), the probability that the user’s permanent space usage becomes larger
than R blocks during poly(n) logical accesses is negligible.

3 Succinct ORAM Construction

In this section, we prove the following theorem.

I Theorem 3. Let n be the database size and B be the block size, both in bits. If B ≥ 3 lgn
and B = O(nc) for some constant 0 < c < 1, then for any f : N→ R such that f(n) = ω(logn)
and f(n) = O(log2 n) and any g : N→ R such that g(n) = ω(1) and g(n) = o(

√
f(n)/ logn),

there exists an information theoretically secure ORAM construction such that i) the server’s
space usage is bounded by n(1 + Θ( log n

B + g(n)√
f(n)/ log n

)) bits; ii) the worst case bandwidth

blowup is O(log2 n); iii) the user’s temporary space usage is O(f(n)) blocks; and iv) for any
R = ω(logn), the probability that the user’s permanent space usage becomes larger than R

blocks during poly(n) logical accesses is negligible.

I Corollary 4. If B = ω(logn), then, the ORAM construction of Theorem 3 is succinct.

3.1 Description
For the clarity of explanation, we first describe a simplified ORAM construction where the
user needs to maintain a large amount of information locally. Then, we obtain an ORAM
construction with the claimed bounds by slightly modifying the simplified construction.

As we mentioned in Section 1, in a tree-based ORAM construction, blocks on the server
are stored in the nodes of a complete binary tree. The key point of the method in this section
is the choice of the tree height L and the leaf node capacity M . Specifically, in the rest of
this section, let L := dlg N

f(n)e and M := d N
2L + g(n)

√
NL
2L e where N := n/B. We assume,

for brevity, that each of lg N
f(n) and N

2L + g(n)
√

NL
2L is an integer.

Block usage. The ORAM is supposed to provide the user with an interface to access the
database as if it is stored in array A of B-bit blocks (Section 2). We use blocks as follows :

Each block is either a data block or a metadata block;
Each data block is either a real block or a dummy block. A real block contains an entry of
A. A dummy block does not contain any information on the database contents and is
used only to hide the access pattern;
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Each real block is given a position label, a value in [2L];
A metadata block contains the metadata of several data blocks. For each data block, its
metadata consists of
type: A flag indicating whether the block is real or dummy;
addr: If the block is real and represents A[i], the value of addr is i. If the block is a

dummy, the value is arbitrary;
pos: If the block is real with position label i, the value of pos is i. If the block is a

dummy, the value is arbitrary.

Data layout. The server maintains a tree containing data blocks, which we call data tree,
and another tree containing metadata blocks, which we call metadata tree. The data tree
is used in such a way that at each point of time, it contains most real blocks with high
probability. The user maintains stash, which contains the real blocks that are not in the data
tree, and position table, which contains the position labels of all real blocks.

The data tree is a complete binary tree with 2L leaves. Each node of the tree is a bucket,
which is a container that can accommodate a certain number of blocks. We call the buckets
corresponding to the internal nodes as internal buckets and the buckets corresponding to the
leaf nodes as leaf buckets. The size of each internal bucket is Z (blocks) while the size of
each leaf bucket is M (blocks). We will determine Z to be 3 in the full version of the paper
but for now, we consider it as an arbitrary constant. The data tree is represented as the
bitstring derived by concatenating all buckets in breadth first order. As is well-known, with
this representation, given an index of a node, the index of the parent or left/right child can
be derived by simple arithmetic. The total space usage of the data tree is equal to the sum
of the bucket sizes.

The metadata tree is also a complete binary tree with 2L leaves. Each node of the tree is
the metadata of the data blocks in the corresponding bucket of the data tree. The metadata
tree is represented similarly to the data tree but there is a subtlety. If the metadata of the
blocks in a bucket has a size smaller than B, it is wasteful to allocate one full block for them.
To avoid this waste, we represent metadata tree as the bitstring derived by concatenating
the metadata of all data blocks in the data tree in breadth first order. The space usage of
the metadata tree is equal to the sum of all metadata of all data blocks.

Each real block in the stash is maintained with its addr and pos. The stash can be any
linear-space data structure that efficiently supports insertion, deletion and range query by
pos, e.g., a self balancing binary search tree.

The position table stores the position label of real block storing A[i] in the i-th entry.

Access procedure. Access requests are processed in such a way that the following invariant
conditions are always satisfied:

Each real block is stored either in the data tree or in the stash;
If a real block with position label ` is stored in the data tree, it is in the bucket on the
path from the root to the `-th leaf.

Below, we give a high-level description of the main routine and we will provide the
pseudocode in the full version of the paper. To read the explanation here, it should suffice to
know that P (`) means the path from the root to the `-th leaf of the data tree.

Let ba be the accessed block. We first read the position label ` of ba from the position
table and update the position table entry to a number chosen uniformly at random from [L],
which will become the new position label of ba after the access operation is finished. By the
invariant conditions above, ba is either in the stash or P (`). We scan P (`) and retrieve ba
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if it is in P (`). If ba was not in P (`), we retrieve it from the stash. If the current request
is a write request, we update the block contents to the new value. Then, we insert ba with
the updated position label and the possibly updated value into the stash. After that, we
perform EvictPath operation. The purpose of this operation is a) to move back the blocks
in the stash into the tree and b) to move the real blocks in the tree downwards (far from the
root). To do this, EvictPath retrieves all real blocks in the path P (BitReversal(G)) (to
be explained shortly) into the stash and then, going up P (BitReversal(G)) from leaf to
the root, tries to move as many blocks in the stash into the buckets on the path. If some
blocks are left in the stash after EvictPath, the user keeps them charging the permanent
space usage. Lastly, the value stored at ba is returned.

The function BitReversal(·) takes an L-bit integer x and returns the bit reversed
version of x while G is the number of Access operations called so far (modulo 2L). This
BitReversal-based scheduling of EvictPath was first proposed by Gentry et al. [13] and is
advantageous to keep the stash size small. It also enables to simplify stash size analysis, which
we will provide in the full version. Here, it suffices to note that G (and BitReversal(G))
is independent of the accessed database locations.

Outsourcing position table. In the construction described so far, the user space usage is
much larger than the bound claimed in Theorem 3 since the user needs to maintain the
position table locally. To obtain Theorem 3, we modify the construction so that the position
table is stored on the server using the Path ORAM [38]. Accesses to position tables are
replaced by a Path ORAM write.

3.2 Analysis
Security. Fix t > 0. Let a be a length t > 0 sequence of logical addresses to be accessed
and a′ be the corresponding sequence of physical addresses (indices of the server memory) to
be accessed. The sequence a′ is determined by a and the randomness used by the ORAM
simulator. To prove the information theoretic security, it suffices to show that a′ really
does not depend on a. The sequence a′ consists of a′1, the physical addresses accessed in
the recursive access call to the Path ORAM and a′2, those accessed in the rest parts. The
addresses a′1 is determined by the Path ORAM access procedure and is independent of a
due to the information theoretic security of the Path ORAM. The addresses a′2 consists
of addresses accessed by ReadPath(`, a) and EvictPath(). ReadPath(`, a) accesses the
path P (`), which is determined by `, the position label of the accessed block. Since the
position labels are chosen independently and uniformly at random, the ReadPath accesses
are independent of a. EvictPath accesses P (BitReversal(G)), which is determined by
G, the number of times Access was called (modulo 2L). Thus, the accesses of EvictPath
is also independent of a. Therefore, a′ is independent of a.

Server space. First, it is helpful to observe that logN = Θ(logn), L = Θ(logn) and
M = Θ(f(n)). Remember that the server holds the data tree, the metadata tree and
the position table. The total size of the internal (resp. leaf) buckets is Z(2L − 1) (resp.
M2L) blocks. Since Z(2L − 1) < Z2L = ZN/f(n) and M2L = N + g(n)

√
NL2L =

N(1 + Θ( g(n)√
f(n)/ log n

)) = N(1 + Θ(h(n))) where h(n) := g(n)√
f(n)/ log n

, the number of the

blocks in the data tree is bounded by ZN/f(n) +N(1 + Θ(h(n))) = N(1 + Θ( 1
f(n) + h(n))).

The metadata for each data block takes 1 bit for type, dlgNe bits for addr and L bits for pos.
The total is Θ(logn) bits = Θ( log n

B ) blocks. Thus, the number of bits in the data tree and the
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metadata tree combined is BN(1+Θ( 1
f(n) +h(n)))(1+Θ( log n

B )) = n(1+Θ( log n
B +h(n))). The

position labels take NL = n L
B ≤ n

lg n
B bits. By Proposition 2, the Path ORAM containing

the position table takes Θ(n log n
B ) bits. Thus, the server space is n(1 + Θ( log n

B + h(n))) bits.

Bandwidth blowup. The bandwidth cost of each of ReadPath and EvictPath is propor-
tional to the sum of the numbers of the blocks in a root–leaf path in the data tree and the
metadata tree. The number for the data tree is ZL+M = O(logn) +O(f(n)) = O(f(n)).
The number for the metadata tree is around 2 lg N+1

B = o(1) factor of that for the data tree.
The bandwidth cost for accessing the position table is O(log2 n) by Proposition 2. Therefore,
the bandwidth blowup of Access is O(log2 n).

User space. The temporary user space usage is proportional to the sum of the numbers of
the blocks in a root–leaf path in the data tree and the metadata tree. As is shown in the
bandwidth analysis, the latter is bounded by O(f(n)). We prove the bound on the permanent
user space usage, i.e., the stash size in the full version of the paper.

4 Succincter ORAM Construction

In this section, we prove the following theorem.

I Theorem 5. Let n be the database size and B be the block size, both in bits. If B ≥ 3 lgn
and B = O(nc) for some 0 < c < 1, then for any f : N → R such that f(n) = ω(log logn)
and f(n) = O(log2 n), there exists an information theoretically secure ORAM construction
for which i) the server’s space usage is bounded by n(1 + Θ( log n

B + log log n
f(n) )) bits; ii) the worst

case bandwidth blowup is O(log2 n); iii) the user’s temporary space usage is O(logn+ f(n))
blocks; and iv) for any R = ω(logn), the probability that the user’s permanent space usage
becomes larger than R blocks during poly(n) logical accesses is n−ω(1).

I Corollary 6. If B = ω(logn), then, the ORAM construction of Theorem 5 is succinct.

4.1 Description
As in Section 3, we first explain a simplified version with a large user space usage, and
construct the full version that achieves the claimed bounds from the simplified version.

Let L := dlg(N/f(n))e and M :=
⌈
N/2L + (1 + ε) lgL

⌉
where N := n/B and ε > 0 is a

constant. We assume, for brevity, that lg(N/f(n)) and N/2L + (1 + ε) lgL are integers.

Block usage. The block usage is the same as the ORAM construction described in Section 3
except that each real block is given two position labels instead of one. We call them the
primary position label and the secondary position label. Only the primary position labels are
stored in the metadata blocks (as in Section 3).

Data layout. The data layout is basically the same as in Section 3. We only explain the
differences from Section 3. First, the position table stores both the primary position labels
and the secondary position labels. Second, the user maintains an additional table called
counter table. It is a size 2L array whose i-th entry is the number of real blocks with primary
position label i. Last, since the value of each of L and M is different from that in Section 3,
the tree/bucket size is changed accordingly.
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Access procedure. The same invariant conditions as Section 3 are maintained except that
the “position label” in the second condition is replaced by “primary position label”.

We provide the pseudocode in the full paper. To read the high-level description below, it
suffices to know that P (`) is the path from the root to the `-th leaf in the data tree.

Let ba be the accessed block. We first retrieve the two position labels `1 and `2 of ba

from the position table and update each of the two position table values to a number chosen
independently and uniformly at random from [L], which will become the new position labels
of ba. One of `1 and `2 is the primary position label and the other is the secondary position
label but we do not know (and do not need to know) which is which. By the invariant
conditions, ba is either in the stash or in P (`1) or P (`2). We scan P (`1) and P (`2) and
retrieve ba from P (`i) if the primary position label is `i and ba is in P (`i). If ba is not found
in the paths, it must be in the stash and we retrieve it from the stash. At this point, we
know the primary position label ` of ba (since it is written in the pos entry of the block)
and we decrement the `-th entry of the counter table, determine the new primary position
label `′i and increment the `′i-th entry of the counter table. After, that, we update the block
contents if it is a write request, call EvictPath and returns the block contents (before update)
in the same way as the algorithm in Section 3.

Outsourcing the position/counter table. In the full version of the construction, the position
table and the counter table are stored on the server using the Path ORAM. Every read from
(resp. write to) each of these tables is done using the Path ORAM access procedure.

4.2 Analysis

Security. The security proof of the current ORAM construction is almost the same as
in Section 3. The only difference in the situation is that now, the sequence of accessed
addresses a′2 depends on two position labels instead of one. Anyway, these position labels
are distributed independently and uniformly at random and thus, are independent of a.

Server space. The bounds logN = Θ(logn), L = Θ(logn) and M = Θ(f(n)) still hold.
The number of blocks in the leaf buckets is M2L = N(1 + (1+ε) lg L

f(n) ) = N(1 + Θ( log log n
f(n) )).

The number of blocks in the internal buckets is Z(2L − 1) < ZN/f(n), which is O( log log n
f(n) ).

Thus, the data tree size is bounded by N(1+Θ( log log n
f(n) )) blocks. As in Section 3, the metadata

size of each data block is Θ( log n
B ) blocks. Thus, the number of blocks in the data tree and

the metadata tree combined is at most 1 + Θ( log n
B ) times larger than N(1 + Θ( log log n

f(n) )),
which is n(1 + Θ( log n

B + log log n
f(n) )) bits.

Position labels take 2NL = 2nL/B ≤ 2n log n
B bits while counter table values take

2LdlgNe = NdlgNe/f(n) ≤ N = n/B bits. By Proposition 2, the Path ORAM containing
the position table (resp. counter table) takes Θ(n log n

B ) (resp. Θ(n/B)) bits.
Therefore, the server space usage is bounded by n(1 + Θ( log n

B + log log n
f(n) )) bits.

Bandwidth blowup. By the same argument as in the bandwidth analysis, the bandwidth
cost of each of ReadPath and EvictPath is proportional to ZL+M = O(logn+ f(n))
(in blocks). By Proposition 2, the bandwidth cost of access to each of the position table and
the counter table is O(log2 n). Thus, the bandwidth blowup is O(log2 n).
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Table 2 Performance comparison with concrete parameters. The symbol † means the integration
of Ring ORAM techniques. N = 220, B = 210. A and S are parameters for the Ring ORAM. (A
specifies the infrequency of EvictPath and S is the space in each bucket reserved for dummy blocks.)
The cost for recursive calls and metadata handling are relatively minor and not included. The
stash overflow probability is < 2−80 for rigorous settings. Aggressive settings do not have security
guarantees (stash size bounds) and, in particular, are not suitable for fair comparison.

Parameters
Z, L, M, A, S

Extra server
space Bandwidth Stash size

R
ig
or
ou

s [38] 5,20,–,–,– 9N 210 114
[32] 5,19,–,4,6 10N 109 63
Th. 3 3,15,112,–,– 2.59N 471 32
Th. 3† 5,15,112,4,7 2.91N 253 64

A
gg
re
ss
iv
e

[38] 4,19,–,–,– 3N 160
[32] 5,19,–,4,6 7N 145
Th. 3 4,15,36,–,– .25N 288
Th. 3† 5,15,36,4,6 .46875N 163
Th. 5 3,16,14,–,– .0625N 248
Th. 5† 5,15,28,4,7 .25N 194

User space. By the same argument as in the user space analysis in Section 3, the temporary
user space is proportional to ZL + M = O(logn + f(n)). We prove the bound on the
permanent user space usage, i.e., the

5 Practicality of the Proposed Methods

Table 2 shows the performance of the proposed methods, the Path ORAM [38] and the
Ring ORAM [32] with concrete parameters. The Ring ORAM has asymptotically the same
performance as the Path ORAM but it achieves constant factor smaller bandwidth at the
cost of larger server space. It is easy to integrate the main technique of the Ring ORAM
to the internal nodes of the proposed methods and we also show the performance of these
variants. We show the integration itself in the full paper.

The table contains “rigorous” and “aggressive” parameter settings. Rigorous parameters
were derived from theoretical analysis with additional care for constant factors. The aggressive
parameters for existing methods were taken from the experiments in the original papers.
We chose the aggressive parameters for the proposed methods by simulation: we simulated
database scan (accessing addresses 1, 2, . . . , N) for 100 times and found some parameters for
which the stash size after every scan was zero. (Such usage of scan is standard in literature
since scan maximizes the stash size.) We emphasize that constructions with aggressive
parameters lack rigorous security and they are not suitable for fair comparison.

Unfortunately, we could not derive rigorous bounds for the second construction (The-
orem 5) for reasonable size of N since the balls-into-bins analysis of Berenbrink et al. [3],
used in the stash size analysis, requires a very large number of bins. However, the simulation
results indicate that the second construction works for reasonable size of N .

6 Conclusion

ORAM is a multifaceted problem and recently, researchers have been recognizing the impor-
tance of rethinking the relevancy of multiple aspects of ORAM using modern standards [37, 4].
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In this paper, we provided another point of view and insight for this exploration by introduc-
ing the notion of succinctness to ORAM and proposing succinct ORAM constructions. We
think our methods are particularly suitable for secure processor setting. It is interesting to
consider succinct constructions optimized for other settings.
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We study the w eak MSO logic extended by the unbounding quantifier (WMSO+U), expressing
the fact that there exist arbitrarily large finite sets satisfying a given property. We prove that it
is decidable whether the tree generated by a given higher-order recursion scheme satisfies a given
sentence of WMSO+U.
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1 Introduction

Higher-order recursion schemes (schemes in short) are used to faithfully represent the control
flow of programs in languages with higher-order functions [16, 22, 28, 24]. This formalism
is equivalent via direct translations to simply-typed λY -calculus [36]. Collapsible push-
down systems [20] and ordered tree-pushdown systems [13] are other equivalent formalisms.
Schemes cover some other models such as indexed grammars [1] and ordered multi-pushdown
automata [8].

In our setting, a scheme is a finite description of an infinite tree. A useful property of
schemes is that the MSO-model-checking problem for schemes is decidable. This means that
given a scheme G and an MSO sentence ϕ, it can be algorithmically decided whether the tree
generated by G satisfies ϕ. This result has several different proofs [28, 20, 25, 34], and also
some extensions like global model checking [11], logical reflection [9], effective selection [12],
existence of λ-calculus model [35]. When the property of trees is given as an automaton, not
as a formula, the model-checking problem can be solved efficiently, in the sense that there
exist implementations working in a reasonable running time [24, 23, 10, 32, 27] (most tools
cover only a fragment of MSO, though).

Recently, an interest arisen in model-checking trees generated by schemes against prop-
erties not expressible in the MSO logic. These are properties expressing boundedness and
unboundedness of some quantities. More precisely, it was shown that the diagonal problem
for schemes is decidable [19, 14, 31]. This problem asks, given a scheme G and a set of letters
A, whether for every n ∈ N there exists a path in the tree generated by G such that every
letter from A appears on this path at least n times. This result turns out to be interesting,
because it entails other decidability results for recursion schemes, concerning in particular
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computability of the downward closure of recognized languages [38], and the problem of
separability by piecewise testable languages [15].

In this paper we show a result of a more general style. Instead of considering a particular
property, like in the diagonal problem, we consider a logic capable to express properties
talking about boundedness. More precisely, we choose the WMSO+U logic. This logic
extends WMSO (a fragment of MSO in which one can quantify only over finite sets) by the
unbounding quantifier, U [3]. A formula using this quantifier, UX.ϕ, says that ϕ holds for
arbitrarily large finite sets X. The WMSO+U logic was widely considered in the context of
infinite words [4] and infinite trees [18, 7, 5].

The goal of this paper is to prove the following theorem.

I Theorem 1. It is decidable whether the tree generated by a given scheme satisfies a given
WMSO+U sentence.

In our solution, we depend on several earlier results. First, we translate WMSO+U
formulae to an equivalent automata model using the notion of logical types (aka. composition
method) following a long series of previous work (some selection: [17, 37, 26, 2, 18, 30]).
Second, we use the logical-reflection property of schemes [9]. It says that given a scheme
G and an MSO sentence ϕ one can construct a scheme Gϕ generating the same tree as G,
where in every node it is additionally written whether ϕ is satisfied in the subtree starting in
this node. Third, from our previous work on the diagonal problem [29, 31], we deduce an
analogous property for the diagonal problem, which we call diagonal reflection (Theorem 6):
given a scheme G we can construct a scheme Gdiag generating the same tree as G, where every
node is additionally annotated by the solution of the diagonal problem in the subtree starting
in this node. We believe that Theorem 6 is a contribution of independent interest. Finally,
we use the fact that schemes can be composed with finite tree transducers transforming the
generated trees; this follows directly from the equivalence between schemes and collapsible
pushdown systems [20].

We remark that the model-checking problem for the full MSO logic (equipped with
quantification over infinite sets) combined with the U quantifier is undecidable already over
the infinite word without labels [6], so even more over all fancy trees that can be generated by
higher-order recursion schemes. For this reason it is necessary to restrict the quantification
to finite sets.

Our paper is structured as follows. In Section 2 we introduce all necessary definitions. In
Section 3 we show how to translate WMSO+U sentences to automata. In Section 4 we give
a theorem concerning diagonal reflection. Next, in Section 5, we finish the proof of the main
theorem. We conclude in Section 6 by listing some possible extensions of our results.

2 Preliminaries

The powerset of a set X is denoted P(X). For a relation r, we write r∗ for the reflexive
transitive closure of r. When f is a function, by f [x 7→ y] we mean the function that maps x
to y and every other z ∈ dom(f) to f(z).

Infinitary λ-calculus. We consider infinitary, simply-typed λ-calculus. In particular, each
λ-term has an associated sort (aka. simple type). The set of sorts is constructed from a
unique ground sort o using a binary operation →; namely o is a sort, and if α and β are
sorts, so is α→β. By convention, → associates to the right, that is, α→β→γ is understood
as α→(β→γ).
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While defining λ-terms we assume an infinite set of letters Σ (we use unranked letters; this
subsumes the setting of ranked letters), and a set of variables V = {xα, yβ , zγ} containing
infinitely many variables of every sort (sort of a variable is written in superscript). Infinitary
λ-terms (or just λ-terms) are defined by coinduction, according to the following rules:

node constructor—if a ∈ Σ, and Ko
1 , . . . ,K

o
r are λ-terms, then (a〈Ko

1 , . . . ,K
o
r 〉)o is a

λ-term,
variable—every variable xα ∈ V is a λ-term,
application—if Kα→β and Lα are λ-terms, then (Kα→β Lα)β is a λ-term, and
λ-binder—if Kβ is a λ-term and xα is a variable, then (λxα.Kβ)α→β is a λ-term.

We naturally identify λ-terms differing only in names of bound variables. We often omit the
sort annotations of λ-terms, but we keep in mind that every λ-term (and every variable) has
a fixed sort. Free variables and subterms of a λ-term, as well as β-reductions, are defined
as usually. A λ-term K is closed if it has no free variables. We restrict ourselves to those
λ-terms for which the set of sorts of all subterms is finite.

Trees; Böhm Trees. A tree is defined as a λ-term that is built using only node constructors,
that is, not using variables, applications, nor λ-binders. For a tree T = a〈T1, . . . , Tr〉, its set
of nodes is defined as the smallest set such that

ε is a node of T , labeled by a, and
if v is a node of Ti for some i ∈ {1, . . . , r}, labeled by b, then iv is a node of T , also
labeled by b.

A node v is the i-th child of u if v = ui. We say that two trees T, T ′ are of the same shape if
they have the same nodes. By T �v we denote the subtree of T starting in the node v, defined
as one expects. For a (usually finite) subset Σ0 of Σ, and for rmax ∈ N, a (Σ0, rmax)-tree
is a tree in which all node labels belong to Σ0, and in which every node has at most rmax
children.

We consider Böhm trees only for closed λ-terms of sort o. For such a λ-term K, its Böhm
tree is constructed by coinduction, as follows: if there is a sequence of β-reductions fromK to a
λ-term of the form a〈K1, . . . ,Kr〉, and T1, . . . , Tr are Böhm trees of K1, . . . ,Kr, respectively,
then a〈T1, . . . , Tr〉 is a Böhm tree of K; if there is no such sequence of β-reductions from K,
then ω〈〉 is a Böhm tree of K (where ω ∈ Σ is a fixed letter). It is folklore that every closed
λ-term of sort o has exactly one Böhm tree (the order in which β-reductions are performed
does not matter); this tree is denoted by BT (K).

A closed λ-term K of sort o is called fully convergent if every node of BT (K) is explicitly
created by a node constructor from K (e.g., ω〈〉 is fully convergent, while K = (λxo.x)K
is not). More formally: we consider the λ-term K−ω obtained from K by replacing ω with
some other letter ω′, and we say that K is fully convergent if in BT(K−ω) there are no
ω-labeled nodes.

Higher-Order Recursion Schemes. Our definition of schemes is less restrictive than usually,
as we see them only as finite representations of infinite λ-terms. Thus a higher-order recursion
scheme (or just a scheme) is a triple G = (N ,R, No

0 ), where N ⊆ V is a finite set of
nonterminals, R is a function that maps every nonterminal N ∈ N to a finite λ-term whose
all free variables are contained in N and whose sort equals the sort of N , and No

0 ∈ N is a
starting nonterminal, being of sort o. We assume that elements of N are not used as bound
variables, and that R(N) is not a nonterminal for any N ∈ N .

For a scheme G = (N ,R, N0), and for a λ-term K whose free variables are contained in
N , we define the infinitary λ-term generated by G from K, denoted ΛG(K), by coinduction:

STACS 2018
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to obtain ΛG(K) we replace in K every nonterminal N ∈ N with ΛG(R(N)). Observe that
ΛG(K) is a closed λ-term of the same sort as K. The infinitary λ-term generated by G,
denoted Λ(G), equals ΛG(N0).

By the tree generated by G we mean BT(Λ(G)). We write ΣG for the finite subset of
Σ containing ω and letters used in node constructors appearing in G, and rmax(G) for the
maximal arity of node constructors appearing in G. Clearly BT (Λ(G)) is a (ΣG , rmax(G))-tree.

In our constructions it is convenient to consider only schemes generating fully-convergent
λ-terms, which is possible due to the following standard result.

I Fact 2 ([33, page 14]). For every scheme G we can construct a scheme G′ generating the
same tree as G, and such that Λ(G′) is fully convergent.

I Example. Consider the scheme G1 = ({Mo,No→o},R,M), where

R(N) = λxo.a〈x,N (b〈x〉)〉 , and R(M) = N (c〈〉) .

We obtain Λ(G1) = K (c〈〉), where K is the unique λ-term such that K = λxo.a〈x,K (b〈x〉)〉.
The tree generated by G1 equals a〈T0, a〈T1, a〈T2, . . .〉〉〉, where T0 = c〈〉 and Ti = b〈Ti−1〉 for
all i ≥ 1.

WMSO+U. For technical convenience, we use a variant of WMSO+U in which there are no
first-order variables. It is easy to translate a formula from any standard syntax of WMSO+U
to ours (at least when the maximal arity of considered trees is fixed). In the syntax of
WMSO+U we have the following constructions:

ϕ ::= a(X) | X 'i Y | X ⊆ Y | ϕ1 ∧ ϕ2 | ¬ϕ′ | ∃finX.ϕ
′ | UX.ϕ′ where a ∈ Σ, i ∈ N+.

We evaluate formulae of WMSO+U in Σ-labeled trees. Set variables are interpreted as finite
sets of nodes, and the semantics of formulae is defined as follows:

a(X) holds when every node in X is labeled by a,
X 'i Y holds when both X and Y are singletons, and the unique node in Y is the i-th
child of the unique node in X,
X ⊆ Y , ϕ1 ∧ ϕ2, and ¬ϕ′ are defined as expected,
∃finX.ϕ

′ holds when ϕ′ holds for some finite set of nodes X, and
UX.ϕ′ holds when for every n ∈ N, ϕ′ holds for some finite set of nodes X of cardinality
at least n.

3 Nested U-Prefix Automata

In this section we give a definition of nested U-prefix automata, a formalism equivalent to
the WMSO+U logic. A U-prefix automaton is a pair A = (Q,Qimp,∆), where Q is a finite
set of states, Qimp ⊆ Q is a set of important states, and ∆ ⊆ Q× Σ× (Q ∪ {>})∗ is a finite
transition relation (we assume > 6∈ Q). A run of A on a tree T is a mapping ρ from the set
of nodes of T to Q ∪ {>} such that

there are only finitely many nodes v such that ρ(v) ∈ Q, and
for every node v of T , with label a and r children, it holds that either ρ(v) = > = ρ(v1) =
· · · = ρ(vr) or (ρ(v), a, ρ(v1), . . . , ρ(vr)) ∈ ∆.

We use U-prefix automata as transducers, relabeling nodes of T : we define A(T ) to be
the tree of the same shape as T , and such that its every node v is labeled by a function
fv : Q→ {0, 1, 2}, which assigns to every state q ∈ Q:
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2, if for every n ∈ N there is a run ρn of A on T �v that assigns q to the root of T �v, and
such that for at least n nodes w it holds that ρn(w) ∈ Qimp;
1, if the above does not hold, but there is a run of A on T �v that assigns q to the root of
T �v;
0, if none of the above holds.

By the output alphabet of A we mean the set of functions Σout(A) = {0, 1, 2}Q; we assume
that {0, 1, 2}Q ⊆ Σ.

A nested U-prefix automaton is a sequence A = A1 ◦ · · · ◦ Ak of U-prefix automata, where
k ≥ 1. We define A(T ) to be Ak(. . . (A1(T )) . . . ). The output alphabet of A, denoted
Σout(A), equals Σout(Ak). The key property is that these automata can check properties
expressed in WMSO+U (actually, they are equivalent to WMSO+U, but we need only the
one direction here).

I Lemma 3. Let Σ0 ⊆ Σ be a finite fragment of the alphabet, and let rmax ∈ N. Then for
every WMSO+U sentence ϕ we can construct a nested U-prefix automaton A, and a subset
ΣF ⊆ Σout(A) such that for every (Σ0, rmax)-tree T , it holds that T satisfies ϕ if and only if
the root of A(T ) is labeled by a letter in ΣF.

We remark that Bojańczyk and Toruńczyk [7] introduce another model of automata
equivalent to WMSO+U: nested limsup automata. A common property of these two models
is that both of them are nested, but the components are of different form.

Recall that our aim is to evaluate ϕ in a tree T generated by a particular recursion scheme
G, so the restriction to (Σ0, rmax)-trees is not harmful: as (Σ0, rmax) we are going to take
(ΣG , rmax(G)).

We now come to the proof of Lemma 3. We notice that due to the nested structure, our
automata are quite close to the logic. Nondeterminism on particular levels of the automaton
may realize the choices done by particular quantifiers of the formula. Moreover, in effect of
applying an automaton we check whether something is unbounded, which corresponds to the
U quantifiers. As states of the automaton we will take phenotypes (aka. logical types), which
are defined next.

Fix some finite set F of variables, such that all variables appearing in WMSO+U formulae
under consideration come from this set. Let ϕ be a formula of WMSO+U, let T be a tree,
and let ν be a valuation assigning finite sets of nodes of T to variables from F . We define the
ϕ-phenotype of T under valuation ν, denoted [T ]νϕ, by induction on the size of ϕ as follows:

if ϕ is of the form a(X) (for some symbol a ∈ Σ) or X ⊆ Y then [T ]νϕ is the logical value
of ϕ in T, ν, that is, tt if T, ν |= ϕ and ff otherwise,
if ϕ is of the form X 'i Y , then [T ]νϕ equals:

tt if T, ν |= ϕ,
empty if ν(X) = ν(Y ) = ∅,
root if ν(X) = ∅ and ν(Y ) = {ε}, and
ff otherwise,

if ϕ = (ψ1 ∧ ψ2), then [T ]νϕ = ([T ]νψ1
, [T ]νψ2

),
if ϕ = (¬ψ), then [T ]νϕ = [T ]νψ, and
if ϕ = ∃finX.ψ or ϕ = UX.ψ, then

[T ]νϕ = ({σ | ∃XT . [T ]ν[X 7→XT ]
ψ = σ}, {σ | ∀n. ∃XT . [T ]ν[X 7→XT ]

ψ = σ ∧ |XT | ≥ n}) ,

where XT ranges over finite sets of nodes of T and n ranges over N.
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For each ϕ, let Phtϕ denote the set of all potential ϕ-phenotypes. Namely, Phtϕ = {tt,ff}
in the first case, Phtϕ = {tt, empty, root,ff} in the second case, Phtϕ = Phtψ1 ×Phtψ2 in the
third case, Phtϕ = Phtψ in the fourth case, and Phtϕ = (P(Phtψ))2 in the last case.

We immediately see two facts. First, Phtϕ is finite for every ϕ. Second, the fact whether ϕ
holds in T, ν is determined by [T ]νϕ. This means that there is a function tvϕ : Phtϕ → {tt,ff}
such that tvϕ([T ]νϕ) = tt if and only if T, ν |= ϕ.

Next, we observe that phenotypes behave in a compositional way, as formalized below.
Here for a valuation ν and a node v, by ν�v we mean the valuation that restricts ν to the
subtree starting at v, that is, maps every variable X ∈ F to {w | vw ∈ ν(X)}.

I Lemma 4 (cf. [18, 30]). For every letter a ∈ Σ, every r ∈ N, and every formula ϕ, one
can compute a function Compa,r,ϕ : P(F)× (Phtϕ)r → Phtϕ such that for every tree T whose
root has label a and r children, and for every valuation ν,

[T ]νϕ = Compa,r,ϕ({X ∈ F | ε ∈ ν(X)}, [T �1]ν�1
ϕ , . . . , [T �r]ν�rϕ ) .

Proof. We proceed by induction on the size of ϕ.
When ϕ is of the form b(X) orX ⊆ Y , then we see that ϕ holds in T, ν if and only if it holds

in every subtree T �i, ν�i and in the root of T . Thus for ϕ = b(X) as Compa,r,ϕ(R, τ1, . . . , τr)
we take tt when τi = tt for all i ∈ {1, . . . , r} and either a = b or X 6∈ R. For ϕ = (X ⊆ Y )
the last part of the condition is replaced by “if X ∈ R then Y ∈ R”.

Next, suppose that ϕ = (X 'k Y ). Then as Compa,r,ϕ(R, τ1, . . . , τr) we take
tt if τj = tt for some j ∈ {1, . . . , r}, and τi = empty for all i ∈ {1, . . . , r}\{j}, and X 6∈ R,
and Y 6∈ R,
tt also if τk = root, and τi = empty for all i ∈ {1, . . . , r} \ {k}, and X ∈ R, and Y 6∈ R,
empty if τi = empty for all i ∈ {1, . . . , r}, and X 6∈ R, and Y 6∈ R,
root if τi = empty for all i ∈ {1, . . . , r}, and X 6∈ R, and Y ∈ R, and
ff otherwise.

By comparing this definition with the definition of the phenotype we immediately see that
the thesis is satisfied.

When ϕ = (¬ψ), we simply take Compa,r,ϕ = Compa,r,ψ, and when ϕ = (ψ1 ∧ ψ2), as
Compa,r,ϕ(R, (τ1

1 , τ
2
1 ), . . . , (τ1

r , τ
2
r )) we take the pair of Compa,r,ψi(R, τ

i
1, . . . , τ

i
r) for i ∈ {1, 2}.

Finally, suppose that ϕ = ∃finX.ψ or ϕ = UX.ψ. Let A be the set of tuples (σ1, . . . , σr) ∈
τ1×· · ·×τr, and let B be the set of tuples (σ1, . . . , σr) such that σj ∈ ρj for some j ∈ {1, . . . , r}
and σi ∈ τi for all i ∈ {1, . . . , r} \ {j}. As Compa,r,ϕ(R, (τ1, ρ1), . . . , (τr, ρr)) we take

({Compa,r,ψ(R ∪ {X}, σ1, . . . , σr),Compa,r,ψ(R \ {X}, σ1, . . . , σr) | (σ1, . . . , σr) ∈ A},
{Compa,r,ψ(R ∪ {X}, σ1, . . . , σr),Compa,r,ψ(R \ {X}, σ1, . . . , σr) | (σ1, . . . , σr) ∈ B}) .

The two possibilities, R ∪ {X} and R \ {X}, correspond to the fact that when quantifying
over X, the root of T may be either taken to X or not. The second coordinate is computed
correctly due to the pigeonhole principle: if for every n we have a set XT

n of cardinality at
least n (satisfying some property), then we can choose an infinite subsequence of these sets
such that either the root belongs to all of them or to none of them, and one can choose some
j ∈ {1, . . . , r} such that the sets contain unboundedly many descendants of j. J

We now concentrate on phenotypes under the valuation ν∅ that maps every variable to
the empty set.

I Lemma 5. Let Σ0 ⊆ Σ be a finite fragment of the alphabet, and let rmax ∈ N. Then for
every WMSO+U formula ϕ we can construct a nested U-prefix automaton A, and a function
f : Σout(A) → Phtϕ such that for every (Σ0, rmax)-tree T the root of A(T ) is labeled by a
letter η such that f(η) = [T ]ν∅ϕ .
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Proof. Induction on the size of ϕ. Since all variables are mapped to the empty set, if ϕ is
of the form a(X) or X ⊆ Y , then the ϕ-phenotype of every tree is tt. Thus every A works
fine, only f has to map whole its output alphabet to tt. Similarly, if ϕ = (X 'i Y ), the
ϕ-phenotype is always empty. For ϕ = (¬ψ) the situation is also trivial: we can directly use
the induction assumption since [T ]ν∅ϕ = [T ]ν∅ψ .

Suppose that ϕ = (ψ1 ∧ ψ2). Then from the induction assumption we have automata B
and C (together with functions g and h) computing ψ1-phenotypes and ψ2-phenotypes. It is
a routine to alter B so that from the label of every node v in the output tree B(T ) one can
read the original label of v from T (this amounts to adding Σ0 to the state set of every layer,
together with appropriate transitions). We also alter C so that it reads the output alphabet
of B instead Σ0; it bases its operation on the original labels from T that can be recovered
from the letters, and it copies the information about ψ1-phenotypes, so that it can be read
at the end. After these modifications, we take A = B ◦ C. Then from the label of the root of
A(T ) one can read both [T ]ν∅ψ1

(copied from the output of B) and [T ]ν∅ψ2
(calculated by C), so

[T ]ν∅ϕ can be determined.
Finally, suppose that ϕ = ∃finX.ψ or ϕ = UX.ψ. By the induction assumption we have

an automaton B and a function g such that for every node v of T , the root of B(T �v) is
labeled by a letter ηv such that g(ηv) = [T �v]ν∅ψ . As before, we can also assume that there is
a function h such that additionally h(ηv) is the original label of v in T . Recall that B(T ) has
the same shape as T , and actually (B(T ))�v = B(T �v) for every node v. We construct a new
layer A′, which calculates ϕ-phenotypes basing on ψ-phenotypes, and we take A = B ◦ A′.
As the state set of A′ we take Q = {0, 1} × Phtψ; states from {1} × Phtψ are considered
as important. Transitions are determined by the Comp predicate from Lemma 4. More
precisely, for every r ≤ rmax, every η ∈ Σout(B), and all ((i1, σ1), . . . , (ir, σr)) ∈ Qr we have
transitions

((0,Comph(η),r,ψ(∅, σ1, . . . , σr)), η, (i1, σ1), . . . , (ir, σr)) , and

((1,Comph(η),r,ψ({X}, σ1, . . . , σr)), η, (i1, σ1), . . . , (ir, σr)) .

Moreover, we have transitions that read the ψ-phenotype from the label:

((0, g(η)), η,>, . . . ,>︸ ︷︷ ︸
r

) for r ≤ rmax.

We notice that there is a direct correspondence between runs of A′ and choices of a set of
nodes XT to which the variable X is mapped. The first coordinate of the state is set to 1
in nodes chosen to the set XT . The second coordinate contains the ψ-phenotype under the
valuation mapping X to XT and every other variable to the empty set. In some nodes below
the chosen set XT we use the transitions of the second kind, reading the ψ-phenotype from
the label; it does not matter in which nodes this is done, as everywhere a correct ψ-phenotype
is written. The fact that we quantify only over finite sets XT corresponds to the fact that the
run of A′ can assign non-> states only to a finite prefix of the tree. Moreover, the cardinality
of XT is reflected by the number of important states assigned by a run. It follows that for
every σ ∈ Phtψ,

there exists a finite set XT of nodes of T such that [T ]ν∅[X 7→X
T ]

ψ = σ if and only if for
some i ∈ {0, 1} there is a run of A′ on B(T ) that assigns (i, σ) to the root, and
for every n ∈ N there exists a finite set XT

n of nodes of T such that [T ]ν∅[X 7→X
T
n ]

ψ = σ and
|XT

n | ≥ n if and only if for some i ∈ {0, 1} and for every n ∈ N there is a run ρn of A′ on
B(T ) that assigns (i, σ) to the root, and such that ρn assigns an important state to at
least n nodes.

Thus looking at the root’s label in A(T ) we can determine [T ]ν∅ϕ . J
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Now the proof of Lemma 3 follows easily. Indeed, when ϕ is a sentence (has no free
variables), [T ]ν∅ϕ determines whether ϕ holds in T . Thus it is enough to take the automaton A
constructed in Lemma 5, and replace the function f by the set ΣF = {η ∈ Σout(A) | tvϕ(f(η))}.

4 Diagonal Reflection

The goal of this section is to justify the property of diagonal reflection (Theorem 6).
By #a(U) we denote the number of a-labeled nodes in a (finite) tree U . For a set of

(finite) trees L and a set of symbols A, we define a predicate DiagA(L), which holds if for
every n ∈ N there is some Un ∈ L such that for all a ∈ A it holds that #a(Un) ≥ n.

Originally, in the diagonal problem we consider nondeterministic higher-order recursion
schemes, which instead of generating a single infinite tree, recognize a set of finite trees. We
use here an equivalent formulation, in which the set of finite trees is encoded in a single
infinite tree. To this end, we use a special letter nd ∈ Σ, denoting a nondeterministic
choice. We write T →nd U if U is obtained from T by choosing some nd-labeled node u not
having any nd-labeled ancestors, and some its child v, and attaching T �v in place of T �u. In
other words, →nd is the smallest relation such that nd〈T1, . . . , Tr〉 →nd Tj for j ∈ {1, . . . , r},
and if Tj →nd T

′
j for some j ∈ {1, . . . , r}, and Ti = T ′i for all i ∈ {1, . . . , r} \ {j}, then

a〈T1, . . . , Tr〉 →nd a〈T ′1, . . . , T ′r〉. For a tree T , L(T ) is the set of all finite trees U such that
#nd(U) = 0 and T →∗nd U .

I Theorem 6 (diagonal reflection). For every scheme G generating a tree T one can construct
a scheme Gdiag that generates a tree of the same shape as T , and such that its every node v is
labeled by a pair (a,D), where a is the label of v in T , and D = {A ⊆ ΣG | DiagA(L(T �v))}.

While proving this theorem, we depend on our previous work on the diagonal problem [31].
We have developed there a type system, in which for a closed λ-term K we derive type
judgments of the form `m,A K : τ̂ . c, where

m is a natural number,
A ⊆ Σ is the set of types for which we want to solve the diagonal problem (originally it
was not written in the type judgment, but anyway the type system depends on this set),
τ̂ comes from a finite set T T αm,A, depending on m, on A, and on the sort α of K,
c is a function from A to N.

We refer to type judgments only for closed λ-term, but we remark that they were defined
also for λ-terms with free variables (and then one writes a type environment to the left of `).
While working with some scheme G, as K we only take λ-terms in which all variables have
the same sort as some variables appearing in Λ(G). Under this assumption, it is enough to
consider as m only one fixed value, denoted mG (equal to the so-called order of G).

Having in mind some scheme G, we define the value of a closed λ-term K, denoted JKK,
as the pair consisting of:

the set of pairs (A, τ̂) such that A ⊆ ΣG and there exists c : A→ N for which `mG ,A K : τ̂ .c
can be derived, and
the set of pairs (A, τ̂) such that A ⊆ ΣG and for every n ∈ N there exists cn : A → N
satisfying cn(a) ≥ n for all a ∈ A, and for which `mG ,A K : τ̂ . cn can be derived.

When K is of sort α, JKK belongs to the finite set Sα = (P(
⋃
A⊆ΣG{A} × T T

α
mG ,A))2.

The considered type system is compositional, in the sense that knowing what can be
derived for closed λ-terms Kα→β and Lα, we can determine what can be derived for K L.
In other words, we can define a composition operation “·” on values, going from Sα→β × Sα
to Sβ and such that JK LK = JKK · JLK for every closed λ-term K L.
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We now extend the definition of the value to λ-terms K that are not closed. To this
end, we need a valuation ν mapping some variables xα to elements of Sα, which is defined
at least for all free variables of K. Then the value of K (with respect to ν), denoted JKKν ,
is defined as Jλx1. · · · .λxk.KK · ν(x1) · . . . · ν(xk), where x1, . . . , xk are free variables of K,
listed according to some fixed order.

Using an algorithm from [31] we can compute Jλx1. · · · .λxk.KK for every subterm K of
Λ(G), where, as above, x1, . . . , xk are free variables of K (recall that Λ(G) has finitely many
subterms).

Having the above properties in hand, it is easy to deduce the following lemma.

I Lemma 7. For every scheme G = (N ,R, N0) generating a tree T one can construct a
scheme G′ that generates a tree of the same shape as T , and such that its every node v is
labeled by a pair (a, JKK), where K is some λ-term (closed, of sort o) such that BT (K) = T �v.

Proof. This lemma is proven by literally repeating the construction of Salvati and Walu-
kiewicz [33, Section 5]. We recall it here for completeness. Without loss of generality we
assume that Λ(G) is fully convergent (cf. Fact 2).

For every sort α, let [α] = o→ . . .→o→︸ ︷︷ ︸
|Sα|

o. When τ1, . . . , τ|Sα| are all elements of Sα, listed

in some fixed order, we let (τi)λ = λxo
1. · · · .λxo

|Sα|.xi for i ∈ {1, . . . , |Sα|}; these λ-terms are
of sort [α]. Given a λ-term K of sort [α], and K1, . . . ,K|Sα| of sort β1→ . . .→βs→o, we
write caseK {τi  Ki}τi∈Sα for

λyβ1
1 . · · · .λyβss .K (K1 y1 . . . ys) . . . (K|Sα| y1 . . . ys) .

We notice that for K = (τj)λ this λ-term β-reduces to λyβ1
1 . · · · .λyβss .Kj y1 . . . ys, which in

turn is η-equivalent to Kj .
We transform every finite λ-term K of sort α to a λ-term LKMν of sort α•, where sorts

α• are defined by induction: (α→β)• = α•→[α]→β• and o• = o. The translation is defined
as follows:

La〈K1, . . . ,Kr〉Mν = (a, JΛG(a〈K1, . . . ,Kr〉)Kν)〈LK1Mν , . . . , LKrMν〉 ,

LxαMν = xα
•
,

LK LMν = LKMν LLMν (JΛG(L)Kν)λ ,

Lλxα.KMν = λxα
•
.λy[α].case y {τ  LKMν[xα 7→τ ]}τ∈Sα .

In the above translation nonterminals are treated as any other variables.
To the resulting scheme G′ we take a nonterminal Nα• for every nonterminal Nα of G,

and we define R′(Nα•) = LR(Nα)M∅, where ∅ is the valuation with empty domain. It is not
difficult to see that such a scheme G′ has the expected properties. We remark that when in
effect of performing β-reductions one obtains a λ-term K = (a, τ)〈K1, . . . ,Kr〉, then τ = JLK
for some λ-term L β-equivalent to K, but not necessarily for L = K (it is not clear from [31]
whether for β-equivalent λ-terms K and L it holds that JKK = JLK). This is enough for us,
as β-equivalent λ-terms have the same Böhm tree. J

It was shown [31, Theorem 3] that, for a closed λ-term K of sort o, the set D = {A ⊆
ΣG | DiagA(L(BT (K)))} can be computed out of the value JKK. We can thus easily convert
the scheme G′ from Lemma 7 to a scheme Gdiag as needed in Theorem 6. Indeed, it is enough
to replace, in every node constructor appearing in G′, the pair (a, τ) by the pair (a,D) for
the set D computed out of the value τ .
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5 Proof of the Main Theorem

In this section we prove our main theorem—Theorem 1. To this end, we have to recall two
properties of recursion schemes: logical reflection, and closure under composition with finite
tree transducers.

By MSO we mean the logic defined similarly to WMSO+U, but where there are no U
quantifiers, and where existential quantifiers range over infinite sets. The MSO logic over
infinite trees is equivalent to µ-calculus and to nondeterministic parity automata.

I Fact 8 ([9, Theorem 2(ii)]). For every scheme G generating a tree T and every MSO
sentence ϕ one can construct a scheme Gϕ that generates a tree of the same shape as T , and
such that its every node v is labeled by a pair (a, b), where a is the label of v in T , and b is tt
if ϕ is satisfied in T �v and ff otherwise.

A (deterministic, top-down) finite tree transducer is a tuple T = (Q, q0,Σ0, rmax, δ),
where Q is a finite set of states, q0 ∈ Q is an initial state, Σ0 ⊆ Σ is a finite alphabet,
rmax is the maximal arity of considered trees, and δ is a transition function mapping
Q× Σ0 × {0, . . . , rmax} to finite λ-terms. A triple (q, a, r) should be mapped by δ to a term
that uses only node constructors and variables of the form xi,p, where i ∈ {1, . . . , r} and
p ∈ Q (applications and λ-binders are not allowed); at least one node constructor has to be
used (the whole δ(q, a, r) cannot be equal to a variable).

For a (Σ0, rmax)-tree T and a state q ∈ Q, we define Tq(T ) by coinduction, as follows: if
T = a〈T1, . . . , Tr〉, then Tq(T ) is the tree obtained from δ(q, a, r) by substituting Tp(Ti) for
the variable xi,p, for all i ∈ {1, . . . , r} and p ∈ Q. In the root we start from the initial state,
that is, we define T (T ) = Tq0(T ). We have the following fact.

I Fact 9. For every scheme G generating a tree T , and for every finite tree transducer T
one can construct a scheme GT that generates the tree T (T ).

This fact follows from the equivalence between schemes and collapsible pushdown sys-
tems [20], as it is straightforward to compose a collapsible pushdown system with T (where
due to Fact 2 we can assume that Λ(G) is fully convergent, i.e., that every node of T is
explicitly generated by the collapsible pushdown system).

Having Facts 8 and 9, we now come to our main technical lemma.

I Lemma 10. For every scheme G generating a tree T and every U-prefix automaton A one
can construct a scheme GA that generates the tree A(T ).

It is easy to deduce Theorem 1 out of Lemma 10. Indeed, consider a WMSO+U sentence
ϕ and a scheme G0 generating a tree T0. By Lemma 3, ϕ is equivalent to a nested U-prefix
automaton A = A1 ◦ · · · ◦ Ak, together with an accepting set ΣF. By consecutively applying
Lemma 10 for i = 1, . . . , k, we combine Gi−1 with Ai, obtaining a scheme Gi that generates
the tree Ti = Ai(Ti−1). The root of Tk = A(T0) has label in ΣF if and only if ϕ is satisfied
in T0. Surely this label can be read: having Gk, we simply start generating the tree Tk, until
its root is generated (by Fact 2, we can assume that Λ(Gk) is fully convergent).

We now come to the proof of Lemma 10. We are thus given a U-prefix automaton
A = (Q,Qimp,∆), and a scheme G generating a tree T ; our goal is to create a scheme GA that
generates the tree A(T ). As a first step, we create a finite tree transducer T that converts T
into a tree containing all runs of A on all subtrees of T . Let us write Q = {p1, . . . , p|Q|}. As
T we take (Q ∪ {q0,>}, q0,ΣG , rmax(G), δ), where q0 6∈ Q is a fresh state, and δ is defined as
follows. For q ∈ Q, a ∈ ΣG , and r ≤ rmax(G) we take

δ(q, a, r) = nd〈q〈x1,q11 , . . . , xr,q1r 〉, . . . , q〈x1,qk1 , . . . , xr,qkr 〉〉 ,
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where (q, a, q11, . . . , q1r), . . . , (q, a, qk1, . . . , qkr) are all elements of ∆ being of length r + 2
and having q and a on the first two coordinates. Moreover, for a ∈ ΣG and r ≤ rmax(G) we
take

δ(q0, a, r) = a〈x1,q0 , . . . , xr,q0 , δ(p1, a, r), . . . , δ(p|Q|, a, r)〉 and δ(>, a, r) = >〈〉 .

We see that T (T ) contains all nodes of the original tree T . Additionally, below every
node v coming from T we have |Q| new children, such that subtrees starting in these children
describe runs of A on T �v, starting in particular states. More precisely, when v has r children
in T , for every i ∈ {1, . . . , |Q|} there is a bijection between trees U in L(T (T )�v(r+i)) and
runs ρ of A on T �v such that ρ(ε) = pi. The label of every node u in such a tree U contains
the state assigned by ρ to u, where U contains exactly all nodes to which ρ assigns a state
from Q, and all minimal nodes to which ρ assigns > (i.e., such that ρ does not assign > to
their parents). Recall that by definition ρ can assign a state from Q only to a finite prefix of
the tree T �v, which corresponds to the fact that L(T (T )�v(r+i)) contains only finite trees.

Actually, we need to consider a transducer T ′ obtained from T by a slight modification:
we replace the letter q appearing in δ(q, a, r) by 1 if q ∈ Qimp, and by 0 if q 6∈ Qimp. Then, for
a node v of T having r children, and for i ∈ {1, . . . , |Q|}, we have the following equivalence:
Diag{1}(T ′(T )�v(r+i)) holds if and only if for every n ∈ N there is a run ρn of A on T �v that
assigns pi to the root of T �v, and such that for at least n nodes w it holds that ρn(w) ∈ Qimp.

We now apply Fact 9 to G and T ′; we obtain a scheme GT ′ that generates the tree T ′(T ).
Then, we apply Theorem 6 (diagonal reflection) to GT ′ , which gives us a scheme G′. The
tree T ′ generated by G′ has the same shape as T ′(T ), but in the label of every node w there
is additionally written a set D containing these sets A ⊆ Σ for which DiagA(L(T �w)) holds.
Next, using Fact 8 (logical reflection) 2|Q| times, we annotate every node v of T ′, having r′
children, by logical values of the following properties, for i = 1, . . . , |Q|:

whether r′ ≥ |Q| and L(T ′�v(r′−|Q|+i)) is nonempty, and
whether r′ ≥ |Q| and the label (a,D) of node v(r′ − |Q|+ i) in T ′ satisfies {1} ∈ D.

Clearly both these properties can be expressed in MSO. For nodes v coming from T , the
first property holds when there is a run of A on T �v that assigns pi to the root of T �v, and
the second property holds when for every n ∈ N there is a run ρn of A on T �v that assigns
pi to the root of T �v, and such that for at least n nodes w it holds that ρn(w) ∈ Qimp. Let
G′′ be the scheme generating the tree T ′′ containing these annotations.

Finally, we create GA by slightly modifying G′′: we replace every node constructor
(a,D, σ1, τ1, . . . , σ|Q|, τ|Q|)〈P1, . . . , Pr+|Q|〉 with f〈P1, . . . , Pr〉, where f : Q→ {0, 1, 2} is such
that f(pi) = 2 if τi = tt, and f(pi) = 1 if σi = tt but τi = ff, and f(pi) = 2 otherwise, for all
i ∈ {1, . . . , |Q|} (we do not do anything with node constructors of arity smaller than |Q|). In
effect only the nodes coming from T remain, and they are appropriately relabeled.

6 Extensions

In this section we give a few possible extensions of our main theorem, saying that we can
evaluate WMSO+U sentences on trees generated by recursion schemes. First, we notice that
our solution actually proves a stronger result: logical reflection for WMSO+U.

I Theorem 11. For every scheme G generating a tree T and every WMSO+U sentence ϕ
one can construct a scheme Gϕ that generates a tree of the same shape as T , and such that
its every node v is labeled by a pair (a, b), where a is the label of v in T , and b is tt if ϕ is
satisfied in T �v and ff otherwise.
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Proof. In the proof of Theorem 1 we have constructed a nested U-prefix automaton A
equivalent to ϕ, and then a scheme GA that generates the tree A(T ). In every node v of
A(T ) it is written whether T �v satisfies ϕ. Moreover, by appropriately altering A, we can
assume that labels of A(T ) contain also original labels coming from T . Thus in order to
obtain Gϕ it is enough to appropriately relabel node constructors appearing in GA. J

In Theorem 11, the formula ϕ talks only about the subtree starting in v. One can obtain
a stronger version of logical reflection, where ϕ is allowed to talk about v in the context of
the whole tree. This version can be obtained as a simple corollary of Theorem 11 by using
the same methods as in Broadbent, Carayol, Ong, and Serre [9, Proof of Corollary 2].

I Corollary 12. For every scheme G generating a tree T and every WMSO+U formula ϕ(X)
with one free variable X, one can construct a scheme Gϕ that generates a tree of the same
shape as T , and such that its every node v is labeled by a pair (a, b), where a is the label of v
in T , and b is tt if ϕ is satisfied in T with X valuated to {v}, and ff otherwise.

For MSO it is possible to prove another property, called effective selection [12]. This time
we are given an MSO sentence ϕ of the form ∃X.ψ. Assuming that ϕ is satisfied in the tree T
generated by a scheme G, one wants to compute an example set XT of nodes of T , such that
ψ is true in T with the variable X valuated to this set XT . In particular, it is possible to
create a scheme Gϕ which generates a tree of the same shape as T , in which nodes belonging
to some such example set XT are marked. In WMSO+U we can only quantify over finite
sets, so the analogous property for ϕ = ∃finX.ψ can be trivially obtained (and hence it is not
so interesting). Indeed, there are only countably many finite sets XT , so we may try one
after another, until we find some set for which ψ is satisfied; it is easy to hardcode a given
set XT in the formula (or in the scheme).

We notice that WMSO+U is incomparable to MSO, with respect to the expressive power.
As model-checking of MSO sentences is also decidable on trees generated by schemes, we
can consider a hybrid logic, covering both MSO and WMSO+U. To obtain such a logic, we
introduce to WMSO+U quantifiers ∃X ranging over infinite sets X, but with the requirement
that if UY.ψ is a subformula of ∃X.ϕ then X is not a free variable of UY.ψ. In nested
automata equivalent to sentences of this logic, beside of U-prefix automata (responsible for
U quantifiers) we also have nondeterministic parity automata (responsible for subformulae
using ∃ quantifiers). As we have the reflection property for both kinds of automata, our
results generalize to this logic.

Our algorithm has nonelementary complexity. This is unavoidable, as already model-
checking of WMSO sentences on the infinite word over an unary alphabet is nonelementary.
It would be interesting to find some other formalism for expressing unboundedness properties,
maybe using some model of automata, for which the model-checking problem has better
complexity. We leave this issue for future work.

Finally, we remark that in our solution we do not use the full power of the diagonal
problem, we only use the single-letter case. On the other hand, it seems that WMSO+U (and
full MSO as well) is not capable to express the diagonal problem, only its single-letter case.
Thus another direction for a future work is to extend WMSO+U to a logic that can actually
express the diagonal problem. As a possible candidate we see the qcMSO logic introduced in
Kaiser, Lang, Leßenich, and Löding [21], in which the diagonal problem is expressible.
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Abstract
Recently, Cilleruelo, Luca, and Baxter proved, for all bases b ≥ 5, that every natural number is
the sum of at most 3 natural numbers whose base-b representation is a palindrome. However, the
cases b = 2, 3, 4 were left unresolved. We prove, using a decision procedure based on automata,
that every natural number is the sum of at most 4 natural numbers whose base-2 representation
is a palindrome. Here the constant 4 is optimal. We obtain similar results for bases 3 and 4, thus
completely resolving the problem.
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1 Introduction

In this paper we develop a new method, based on automata theory, for solving problems in
additive number theory. As an example of the power of our method, we are able to prove
the new result that every natural number is the sum of at most 4 numbers whose base-2
representation is a palindrome.

Additive number theory is the study of the additive properties of integers; it has a very
long and celebrated history. For example, Lagrange proved (1770) that every natural number
is the sum of four squares (see, e.g., [12]). In additive number theory, a subset S ⊆ N is
called an additive basis of order h if every element of N can be written as a sum of at most h
members of S, not necessarily distinct.

Waring’s problem asks for the smallest value g(k) such that the k’th powers form a basis of
order g(k). Lagrange’s theorem then shows that g(2) = 4. In a variation on Waring’s problem,
one can ask for the smallest value G(k) such that every sufficiently large natural number is
the sum of G(k) k’th powers [26]. This kind of representation is called an asymptotic additive
basis of order G(k).
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Quoting Nathanson [19, p. 7], “The central problem in additive number theory is to
determine if a given set of integers is a basis of finite order.”

In this paper we show how to solve this central problem for certain sets of natural numbers,
using automata theory and almost no number theory at all.

We are concerned with numbers with particular representations in base k. For example,
numbers of the form 11 · · · 1 in base k are sometimes called repunits [28], and special effort
has been devoted to factoring such numbers, with the Mersenne numbers 2n − 1 being the
most famous examples. The Nagell-Ljunggren problem asks for a characterization of those
repunits that are integer powers (see, e.g., [24]).

Another interesting class, and the one that principally concerns us in this article, consists
of those numbers whose base-k representation forms a palindrome: a string that reads the
same forwards and backwards, like the English word redder, the French word ressasser,
and the German word reliefpfeiler. Palindromic numbers have been studied for some
time in number theory; see, for example, [7, 6], just to name two recent references.

Recently Banks initiated the study of the additive properties of palindromes, proving
that every natural number is the sum of at most 49 numbers whose decimal representation is
a palindrome [5]. Banks’ result was then improved by Cilleruelo, Luca, and Baxter [8, 9],
who proved that for all bases b ≥ 5, every natural number is the sum of at most 3 numbers
whose base-b representation is a palindrome. The proofs of Banks and Cilleruelo, Luca, and
Baxter are both rather lengthy and case-based. Up to now, there have been no results proved
for bases b = 2, 3, 4.

The long case-based solutions to the problem of representation by sums of palindromes
suggests that perhaps a more automated approach might be useful. We turn to formal
languages and automata theory as a suitable framework for expressing the palindrome
representation problem. Since we want to make assertions about the representations of
all natural numbers, this requires finding (a) a machine model or logical theory in which
universality is decidable and (b) a variant of the additive problem of palindromes suitable for
this machine model or logical theory. The first model we use is the nested-word automaton,
a variant of the more familiar pushdown automaton. This is used to handle the case for base
b = 2. The second model we use is the ordinary finite automaton, which we use to resolve
the cases b = 3, 4.

Our paper is organized as follows: In Section 2 we introduce some notation and terminology,
and state more precisely the problem we want to solve. In Section 3 we recall the pushdown
automaton model and give an example, and we motivate our use of nested-word automata.
In Section 4 we restate our problem in the framework of nested-word automata, and the
proof of a bound of 4 palindromes is given in Section 5. In Section 6 we make use of finite
automata to prove a bound of 3 palindromes for bases 3 and 4. The novelty of our approach
involves replacing the long case-based reasoning of previous proofs with an automaton-based
approach using a decision procedure. In Section 7 we discuss possible objections to our
approach. Finally, in Section 8 we discuss future work.

2 The sum-of-palindromes problem

We first introduce some notation and terminology.
The natural numbers are N = {0, 1, 2, . . .}. If n is a natural number, then by (n)k we

mean the string (or word) representing n in base k, with no leading zeroes, starting with the
most significant digit. Thus, for example, (43)2 = 101011. The alphabet Σk is defined to
be {0, 1, . . . , k − 1}; by Σ∗k we mean the set of all finite strings over Σk. If x ∈ Σ∗` for some
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`, then by [x]k we mean the integer represented by the string x, considered as if it were a
number in base k, with the most significant digit at the left. That is, if x = a1a2 · · · an, then
[x]k =

∑
1≤i≤n aik

n−i. For example, [135]2 = 15.

If x is a string, then xi denotes the string
i︷ ︸︸ ︷

xx · · ·x, and xR denotes the reverse of x. Thus,
for example, (ma)2 = mama, and (drawer)R = reward. If x = xR, then x is said to be a
palindrome.

We are interested in integers whose base-k representations are palindromes. In this
article, we routinely abuse terminology by calling such an integer a base-k palindrome. In
the case where k = 2, we also call such an integer a binary palindrome. The first few binary
palindromes are

0, 1, 3, 5, 7, 9, 15, 17, 21, 27, 31, 33, 45, 51, 63, . . . ;

these form sequence A006995 in the On-Line Encyclopedia of Integer Sequences (OEIS).
If kn−1 ≤ r < kn for n ≥ 1, we say that r is an n-bit integer in base k. If k is unspecified,

we assume that k = 2. Note that the first bit of an n-bit integer is always nonzero. The
length of an integer r satisfying kn−1 ≤ r < kn is defined to be n; alternatively, the length of
r is 1 + blogk rc.

Our goal is to find a constant c such that every natural number is the sum of at most
c binary palindromes. To the best of our knowledge, no such bound has been proved up
to now. In Sections 4 and 5 we describe how we used a decision procedure for nested-word
automata to prove the following result:

I Theorem 1. For all n ≥ 8, every n-bit odd integer is either a binary palindrome itself, or
the sum of three binary palindromes
(a) of lengths n, n− 2, and n− 3; or
(b) of lengths n− 1, n− 2, and n− 3.

As a corollary, we get our main result:

I Corollary 2. Every natural number N is the sum of at most 4 binary palindromes.

Proof. It is a routine computation to verify the result for N < 128.
Now suppose N ≥ 128. Let N be an n-bit integer; then n ≥ 8. If N is odd, then

Theorem 1 states that N is the sum of at most 3 binary palindromes. Otherwise, N is even.
If N = 2n−1, then it is the sum of 2n−1 − 1 and 1, both of which are palindromes.
Otherwise, N − 1 is also an n-bit odd integer. Use Theorem 1 to find a representation for

N − 1 as the sum of at most 3 binary palindromes, and then add the palindrome 1 to get a
representation for N . J

I Remark. We note that the bound 4 is optimal since, for example, the number 176 is not
the sum of three or fewer binary palindromes.

Sequence A261678 in the OEIS lists those even numbers that are not the sum of two
binary palindromes. Sequence A261680 gives the number of distinct representations as the
sum of four binary palindromes.

3 Finding an appropriate computational model

To find a suitable model for proving Theorem 1, we turn to formal languages and automata.
We seek some class of automata with the following property: for each k, there is an automaton
which, given a natural number n as input, accepts the input if and only if n can be expressed
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as the sum of k palindromes. Furthermore, we would like the problem of universality (“Does
the automaton accept every possible input?”) to be decidable in our chosen model. By
constructing the appropriate automaton and checking whether it is universal, we could then
determine whether every number n can be expressed as the sum of k palindromes.

Palindromes suggest considering the model of pushdown automaton (PDA), since it is
well-known that this class of machines, equipped with a stack, can accept the palindrome
language PAL = {x ∈ Σ∗ : x = xR} over any fixed alphabet Σ. A tentative approach is
as follows: create a PDA M that, on input n expressed in base 2, uses nondeterminism to
“guess” the k summands and verify that (a) every summand is a palindrome, and (2) they
sum to the input n. We would then use a decision procedure for universality to determine
whether M accepts all of its inputs. However, two problems immediately arise.

The first problem is that universality is recursively unsolvable for nondeterministic PDAs
(see, e.g.,[15, Thm. 8.11, p. 203]), so even if the automaton M existed, there would be no
algorithm guaranteed to check universality.

The second problem involves checking that the guessed summands are palindromes. One
can imagine guessing the summands in parallel, or in series. If we try to check them in
parallel, this seems to correspond to the recognition of a language which is not a CFL
(i.e., a context-free language, the class of languages recognized by nondeterministic PDAs).
Specifically, we encounter the following obstacle:

I Theorem 3. The set of strings L over the alphabet Σ× (Σ ∪ {#}), where the first “track”
is a palindrome and the second “track” is another, possibly shorter, palindrome, padded on
the right with # signs, is not a CFL.

Proof. Assume that it is. Consider L intersected with the regular language

[1, 1]+[1, 0][1, 1]+[0, 1][1,#]+,

and call the result L′. We use Ogden’s lemma [20] to show L′ is not a CFL.
Let n be the constant in Ogden’s lemma, and choose z to be the string where the first

track is (12n012n) and the second track is (1n01n#2n). Mark the compound symbols [1,#].
Then every factorization z = uvwxy with vx nonempty must have at least one [1,#] in v or
x. If it is in v, then the only choice for x is also [1,#], so pumping gives a non-palindrome
on the first track. If it is in x then v can be [1, 1]i or contain [1, 0] or [0, 1] . If the latter,
pumping twice gives a string not in L′ because there is more than one 0 on one of the two
tracks. If the former, pumping twice gives a string with the second track not a palindrome.
This contradiction shows that L′, and hence L, is not a context-free language. J

So, using a pushdown automaton, we cannot check whether two arbitrary strings of wildly
unequal lengths, presented in parallel, are both palindromes.

If the summands were presented serially, we could check whether each summand indi-
vidually is a palindrome, using the stack, but doing so destroys our copy of the summand,
and so we cannot add them all up and compare them to the input. In fact, we cannot add
serial summands in any case, because we have

I Theorem 4. The language

L = {(m)2#(n)2#(m+ n)2 : m,n ≥ 0}

is not a CFL.
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Proof. Assume L is a CFL and intersect with the regular language 1+01+#1+#1+0, obtain-
ing L′. We claim that

L′ = {1a01b#1c#1d0 : b = c and a+ b = d}.

This amounts to the claim, easily verified, that the only solutions to the equation 2a+b+1 −
2b − 1 + 2c − 1 = 2d+1 − 2 are b = c and a+ b = d. Then, if n is the constant in Ogden’s
lemma, starting with the string z = 1n01n#1n#12n0, an easy argument proves that L′ is
not a CFL, and hence neither is L. J

So, using a pushdown automaton, we cannot handle summands presented in series, either.

These issues lead us to restrict our attention to representations as sums of palindromes of
the same (or similar) lengths. More precisely, we consider the following variant of the additive
problem of palindromes: for a length l and number of summands k, given a natural number
n as input, is n the sum of k palindromes all of length exactly l? Since the palindromes are
all of the same length, a stack would allow us to guess and verify them in parallel. To tackle
this problem, we need a model which is both (1) powerful enough to handle our new variant,
and (2) restricted enough that universality is decidable. We find such a model in the class of
nested-word automata, described in the next section.

4 Restating the problem in the language of nested-word automata

Nested-word automata (NWAs) were popularized by Alur and Madhusudan [1, 2], although
essentially the same model was discussed previously by Mehlhorn [18], von Braunmühl
and Verbeek [27], and Dymond [10]. They are closely related to a restricted variant of
pushdown automata called visibly-pushdown automata (VPAs). Under linear encodings,
NWAs recognize the same class of languages as VPAs, namely the visibly-pushdown languages
[1, 2]. We only briefly describe their functionality here. For other theoretical aspects of
nested-word and visibly-pushdown automata, see [16, 22, 11, 23, 21]. The definition of NWAs
provided here modifies the standard definition by borrowing some aspects of VPAs. We use
this definition because that is what is used by the ULTIMATE program analysis framework
[14, 13], which is the software tool we use to prove our results.

The input alphabet of an NWA is partitioned into three sets: a call alphabet, an internal
alphabet, and a return alphabet. An NWA has a stack, but has more restricted access to
it than PDAs do. If the input symbol read is from the call alphabet, the NWA pushes its
current state onto the stack, and then performs a transition, based only on the current state
and input symbol read. If an input symbol is from the internal alphabet, the NWA cannot
access the stack in any way. If the input symbol read is from the return alphabet, the NWA
pops the state at the top of the stack, and then performs a transition based on three pieces of
information: the current state, the popped state, and the input state read. An NWA accepts
if the state it terminates in is an accepting state.

As an example, Figure 1 illustrates a nested-word automaton accepting the language
{0n12n : n ≥ 1}. Here the call alphabet is {0}, the internal alphabet is {1}, and the return
alphabet is {2}.

The first 0 pushes q0 onto the stack. Each of the n− 1 subsequent 0s push q1 onto the
stack. When the machine reads the 1, it goes to state q2 without accessing the stack. So
long as the machine reads 2s and q1 is on the stack, we stay in the non-accepting state q2.
Reading a 2 with q0 on the top of the stack takes us to the only accepting state, q3.
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Figure 1 A nested-word automaton for the language {0n12n : n ≥ 1}.

Nondeterministic NWAs are a good machine model for our problem, because nondetermin-
ism allows “guessing” the palindromes that might sum to the input, and the stack allows
us to “verify” that they are indeed palindromes. Deterministic NWAs are as expressive as
nondeterministic NWAs, and the class of languages they accept is closed under the operations
of union, complement and intersection. Finally, testing emptiness, universality, and language
inclusion are all decidable problems for NWAs [1, 2].

For a nondeterministic NWA of n states, the corresponding determinized machine has at
most 2Θ(n2) states, and there are examples for which this bound is attained. This very rapid
explosion in state complexity potentially could make decision problems, such as language
inclusion, infeasible in practice. Fortunately, we did not run into determinized machines with
more than 40000 states in proving our results. Most of the algorithms invoked to prove our
results run in under a minute.

We now discuss the general construction of the NWAs that check whether inputs are sums
of binary palindromes. We partition the input alphabet into the call alphabet {a, b}, the
internal alphabet {c, d}, and the return alphabet {e, f}. The symbols a, c, and e correspond
to 0, while b, d, and f correspond to 1. The input string is fed to the machine starting with
the least significant digit. We provide the NWA with input strings whose first half is entirely
made of call symbols, and second half is entirely made of return symbols. Internal symbols
are used to create a divider between the halves (for the case of odd-length inputs).

The idea behind the NWA is to nondeterministically guess all possible summands when
reading the first half of the input string. The guessed summands are characterized by the
states pushed onto the stack. The machine then checks if the guessed summands can produce
the input bits in the second half of the string. The machine keeps track of any carries in the
current state.

Following the above construction, we implemented our NWAs in the ULTIMATE program
analysis framework. As an experimental spot check on the correctness of our implementations,
we also built an NWA-simulator, and ran simulations of the machines on various types of
inputs, which we then checked against experimental results.

For instance, we built the machine that accepts representations of integers that can
be expressed as the sum of 2 binary palindromes. We then simulated this machine on
every integer from 513 to 1024, and checked that it only accepts those integers that we
experimentally confirmed as being the sums of 2 binary palindromes. This did not prove our
results, but served as a sanity check.

The general procedure to prove our results is to build an NWA PalSum accepting only
those inputs that it verifies as being appropriate sums of palindromes, as well as an NWA
SyntaxChecker accepting all valid representations. We then run the decision algorithms
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for language inclusion, language emptiness, etc. on PalSum and SyntaxChecker as needed.
To do this, we used the Automata Library toolchain of the ULTIMATE program analysis
framework.

We have provided links to the proof scripts used to establish all of our results. To run these
proof scripts, simply copy the contents of the script into https://monteverdi.informatik.
uni-freiburg.de/tomcat/Website/?ui=int&tool=automata_library and click “execute”.
Some of the larger proof scripts might time out on the web client, but can be run to completion
by downloading the ULTIMATE Automata Library toolchain and executing them on a local
machine.

5 Proving Theorem 1

In this section, we discuss construction of the appropriate nested-word automaton in more
detail.

Proof of Theorem 1. We build three separate automata. The first, palChecker, has 9
states, and simply checks whether the input number is a binary palindrome. The second,
palChecker2, has 771 states, and checks whether an input number of length n can be
expressed as the sum of three binary palindromes of lengths n, n− 2, and n− 3. The third
machine, palChecker3, has 1539 states, and checks whether an input number of length
n can be expressed as the sum of three binary palindromes of lengths n − 1, n − 2, and
n − 3. We then determinize these three machines, and take their union, to get a single
deterministic NWA, FinalAut, with 36194 states. We then run the command FinalAut =
shrinkNwa(FinalAut); to reduce this to a deterministic NWA of only 106 states.

The language of valid inputs to our automata is given by

L = {{a, b}n{c, d}m{e, f}n : 0 ≤ m ≤ 1, n ≥ 4}.

We only detail the mechanism of palChecker3 here. Let p, q and r be the binary
palindromes representing the guessed (n− 1)-length summand, (n− 2)-length summand and
(n− 3)-length summand respectively. The states of palChecker3 include 1536 t-states that
are 10-tuples. We label these states (g, x, y, z, k, l1, l2,m1,m2,m3), where 0 ≤ g ≤ 2, while
all other coordinates are either 0 or 1. The g-coordinate indicates the current carry, and can
be as large as 2. The x, y and z coordinates indicate whether we are going to guess 0 or 1
for the next guesses of p, q and r respectively. The remaining coordinates serve as “memory”
to help us manage the differences in lengths of the guessed summands. The k-coordinate
records the most recent guess for p. We have l1 and l2 record the two most recent q guesses,
with l1 being the most recent one, and we have m1,m2 and m3 record the three most recent
r-guesses, with m1 being the most recent one, then m2, and m3 being the guess we made
three steps ago. We also have three s-states labeled s0, s1 and s2, representing carries of 0, 1
and 2 respectively. These states process the second half of the input string.

The initial state of the machine is (0, 1, 1, 1, 0, 0, 0, 0, 0, 0) since we start with no carry,
must guess 1 for our first guess of a valid binary palindrome, and all “previous” guesses
are 0. A t-state has an outgoing transition on either a or b, but not both. If g + x+ y + z

produces an output bit of 0, it takes a transition on a, else it takes a transition on b. The
destination states are all six states of the form (g′, x′, y′, z′, x, y, l1, z,m1,m2), where g′ is the
carry resulting from g + x+ y + z, and x′, y′, z′ can be either 0 or 1. Note that we “update”
the remembered states by forgetting k, l2 and m3, and saving x, y and z.

The s-states only have transitions on the return symbols e and f . When we read these
symbols, we pop a t-state off the stack. If state si pops the state (g, x, y, z, k, l1, l2,m1,m2,m3)
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off the stack, its transition depends on the addition of i + k + l2 + m3. If this addition
produces a carry of j, then si can take a transition to sj on e if the output bit produced is
0, and on f otherwise. By reading the k, l2 and m3 values, we correctly realign p, q and r,
correcting for their different lengths. This also ensures that we supply 0s for the last three
guesses of r, the last two guesses of q and the last guess of p. The only accepting state is s0.

It remains to describe how we transition from t-states to s-states. This transition happens
when we are halfway done reading the input. If the length of the input is odd, we read a c or
a d at the halfway point. We only allow certain t-states to have outgoing transitions on c
and d. Specifically, we require the state’s coordinates to satisfy k = x, l2 = y, m1 = m2 and
m3 = z. These conditions are required for p, q and r to be palindromes. We transition to
state si if the carry produced by adding g + x+ y + z is i, and we label the transition c if
the output bit is 0, and d otherwise.

If the length of the input is even, then our t-states take a return transition on e or f .
Once again, we restrict the t-states that can take return transitions. We require the state’s
coordinates to satisfy l1 = l2 and m1 = m3 to ensure our guessed summands are palindromes.
Let the current state be (g, x, y, z, k, l1, l1,m1,m2,m1), and the state at the top of the stack
be (g′, x′, y′, z′, k′, l′1, l′2,m′1,m′2,m′3). We can take a transition to si if the sum g+k′+ l′2 +m′3
produces a carry of i, and we label the transition e if the output bit is 0, and f otherwise.

The structure and behavior of palChecker2 is very similar. One difference is that there
is no need for a k-coordinate in the t-states since the longest summand guessed is of the
same length as the input.

The complete script executing this proof is over 750000 lines long. Since these automata
are very large, we wrote two C++ programs to generate them. Both the proof script, and the
programs generating them can be found at https://cs.uwaterloo.ca/~shallit/papers.
html. It is worth noting that a t-state labeled as (g, x, y, z, k, l1, l2,m1,m2,m3) in this
report is labeled q_g_xyz_k_l1l2_m1m2m3 in the proof script. Also, ULTIMATE does not
currently have a union operation for NWAs, so we work around this by using De Morgan’s
laws for complement and intersection. J

6 Bases 3 and 4

In this section we prove analogous results for bases 3 and 4. We show that every natural
number is the sum of at most three base-3 palindromes, and at most three base-4 palindromes.
Because the NWAs needed became too large for us to manipulate effectively, we use a modified
approach using nondeterministic finite automata to prove these results. This approach was
suggested to us by Dirk Nowotka and Parthasarathy Madhusudan, independently.

Our result for base 3 is as follows:

I Theorem 5. For all n ≥ 9, every integer whose base-3 representation is of length n is the
sum of
(a) three base-3 palindromes of lengths n, n− 1, and n− 2; or
(b) three base-3 palindromes of lengths n, n− 2, and n− 3; or
(c) three base-3 palindromes of lengths n− 1, n− 2, and n− 3; or
(d) two base-3 palindromes of lengths n− 1 and n− 2.

Proof. We represent the input in a “folded” manner over the input alphabet Σ3 ∪ (Σ3 ×Σ3),
where Σk = {0, 1, . . . , k− 1}, giving the machine 2 letters at a time from opposite ends. This
way we can directly guess our summands without having need of a stack at all. We align the
input along the length-n− 2 summand by providing the first 2 letters of the input separately.

https://cs.uwaterloo.ca/~shallit/papers.html
https://cs.uwaterloo.ca/~shallit/papers.html
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If (N)3 = a2i+1a2i · · · a0, we represent N as the word

a2i+1a2i[a2i−1, a0][a2i−2, a1] · · · [ai, ai−1].

Odd-length inputs leave a trailing unfolded letter at the end of their input. If (N)3 =
a2i+2a2i+1 · · · a0, we represent N as the word

a2i+2a2i+1[a2i, a0][a2i−1, a1] · · · [ai+1, ai−1]ai.

We need to simultaneously carry out addition on both ends. In order to do this we need
to keep track of two carries. On the lower end, we track the “incoming” carry at the start of
an addition, as we did in the proofs using NWAs. On the higher end, however, we track the
expected “outgoing” carry.

To illustrate how our machines work, we consider an NFA accepting length-n inputs that
are the sum of 4 base-3 palindromes, one each of lengths n, n− 1, n− 2 and n− 3. Although
this is not a case in our theorem, each of the four cases in our theorem can be obtained from
this machine by striking out one or more of the guessed summands.

Recall that we aligned our input along the length-(n− 2) summand by providing the 2
most significant letters in an unfolded manner. This means that our guesses for the length-n
summand will be “off-by-two”: when we make a guess at the higher end of the length-n
palindromic summand, its appearance at the lower end is 2 steps away. We hence need to
record the last 2 guesses at the higher end of the length-n summand in our state. Similarly,
we need to record the most recent higher guess of the length-(n− 1) summand, since it is off
by one. The length-(n− 2) summand is perfectly aligned, and hence nothing needs to be
recorded. The length-(n− 3) summand has the opposite problem of the length-(n− 1) input.
Its lower guess only appears at the higher end one step later, and so we save the most recent
guess at the lower end.

Thus, in this machine, we keep track of 6 pieces of information:
c1, the carry we are expected to produce on the higher end,
c2, the carry we have entering the lower end,
x1 and x2, the most recent higher guesses of the length-n summand,
y, the most recent higher guess of the length-(n− 1) summand, and
z, the most recent lower guess of the length-(n− 3) summand,

Consider a state (c1, c2, x1, x2, y, z). Let i, j, k, l ∈ [0, 2] be our next guesses for the four
summands of lengths n, n − 1, n − 2 and n − 3 respectively. Also, let α be our guess for
the next incoming carry on the higher end. Let the result of adding i+ j + k + z + α be a
value 0 ≤ p1 < 3 and a carry of q1. Let the result of adding x+ y + k + l + x2 be a value
0 ≤ p2 < 3 and a carry of q2. We must have q1 = c1. If this condition is met, we add a
transition from this state to (α, q2, x2, i, j, l), and label the transition [p1, p2].

The initial state is (0, 0, 0, 0, 0, 0). We expand the alphabet to include special variables
for the first 3 symbols of the input string. This is to ensure that we always guess a 1 or a 2
for the first (and last) positions of our summands.

The acceptance conditions depend on whether (N)3 is of even or odd length. If a state
(c1, c2, x1, x2, y, z) satisfies c1 = c2 and x1 = x2, we set it as an accepting states. A run
can only terminate in one of these states if (N)3 is of even length. We accept since we are
confident that our guessed summands are palindromes (the condition x1 = x2 ensures our
length-n summand is palindromic), and since the last outgoing carry on the lower end is the
expected first incoming carry on the higher end (enforced by c1 = c2).

We also have a special symbol to indicate the trailing symbol of an input for which (N)3
is of odd length. We add transitions from our states to a special accepting state, qacc, if
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we read this special symbol. Consider a state (c1, c2, x1, x2, y, z), and let 0 ≤ k < 3 be our
middle guess for the n− 2 summand. Let the result of adding x1 + y + k + z + c2 be a value
0 ≤ p < 3 and a carry of q. If q = c1, we add a transition on p from our state to qacc.

We wrote a C++ program generating a single NFA with 4 parts, one for each case of the
theorem. After minimizing, the machine has 378 states. We then built a second NFA that
accepts folded representations of (N)3 such that the unfolded length of (N)3 is greater than
8. We then use ULTIMATE to assert that the language accepted by the second NFA is
included in that accepted by the first. All these operations run in under a minute.

We tested this machine by experimentally calculating which values of 243 ≤ N ≤ 1000
could be written as the sum of palindromes satisfying one of our 4 conditions. We then
asserted that for all the folded representations of 243 ≤ N ≤ 1000, our machine accepts these
values which we experimentally calculated, and rejects all others. J

We also have the following result for base 4:

I Theorem 6. For all n ≥ 7, every integer whose base-4 representation is of length n is the
sum of
(a) exactly one palindrome each of lengths n− 1, n− 2, and n− 3; or
(b) exactly one palindrome each of lengths n, n− 2, and n− 3.

Proof. The NFA we build is very similar to the machine described for the base-3 proof.
Indeed, the generator used is the same as the one for the base-3 proof, except that its input
base is 4, and the only machines it generates are for the two cases of this theorem. The
minimized machine has 478 states. J

This, together with the results previously obtained by Cilleruelo, Luca, and Baxter,
completes the additive theory of palindromes for all integer bases b ≥ 2.

7 Objections to this kind of proof

A proof based on computer calculations, like the one we have presented here, is occasionally
criticized because it cannot easily be verified by hand, and because it relies on software that
has not been formally proved. These kinds of criticisms are not new; they date at least to
the 1970’s, in response to the celebrated proof of the four-color theorem by Appel and Haken
[3, 4]. See, for example, Tymoczko [25].

We answer this criticism in several ways. First, it is not reasonable to expect that every
result of interest to mathematicians will have short and simple proofs. There may well be,
for example, easily-stated results for which the shortest proof possible in a given axiom
system is longer than any human mathematician could verify in their lifetime, even if every
waking hour were devoted to checking it. For these kinds of results, an automated checker
may be our only hope. There are many results for which the only proof currently known is
computational.

Second, while short proofs can easily be checked by hand, what guarantee is there that any
very long case-based proof — whether constructed by humans or computers — can always be
certified by human checkers with a high degree of confidence? There is always the potential
that some case has been overlooked. Indeed, the original proof of the four-color theorem
by Appel and Haken apparently overlooked some cases. Similarly, the original proof by
Cilleruelo and Luca on sums of palindromes [8] had some minor flaws that became apparent
once their method was implemented as a python program; these were later corrected in [9].
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Third, confidence in the correctness of the results can be improved by providing code
that others may check. Transparency is essential. To this end, we have provided our code
for the nested-word automata, and the reader can easily run this code on the software we
referenced.

8 Future work

We can use the same sorts of ideas to attack other problems in additive number theory. For
example, we can obtain results about “generalized palindromes” (allowing an arbitrary number
of leading zeroes), “anti-palindromes” (of the form xxR), “generalized anti-palindromes”,
and so forth.

In a recent paper [17], we use the same kinds of techniques to prove an analogue of
Lagrange’s theorem for binary “squares” (those numbers whose representation in base 2
consists of two consecutive identical blocks).
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Abstract
It is well known that the containment problem (as well as the equivalence problem) for semilinear
sets is log-complete in Πp

2 (where hardness even holds in dimension 1). It had been shown quite
recently that already the containment problem for multi-dimensional linear sets is log-complete
in Πp

2 (where hardness even holds for a unary encoding of the numerical input parameters). In
this paper, we show that already the containment problem for 1-dimensional linear sets (with
binary encoding of the numerical input parameters) is log-hard (and therefore also log-complete)
in Πp

2. However, combining both restrictions (dimension 1 and unary encoding), the problem
becomes solvable in polynomial time.
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1 Introduction

The containment problem for a family of sets consists in finding an answer to the following
question: given two sets of the family, is the first one a subset of the second one?

It had been shown in a very early stage of complexity theory that the containment and
the equivalence problem for semilinear sets are log-complete in Πp

2 (the second level of the
polynomial hierarchy) [4]. This early investigation had been motivated by the fact that, first,
the equivalence problem for contextfree languages is recursively undecidable and, second,
the commutative images of contextfree languages happen to be semilinear sets according
to Parikh’s theorem [5]. Showing inequivalence of the commutative images of two given
contextfree languages would therefore demonstrate their inequivalence.

Linear sets are the basic building blocks of semilinear sets. (The latter are finite unions
of linear sets.) Moreover, 1-dimensional linear sets are the central object of research in the
study of numerical semigroups [6]. It was shown quite recently that the containment problem
for linear sets of variable dimension is log-complete in Πp

2, where hardness even holds when
numbers are encoded in unary [2]. In this paper, we extend the latter result as follows:
1. The containment problem for 1-dimensional linear sets (with a binary encoding of numbers)

is log-hard (and therefore also log-complete) in Πp
2.

2. On the other hand, the containment problem for 1-dimensional linear sets with a unary
encoding of numbers becomes is solvable in polynomial time.

Moreover, in order to prove these results, we show the following:
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The containment problem for so-called simple unary (+,∪)-expressions1 is log-hard in
Πp

2.
The containment problem for linear sets is still log-hard in Πp

2 under a relatively strong
promise. See Sections 2.5 and 3 for details.

These results might be of independent interest.
As for semilinear sets, the containment and the inequivalence problem have the same

inherent complexity: both are log-complete in Πp
2. We briefly note that the situation is

different for linear sets. The equivalence problem for linear sets is easily shown to be
computationally equivalent to the word problem for linear sets, and the latter is easily
shown to be NP-complete. Hence, for linear sets, verifying containment is much harder than
verifying equivalence.

This paper is structured as follows. In Section 2 we present the basic definitions and
notations, and we mention some facts. Our main results are stated and proved in Section 3.
One of these proofs is however postponed to the final Section 4 because it is a suitable
modification of a similar proof of Stockmeyer (and is given for the sake of completeness). In
the final Section 5, an open problem is mentioned.

2 Definitions, Notations and Facts

We assume familiarity with basic concepts from complexity theory (e.g., logspace reductions,
log-hardness or log-completeness, polynomial hierarchy etc.). The complexity classes of the
polynomial hierarchy will be denoted, as usual, by Σp

k and Πp
k for k = 0, 1, 2, . . .. We will

mainly deal with the class Πp
2 on the second level of the hierarchy.

In Section 2.1, we briefly call into mind the definition of true quantified Boolean formulas
which give rise to a hierarchy of problems with one log-complete problem at every level
of the polynomial hierarchy. Section 2.2 contains the basic definitions that we need in
connection with integer expressions. In Section 2.3, we briefly remind the reader to the
definition of linear and semilinear sets. Some well known results on the inherent complexity
of the containment problem for integer expressions resp. for semilinear sets are mentioned in
Section 2.4. Section 2.5 briefly calls into mind the notion of promise problems.

2.1 Quantified Boolean Formulas

I Definition 1 ([7]). Let X1, X2, . . . , Xk with Xi = {xi1, xi2, . . .} be disjoint collections of
Boolean variables. Let f(X1, . . . , Xk) denote any Boolean formula over (finitely many of) the
variables from X1 ∪ . . . ∪Xk. Let Qk = ∃ if k ≥ 1 is odd and Qk = ∀ if k ≥ 1 is even. The
notation “∃Xi : . . .” means “there exists an assignment of the variables in Xi such that . . .”.
The analogous remark applies to the notation “∀Xi : . . .”. Given these notations, we define

Bk = {f(X1, . . . , Xk) : (∃X1,∀X2, . . . , QkXk : f(X1, . . . , Xk) = 1} .

The set consisting of Boolean formulas f(X1, . . . , Xk) outside of Bk is denoted as Bk. The
subproblem of Bk (resp. of Bk) with f being a formula in conjunctive normal form is denoted
as BCNF

k (resp. as Bk
CNF ). The corresponding subproblems with f being a formula in

disjunctive normal form are denoted as BDNF
k and Bk

DNF , respectively.

1 a variant of a problem that has originally been analyzed by Stockmeyer [7]
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I Theorem 2 ([7]). For any k ≥ 1, Bk is log-complete in Σp
k. The same is true for BCNF

k if
k is odd and for BDNF

k if k is even.

I Corollary 3. For any k ≥ 1, Bk is log-complete in Πp
k. This even holds for the set Bk

CNF

if k ≥ 1 is odd and for the set Bk
DNF if k ≥ 1 is even.

I Example 4. The set B2
DNF , which coincides with the set of all Boolean DNF-formulas

f(X1, X2) satisfying

∀X1,∃X2 : f(X1, X2) = 0 .

is log-complete in Πp
2.

2.2 Integer Expressions
I Definition 5. Let m ≥ 1 be a positive integer. The set Em of m-dimensional unary integer
expressions, simply called unary integer expressions if m is clear from context, is the smallest
set with the following properties:
1. {0, 1}m ⊆ Em. The tuples (b1, . . . , bm) ∈ {0, 1}m are called atomic expressions.
2. For any E1, E2 ∈ Em: (E1 ∪ E2), (E1 + E2) ∈ Em.
Every expression E ∈ Em represents a set L(E) ⊆ Nm

0 that is defined in the obvious manner.
We briefly note that the classical definition of integer expressions in [7] is different from

ours: there the expressions define subsets of N0, and an atomic expression is a binary
representation of a single number in N0. In other words, the classical definition deals with
1-dimensional binary expressions whereas we deal with multi-dimensional unary expressions.

Since “∪” is an associative operation, we may simply write (E1 ∪ E2 ∪ E3 ∪ . . . ∪ Es)
instead of (. . . ((E1∪E2)∪E3)∪ . . .∪Es). The analogous remark applies to the operation “+”.

I Definition 6. An expression E ∈ Em is said to be a (+,∪)-expression if it is a sum of
unions of atomic expressions. A (+,∪)-expression is called simple if every union in the sum
is the union of precisely two (not necessarily different) atomic expressions.

I Example 7. The string

E = ((1, 1, 0) ∪ (0, 0, 0)) + ((1, 0, 0) ∪ (1, 0, 0)) + ((1, 1, 1) ∪ (0, 0, 0))

is a simple unary (+,∪)-expression. It represents the set

L(E) = {(1, 0, 0), (2, 1, 0), (2, 1, 1), (3, 2, 1)} .

2.3 Linear and Semilinear Sets
I Definition 8. The set L(c, P ) ⊆ Nm

0 induced by c ∈ Nm
0 and a finite set P = {p1, . . . , pk}

⊂ Nm
0 is defined as

L(c, P ) = c + 〈P 〉 where 〈P 〉 =
{

k∑
i=1

ai · pi : ai ∈ N0

}
.

The elements in P are called periods and c is called the constant vector of L(c, P ). A subset
L of Nm

0 is called linear if L = L(c, P ) for some c ∈ Nm
0 and some finite set P ⊂ Nm

0 . A
semilinear set in Nm

0 is a finite union of linear sets in Nm
0 .

STACS 2018
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2.4 Containment Problems
As mentioned already in the introduction, the containment problem for a family of sets
consists in finding an answer to the following question: given two sets of the family, is the
first one a subset of the second one? We will be mainly concerned with the containment
problem for integer expressions and with the containment problem for linear and semilinear
sets. We will assume that the dimension m of sets in Nm

0 is part of the input unless we
explicitly talk about an m-dimensional problem for some fixed constant m. The following is
known:
1. The containment problem for 1-dimensional binary integer expressions is log-complete in

Πp
2 [7].

2. The containment problem for semilinear sets is log-complete in Πp
2 [4]. The log-hardness

in Πp
2 even holds either when numbers are encoded in unary or when the dimension is

fixed to 1.
3. The containment problem for linear sets is log-complete in Πp

2 [2]. The log-hardness in
Πp

2 even holds when numbers are encoded in unary.
The first two hardness results are shown by means of a logspace reduction from B2

DNF to
the respective containment problem. A suitable modification of Stockmeyer’s reduction from
B2

DNF to the containment problem for 1-dimensional binary integer expressions leads to the
following result:

I Theorem 9. The containment problem for simple unary (+,∪)-expressions is log-complete
in Πp

2.

The proof of this theorem will be given in Section 4.

Notation for Vectors: The j-th component of a vector x is denoted as xj or, occasionally,
as x[j]. The latter notation is used, for instance, if there is a sequence of vectors, say
x1, . . . , xn. The j-th component of xi is then denoted as xi[j] (as opposed to xi,j or (xi)j).
Throughout the paper, we use am (with a ∈ N0) as a short notation for (a, . . . , a) ∈ Nm

0 .
For instance 1m denotes the all-ones vector in Nm

0 . The vector with value 1 in the i-th
component and zeros in the remaining m− 1 components is denoted as em

i .

2.5 Promise Problems
A decision problem (without promise) is a problem with “yes”- and “no”-instances. A promise
problem is a decision problem augmented by a promise that the input instances passed to an
algorithm satisfy a certain condition. An algorithm needs to solve the promise problem only
on the input instances that satisfy this condition. It may output anything on the remaining
instances. Hence a promise problem has besides the “yes”- and the “no”-instances a third
kind of instances: the ones that violate the promised condition. Decision problem can be
viewed as promise problems with an empty promise. Reductions between promise problems
should map “yes”-instances (resp. “no”-instances) of the first problem to “yes”-instances
(resp. “no”-instances) of the second problem.

3 Main Results

The first result in this section will be concerned with the containment problem for linear sets
when the latter is viewed as the following promise problem.
Instance: dimension m, finite sets P, Q ⊂ Nm

0 , vectors c, d ∈ Nm
0 and s ∈ {1, . . . , |P |}.
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Question: L(c, P ) ⊆ L(d, Q)?
Promise: Let P = {p1, . . . , pk} and let Ks =

{
a ∈ {0, 1}k

∣∣∣ ∑k
i=1 ai = s

}
. With this

notation, the following holds:

∀a ∈ Nk
0 \Ks :

k∑
i=1

ai · pi ∈ L(d, Q) . (1)

In other words: we make the promise that the inclusion L(c, P ) ⊆ L(d, Q) can possibly
fail only on linear combinations of p1, . . . , pk with coefficient vectors taken from Ks.

In [2], it was shown that the containment problem for linear sets is log-hard in Πp
2. We

strengthen this result by showing that even the corresponding promise problem exhibits this
kind of hardness. This slightly stronger result will later help us to prove the hardness of the
containment problem for 1-dimensional linear sets.

I Theorem 10. The containment problem for linear sets is log-hard in Πp
2 even under the

promise (1) and even when numbers are encoded in unary.

Proof. We will describe a logspace reduction from the containment problem for simple unary
(+,∪)-expressions to the containment problem for linear sets. An instance of the former
problem is of the form

E =
s∑

i=1
(Bi1 ∪Bi2) and E′ =

s′∑
i=1

(B′i1 ∪B′i2) (2)

where Bi1, Bi2, B′i1, B′i2 ∈ {0, 1}m. Note that we may set s′ = s because we could add
sum-terms of the form (0m ∪ 0m) to the expression which has fewer terms. Our goal is to
design (2m + 2s)-dimensional linear sets c + 〈P 〉 and 〈P ′ ∪ P ′′〉 such that

L(E) ⊆ L(E′)⇔ c + 〈P 〉 ⊆ 〈P ′ ∪ P ′′〉 . (3)

Intuitively, we should think of vectors from N2m+2s
0 as being decomposed into four sections

of dimension m, s, s, m, respectively. The first section is called the “base section”; the latter
three are called “control sections”. The constant vector c and the periods in P = {pij : i ∈
[s], j ∈ [2]} are chosen as follows:

c = (0m, 2s, 1s, 1m) and pij = (Bij, es
i , 0s, 0m) . (4)

Note that the base section of the periods in P contains the atomic sub-expressions of E. The
vectors in N2m+2s

0 having (3s, 1s, 1m) in their control sections are said to be “essential”. It
is evident that

L(E)× {3}s × {1}s × {1}m = (c + 〈P 〉) ∩ (Nm
0 × {3}s × {1}s × {1}m) .

In other words: the set of base sections of the essential vectors in c + 〈P 〉 coincides with
L(E). The periods in P ′ = {p′ij : i ∈ [s], j ∈ [2]} are similarly defined as the periods in P :

p′ij =
{

(B′ij, 3 · es
i , es

i , 0m) if i ∈ [s− 1]
(B′sj, 3 · es

s, es
i , 1m) if i = s

.

Clearly,

L(E′)× {3}s × {1}s × {1}m = 〈P ′〉 ∩ (Nm
0 × {3}s × {1}s × {1}m) .

Note that L(E) ⊆ L(E′) iff any essential vector in c + 〈P 〉 is contained in 〈P ′〉. In order to
get the desired equivalence (3), we will design P ′′ such that the following holds:

STACS 2018
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Claim 1: Any inessential vector from c + 〈P 〉 is contained in 〈P ′′〉.
Claim 2: Any essential vector in c + 〈P 〉 is contained in 〈P ′ ∪ P ′′〉 only if it is already

contained in 〈P ′〉.
It is evident that (3) is valid if P ′′ can be defined in accordance with the two above claims.
Let n = 1 + max{xi : x ∈ L(E), i ∈ [m]}, i.e., n− 1 is the largest number that occurs in a
component of some vector in L(E). We now set P ′′ = P ′′1 ∪ P ′′2 where

P ′′1 = {(0m, 2 · es
i , 1s, 0m), (0m, 2 · es

i , 0s, 0m), (0m, 3 · es
i , 0s, 0m) : i ∈ [s]} ,

P ′′2 = {(r · em
i , 0s, 0s, em

i ), (n · em
i , 0s, 0s, 0m) : i ∈ [m], r ∈ {0, 1, . . . , n− 1}} .

The proof of the theorem can now be accomplished by showing that the above two claims
are valid for our definition of P ′′ (and by adding some easy observations).
Proof of Claim 1: Let x ∈ c + 〈P 〉 be inessential. An inspection of (4) reveals that there

must exist an index i0 ∈ [s] such that the i0-th component of the first control section of x
has a value that differs from 3. Since already the constant vector c makes a contribution
of 2 in this control section, the possible values for xm+i0 are 2, 4, 5, 6, . . .. In order to
cast x as a member of 〈P ′′〉, we first pick the vector u = (0m, 2 · es

i0
, 1s, 0m). Note that

u ≤ x and u already coincides with x in the second control section. Adding to u properly
chosen multiples of vectors of the form (0m, 2 ·es

i , 0s, 0m) or (0m, 3 ·es
i , 0s, 0m), we obtain

a vector v ≤ x that coincides with x also in the first control section. Consider now
the entries of v and x in the base section. For any i ∈ [m], consider the decomposition
xi − vi = qin + ri with qi ≥ 0 and 0 ≤ ri ≤ n− 1. Adding to v the vector

m∑
i=1

(qi · (n · em
i , 0s, 0s, 0m) + (ri · em

i , 0s, 0s, em
i )) ,

we obtain a vector that coincides with x (since, by now, it also coincides with x in the
base section and in the third control section).

Proof of Claim 2: Let x ∈ c + 〈P 〉 be essential and suppose that x ∈ 〈P ′ ∪ P ′′〉. A
representation of x as a member of 〈P ′ ∪ P ′′〉 cannot make use of a vector of the form
(0m, 2 · es

i , 1s, 0m) because there is no way to extend the value 2 in the i-th component of
the first control section to 3 (since any period in P ′ ∪ P ′′ adds either 0 or a value greater
than 1 to this component). Given that we do not employ these vectors, it follows that any
representation of x as a member of 〈P ′ ∪ P ′′〉 must be of the form x = x′ + x′′ for some
essential vector x′ ∈ 〈P ′〉 and some vector x′′ ∈ 〈P ′ ∪ P ′′〉 (because, without employing
an essential vector from 〈P ′〉, we wouldn’t get 1s into the second control section). Since
x′ is essential, it will already contribute (3s, 1s, 1m) to the three control sections. It
follows that x′′ = 02m+2s because adding any period from P ′ ∪ P ′′ to x′ will destroy the
pattern (3s, 1s, 1m) in the control sections or will induce a component of value at least
n in the base section (which is larger than any component of x in the base section). It
follows that x = x′ ∈ 〈P ′〉.

It can be shown by standard arguments that the transformation (E, E′) 7→ (c, P, P ′, P ′′)
is logspace-computable (even when numbers are encoded in unary). Finally observe that
the above definition of essential vectors implies that every essential vector from c + 〈P 〉
employs a coefficient vector from {0, 1}|P | with precisely s ones. Since any inessential vector
from c + 〈P 〉 also belongs to 〈P ′〉 ⊆ 〈P ′ ∪ P ′′〉, the promised condition (1) is satisfied (with
P ′ ∪ P ′′ at the place of Q). This concludes the proof. J

We will show in the sequel that the containment problem for 1-dimensional linear sets
(with numerical input parameters given in binary representation) is log-hard in Πp

2. To this
end, we will make use of the following result on the aggregation of diophantine equations:
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I Lemma 11 ([3]). Let
r∑

j=1
a1jxj = b1 and

r∑
j=1

a2jxj = b2 (5)

be a system of two linear diophantine equations where a1j , a2j are non-negative integers
and b1, b2 are strictly positive integers. Let t1, t2 be positive integers satisfying the following
conditions:
1. t1 and t2 are relatively prime.
2. t1 does not divide b2 and t2 does not divide b1.
3. t1 > b2 − a2 and t2 > b1 − a1 where ai denotes the smallest nonzero coefficient in
{ai1, . . . , air}.

Then, restricting xj to non-negative integers, the solution set of (5) is the same as the solution
set of

t1 ·
r∑

j=1
a1jxj + t2 ·

r∑
j=1

a2jxj = t1 · b1 + t2 · b2 .

Note that

t1 = 1 + max{b1, b2} and t2 = 1 + t1 (6)

is among the choices for t1, t2 such that the three conditions mentioned in Theorem 11 are
satisfied.
From Lemma 11, the following result can be derived:

I Lemma 12. Let c ∈ Nm
0 , A ∈ Nm×r

0 and A′ ∈ Nm×r′

0 . Let A1, . . . , Am and A′1, . . . , A′m
denote the row vectors of A and A′, respectively. Let s ≥ 1 and

Ks = {x ∈ {0, 1}r :
r∑

i=1
xi = s} .

Suppose that the following holds:

∀x ∈ Nr
0 \Ks,∃y ∈ Nr′

0 : c + Ax = A′y . (7)

Then there exist t∗1, . . . , t∗m ∈ N such that

(∀x ∈ Nr
0,∃y ∈ Nr′

0 : c + Ax = A′y)⇔∀x ∈ Nr
0,∃y ∈ Nr′

0 :
m∑

j=1
t∗j cj +

m∑
j=1

t∗j Ajx =
m∑

j=1
t∗j A′jy

 . (8)

Moreover, the aggregation coefficients t∗1, . . . , t∗m are logspace-computable from c, A, A′.

Proof. A solution for a system of m diophantine equations is always a solution for a single
equation that represents an aggregation of the m given equations (regardless of how the
aggregation coefficients t∗1, . . . , t∗m are chosen). Hence the equivalence (8) certainly holds for
every x ∈ Nr

0 \Ks and the direction “⇒” certainly holds for every x ∈ Ks. Therefore, we
need to verify only that there exist t∗1, . . . , t∗m ∈ N such that the following implication is
valid:

(∃x ∈ Ks,∀y ∈ Nr′

0 : c + Ax 6= A′y)⇒∃x ∈ Ks,∀y ∈ Nr′

0 :
m∑

j=1
t∗j cj +

m∑
j=1

t∗j Ajx 6=
m∑

j=1
t∗j A′jy

 . (9)
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It is evident that (9) follows from (7) if A is the all-zeros matrix. We assume therefore in the
sequel that A has at least one entry in N. Clearly c + Ax = A′y can be written in the form

[
−A A′

]( x
y

)
= c .

Moreover, for x ∈ Ks and any u > 0, it can be written as follows:

[
(uJ −A) A′

]( x
y

)
= c + u · s · 1m . (10)

Here J denotes the m× r all-ones matrix. Setting u equal to the largest absolute value of
an entry in the matrix −A, the matrix uJ − A has non-negative entries. Note that u ≥ 1
since A has at least one entry in N. Hence c + us1m ∈ Nm so that we may bring Lemma 11
into play. Actually, we will apply this lemma iteratively in stages. In the first stage, we
decompose the m diophantine equations in (10) into m/2 pairs, and we aggregate every
pair into a single equation (by virtue of Lemma 11). After Stage 1, we are left with m/2
diophantine equations. Iterating this procedure for a total of dlog(m)e stages, we finally
arrive at a single diophantine equation whose solution space in Nr+r′

0 coincides with the
solution space for (10) in Nr+r′

0 . Moreover, for all (x, y) ∈ Ks ×Nr′

0 , it even coincides with
the solution space for c + Ax = A′y. Hence the implication (9) is valid, as desired.
Since, in any individual application of Lemma 11, the coefficients t1, t2 can be chosen
according to (6), the final aggregation coefficients t∗1, . . . , t∗m are easy to compute and, in fact,
logspace computable from c, A, A′ if all details are filled in properly. J

We are ready now for the next result:

I Theorem 13. The containment problem for 1-dimensional linear sets is log-hard in Πp
2.

Proof. We reuse the notations from the proof of Theorem 10. Within that proof, we described
a transformation (E, E′) 7→ (c, P, P ′, P ′′) which maps an instance of the containment problem
for simple unary (+,∪)-expressions into an instance of the containment problem for linear
sets such that the latter satisfies the promised condition (1)2 and such that the equivalence (3)
is valid. Let d denote denote the dimension of the linear sets c+ 〈P 〉 and 〈P ′∪P ′′〉. Moreover
let r = |P | and r′ = |P ′ ∪ P ′′|. Let A be the (d × r)-matrix with the periods from P as
column vectors. Similarly, let A′ be the (d× r′)- matrix with periods from P ′ ∪P ′′ as column
vectors. It follows immediately from (3) that L(E) ⊆ L(E′) iff

∀x ∈ Nr
0,∃y ∈ Nr′

0 : c + Ax = A′y .

Note that condition (1), written in matrix notation, translates into (7). According to
Lemma 12, there exist t∗1, . . . , t∗m such that the equivalence in (8) is valid. Setting c0 =∑m

j=1 t∗j cj , qi =
∑m

j=1 t∗j Aji for i = 1, . . . , r, and q′i =
∑m

j=1 t∗j A′ji for i = 1, . . . , r′, Q =
{q1, . . . , qr} and Q′ = {q′1, . . . , q′r′}, we obtain a transformation (E, E′) 7→ (c0, Q, Q′), which
witnesses that the containment problem for 1-dimensional linear sets is log-hard in Πp

2. J

Combining the restrictions of dimensionality 1 and unary encoding of numbers, the
containment problem for linear sets becomes solvable in polynomial time:

I Theorem 14. The containment problem for 1-dimensional linear sets with a unary encoding
of numbers is in P .

2 with P ′ ∪ P ′′ at the place of Q
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Proof. Consider an input instance given by (the unary encoding of) c, P, c′, P ′ with c, c′ ∈ N0
and P, P ′ ⊂ N. Let g (resp. g′) be the greatest common divisor of the periods in P (resp. in
P ′). We make the following observation:
Claim: The containment c + 〈P 〉 ⊆ c′ + 〈P ′〉 is possible only if c′ ≤ c and if g′ is a divisor of

g and of c− c′.
Given the assertion in the claim, we can accomplish the proof as follows. Setting c0 = c−c′, our
original question, “c+〈P 〉 ⊆ c′+〈P ′〉?”, is equivalent to “c0 +〈P 〉 ⊆ 〈P ′〉?”. We may now even
assume that g′ = 1 (because, if necessary, we can divide all numerical parameters by g′). If 1 is
among the periods of P ′, then the answer to “c0 + 〈P 〉 ⊆ 〈P ′〉?” is clearly “yes”. Suppose now
that 1 /∈ P ′. It is well known that 〈P ′〉 contains all but finitely many natural numbers [6]. Let
F (P ′) (called the Frobenius number of P ′) denote the largest number inN that is not contained
in 〈P ′〉. It is well known that F (P ′) < (max(P ′) − 1) · (min(P ′) − 1) [1]. The questions
“x ∈ c0 + 〈P 〉?” and “x ∈ 〈P ′〉?” can be answered for all x < (max(P ′)− 1) · (min(P ′)− 1)
in the obvious way by dynamic programming. Given the answers to these questions, we can
immediately decide whether c0 + 〈P 〉 ⊆ 〈P ′〉.
All that remains to be done is proving the above claim. Suppose that

c + 〈P 〉 ⊆ c′ + 〈P ′〉 . (11)

This obviously implies that c′ ≤ c. It is furthermore obvious that 〈P 〉 ⊆ g · N0 and
〈P ′〉 ⊆ g′ ·N0. Moreover, by the definition of the Frobenius number, s := g · F

(
( 1

g · 〈P 〉〉
)
is

the largest multiple of g that does not belong to 〈P 〉. Hence c + s + g, c + s + 2g ∈ c + 〈P 〉
and, because of (11), there must exist q2 > q1 ≥ 1 such that c + s + g = c′ + q1g′ and
c + s + 2g = c′ + q2g′. Now we obtain g = (q2 − q1)g′ so that g′ is a divisor of g. Since
(c− c′) + 〈P 〉 ⊆ 〈P ′〉 ⊆ g′ ·N0 and 〈P 〉 contains only multiples of g′ (because it only contains
multiples of g), it follows that g′ must also be a divisor of c− c′, which concludes the proof
of the claim and the proof of the theorem. J

4 Proof of Theorem 9

It is easy to see that the containment problem for simple unary (+,∪)-expressions is a
member of the complexity class Πp

2. In somewhat more detail, let E and E′ be two simple
unary expressions of the form (2). Then L(E) ⊆ L(E′) iff

∀a ∈ {1, 2}s,∃a′ ∈ {1, 2}s′
:

s∑
i=1

Biai =
s′∑

i=1
B′ia′

i
.

The membership in Πp
2 is now immediate from a well known characterization of Πp

2 due to
Wrathall [8]: L ∈ Πp

2 iff there exists a polynomial q and a language L0 ∈ P such that

L = {x|(∀y1 with |y1| ≤ q(|x|))(∃y2 with |y2| ≤ q(|x|)) : 〈y1, y2, x〉 ∈ L0} .

It remains to show that it is log-hard in Πp
2. To this end, we will design a logspace

reduction from B2
DNF to this problem. Let f(X1, X2) be an instance of B2

DNF (as described
in Example 4). Since f employs only finitely many variables, we may assume that Xi =
{xi1, . . . , xin} for i = 1, 2 and some n ≥ 1. As a DNF-formula, f is the disjunction of
Boolean monomials, say f = M1 ∨ . . . ∨Mm. We may clearly assume that none of the
monomials contains the same variable twice. We will transform f(X1, X2) into simple unary
(+,∪)-expressions E1 and E2 such that

(∀X1,∃X2 : f(X1, X2) = 0)⇔ (L(E1) ⊆ L(E2)) . (12)

STACS 2018
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For all i = 1, . . . , n and j = 1, . . . , m, let

b1i[j] =
{

1 if x1i ∈Mj

0 otherwise ,

i.e., the binary vector b1i ∈ {0, 1}m indicates in which monomials the variable x1i actually
occurs. Let b′1i ∈ {0, 1}m denote the corresponding vector with indicator bits for the
occurrences of x1i within M1, . . . , Mm. Let the vectors b1i and b′1i be obtained from b1i
and b′1i, respectively, by bitwise negation. Clearly, the bits of these vectors indicate the non-
occurrences of x1i resp. x1i within M1, . . . , Mm. Let b2i, b′2i, b2i, b′2i be the corresponding
vectors with indicator bits for the occurrences resp. non-occurrences of the variable x2i. We
now define a couple of (+,∪)-expressions:

E′1 =
n∑

i=1
(1m ∪ 1m) and E1 = E′1 +

n∑
i=1

(b1i ∪ b′1i)

E′2 =
m∑

j=1

2n−1∑
i=1

(em
j ∪ 0m) and E2 = E′2 +

n∑
i=1

(b2i ∪ b′2i) .

The following immediate observations will prove useful:
1. L(E′1) = {n · 1m} and L(E′2) = {0, . . . , 2n− 1}m.
2. L(E1) ⊆ {n, . . . , 2n}m and L(E2) ⊇ {n, . . . , 2n− 1}m.
Note that the only vectors of L(E1) which might perhaps not belong to L(E2) are the ones
with at least one component of size 2n. The following definitions take care of these “critical
vectors”. We say that a partial assignment of the variables in X1∪X2 annuls Mj if one of the
literals contained in Mj is set to 0. Let y ∈ {n, . . . , 2n}m. An assignment A1 : X1 → {0, 1}
is said to be an X1-assignment of type y if the following holds:

∀j = 1, . . . , m : (y[j] = 2n⇔ A1 does not annul Mj) .

We say that A2 : X2 → {0, 1} is an X2-assignment of type y if the following holds:

∀j = 1, . . . , m : (y[j] = 2n⇒ A2 annuls Mj) .

The desired equivalence (12) is easy to derive from the following claims:
Claim 1: For every y ∈ L(E1), there exists an X1-assignment A1 of type y.
Claim 2: For every A1 : X1 → {0, 1}, there exists y ∈ L(E1) such that A1 is an X1-

assignment of type y.
Claim 3: For every y ∈ {n, . . . , 2n}m:

y ∈ L(E2)⇔ (∃A2 : X2 → {0, 1} : A2 is an X2-assignment of type y) .

Proof of Claim 1: Pick any y ∈ L(E1). It follows that y is of the form

y = n · 1m +
n∑

i=1
b̃1i with b̃1i ∈ {b1i, b′1i} . (13)

If b̃1i = b1i, we set A1(x1i) = 0 else, if b̃1i = b′1i, we set A1(x1i) = 1. We claim that A1
is of type y. This can be seen as follows. Pick any j ∈ {1, . . . , m}. An inspection of (13)
reveals the following:

Suppose that y[j] = 2n. It follows that b̃1i[j] = 1 for i = 1, . . . , n. Hence, if b̃1i = b1i,
then A1(x1i) = 0, b1i[j] = 1 and, therefore, x1i /∈ Mj . Similarly, if b̃1i = b′1i, then
A1(x1i) = 1, b′1i[j] = 1 and, therefore, x1i /∈Mj . Since these observations hold for all
i = 1, . . . , n, we may conclude that A1 does not annul Mj .
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Suppose that y[j] ≤ 2n − 1. Then there exists i ∈ {1, . . . , n} such that b̃1i[j] = 0.
Hence, if b̃1i = b1i, then A1(x1i) = 0, b1i[j] = 0 and, therefore, x1i ∈Mj . Similarly,
if b̃1i = b′1i, then A1(x1i) = 1, b′1i[j] = 0 and, therefore, x1i ∈Mj . It follows that A1
does annul Mj .

The above discussion shows that A1 is of type y, indeed.
Proof of Claim 2: Given any A1 : X1 → {0, 1}, we set y = n·1m+

∑n
i=1 b̃1i where b̃1i = b1i

if A1(x1i) = 0 and, similarly, b̃1i = b′1i if A1(x1i) = 1. Note that, with this definition
of y, A1 is precisely the X1-assignment that we had chosen in the proof of Claim 1. As
argued in the proof of Claim 1 already, A1 is of type y.

Proof of Claim 3: Pick any y ∈ {n, . . . , 2n}m. Suppose first that y ∈ L(E2). It follows that
y is of the form

y = y′ +
n∑

i=1
b̃2i with y′ ∈ {0, . . . , 2n− 1}m and b̃2i ∈ {b2i, b′2i} . (14)

If b̃2i = b2i, we set A2(x2i) = 0 else, if b̃2i = b′2i, we set A2(x2i) = 1. We claim that
A2 is of type y. Consider an index j ∈ {1, . . . , m} such that y[j] = 2n. An inspection
of (14) reveals that there exists i ∈ {1, . . . , n} such that b̃2i[j] = 1. If b̃2i = b2i, then
A2(x2i) = 0, b2i[j] = 1 and, therefore, x2i ∈Mj . Similarly, if b̃2i = b′2i, then A2(x2i) = 1,
b′2i[j] = 1 and, therefore, x2i ∈ Mj . In any case, A2 annuls Mj and we may conclude
that A2 is of type y.
Suppose now that there exists an X2-assignment A2 that is of type y ∈ {n, . . . , 2n}m.
We define y′′ =

∑n
i=1 b̃2i where b̃2i = b2i if A2(x2i) = 0 and, similarly, b̃2i = b′2i if

A2(x2i) = 1. Since A2 is of type y, it annuls every Mj with y[j] = 2n. It follows that,
for every j ∈ {1, . . . , m} with y[j] = 2n, there exists i ∈ {1, . . . , n} such either x2i ∈Mj

and A2(x2i) = 0 or x2i ∈ Mj and A2(x2i) = 1. In both cases, we have that b̃2i[j] = 1.
It follows from this discussion that y′′[j] ≥ 1 for every j with y[j] = 2n. Obviously
y′′[j] ≤ n for all j = 1, . . . , m. Since L(E′2) = {0, . . . , 2n − 1}m and y ∈ {n, . . . , 2n}m,
there exists y′ ∈ L(E2) such that y = y′ + y′′. This decomposition of y shows that
y ∈ L(E2).

We are ready now for proving (12). Assume first that the condition on the left hand-side
of (12) is valid. Pick any y ∈ L(E1). Pick an X1-assignment A1 of type y (application of
Claim 1). It follows that the monomials Mj with y[j] = 2n are not yet annulled by A1.
According to the left hand-side of (12), there must exist an assignment A2 : X2 → {0, 1}
that annuls them. In other words: A2 is an X2-assignment of type y. We may now conclude
from Claim 3 that y ∈ L(E2), as desired.
Suppose now that L(E1) ⊆ L(E2). Pick any assignment A1 : X1 → {0, 1}. Pick y ∈ L(E1)
such A1 is an X1-assignment of type y (application of Claim 2). It follows that only the
monomials Mj with y[j] = 2n are not yet annulled by A1. Since y, as an element of L(E1),
must satisfy y ∈ {n, . . . , 2n}m and must furthermore belong to L(E2), we may conclude from
Claim 3 that there exists an X2-assignment A2 : X2 → {0, 1} of type y. In other words: A2
annuls all monomials Mj with y[j] = 2n. It follows from this discussion that the condition
on the left hand-side of (12) is valid, which concludes the proof.

5 Open Problems

In the proof of our hardness results, we made essential use of the fact that 〈P 〉 contains all
linear combinations of the periods in P with coefficient vectors from N

|P |
0 . We would be

interested to know whether the computational complexity of the containment problem is still
the same when we deal with coefficient vectors from N|P | (thereby ruling out 0-coefficients).

STACS 2018
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Abstract
We improve the best known upper bound on the length of the shortest reset words of synchronizing
automata. The new bound is slightly better than 114n3/685+O(n2). The Černý conjecture states
that (n−1)2 is an upper bound. So far, the best general upper bound was (n3−n)/6−1 obtained
by J.-E. Pin and P. Frankl in 1982. Despite a number of efforts, it remained unchanged for about
35 years.

To obtain the new upper bound we utilize avoiding words. A word is avoiding for a state q
if after reading the word the automaton cannot be in q. We obtain upper bounds on the length
of the shortest avoiding words, and using the approach of Trahtman from 2011 combined with
the well-known Frankl theorem from 1982, we improve the general upper bound on the length of
the shortest reset words. For all the bounds, there exist polynomial algorithms finding a word of
length not exceeding the bound.
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1 Introduction

We deal with deterministic finite complete (semi)automata A (Q,Σ, δ), where Q is the set of
states, Σ is the input alphabet, and δ : Q× Σ→ Q is the transition function. We extend δ
to the function Q× Σ∗ → Q in the usual way. Throughout the paper, by n we denote the
number of states |Q|.

By Σ≤i we denote the set of all words over Σ of length at most i. Given a state q ∈ Q
and a word w ∈ Σ∗ we write shortly q ·w = δ(q, w). Given a subset S ⊆ Q we write S ·w for
the image {q · w | q ∈ S}. Then, S · w−1 is the preimage {q ∈ Q | q · w ∈ S}, and when S is
a singleton we also write q · w−1 = {q} · w−1.

The rank of a word w ∈ Σ∗ is the cardinality of the image of Q under the action of
this word: |Q · w|. A word is reset or synchronizing if it has rank 1. An automaton is
synchronizing if it admits a reset word. The reset threshold rt(A ) is the length of the shortest
reset words.
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Figure 1 The Černý automaton with 4 states.

We say that a word w ∈ Σ∗ compresses a subset S ⊆ Q if |S · w| < |S|. A word w ∈ Σ∗
avoids a state q ∈ Q if q /∈ Q ·w. A state that admits an avoiding word is avoidable. We also
say that a state q is avoidable from a subset S if there exists a word w such that q /∈ S · w.

The famous Černý conjecture, formally formulated in 1969, is one of the most longstanding
open problems in automata theory. It states that every synchronizing n-state automaton has
a reset word of length at most (n− 1)2. This bound would be tight, since it is reached for
every n by the Černý automata [7]. Fig. 1 shows the Černý automaton with n = 4 states.
Its shortest reset word is ba3ba3b.

The first general upper bound for the reset threshold given by Černý in [7] was 2n−n− 1.
Later, it was improved several times: 1

2n
3 − 3

2n
2 + n+ 1 given by Starke [23] in 1966, 1

3n
3 −

3
2n

2 + 25/6n−4 by Černý, Pirická, and Rosenauerová [8] in 1971, 7
27n

3−17/18n2 + 17/6n−3
by Pin [19] in 1978, and ( 1

2 −
π
36 )n3 + o(n3) by Pin [21] in 1981.

Then, the well known upper bound was established in 1982 by Pin and Frankl through
the following combinatorial theorem:

I Theorem 1 ([12, 21]). Let A (Q,Σ, δ) be a strongly connected synchronizing automaton,
and consider a subset S ⊆ Q of cardinality ≥ 2. Then there exists a word such that |S ·w| < |S|
of length at most

(n− |S|+ 2) · (n− |S|+ 1)
2 .

For integers 1 ≤ i, j ≤ n we define

C(j, i) =
j∑

s=i+1

(n− s+ 2) · (n− s+ 1)
2 .

From Theorem 1, C(j, i) is an upper bound on the length of the shortest words compressing a
subset of size j to a subset of size at most i: starting from a subset S of size j, we iteratively
apply Theorem 1 to bound the length of a shortest word compressing each (in the worst
case) of the obtained subsets of sizes j, j − 1, . . . , i+ 1. This yields the well known bound on
the length of the shortest reset words:

rt(A ) ≤ C(n, 1) = n3 − n
6 .

This bound was also discovered independently in [17]. Actually, the best bound was n3−n
6 − 1

(for n ≥ 4), since Pin [21] proved that (for n ≥ 4) there is a word compressing Q to a subset
of size n− 3 by a word of length 9 (instead of 10). Theorem 1 also bounds the lengths of a
compressing word found by a greedy algorithm (e.g. [1, 11]), which is an algorithm finding a
reset word by iterative application of a shortest word compressing the current subset. For
about 35 years, there was no progress in improving the bound in the general case.
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However, better bounds have been obtained for a lot of special classes of automata, for
example for oriented (monotonic) automata [11], circular automata [10], Eulerian automata
[15], aperiodic automata [26], generalized and weakly monotonic automata [2, 29], automata
with a sink (zero) state [18], one-cluster automata [3, 25], quasi-Eulerian and quasi-one-cluster
automata [5], automata respecting intervals of a directed graph [14], decoders of finite prefix
codes [4, 6], automata with a letter of small rank [4, 20], and 1-contracting automata [9]. See
also [28] for a survey.

In 2011, Trahtman claimed the better upper bound (7n3 +6n−16)/48 [27]. Unfortunately,
the proof contains an error, and so the result remains unproved. The idea was to utilize
avoiding words; [27, Lemma 3] states that for every q ∈ Q there exists an avoiding word of
length at most n−1. A counterexample to this was found in [13], where it was also suggested
that providing any linear upper bound on the length of avoiding words would also imply an
improvement for the upper bound on the reset threshold.

The avoiding word problem is similar to synchronization: instead of bringing the au-
tomaton into one state, we ask how long word we require to not being in a particular state.
For the automaton from Fig. 1, the shortest avoiding words for states 1, 2, 3, 4 are ba, baa,
baaa, and b, respectively. So far, only a trivial cubic upper bound rt(A ) + 1 was known for
synchronizing automata. Avoiding words do not necessarily exist in general, but they always
do for every state in the case of a synchronizing automaton unless there is a sink state ([18]),
for which all letters act like identity.

The main contributions in this paper are as follows: We prove upper bounds on the
length of the shortest avoiding words, in particular the quadratic bound (n− 1)(n− 2) + 2.
Also, the length of avoiding words is connected with the length of compressing words. We
show that for every state q and a subset of states S, either there is a short avoiding word for
q from S or a short compressing word for S. This connection leads to the main idea for the
improvement of the general upper bound on the reset threshold: either improve by avoiding
words, or use shorter compressing words directly to reduce the bound obtained by Theorem 1.
In contrast to the previous approaches, which bounded the length of the compressing words
independently for each size |S|, the new bound utilizes a conditional approach.

The new upper bound is

(85059n3 + 90024n2 + 196504n− 10648)/511104,

which is slightly better than the much simpler formula 114n3/685 + O(n2). The latter
improves the coefficient of n3 by 1/4110. In the last section we discuss open problems and
further possibilities for improvements.

2 Avoiding words

For the next lemma, we need to introduce a few definitions from linear algebra for automata
(see, e.g., [4, 15, 20]). By Rn we denote the real n-dimensional linear space of row vectors.
Without loss of generality we assume that Q = {1, 2, . . . , n}. For a vector v ∈ Rn, we denote
the value at an i-th position by v(i). For a subset S ⊆ Q, by [S] we denote its characteristic
row vector, which has [S](i) = 1 if i ∈ S, and [S](i) = 0 otherwise. Similarly, for a matrix
M , we denote the value at an i-th row and a j-th column by M(i, j). For a word w ∈ Σ∗, by
[w] we denote the n× n matrix of the transformation of w: [w](i, j) = 1 if i · w = j (state i
is mapped to state j by the transformation of w), and [w](i, j) = 0 otherwise.

Right matrix multiplication corresponds to concatenation of two words; i.e. for every
two words u, v ∈ Σ∗ we have [uv] = [u] · [v]. For a subset S we have ([S][u])(i) equal to
the number of states from S mapped by the transformation of u to state i. In particular,
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([S][u])(i) ≥ 1 if and only if [S · u](i) = 1. Note that for w ∈ Σ∗, the matrix [w] contains
exactly one 1 in each row. Therefore, these are stochastic matrices, and we have the property
that for any v ∈ Rn, right matrix multiplication by [w] preserves the sum of the entries, i.e.∑
i∈Q[v](i) =

∑
i∈Q([v][w])(i).

For example, for the automaton from Fig. 1 we have:

[a] =
(

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

)
, [b] =

(
1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 0

)
, [ba] =

(
0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0

)
.

If [S] = [1, 0, 1, 1], then [S][ba] = [S][b][a] = [0, 2, 0, 1].
The linear subspace spanned by a set of vectors V is denoted by span(V ). Given a

linear subspace L ⊆ Rn and an n × n matrix m, the linear subspace mapped by m is
Lm = {vm | v ∈ L}. The dimension of a linear subspace L is denoted by dim(L).

The following key lemma states that by a short (linear) word we can either avoid a state
(or one of the states from some set A) from the current subset or compress the current subset.

I Lemma 2. Let A (Q,Σ, δ) be an n-state automaton. Consider a non-empty subset S ⊆ Q
and a non-empty proper subset A ( S. Suppose that there is a word w ∈ Σ∗ such that
A * S · w. Then there exists a word w length at most n− |A| satisfying either
1. A * S · w, or
2. |S · w| < |S|.

Proof. Let Li = span({[S][w] | w ∈ Σ≤i}). We consider the following sequence of linear
subspaces:

L0 ⊆ L1 ⊆ L2 ⊆ . . . ,

and use the ascending chain condition (see, e.g., [4, 15, 20, 24]):
If Lk = Lk+1, then we claim that also Lk+1 = Lk+2 = . . . holds. Observe that for all
i ≥ 0 we have:

Li+1 = span
(
Li ∪

⋃
a∈Σ

Li[a]
)
.

Hence, if Lk = Lk+1, then for i = k we obtain

Lk+1 = span
(
Lk+1 ∪

⋃
a∈Σ

Lk+1[a]
)

= Lk+2,

and so Lk+i = Lk for all i ≥ 0.
Let i be the smallest integer such that Li = Li+1. Then m = dim(Li) is the maximum
among the dimensions of the subspaces from the above sequence.
dim(L0) = 1 and the dimensions grow by at least 1 up to m. Hence, we have

dim(Ln−|A|) ≥ min{m,n− |A|+ 1}.

Note that if for a word w the vector v = [S][w] has v(q) = 0 for some q ∈ A, then q /∈ S ·w,
and we have Case (1). If v = [S][w] has v(q) ≥ 2 for some q ∈ A, then a pair of states from
S is compressed by the action of w (to state q), and we have Case (2).

Now, we show that in the spanning set of Ln−|A| there must be a vector that contains
either 0 or an integer ≥ 2 at the position corresponding to a state from A, which implies that
there exists a word w of length at most n−|A| satisfying either Case (1) or Case (2). Suppose
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for a contradiction that this is not the case. Every vector v ∈ Lk is a linear combination
of the vectors from the spanning set; let c be the sum of the coefficients of the spanning
vectors in such a linear combination. Every vector [S][w] in the spanning set has the sum
of elements equal to |S| and has 1 at all the positions corresponding to the states from A.
Hence, the sum of the entries in v is equal to c|S|, and at every position corresponding to the
states from A we have value c. The sum of the entries at the positions corresponding to the
states from Q \A equals c(|S| − |A|). Therefore, every q ∈ A satisfies the following equality:

v(q) = 1
|S| − |A|

·
∑

p∈Q\A

v(p).

It follows that the values at the positions corresponding to the states from A are completely
determined by the sum of the values from the other positions, which means that the dimension
of Ln−|A| is at most n− |A|. We assumed in the lemma that there exists a word w avoiding
a state from A. Hence, [S][w] has 0 at some position corresponding to a state from A, and
therefore breaks the above equality for this state, as the right side is non-zero. Therefore, the
subspace L|w| must have a larger dimension than dim(Ln−|A|). This means that the dimension
of Ln−|A| is not maximal, which contradicts dim(Ln−|A|) ≥ min{m,n− |A|+ 1}. J

Lemma 2 can be applied iteratively to obtain a word compressing the given subset to the
desired size.

I Lemma 3. Let A (Q,Σ, δ) be an n-state automaton. Consider a non-empty subset S ⊆ Q
and a non-empty proper subset A ( S. Let k ≥ 1 be an integer. Suppose that there exists
a word w ∈ Σ∗ such that A * S · w. Then there is a word w of length at most k(n − |A|)
satisfying either:
1. A * S · w, or
2. |S · w| ≤ |S| − k.

Proof. If Case (1) holds for some w ∈ Σ≤k(n−|A|) then we are done; suppose this is not the
case.

We iteratively apply Lemma 2 k times for subset A starting from subset S: For i = 1, . . . , k
we apply the lemma for the subset S · w1 . . . wi−1, where wj ∈ Σ≤n−|A| is the word obtained
from the lemma in the j-th iteration.

In every iteration, we must get Case (2) of Lemma 2 (|S · w| < |S|), as otherwise
A * S · w1 . . . wi, which contradicts our assumption that Case (1) does not hold for every
word of length at most k(n − |A|) ≥ i(n − |A|). Also, for i ≤ k − 1, we must have
A ⊂ S · w1 . . . wi (i.e. A is a proper subset); otherwise A * S · w1 . . . wia for some letter
a ∈ Σ as A contains a state that can be avoided from S, and this word has length at most
k(n− |A|) which again contradicts our assumption. Therefore, the conditions are met for
every iteration so we can apply the lemma k times.

It follows that the obtained word w1 . . . wk is such that |S · w1 . . . wk| ≤ |S| − k. J

If the subset A of states to avoid is large, the following approach can lead to a better
bound:

I Lemma 4. Let A (Q,Σ, δ) be an n-state automaton. Consider a non-empty subset S ⊆ Q
and a non-empty subset A ⊆ S. If there exists a word w ∈ Σ∗ such that A * S ·w, then there
exists such a word of length at most (|S| − |A|)(n− |A|) + 1.
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Proof. As in the proof of Lemma 3, we iteratively apply Lemma 2 at most |S| − |A| times
for subset A starting from subset S, stopping if the conditions are not met. It is possible
that we do not do any iteration, which is the case when A = S.

In every iteration, we obtain a word wi of length at most n − |A|. If we get A *
S ·w1 . . . wi in some i-th iteration, then we are done as the word w1 . . . wi has length at most
(|S| − |A|)(n− |A|).

If we get A = S · w1 . . . wi for some i ∈ {0, . . . , |S| − |A|}, then observe that there must
exist a letter a ∈ Σ such that A · a 6= A, because A contains an avoidable state from S ⊇ A.
Note that since |S ·w1 . . . wi| < |S ·w1 . . . wi−1| for every i = 1, . . . , k, after the (|S| − |A|)-th
iteration we must have |S · w1 . . . wk| ≤ |S| − (|S| − |A|) = |A|, we must get this case after
the last iteration. It follows that in any case we obtain the word w1 . . . wia of length at most
(|S| − |A|)(n− |A|) + 1. J

We state a quadratic upper bound on the length of the shortest avoiding words:

I Corollary 5. For n ≥ 2, in an n-state automaton A (Q,Σ, δ), for every non-empty proper
subset A ⊂ Q containing an avoidable state, there exists a word avoiding a state from A of
length at most

(n− 1− |A|)(n− |A|) + 2.

Proof. Since there exists an avoidable state in A, there is a letter a ∈ Σ such that |Q ·a| < n.
If A * Q · a then we are done with a word of length 1. Otherwise A ⊆ Q · a, so we use

Lemma 4 with subset A and subset S = Q·a. Since there exists a word avoiding a state from A,
the lemma yields a word w of length at most (|S|−|A|)(n−|A|)+1 ≤ (n−1−|A|)(n−|A|)+1.
Thus, aw avoids a state from A and has length at most (n− 1− |A|)(n− |A|) + 2. J

In particular, we obtain the upper bound (n− 2)(n− 1) + 2 on the length of the shortest
avoiding words for any state (|A| = 1).

I Theorem 6. The words from Lemma 2, Lemma 3, Lemma 4, and Corollary 5 can be found
in polynomial time.

Proof. We use the reduction procedure from [4], which in polynomial time replaces each set
Σ≤i in the proof of Lemma 2 with a set Wi containing at most i+ 1 words such that Li has
the same dimension.

The procedure starts for i = 0 with {ε} (the set with the empty word) and inductively
constructs a set Wi assuming we have found Wi−1. This is done by considering all words
wa for w ∈Wi−1 and a ∈ Σ and setting Wi = Wi−1 ∪ {wa} for which the dimension of the
corresponding subspace grows. There always exists such a word wa, which is argued by the
ascending chain condition.

Then, the set Wm is used to span the first linear subspace with the maximal dimension
(Lm), so we can find a word satisfying Case (1) or Case (2) of Lemma 2 in Wm. It is obvious
that the corresponding words from the other proofs are constructible in polynomial time. J

3 Improved bound on reset threshold

In this section, we consider a synchronizing n-state automaton A (Q,Σ, δ). Obviously, in
such an automaton, every state is avoidable unless there is a sink state (a state q such that
q · a = q for all a ∈ Σ), which cannot be avoided. For synchronizing automata with a sink
state the tight upper bound is n(n− 1)/2 (see, e.g., [22]). Thus we can assume that A does
not have a sink state, and so Lemma 2 and Lemma 3 can be applied for every non-empty
subset A.
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I Lemma 7. Let w ∈ Σ∗ and let g = min{|q · w−1| | q ∈ Q · w}. There are at least
(g + 1)|Q · w| − n states q ∈ Q · w such that |q · w−1| = g.

Proof. Let d be the number of states q ∈ Q ·w whose preimages under w−1 have size equal to
g. So |Q ·w| − d states have the preimages of size at least g+ 1. Note that (Q ·w) ·w−1 = Q,
and that the sets q ·w−1 and p ·w−1 are disjoint for all pairs of states q 6= p. So Q ·w−1 has
cardinality at least dg + (g + 1)(|Q ·w| − d) = (g + 1)|Q ·w| − d. Since this cannot be larger
than n = |Q|, we get d ≥ (g + 1)|Q · w| − n. J

From Lemma 7, in particular, we get that there are at least 2|Q · w| − n states in the image
Q · w with a unique state in the preimage.

The following lemma is based on [27, Lemma 4], but with a more general bound:

I Lemma 8. Let w ∈ Σ∗ be a word of rank r ≥ b(n+ 1)/2c. Suppose that for some integer
k ≥ 1, for every A ⊂ Q of size 1 ≤ |A| ≤ n− 1, there is a word vA ∈ Σ≤k(n−|A|) such that
A * Q · vA. Then there is a word of rank at most n/2 and length at most

|w|+ k
n2 − (2n− 2r − 1)2

4 .

Proof. For i = r, r− 1, . . . , bn/2c, we inductively construct words wi of length ≤ |w|+ k(r−
i)(2n− r − i− 1) of rank at most i. First, let wr = w.

Let i < r and suppose that we have already found wi+1. If already |Q ·wi+1| ≤ i then we
just set wi = wi+1. Otherwise, we have |Q · wi+1| = i+ 1.

Because i + 1 ≥ (n + 1)/2, there exists a non-empty subset of Q · wi+1 of states with
a unique state in the unique preimage. By Lemma 7, we let X ⊆ Q · wi+1 to be a subset
of size 2|Q · wi+1| − n = 2i + 2 − n of states q ∈ Q · wi+1 such that |q · w−1

i+1| = 1. We set
wi = vXwi+1, where vX is the avoiding word from the assumption of the lemma for set X.
We have p /∈ Q · vX for some p ∈ X.

State p is the only state mapped by the transformation of wi+1 to some state q = p ·wi+1,
i.e. there is no other state p′ such that p′·wi+1 = q. Hence we know that q /∈ Q·wi = Q·vXwi+1.
Since Q · wi ⊆ Q · wi+1, q /∈ Q · wi but q ∈ Q · wi+1, we have Q · wi ( Q · wi+1. Therefore,
we have rank

|Q · wi| ≤ |Q · wi+1| − 1 ≤ i+ 1− 1 = i,

and length

|wi| ≤ k(n− |A|) + |wi+1|
≤ 2k(n− i− 1) + k(r − (i+ 1))(2n− r − (i+ 1)− 1) + |w|
= k(r − i)(2n− r − i− 1) + |w|.

Finally, for i = bn/2c we obtain:

|w|+ k(r − bn/2c)(2n− r − bn/2c − 1)
≤ |w|+ k(r − (n− 1)/2)(2n− r − (n− 1)/2− 1)
= |w|+ k(n2 − (2n− 2r − 1)2)/4. J

Note that Lemma 4 also provides an upper bound on the length of the shortest avoiding
words, but it is larger than that the corresponding bound from Theorem 1, and so would not
yield an improvement when used as in Lemma 8. Therefore, we use there an assumption
about the length of the shortest avoiding words.
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We observe that it is profitable to use Theorem 1 to find the starting word w, as long as
C(i+ 1, i) is smaller than k(n− |A|). An approximate solution is to find the starting word w
of rank at most n− 4k. The following lemma utilizes this idea.

I Lemma 9. Suppose that for some integer k, 1 ≤ k ≤ n/8, for every A ⊂ Q of size
1 ≤ |A| ≤ n− 1, there is a word vA ∈ Σ≤k(n−|A|) such that A * Q · vA. Then there is a word
of rank at most n/2 and length at most

k
3n2 − 64k2 + 144k + 13

12 .

Proof. From Theorem 1, let w be a word of rank at most n− 4k and length at most

C(n, n− 4k) = 4k(8k2 + 6k + 1)/3.

If w has rank ≥ b(n+ 1)/2c, then we apply Lemma 8 and obtain a word of rank at most
n/2 and length at most

4k(8k2 + 6k + 1)
3 + k(n2 − (2n− 2(n− 4k)− 1)2)

4

= k(3n2 − 64k2 + 144k + 13)
12 .

Otherwise, w has rank < n/2, and because

k(n2 − (2n− 2(n− 4k)− 1)2)/4 = k(n2 − (8k − 1)2)/4

is positive for 1 ≤ k ≤ n/8 (and n ≥ 8), the upper bound is also valid. Thus, w has the
desired length. J

We prove a parametrized upper bound on the reset threshold, depending on whether the
assumption in Lemma 9 holds. When the assumption holds, the lemma provides an upper
bound using avoiding words; otherwise, we have a quadratic word of a particular rank that
yields an improvement.

I Lemma 10. For every integer 1 ≤ k ≤ n/8, there exists a reset word of length at most

max
{
k

3n2 − 64k2 + 144k + 13
12 , k(n− 1) + C(n− k, bn/2c)

}
+ C(bn/2c, 1).

Proof. We use Lemma 3 with the given k and subset S = Q.
Suppose that Case (1) from Lemma 3 holds for every A ⊂ Q with 1 ≤ |A| ≤ n− 1. Then

by Lemma 9 we obtain a word w of rank ≤ n/2 and length ≤ k(3n2 − 64k2 + 144k + 13)/12.
Suppose that Case (2) from Lemma 3 holds for some A ⊂ Q with 1 ≤ |A| ≤ n− 1. Then

we have a word w of rank ≤ n− k and length ≤ k(n− 1). By Theorem 1, we construct a
word compressing Q · w to a subset of size ≤ n/2. Then k(n − 1) + C(n − k, bn/2c) is an
upper bound for the length of the found word of rank ≤ n/2.

Finally, we need to take the maximum from both cases, and add C(bn/2c, 1) to bound
the length of a word compressing a subset of size bn/2c to a singleton. J

Now, by finding a suitable k, we state the new general upper bound on the reset threshold:

I Theorem 11.

rt(A ) ≤ (85059n3 + 90024n2 + 196504n− 10648)/511104.
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Proof. We use Lemma 10 with a suitable k that minimizes the maximum for large enough n.
First, we bound C(n− k, bn/2c) in the second argument in the maximum. If n is even

then

C(n− k, bn/2c) = C(n− k, n/2)

=
n−k∑

s=n/2+1

(n− s+ 2)(n− s+ 1)
2

= n3 + 6n2 + 8n− 8k3 − 24k2 − 16k
48 .

If n is odd then

C(n− k, bn/2c) = C(n− k, (n− 1)/2)

=
n−k∑

s=(n−1)/2+1

(n− s+ 2)(n− s+ 1)
2

= n3 + 9n2 + 23n− 8k3 − 24k2 − 16k + 15
48 ,

which is larger than the previous one.
Now we discuss our choice of k; any value of k gives a bound but we try to get it minimal.

Assume that n is large enough. Note that for the largest possible value k = n/8 the first
function in the maximum from Lemma 10 yields the coefficient of n3 equal to 1/48 (the same
as by C(n, bn/2c)), hence does not give an improvement. For a similar reason, we reject
small values k ∈ o(n). Within linear values k of n, the first function decreases and the second
function increases with k. Since they are continuous, it is enough to consider the values of
k such that both functions are equal. The approximate solution is k ' 0.11375462n. For
simplicity of the calculations and the final formula, we use the approximation k = b5/44nc.
Note that any value of k within the valid range will lead to a correct bound, and we use
5/44 since it is the best approximation by a rational number using integers with at most two
digits.

We assume n ≥ 9; for the smaller values of n the bound is a valid upper bound since it
gives larger values than the bound from Theorem 1.

In the following calculations, we use the fact that 5/44n− 1 < b5/44nc and 5/44n− 1 is
non-negative. By substitution, for the first function in the maximum we have

k
3n2 − 64k2 + 144k + 13

12

< (5/44n)3n2 − 64(5/44n− 1)2 + 144(5/44n) + 13
12

= (5n(263n2 + 3740n− 6171))/63888, (1)

and for the second function we have

k(n− 1) + n3 + 9n2 + 23n− 8k3 − 24k2 − 16k + 15
48

< (5/44n)(n− 1) +
(
n3 + 9n2 + 23n− 8(5/44n− 1)3

− 24(5/44n− 1)2 − 16(5/44n− 1) + 15
)
/48

= (10523n3 + 153912n2 + 196504n+ 159720)/511104. (2)

Note that (2) is larger than (1) for all n.
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Now we have to bound C(bn/2c, 1). If n is even then

C(bn/2c, 1) = C(n/2, 1) = (7n3 − 6n2 − 16)/48.

If n is odd then

C(bn/2c, 1) = C((n− 1)/2, 1) = (7n3 − 9n2 − 31n− 15)/48,

which is smaller than the previous one for n ≥ 2.
Finally, we obtain

10523n3 + 152262n2 + 189244n+ 191664
511104 + 7n3 − 6n2 − 16

48

= 85059n3 + 90024n2 + 196504n− 10648
511104 . J

The theorem improves the old well known bound (n3 − n)/6− 1 by the factor 85059/85184,
or by the coefficient 125/511104 of n3. This is slightly better than the simpler formula
114n3/685 +O(n2).

The bound does not necessarily apply for the words obtained by a greedy compression
algorithm for synchronization ([1, 11]), because the words in the proof of Lemma 8 are
constructed by appending avoiding words at the beginning. However, we can show that there
exists a polynomial algorithm finding words of lengths within the bound.

I Proposition 12. A reset word of length within the bound from Theorem 11 can be computed
in polynomial time.

Proof. We use k from the proof of Theorem 11. We follow the construction from the proof
of Lemma 8. By Theorem 6, we can compute a word from Lemma 2 for a subset A. If (1)
holds every time, then we use the obtained word from Lemma 8. Otherwise, we use the
word from Lemma 2 for which (2) holds. Finally, the words of lengths at most C(j, i) are
computed using a greedy compression algorithm ([1]). J

4 Further remarks

Although the improvement in terms of the cubic coefficient is small, it breaks longstanding
persistence of the old bound from [21], and possibly opens the area for further progress.

Tiny improvements of the bound from Theorem 11 are possible with more effort yielding
better calculations, for example by tuning the value of k in Theorem 11, better rounding,
using better bounds at the beginning (note that one can find a shorter word than the word
of rank k when Case (2) holds in Lemma 3 by combining with Theorem 1). These however
do not add new ideas.

Avoiding a state

The first natural possibility for improving the bound is to show a better bound on the length
of the shortest avoiding words. For strongly connected synchronizing automata, currently
the best known lower bound is 2n− 3 by Vojtěch Vorel1 (binary series), whereas 2n− 2 is
conjectured to be a tight upper bound based on experiments [16].

I Open Problem 1. Is 2n− 2 the tight upper bound on the length of the shortest avoiding
words?

1 personal communication, unpublished, 2016
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Avoiding a subset

The technique from Lemma 8 can be applied only for compressing Q to a subset of size at
most n/2, because at this point there can be no states with a unique state in the preimage.
To bypass this obstacle, we can generalize the concept of avoiding to subsets, and say that
a word w avoids a subset D ⊆ Q if D ∩ (Q · w) = ∅. Having a good upper bound on the
length of the shortest words avoiding D, we could continue using avoiding words for subsets
smaller than n/2, since for a word s there are at least |D| · |Q · s| − n states such that
1 ≤ |q · s−1| ≤ |D| (see Lemma 7).

I Open Problem 2. Find a good upper bound (in terms of |D| and n) on the length ` such
that in every n-state automaton, for every subset D ⊂ Q there is a word avoiding D of length
at most `, unless D is not avoidable.

In fact, we can prove an upper bound in the spirit of Lemma 2, provided that we have
avoiding words for smaller subsets than D.

I Lemma 13. For n ≥ 2, let A (Q,Σ, δ) be an n-state strongly connected synchronizing
automaton. Consider non-empty subsets S,D ⊆ Q such that |S| ≥ 1 and |D| ≥ 2. Suppose
that there is a state p ∈ D such that for D′ = D \ {p} there exists a word wD′ ∈ Σ` that
avoids D′. Then there exists a word w ∈ Σn−1+` such that either:
1. (S · w) ∩D = ∅, or
2. |S · w| < |S|.

Proof. Let Li = span({[S][w] | w ∈ Σ≤i}). We consider the following sequence of linear
subspaces:

L0 ⊆ L1 ⊆ L2 ⊆ . . . ,

and use the ascending chain condition as in the proof of Lemma 2. Since the automaton is
synchronizing, there is a reset word u so [S][u] = n[q] for some state q. Since the automaton
is strongly connected, for every state p we have a word v such that q · v = p, and so
[S][uv] = n[p]. These vectors generate the whole space Rn, and so the maximal dimension of
the linear subspaces from the sequence is n; in particular, dim(Ln−1) = n.

Let P = p · (wD′)−1. Suppose for a contradiction that for every word w of length ≤ n− 1,
subset S is not compressed by w and |(S · w) ∩ P | = 1. Then [S][w] contains exactly one 1
and |P | − 1 0s at the positions corresponding to the states from P . Therefore, all vectors v
generated by the vectors with this property satisfy:

(|S| − 1)
∑
i∈P

v(i) =
∑
i∈Q\P

v(i).

This means that the dimension of Ln−1 is at most n− 1, since in Rn there are vectors that
broke this equality. Hence, we have a contradiction.

Hence, there must be a word w that either compresses S or is such that |(S ·w) ∩ P | 6= 1.
In the latter case, if (S · w) ∩ P = ∅ then we obtain (S · wwD′) ∩D = ∅. If (S · w) ∩ P ≥ 2
then wD′ maps at least two states from (S · w) ∩ P to p, thus wwD′ compresses S. J

By an iterative application of the above lemma, we can obtain the upper bound k(n−1+kn)
on the length of a word that either avoids two states from the given subset or compresses
the subset. This bound is too large to provide a further improvement (at least within the
cubic coefficient) for the upper bound on the length of the shortest reset words. However,
if the shortest words avoiding a single state are indeed of linear length, then we obtain a
quadratic upper bound on the length of the shortest words avoiding two states.
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Abstract
We study the computational power of shallow quantum circuits with O(logn) initialized and
nO(1) uninitialized ancillary qubits, where n is the input length and the initial state of the
uninitialized ancillary qubits is arbitrary. First, we show that such a circuit can compute any
symmetric function on n bits that is classically computable in polynomial time. Then, we regard
such a circuit as an oracle and show that a polynomial-time classical algorithm with the oracle
can estimate the elements of any unitary matrix corresponding to a constant-depth quantum
circuit on n qubits. Since it seems unlikely that these tasks can be done with only O(logn)
initialized ancillary qubits, our results give evidences that adding uninitialized ancillary qubits
increases the computational power of shallow quantum circuits with only O(logn) initialized
ancillary qubits. Lastly, to understand the limitations of uninitialized ancillary qubits, we focus
on near-logarithmic-depth quantum circuits with them and show the impossibility of computing
the parity function on n bits.
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1 Introduction

1.1 Background and Main Results
Much attention has been paid to the computational power of shallow (i.e., polylogarithmic-
depth) quantum circuits [6, 16, 10, 9, 11, 8, 3, 22, 20, 4]. A major purpose of this line of
research is to understand the differences between shallow quantum and classical circuits. In
addition, it is strongly motivated by one of the most difficult problems concerning quantum
circuit implementation: in current and near-future technologies, it would be very difficult to
keep quantum coherence for a period of time long enough to apply many gates.

In discussing the computational power of shallow quantum circuits, polynomially many
ancillary qubits initialized to, say, |0〉 are assumed to be available. The initialized ancillary
qubits are particularly important for quantum circuits since many quantum operations require
ancillary qubits to preserve their unitary property and store intermediate results. Another
implementation problem arises here: it is difficult to prepare a large number of qubits that are
simultaneously initialized to a certain state. Indeed, this problem has often been addressed
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in the literature [7, 14]. However, most papers concerning the problem assume a sufficiently
long coherence time. In this paper, we address these two problems simultaneously.

A straightforward quantum computation model reflecting a short coherence time and a
limited number of initialized ancillary qubits would be shallow quantum circuits with O(logn)
initialized ancillary qubits, where n is the input length. However, their computational power
seems quite low since each step of them can utilize only a small number of intermediate results.
In fact, it is not even known whether such a circuit can compute the OR function on n bits,
and it seems unlikely that it can. Therefore, it is highly desirable to find additional ancillary
qubits satisfying the following conditions: they should be easier to prepare than initialized
ancillary qubits and increase the computational power of shallow quantum circuits with
only O(logn) initialized ancillary qubits. An interesting direction is to study qubits in the
completely mixed state [13], but it would be better not to assume any particular initial state.

We consider polynomially many uninitialized qubits as additional ancillary qubits. More
concretely, we study shallow quantum circuits with O(logn) initialized and nO(1) uninitialized
ancillary qubits, where we assume that no intermediate measurements are allowed. The initial
state of the uninitialized ancillary qubits is arbitrary and thus they are easier to prepare than
initialized ancillary qubits, i.e., they satisfy the above first condition on additional ancillary
qubits. But do they satisfy the second condition? Specifically, are shallow quantum circuits
with O(logn) initialized and nO(1) uninitialized ancillary qubits more powerful than those
without uninitialized ancillary qubits? Although uninitialized ancillary qubits are known
to be useful for constructing a few efficient quantum circuits [1, 19], a complexity-theoretic
analysis of quantum circuits with such ancillary qubits has not yet been done.

First, to give evidence of an affirmative answer to the question, we consider symmetric
functions, which are Boolean functions whose output depends only on the number of ones in
the input bits [12]. Let Sn be the class of symmetric functions on n bits that are classically
computable in polynomial time. For example, Sn includes the OR function, for which it is
not known whether there exists a shallow quantum circuit (consisting of one-qubit gates and
CNOT gates) with only O(logn) initialized ancillary qubits, and it seems unlikely that it
does. However, any function in Sn can be computed by adding uninitialized ancillary qubits:

I Theorem 1. Any fn ∈ Sn can be computed by an O((logn)2)-depth quantum circuit with n
input qubits, one output qubit, and O(logn) initialized and O(n(logn)2) uninitialized ancillary
qubits such that it consists of the gates in the gate set G, where G consists of a Hadamard
gate, a phase-shift gate with angle 2πc/2t for any integers t ≥ 1 and c, and a CNOT gate.

Theorem 1 gives evidence that shallow quantum circuits with O(logn) initialized and nO(1)

uninitialized ancillary qubits are more powerful than those without uninitialized ancillary
qubits in terms of computing symmetric functions. The proof of Theorem 1 immediately
implies that the depth of the circuit can be decreased to O(logn) when the circuit is allowed
to further include unbounded fan-out gates and unbounded Toffoli gates.

Then, to give further evidence of the computational advantage of using uninitialized
ancillary qubits, we consider a classical algorithm with an oracle that can perform a shallow
quantum circuit with them. When the oracle receives a bit string w, it performs the circuit
with input qubits initialized to |w〉 and sends back the classical outcome of the measurement
on the output qubit. Let p(n) be a polynomial and Cn be a constant-depth quantum circuit
on n qubits consisting of the gates in G. The problem, denoted by MAT(p(n), Cn), is to
compute a real number αx such that |αx − |〈0n|Cn|x〉|2| ≤ 1/p(n) for any input x ∈ {0, 1}n,
where Cn also denotes its matrix representation. It is not known whether the problem has a
polynomial-time classical algorithm, and it seems unlikely that it does [17], even when we use



Y. Takahashi and S. Tani 57:3

an oracle that can perform a shallow quantum circuit with only O(logn) initialized ancillary
qubits. However, the problem can be solved by adding uninitialized ancillary qubits:

I Theorem 2. For any polynomial p(n) and a constant-depth quantum circuit Cn on n

qubits consisting of the gates in G, MAT(p(n), Cn) can be solved with probability exponentially
(in n) close to 1 by a polynomial-time probabilistic classical algorithm with an oracle that
can perform an O(logn)-depth quantum circuit with 2n input qubits, one output qubit, and
(no initialized and) n uninitialized ancillary qubits such that it consists of the gates in G.

As with Theorem 1, Theorem 2 gives evidence that shallow quantum circuits with O(logn)
initialized and nO(1) uninitialized ancillary qubits are more powerful than those without
uninitialized ancillary qubits. More concretely, by the proof of Theorem 2, this is evidence
that there exists a probability distribution on {0, 1} that can be generated with uninitialized
ancillary qubits but cannot without them. This is because, otherwise, MAT(p(n), Cn) would
be solved by using an oracle with only O(logn) initialized ancillary qubits. We give a brief
comment on the number of input qubits in the circuit performed by the oracle. If the number
is large, a classical algorithm can send 0k for large k (besides another bit string) to the oracle
and the circuit can use a part of the input qubits as a large number of initialized ancillary
qubits. To avoid this, we restrict the number of input qubits to 2n.

Lastly, to understand the limitations of uninitialized ancillary qubits, for an arbitrary
constant 0 ≤ δ < 1, we focus on O((logn)δ)-depth quantum circuits with them and consider
the computability of the parity function on n bits. Since the depth is o(logn), it is easy to
show that the parity function cannot be computed by any such circuit consisting of the gates
in G. This is also the case even when the circuit includes additional gates on a non-constant
number of qubits:

I Theorem 3. Let 0 ≤ δ < 1 be an arbitrary constant. Then, the parity function on n bits
cannot be computed by any O((logn)δ)-depth quantum circuit with n input qubits, one output
qubit, and O(logn) initialized and nO(1) uninitialized ancillary qubits such that it consists of
the gates in G, unbounded fan-out gates on (logn)O(1) qubits, and unbounded Toffoli gates.

Theorem 3 means that O((logn)δ)-depth quantum circuits with O(logn) initialized and
nO(1) uninitialized ancillary qubits are not more powerful than those without uninitialized
ancillary qubits in terms of computing the parity function, even when they include the two
types of gates on a non-constant number of qubits. Moreover, Theorem 3 implies that the
circuit in Theorem 1 is optimal in the following sense. As described in the paragraph following
Theorem 1, the depth of the circuit becomes O(logn) when the circuit uses the gates in G,
unbounded fan-out gates, and unbounded Toffoli gates. As described in Section 1.3, the
circuit is based on the computation of the number of ones in the input bits and thus can be
regarded as a parity circuit. Thus, the circuit cannot be significantly improved simultaneously
in terms of both the depth and the number of qubits on which unbounded fan-out gates act.
This is because, otherwise, we would obtain a parity circuit that contradicts Theorem 3.

We comment on the states of uninitialized ancillary qubits in the above theorems. In
the proofs of Theorems 1 and 2, we assume that the state of uninitialized ancillary qubits is
an arbitrary computational basis (pure) state. These proofs can be simply extended for an
arbitrary pure/mixed state by the linearity of quantum operations and the fact that a mixed
state is a probabilistic mixture of pure states. Thus, Theorems 1 and 2 hold for an arbitrary
pure/mixed state. We show Theorem 3 under the same assumption. Thus, Theorem 3 means
that there does not exist an O((logn)δ)-depth quantum circuit (with the property described
in the theorem) that computes the parity function on n bits regardless of the initial state
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of uninitialized ancillary qubits, where we assume that the initial state is restricted to an
arbitrary computational basis (pure) state. In this statement, we can remove the restriction,
i.e., we can assume that the initial state is an arbitrary pure/mixed state. This is because
the resulting statement is weaker than the original one. In this sense, Theorem 3 holds for
an arbitrary pure/mixed state.

1.2 Imposing the Quantum Catalytic Requirement
Buhrman et al. [5] defined a classical computation with a logarithmic-size clean space and a
polynomial-size additional space, which they call a catalytic log-space computation. The
initial state of the additional space is arbitrary, and they impose the catalytic requirement
that its state has to be returned to the initial one at the end of the computation. They showed
a surprising result: it appears that such a computation is more powerful than that without
the additional space. The additional space seems like a catalyst in a chemical reaction.

The corresponding catalytic requirement in our quantum setting is that the state of unini-
tialized ancillary qubits has to be returned to the initial one at the end of computation. Since
the circuit in Theorem 1 has no error, by the standard technique of uncomputation, it is easy
to transform the circuit into the one that meets the quantum catalytic requirement without
increasing the original asymptotic complexity. Thus, Theorem 1 means that uninitialized
ancillary qubits seem like a catalyst as in the classical setting [5]. When shallow quantum
circuits have an error, it is not easy to transform them into the ones that meet the quantum
catalytic requirement and the analysis of such circuits is left for future work.

From a practical point of view, it is even better to decrease the number of uninitialized
ancillary qubits we need to specially prepare in addition to decreasing the number of initialized
ones. The quantum catalytic requirement allows us to do this in some cases. An example
is when we use a shallow quantum circuit with uninitialized ancillary qubits in a quantum
circuit for Shor’s factoring algorithm [19]. The factoring circuit uses two registers and, during
some operation, all qubits in one register are idle. Thus, when we use a shallow quantum
circuit for the operation that meets the above requirement, we can regard the idle qubits as
uninitialized ancillary qubits since the circuit returns their state to the initial one. The use of
the circuit in this way requires that the computation has to be done with only qubits, which
matches our quantum computation model. From a complexity-theoretic standpoint, it is also
interesting to study a quantum computation model with an additional classical space [23].

1.3 Overview of Techniques
We construct two quantum circuits to obtain the circuit for fn ∈ Sn in Theorem 1. The first
one is an O((logn)2)-depth OR reduction circuit with O(n(logn)2) uninitialized ancillary
qubits, which reduces the computation of the OR function on n bits to that on m = O(logn)
bits. Its first part is a modification of the original OR reduction circuit [11] and yields a
state whose phase depends on the uninitialized ancillary qubits but has a convenient form
to eliminate the dependency. We apply similar circuits repeatedly to add an appropriate
phase to that of the state, which eliminates any dependency on the uninitialized ancillary
qubits. The second circuit is an O(m2)-depth one for gm with O(m2m) uninitialized ancillary
qubits. Here, gm is a Boolean function on m bits satisfying that gm(s) = fn(x) for any
x ∈ {0, 1}n, where s ∈ {0, 1}m is the binary representation of the number of ones in x. The
circuit is based on the Fourier expansion of gm [12] and the above method for eliminating any
dependency on the uninitialized ancillary qubits. For any input x ∈ {0, 1}n, we first compute
s using the OR reduction circuit and then compute gm(s) = fn(x) using the circuit for gm.
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The algorithm in Theorem 2 is based on a polynomial-time probabilistic classical algorithm
for MAT(p(n), Cn) with an oracle [17], where the oracle can perform a commuting quantum
circuit for the Hadamard test [15]. Although initialized ancillary qubits can be used to
parallelize the Hadamard test [22], it has not been known whether uninitialized ancillary
qubits are useful for this purpose. We show that they can be used like initialized ancillary
qubits in parallelizing the Hadamard test. We replace the commuting quantum circuit with
a new circuit with our parallelizing techniques using uninitialized ancillary qubits in the
algorithm for MAT(p(n), Cn), which yields the desired algorithm.

We show Theorem 3 by extending the proof of Bera [3]. Our proof is different from the
previous one in that it deals with ancillary qubits and unbounded fan-out gates. The key to
Theorem 3 is to show that, for any quantum circuit Cn with O(logn) initialized and nO(1)

uninitialized ancillary qubits such that it may include unbounded Toffoli gates, there exists
an initial state of the uninitialized ancillary qubits such that Cn with the initial state is well
approximated by C̃n with the same initial state. Here, C̃n is the circuit obtained from Cn by
removing unbounded Toffoli gates on a large number of qubits. Thus, if Cn is a small-depth
quantum circuit for the parity function, then C̃n computes the same function with high
probability. This is impossible since C̃n does not have any gate on a large number of qubits
and thus its output does not depend on all input qubits.

2 Preliminaries

A quantum circuit consists of elementary gates, each of which is in the gate set G, where
G consists of a Hadamard gate H, a phase-shift gate Z(θ) with angle θ, and a CNOT
gate. Here, H = |+〉〈0|+ |−〉〈1| and Z(θ) = |0〉〈0|+ eiθ|1〉〈1|, where |±〉 = (|0〉 ± |1〉)/

√
2

and θ = 2πc/2t for any integers t ≥ 1 and c. We write Z(π) and HZ(π)H as Z and X,
respectively. In some cases, we use a fan-out gate and a Toffoli gate as elementary gates. Let
k ≥ 1 be an integer. A fan-out gate on k + 1 qubits implements the operation defined as
|y〉
⊗k

j=1 |xj〉 7→ |y〉
⊗k

j=1 |xj ⊕ y〉 for any y, xj ∈ {0, 1}, where ⊕ denotes addition modulo 2.
The first input qubit is called the control qubit. A k-controlled Toffoli gate implements the
operation on k + 1 qubits defined as

(⊗k
j=1 |xj〉

)
|y〉 7→

(⊗k
j=1 |xj〉

)
|y ⊕

∧k
j=1 xj〉, where∧

denotes the logical AND. The first k input qubits are called the control qubits and the
last input qubit is called the target qubit. These gates with k = 1 are CNOT gates. When it
is permitted to apply a fan-out gate and a Toffoli gate on a non-constant number of qubits,
they are called an unbounded fan-out gate and an unbounded Toffoli gate, respectively.

To simplify the descriptions of quantum circuits, we use a k-controlled Z(θ) gate for any θ
described above, which will be decomposed into elementary gates. The gate implements the
operation on k + 1 qubits defined as

⊗k+1
j=1 |xj〉 7→ e

iθ
∧k+1
j=1

xj⊗k+1
j=1 |xj〉 for any xj ∈ {0, 1}.

We can choose an arbitrary qubit as the target qubit and the other qubits are called the
control qubits. The inverse of the gate is the k-controlled Z(−θ) gate. When it is permitted
to apply the gate on a non-constant number of qubits, it is called an unbounded Z(θ) gate.

The complexity measures of a quantum circuit are its size and depth. The size of a
quantum circuit is the total size of all elementary gates in the circuit, where the size of an
elementary gate is the number of qubits on which the gate acts. To define the depth, we
regard the circuit as a set of layers 1, . . . , d consisting of elementary gates, where gates in
the same layer act on pairwise disjoint sets of qubits and any gate in layer j is applied before
any gate in layer j + 1. The depth of the circuit is the smallest possible value of d [9].

We deal with a uniform family of polynomial-size quantum circuits {Cn}n≥1, where no
intermediate measurements are allowed. The uniformity means that the function 1n 7→ Cn is
classically computable in polynomial time, where Cn is the classical description of Cn. Each
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Cn has n input qubits and can have one output qubit and nO(1) ancillary qubits that are
divided into two groups: p = O(logn) qubits and the remaining q qubits. We assume that,
for any x ∈ {0, 1}n and y ∈ {0, 1}, we can initialize the input qubits and output qubit to
|x〉 and |y〉, respectively. We can also initialize the p ancillary qubits to |0〉, which we call
initialized ancillary qubits, but we cannot initialize the q ancillary qubits and do not know
their initial state. They are called uninitialized ancillary qubits. When Cn has the output
qubit, a measurement in the Z basis is performed on it at the end of the computation. The
classical outcome of the measurement, which is 0 or 1, is called the output of Cn. A symbol
denoting a quantum circuit also denotes its matrix representation in the computational basis.

A Boolean function fn on n bits is a mapping fn : {0, 1}n → {0, 1}. We define its
computability by a quantum circuit with uninitialized ancillary qubits as follows:

I Definition 4. Let fn be a Boolean function on n bits and Cn be a quantum circuit with n
input qubits, one output qubit, and p initialized and q uninitialized ancillary qubits. The
circuit Cn computes fn if, for any x ∈ {0, 1}n and y ∈ {0, 1}, when the input qubits and
output qubit are initialized to |x〉 and |y〉, respectively, the output of Cn is y ⊕ fn(x) with
probability 1, regardless of the initial state of the q uninitialized ancillary qubits.

A Boolean function is called symmetric if its output depends only on the number of
ones in the input bits [12]. Let Sn be the class of symmetric functions on n bits that are
classically computable in polynomial time. For example, Sn includes the parity function PAn
and the OR function ORn. Here, for any x = x1 · · ·xn ∈ {0, 1}n, PAn(x) = 1 if |x| is odd
and 0 otherwise, where |x| =

∑n
j=1 xj . Moreover, ORn(x) = 1 if |x| ≥ 1 and 0 otherwise.

We define the function associated with fn ∈ Sn as follows:

I Definition 5. Let fn ∈ Sn. The function associated with fn is the Boolean function gm on
m = dlog(n+ 1)e bits defined as follows: For any s = s1 · · · sm ∈ {0, 1}m, gm(s) = fn(1l0n−l)
if l ≤ n and 0 otherwise, where l =

∑m
k=1 sk2k−1.

The function gm is classically computable in time nO(1) and, for any x ∈ {0, 1}n, if s =
s1 · · · sm is the binary representation of |x|, i.e., |x| =

∑m
k=1 sk2k−1, then gm(s) = fn(x).

We explain the idea of the original OR reduction quantum circuit [11]. The circuit has
n input qubits and O(n logn) initialized ancillary qubits. Let |x〉 be an input state for any
x ∈ {0, 1}n. The circuit transforms the state of m initialized ancillary qubits into the state⊗m

k=1 |ϕk〉, where m = dlog(n+ 1)e and |ϕk〉 = (|+〉+ e
2πi
2k
|x||−〉)/

√
2 for any 1 ≤ k ≤ m. If

|x| = 0, then |ϕk〉 = |0〉 for any 1 ≤ k ≤ m and thus the output state is |0m〉. If |x| ≥ 1, then
|ϕk〉 = |1〉 for some 1 ≤ k ≤ m and thus the output state is orthogonal to |0m〉. This means
that the circuit reduces the computation of ORn to that of ORm. The output state can be
used to compute the binary representation s1 · · · sm of |x|. In fact, it is easy to show that
the state

⊗m
k=1 |sk〉 can be obtained by applying QFT†2m to the state

⊗m
k=1 H|ϕk〉, where

QFT†2m is the inverse of the quantum Fourier transform modulo 2m.

3 Shallow Quantum Circuits for Symmetric Functions

Let fn ∈ Sn. We compute fn on input x ∈ {0, 1}n using the following algorithm:
1. Compute the binary representation s ∈ {0, 1}m of |x|, where m = dlog(n+ 1)e.
2. Compute gm(s) = fn(x), where gm is the function associated with fn.
To implement Step 1, we construct an OR reduction circuit Qn with uninitialized ancillary
qubits. As described above, we can obtain s using Qn (with a layer of H gates) and the
standard O(m)-depth quantum circuit for QFT†2m with no ancillary qubits [18]. To implement
Step 2, we construct a quantum circuit Rm for gm with uninitialized ancillary qubits.
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Figure 1 The first stage of our OR reduction circuit with input x = x1x2x3 ∈ {0, 1}3. The gate
next to the H gate is a fan-out gate on four qubits, where the top qubit is the control qubit. For
any integer t ≥ 1, the gates t and t† represent a Z(2π/2t) gate and its inverse, i.e., a Z(−2π/2t)
gate, respectively. The dashed box represents the gates added to the original OR reduction circuit.

3.1 OR Reduction Circuit with Uninitialized Ancillary Qubits
The circuit Qn is an O((logn)2)-depth OR reduction circuit with n input qubits and O(logn)
initialized and O(n(logn)2) uninitialized ancillary qubits. To explain our idea for constructing
Qn, we consider the case where n = 3 (and thus m = 2). The first stage of Qn is depicted
in Fig. 1, where the initial state of the uninitialized ancillary qubits is represented by the
(unknown) values aj(k), bj(k, l) ∈ {0, 1}. This circuit is obtained by adding the gates in the
dashed box to the original OR reduction circuit. We want to transform the initial states of
the initialized ancillary qubits I(1) and I(2) into the states |ϕ1〉 and |ϕ2〉, respectively. If we
do not apply the added gates, the output state of I(k) is (|+〉+ e

2πi
2k
α(k,1)|−〉)/

√
2, where

α(k, 1) =
∑3
j=1(−1)bj(k,1)(xj ⊕ aj(k)) and k = 1, 2. The phase of this state depends on the

initial state of the uninitialized ancillary qubits and we eliminate the dependency.
The point is that the added gates allow us to obtain an output state of I(k) whose phase has

a convenient form to eliminate the dependency. More concretely, by applying them, the output
state of I(k) is (|+〉+ e

2πi
2k
γ(k,1)|−〉)/

√
2, where γ(k, 1) = |x| − 2

∑3
j=1 xj(aj(k) ⊕ bj(k, 1)).

Since e 2πi
2 γ(1,1) = e

2πi
2 |x|, the output state of I(1) is equal to |ϕ1〉 as desired. The dependency

is eliminated since the terms in γ(1, 1) other than |x| yield only an angle of a multiple of 2π.
Unfortunately, the output state of I(2), which is represented as |ϕ′2〉 in Fig. 1, is not

equal to |ϕ2〉 in general since the phase e
2πi
22 γ(2,1) depends on the initial states of the

uninitialized ancillary qubits, where γ(2, 1) = |x| − 2
∑3
j=1 xj(aj(2)⊕ bj(2, 1)). To eliminate

the dependency, we consider the second stage where we add an angle 2π
22 δ(2, 2) to the

original angle 2π
22 γ(2, 1) using three new uninitialized ancillary qubits (not depicted in Fig. 1).

Here, their initial state is |b1(2, 2)〉|b2(2, 2)〉|b3(2, 2)〉 for any (unknown) bj(2, 2) ∈ {0, 1} and
δ(2, 2) = |x| − γ(2, 1)− 22∑3

j=1 xj(aj(2)⊕ bj(2, 1))(aj(2)⊕ bj(2, 2)). The value δ(2, 2) has a
form similar to γ(2, 1) and thus we can implement the second stage using a quantum circuit
similar to the one in Fig. 1. Since e

2πi
22 (γ(2,1)+δ(2,2)) = e

2πi
22 |x|, we obtain |ϕ2〉 as desired.
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We generalize the idea. Let x = x1 · · ·xn ∈ {0, 1}n be an input. We prepare n input qubits
X1, . . . , Xn and m initialized ancillary qubits I(1), . . . , I(m), where Xj is initialized to |xj〉.
We also prepare nm(m+3)/2 uninitialized ancillary qubits, which are divided into two groups,
A and B. Group A consists of mn qubits, which are divided into m groups A(1), . . . , A(m).
Each A(k) consists of n qubits A1(k), . . . , An(k), where the initial state of Aj(k) is |aj(k)〉 for
any (unknown) aj(k) ∈ {0, 1}. Group B consists of nm(m+ 1)/2 qubits, which are divided
into m groups B(1), . . . , B(m). Each B(k) consists of kn qubits, which are divided into k
groups B(k, 1), . . . , B(k, k). Each B(k, l) consists of n qubits B1(k, l), . . . , Bn(k, l), where
the initial state of Bj(k, l) is |bj(k, l)〉 for any (unknown) bj(k, l) ∈ {0, 1}. The circuit Qn
consists of m stages. For any 1 ≤ s ≤ m, Stage s is defined as follows:
1. Apply a H gate to I(k) for every s ≤ k ≤ m in parallel.
2. Apply a fan-out gate on n+1 qubits to B1(k, s), . . . , Bn(k, s), and I(k) for every s ≤ k ≤ m

in parallel, where I(k) is the control qubit.
3. If s ≥ 2, then apply a fan-out gate on s qubits to Bj(k, 1), . . . , Bj(k, s− 1), and Aj(k)

for every s ≤ k ≤ m and 1 ≤ j ≤ n in parallel, where Aj(k) is the control qubit.
4. Apply a fan-out gate on m − s + 2 qubits to Aj(s), Aj(s + 1), . . . , Aj(m), and Xj for

every 1 ≤ j ≤ n in parallel, where Xj is the control qubit.
5. Apply an s-controlled Z(2π/2k−s+1) gate to Bj(k, s) and the following qubits for every

s ≤ k ≤ m and 1 ≤ j ≤ n in parallel: Aj(k) if s = 1 and Bj(k, 1), . . . , Bj(k, s− 1), and
Aj(k) otherwise.

6. Apply the gates in Step 4.
7. Apply the inverse of the gates in Step 5.
8. Apply the gates in Step 3, Step 2, and Step 1 (in this order).

The circuit Qn outputs the desired state and has the desired complexity as follows. The
proofs can be found in the full version of the paper [21].

I Lemma 6. Let x = x1 · · ·xn ∈ {0, 1}n be an input. For any 1 ≤ k ≤ m and 1 ≤ s ≤ k,
the state of I(k) after Stage s is the state (|+〉 + e

2πi
2k
γ(k,s)|−〉)/

√
2, where γ(k, s) = |x| −

2s
∑n
j=1 xj

∧s
l=1(aj(k)⊕ bj(k, l)). Moreover, the state of any qubit other than the initialized

ancillary qubits is the same as its initial one. The state of I(k) after Stage k is the state |ϕk〉.

I Lemma 7. The circuit Qn uses O(logn) initialized and O(n(logn)2) uninitialized ancillary
qubits, and its depth is O((logn)2), when the elementary gate set is G.

3.2 Circuit for the Function Associated with a Symmetric Function

We construct an O(m2)-depth quantum circuit Rm for gm with m = dlog(n + 1)e input
qubits, one output qubit, and O(m2m) uninitialized ancillary qubits, where gm is the function
associated with fn ∈ Sn. The circuit uses (a slight modification of) the Fourier expansion
of gm [12]: For any s = s1 · · · sm ∈ {0, 1}m, gm(s) = gm(0m) + 2

2m
∑
t ct
⊕m

k=1 tksk, where
ct =

∑
u gm(u)(2

⊕m
k=1 uktk − 1), t = t1 · · · tm ranges over {0, 1}m \ {0m}, and u = u1 · · ·um

ranges over {0, 1}m. Since m = O(logn) and gm is classically computable in time nO(1), the
number of ct’s with t ∈ {0, 1}m \ {0m} is nO(1) and the function t 7→ ct is also classically
computable in time nO(1). This implies the uniformity of our circuit family for fn.

The circuit Rm with input s = s1 · · · sm ∈ {0, 1}m is based on the following algorithm:
1. Compute the parity value

⊕m
k=1 tksk for every t ∈ {0, 1}m \ {0m} in parallel.

2. Prepare (|+〉+ eπigm(s)|−〉)/
√

2 = |gm(s)〉 using the above representation of gm.
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Since we do not have any initialized ancillary qubit, in Step 1, we can only have the parity
values on uninitialized ancillary qubits, i.e., at⊕

⊕m
k=1 tksk for every t ∈ {0, 1}m\{0m}, where

the initial state of the uninitialized ancillary qubits is represented by the (unknown) values
at ∈ {0, 1}. Thus, in Step 2, we have to use such values to prepare (|+〉+ eπigm(s)|−〉)/

√
2 =

Xgm(0m)(|+〉+ e
2πi
2m
∑

t
ct
⊕m

k=1
tksk |−〉)/

√
2, which does not depend on at. The point is that

this situation is essentially the same as the one where |ϕm〉 is prepared by Qn as described
in Section 3.1, i.e., where we can only have the values aj(m)⊕ xj for every 1 ≤ j ≤ n and
we have to use them to prepare |ϕm〉 = (|+〉+ e

2πi
2m |x||−〉)/

√
2, which does not depend on

aj(m). Thus, roughly speaking, we can construct Rm in a similar way to a part of Qn.
A slight difference between these situations is that, in Qn, it is very easy to prepare the

values aj(m)⊕ xj from the input bits xj , but, in Rm, we need to consider a quantum circuit
for computing the parity values at ⊕

⊕m
k=1 tksk from the input bits sk, i.e., for the operation

on 2m +m− 1 qubits defined as |s〉
⊗

t |at〉 7→ |s〉
⊗

t |at ⊕
⊕m

k=1 tksk〉 for any s ∈ {0, 1}m
and at ∈ {0, 1}. If we have m2m−1 initialized ancillary qubits, it is easy to construct an
O(m)-depth quantum circuit for the operation using the following algorithm:
1. Prepare 2m−1 copies of sk on the ancillary qubits for every 1 ≤ k ≤ m in parallel.
2. Compute the parity value at ⊕

⊕m
k=1 tksk for every t ∈ {0, 1}m \ {0m} in parallel.

To implement Step 1, we apply fan-out gates on 2m−1 + 1 qubits, each of which can be
decomposed into an O(m)-depth quantum circuit. Since it is easy to construct an O(logm)-
depth quantum circuit for PAm using a binary tree structure, we can implement Step 2
using a parallel application of such circuits. If we replace the initialized ancillary qubits with
uninitialized ones, the circuit does not work. However, applying the circuit again yields the
desired values. In fact, the first circuit outputs at⊕

⊕m
k=1 tksk⊕d for some d ∈ {0, 1} that is

computed from the (unknown) values in {0, 1} representing the initial state of the uninitialized
ancillary qubits, and the second one outputs at ⊕

⊕m
k=1 tksk ⊕ d⊕ d = at ⊕

⊕m
k=1 tksk as

desired. Using this circuit, we construct Rm and show the following lemma. The details can
be found in the full version of the paper [21].

I Lemma 8. The circuit Rm computes gm. It uses no initialized ancillary qubit and O(m2m)
uninitialized ancillary qubits, and its depth is O(m2), when the elementary gate set is G.

Combining Rm with Qn immediately implies Theorem 1:

Proof of Theorem 1. By Lemmas 6, 7, and 8, we can use Qn and Rm to implement the
algorithm for fn ∈ Sn described at the beginning of Section 3 and the whole circuit has the
desired complexity. J

4 Classical Algorithms with Access to Shallow Quantum Circuits

Let p(n) be a polynomial and Cn be a constant-depth quantum circuit on n qubits consisting
of the gates in G. The problem MAT(p(n), Cn) is to compute a real number αx such that
|αx − |〈0n|Cn|x〉|2| ≤ 1/p(n) for any input x ∈ {0, 1}n. For any x,w ∈ {0, 1}n, we define
Fn(x,w) = 〈x|C†n(

⊗n
j=1 Z

wj
j )Cn|x〉, where w = w1 · · ·wn and Zj is Z applied to the j-th

qubit of Cn. As shown in [17], MAT(p(n), Cn) can be solved with probability exponentially
(in n) close to 1 if there exists a probabilistic algorithm AFn such that, for any x,w ∈ {0, 1}n,
the probability that |AFn(x,w)− Fn(x,w)| ≤ 0.5/p(n) is exponentially close to 1. In fact,
due to the Chernoff-Hoeffding bound, the algorithm for MAT(p(n), Cn) on input x ∈ {0, 1}n
is described with some K = nO(1) as follows: Choose w(j) ∈ {0, 1}n uniformly at random
and compute AFn(x,w(j)) for every 1 ≤ j ≤ K, and output (1/K)

∑K
j=1 AFn(x,w(j)).
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The probabilistic algorithm AFn in [17] can be considered as a repetition of a commuting
quantum circuit D2n for the Hadamard test with 2n input qubits and one output qubit. For
any x,w ∈ {0, 1}n, the output of D2n with the input qubits initialized to |x〉|w〉 and output
qubit initialized to |0〉 is 0 with probability (1 + Fn(x,w))/2. Thus, when the outputs 0
and 1 are regarded as 1 and −1, respectively, due to the Chernoff-Hoeffding bound, AFn is
described with some L = nO(1) as follows, where the input is the pair of x and w: Perform
D2n with the input qubits initialized to |x〉|w〉 and output qubit initialized to |0〉, and obtain
its output zj(x,w) ∈ {1,−1} for every 1 ≤ j ≤ L. After that, output (1/L)

∑L
j=1 zj(x,w).

We construct a parallelized version of the Hadamard test, denoted by E2n, by using unini-
tialized ancillary qubits. Although the standard Hadamard test is a sequential application of
controlled gates with the same control qubit, roughly speaking, E2n first prepares the copies
of the state of the control qubit on uninitialized ancillary qubits and then applies the gates
in parallel by using the copies. To be precise, let x = x1 · · ·xn, w = w1 · · ·wn ∈ {0, 1}n. We
prepare 2n input qubits X1, . . . , Xn,W1, . . . ,Wn, one output qubit Y , and n uninitialized
ancillary qubits G(1), . . . , G(n), where Xj , Wj , and Y are initialized to |xj〉, |wj〉, and |0〉,
respectively. The initial state of the uninitialized ancillary qubits is arbitrary. The circuit
E2n is defined as follows:
1. Apply a H gate to Y .
2. Apply a fan-out gate on n+1 qubits to G(1), . . . , G(n), and Y , where Y is the control qubit.
3. Apply Cn to X1, . . . , Xn−1, and Xn.
4. Apply a 2-controlled Z gate to G(j), Xj , and Wj for every 1 ≤ j ≤ n in parallel.
5. Apply C†n to X1, . . . , Xn−1, and Xn.
6. Apply the gates in Step 2 and Step 1 (in this order).
Each fan-out gate can be decomposed into an O(logn)-depth quantum circuit. Moreover,
a 2-controlled Z gate can be decomposed into a constant number of the gates in G [1, 18].
Thus, E2n is an O(logn)-depth circuit consisting of the gates in G. It has the desired output
probability distribution. The proof can be found in the full version of the paper [21].

I Lemma 9. For any x,w ∈ {0, 1}n, the output of E2n with the input qubits initialized to
|x〉|w〉 and output qubit initialized to |0〉 is 0 with probability (1 + Fn(x,w))/2.

This lemma immediately implies Theorem 2:

Proof of Theorem 2. We replace D2n in the above-mentioned algorithm for MAT(p(n), Cn)
with E2n. By Lemma 9, the output probability distribution of E2n is the same as that of D2n.
Thus, as with the original algorithm, the resulting algorithm solves MAT(p(n), Cn). J

5 Limitations of Uninitialized Ancillary Qubits

5.1 Our Idea for Proving Theorem 3
For any integer s ≥ 1, an s-controlled Toffoli gate is decomposed into an s-controlled Z gate
sandwiched between two H gates [8]. Thus, to prove Theorem 3, it suffices to consider an
unbounded Z gate in place of an unbounded Toffoli gate. We assume on the contrary that
there exists a depth-d quantum circuit Cn for PAn with n input qubits, one output qubit,
p = O(logn) initialized ancillary qubits, and q = nO(1) uninitialized ancillary qubits such that
it consists of the gates in G, unbounded fan-out gates on (logn)O(1) qubits, and unbounded
Z gates, where d = O((logn)δ) for some constant 0 ≤ δ < 1. When all unbounded Z gates
in Cn act on a small number of qubits, such as O(logn) qubits, since d is sufficiently small,
the proof of Bera [3] implies that there exists an input qubit of Cn such that the output of
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Figure 2 Circuit Cn for fn and its decomposition. The initial states of the input qubits, output
qubit, and uninitialized ancillary qubits are |x1〉 · · · |xn〉, |y〉, and |a1〉 · · · |aq〉, respectively, for any
x = x1 · · ·xn ∈ {0, 1}n, y ∈ {0, 1}, and a1 · · · aq ∈ {0, 1}q. Gates T1, . . . , Tk are unbounded Z gates.

Cn does not depend on the input qubit. Thus, Cn cannot compute PAn since the output of
PAn changes if any one of the n input bits changes. This contradicts the assumption.

The remaining case is when there exists an unbounded Z gate on a large number of qubits.
Let C̃n be the circuit obtained from Cn by removing all such gates. Bera [3] showed that,
when Cn does not have any ancillary qubit, it is well approximated by C̃n in the sense that,
when the state of the input qubits is a computational basis state chosen uniformly at random,
the output of Cn coincides with that of C̃n with high probability. Since Cn computes PAn,
C̃n computes PAn with high probability. Thus, we obtain a contradiction as in the above
case since all gates in C̃n act on a small number of qubits. To apply this idea to our setting,
we show that Cn with p initialized ancillary qubits and q uninitialized ancillary qubits in
state |a〉 for some a ∈ {0, 1}q is well approximated (in the sense described above) by C̃n with
the same state. The former circuit computes PAn since Cn with an arbitrary initial state of
the uninitialized ancillary qubits computes PAn. Thus, the latter circuit computes PAn with
high probability, and we obtain a contradiction as in the above simple case.

5.2 Analysis of a General Circuit and Its Application
We analyze a general depth-d quantum circuit Cn with n input qubits, one output qubit,
and p initialized and q uninitialized ancillary qubits such that it consists of the gates in G,
unbounded fan-out gates, and unbounded Z gates. Its key property is described as follows:

I Lemma 10 ([3, 2]). Let Cn be a depth-d quantum circuit with n input qubits and one
output qubit (possibly with ancillary qubits). If all gates in Cn act on at most w qubits, then
the output of Cn can depend only on the states of at most wd input qubits.

Let t ≥ 2 be an integer and Gt be the set of all unbounded Z gates in Cn that act
on more than or equal to t qubits. We consider the case where Gt 6= ∅ and assume that
Gt = {T1, . . . , Tk} for some k ≥ 1, where, for any 1 ≤ l ≤ k, if Tl is in layer L of Cn, then Tl+1
is in layer L′ ≥ L. We decompose Cn into the gates in Gt and the other parts as depicted
in Fig. 2, where Cn computes a Boolean function fn on n bits and Cjn is a quantum circuit
consisting of gates that are not in Gt for any 1 ≤ j ≤ k + 1. Such a decomposition is not
unique in general, but the point is to fix a decomposition. For any 1 ≤ l ≤ k, we define a
quantum circuit Vl as follows: V1 = C1

n and Vl = ClnTl−1Vl−1 for any 2 ≤ l ≤ k. We also
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define ∆l(x, y, b) = ||TlVl|x◦y◦b〉−Vl|x◦y◦b〉|| and ∆(x, y, b) = ||Cn|x◦y◦b〉− C̃n|x◦y◦b〉||
for any x ∈ {0, 1}n, y ∈ {0, 1}, and b ∈ {0, 1}p+q. Here, the symbol “◦” represents the
concatenation of bit strings, |||v〉|| =

√
〈v|v〉 for any vector |v〉, and C̃n = Ck+1

n Ckn · · ·C2
nC

1
n.

Let Un be a random variable uniformly distributed over {0, 1}n. We evaluate the probability
Pr[∆(Un, y, b) < ε] as follows. The proof can be found in the full version of the paper [21].

I Lemma 11. Pr[∆(Un, y, b) < ε] ≥ 1 − (k2/ε2)
∑k
l=1 E[∆l(Un, y, b)2] for any ε > 0, y ∈

{0, 1}, and b ∈ {0, 1}p+q.

To evaluate the value
∑k
l=1 E[∆l(Un, y, b)2], let tl be the number of qubits on which

Tl acts, ul = n + p + q + 1 − tl, and tmin = min{tl|1 ≤ l ≤ k}. We define Vl|x ◦ y ◦ b〉 =∑
i∈{0,1}tl

∑
j∈{0,1}ul g

(l)
x◦y◦b(i ◦ j)|i ◦ j〉 for any x ∈ {0, 1}n, y ∈ {0, 1}, and b ∈ {0, 1}p+q,

where g(l)
x◦y◦b(i ◦ j) is a complex number. The qubits represented by i ∈ {0, 1}tl correspond to

the qubits on which Tl acts. Of course, for any 1 ≤ l ≤ k, Tl does not always act on the first
tl qubits in Cn. We therefore need to apply some permutation of all qubits; however, since
such a permutation does not affect Lemma 13, which is the key to Theorem 3, we omit it.

We evaluate the above value as follows. The proof can be found in the full version [21].

I Lemma 12.
∑k
l=1 E[∆l(Un, y, b)2] ≤ k2p+q+3/2tmin for any y ∈ {0, 1} and b ∈ {0, 1}p+q.

Moreover, there exists some a ∈ {0, 1}q such that
∑k
l=1 E[∆l(Un, 0, 0p ◦ a)2] ≤ k2p+3/2tmin .

Lemmas 11 and 12 immediately imply the following evaluation:

I Lemma 13. There exists some a ∈ {0, 1}q such that Pr[∆(Un, 0, 0p ◦ a) < ε] ≥ 1 −
k32p+3/(ε22tmin) for any ε > 0.

Lemmas 10 and 13 imply Theorem 3 as follows:

Proof of Theorem 3. We assume on the contrary that there exists a quantum circuit Cn
for PAn described in Section 5.1. Since p = O(logn), there exists a constant c > 0 such that
p ≤ c logn when n is sufficiently large. We define t = (c+ 4) log(n+ p+ q + 1) and consider
Gt described above. When Gt = ∅, all gates in Cn act on at most w = (logn)O(1) qubits.
By Lemma 10, the output of Cn can depend only on the states of at most wd = o(n) input
qubits. Thus, there exists an input qubit of Cn such that the output of Cn does not depend
on the input qubit. This yields a contradiction as described in Section 5.1.

We consider the remaining case where Gt 6= ∅. In this case, we apply the above analysis
of a general circuit. It holds that p ≤ c logn, k ≤ (n + p + q + 1)d/tmin, and tmin ≥
(c+ 4) log(n+ p+ q + 1). Thus, by Lemma 13 with ε = 0.1,

Pr[∆(Un, 0, 0p ◦ a) < 0.1] ≥ 1−
(

d

(c+ 4) log(n+ p+ q + 1)

)3 800nc

(n+ p+ q + 1)c+1

for some a ∈ {0, 1}q. Let us express this value on the right-hand side by 1 − γ. Thus,
there exists a set S ⊆ {0, 1}n such that S has at least 2n(1 − γ) elements and, for any
x ∈ S, ∆(x, 0, 0p ◦ a) < 0.1. Since γ goes to 0 as n goes to infinity, 2n(1 − γ) > 2n−1

when n is sufficiently large. A simple calculation shows that, for any x ∈ {0, 1}n satisfying
∆(x, 0, 0p ◦ a) < 0.1, the output of C̃n|x ◦ 0 ◦ 0p ◦ a〉 coincides with that of Cn|x ◦ 0 ◦ 0p ◦ a〉
with probability of at least 1− 0.12 = 0.99 [3, 2]. When the initial state of the uninitialized
ancillary qubits is |a〉, Cn computes PAn. Thus, for any x ∈ S, the output of C̃n|x◦0◦0p ◦a〉
is PAn(x) with probability of at least 0.99. This contradicts the fact obtained by the following
argument. Since all gates in C̃n act on at most (logn)O(1) qubits, as described for the case
where Gt = ∅, by Lemma 10, there exists an input qubit of C̃n such that the output of C̃n
does not depend on the input qubit. This implies that, for at most 2n−1 elements x ∈ {0, 1}n,
the output of C̃n|x ◦ 0 ◦ 0p ◦ a〉 is PAn(x) with probability greater than 0.5. J
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Abstract
Consider a deterministic algorithm that tries to find a string in an unknown set S ⊆ {0, 1}n,
under the promise that S has large density. The only information that the algorithm can obtain
about S is estimates of the density of S in adaptively chosen subsets of {0, 1}n, up to an additive
error of µ > 0. This problem is appealing as a derandomization problem, when S is the set of
satisfying inputs for a circuit C : {0, 1}n → {0, 1} that accepts many inputs: In this context, an
algorithm as above constitutes a deterministic black-box reduction of the problem of hitting C
(i.e., finding a satisfying input for C) to the problem of approximately counting the number of
satisfying inputs for C on subsets of {0, 1}n.

We prove tight lower bounds for this problem, demonstrating that naive approaches to solve
the problem cannot be improved upon, in general. First, we show a tight trade-off between
the estimation error µ and the required number of queries to solve the problem: When µ =
O(log(n)/n) a polynomial number of queries suffices, and when µ ≥ 4 · (log(n)/n) the required
number of queries is 2Θ(µ·n). Secondly, we show that the problem “resists” parallelization: Any
algorithm that works in iterations, and can obtain p = p(n) density estimates “in parallel” in
each iteration, still requires Ω

(
n

log(p)+log(1/µ)

)
iterations to solve the problem.

This work extends the well-known work of Karp, Upfal, and Wigderson (1988), who studied
the setting in which S is only guaranteed to be non-empty (rather than dense), and the algorithm
can only probe subsets for the existence of a solution in them. In addition, our lower bound on
parallel algorithms affirms a weak version of a conjecture of Motwani, Naor, and Naor (1994); we
also make progress on a stronger version of their conjecture.
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1 Introduction

If we want to catch a lion in the desert, a binary search is the method of choice: We
bipartition the desert, check in which cell the lion resides, and recurse. But what if we
want to catch a lion in a lions den, where lions are in abundance?

We are interested in the following problem. A deterministic algorithm tries to find a
string in an unknown set S ⊆ {0, 1}n, where it is a-priori guaranteed that the density of S
is large (e.g., |S| ≥ 2n−1). The only information that the algorithm can obtain about S is
an estimation of the density of S in any subset Q ⊆ {0, 1}n of its choice. That is, for any
subset Q ⊆ {0, 1}n, the algorithm can obtain a value ν̃(Q) such that ν̃(Q) = |Q∩S|

|Q| ± µ, for
a small µ > 0. Can the algorithm find a string s ∈ S more efficiently than simply going over
all singletons in {0, 1}n and checking whether or not each of them is in S?

As noted by Goldreich [1, Thm. 3.5], if the estimation error µ is sufficiently small, then
the problem can be solved efficiently, using a method similar to the method of conditional
probabilities. Specifically, the algorithm iteratively constructs a string s ∈ S bit-by-bit, where
in each iteration the algorithm decides which value for the next bit would yield a higher
density of S in the resulting subcube, up to an error of µ. Unfortunately, this method requires
that the error µ will be inversely proportional to the number of iterations (i.e., µ = 1/O(n)).
Moreover, the method has the drawback of being inherently sequential: Constructing an
n-bit solution involves sequentially solving n decision problems. Thus, our main question in
this work is the following:

Can the problem be solved more efficiently, compared to the naive “equipartition and
recurse” algorithm? Specifically, can we improve the dependency on the estimation
error, and can a parallel algorithm solve the problem faster?

The problem that we study in this work is especially relevant in the context of deran-
domization. Think of S as the set of satisfying inputs for some circuit C : {0, 1}n → {0, 1}.
Two fundamental problems in derandomization are the problem of hitting the set S (i.e.,
finding a satisfying input for C), and the problem of approximately counting the size of S
(i.e., estimating the acceptance probability of C; this problem is sometimes called the Circuit
Acceptance Probability Problem). From this perspective, the question underlying the current
work is the following: Does the hitting problem for a circuit C reduce to the approximate
counting problem for C (on subsets of {0, 1}n), in general? 1 And more specifically, can we
improve on the sequential reduction that was presented above if we are given only limited
“non-black-box” information about C?

The problem that we study can also be viewed as an extension of two classical problems.
Specifically, consider the problem of reducing the search for a string in a non-empty set S to
the task of deciding, for any Q ⊆ {0, 1}n, whether or not Q ∩ S 6= ∅ (see [6]). Our problem
is a natural extension of this problem to the setting where the target set S is dense, with
the corresponding decision task adapted accordingly (to estimating the density of S in any
subset Q). Moreover, our problem is a variant of an open problem of Motwani, Naor and
Naor [7]: They also considered a dense set S, but in their setting the algorithm can obtain
the exact density of S in any subset Q ⊆ {0, 1}n, rather than a density estimation. Indeed,

1 In typical settings, if one can approximate the acceptance probability of C, then one can also approximate
the acceptance probability of C on subcubes of {0, 1}n. Our main lower bounds hold even if the algorithm
can approximate the acceptance probability of C on any subset of {0, 1}n, whereas the upper bounds
only rely on such estimations on subcubes.
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their setting is also natural, but less relevant to derandomization than our setting. They
conjectured that in their setting, even if the algorithm can obtain, in each step, the density
of S in poly(n) sets in parallel, still no significant speed-up over the method of conditional
probabilities is possible (for details see Section 2). As far as we know, no progress has been
made on their conjecture prior to this work.

1.1 Lower bounds on parallel algorithms
The first question that we consider is whether the problem described above can be solved
faster by a parallel algorithm. Specifically, assume that the algorithm searching for a string
in S works in iterations. In each iteration, the algorithm sends p = p(n) queries to a density
oracle, where each question is a set Qi ⊆ {0, 1}n, and then receives p answers, where each
answer is a density estimation ν̃(Qi) = |Qi∩S|

|Qi| ±µ. Can such an algorithm find a string s ∈ S
using less than n iterations?

If µ is small, one can obtain an efficient algorithm that uses n/ log(p) iterations, by a
straightforward adaptation of the method of conditional probabilities: Instead of constructing
a solution bit-by-bit, construct a solution block-by-block, where each block consists of log(p)
bits. This yields the following upper bound.

I Theorem 1. (an upper bound for parallel algorithms; informal). For any p ∈ N and
µ < log(p+1)

4n , an algorithm that uses p density estimations with error µ in each iteration can
find a string in an unknown set S of size |S| ≥ 2n−1 using n

log(p+1) iterations. 2

Our main result for the setting of parallel algorithms is that, unless the estimation
error is extremely small (i.e., unless µ = o(1/poly(p))), the algorithm described above
essentially cannot be improved upon. In particular, for the natural setting of p = poly(n)
and µ = 1/poly(n), the problem requires an almost-linear number of iterations to solve.

I Theorem 2. (a lower bound on the number of iterations of parallel algorithms; informal).
For any µ > 0 and p ∈ N, algorithms that use p density estimations with error µ in each
iteration need at least n

log(p+1)+log(1/µ) iterations to find a string in a set S of size |S| ≥ 2n−1.

The lower bound in Theorem 2 is proved under the assumption that |S| ≥ 2n−1. One
might expect that if S has significantly larger density (e.g., |S| = (1 − o(1)) · 2n), then
an algorithm might be able to find a string in S using less iterations. Our second result
shows that even if |S| ≥ (1− 2−Ω(n)) · 2n, then the lower bound asserted in Theorem 2 still
essentially holds. Actually, we generalize Theorem 2, by showing a trade-off between the
density of S and a lower bound on the number of iterations required to find a string in S.

I Theorem 3. (a lower bound for parallel algorithms and large sets; informal). For any
0 < µ ≤ 1/2, and p ∈ N, and ε > 0, algorithms as above need at least ε·n

log(p+1)+log(1/µ)
iterations in order to find a string in an unknown set S of size |S| ≥ 2n − 2ε·n.

Recall that we are particularly interested in this problem when S is the set of satisfying
inputs for some circuit C : {0, 1}n → {0, 1}, and the algorithm tries to find a satisfying input
for C by estimating the acceptance probability of C in subsets of {0, 1}n. In this setting one
does not necessarily expect the algorithm to be able to estimate the acceptance probability

2 To obtain an upper bound of n/ log(p+ 1), instead of n/ log(p), the algorithm partitions the space in
each iteration into p + 1 sets, and relies on the estimations for the density of S in the first p sets in
order to estimate the density of S in the (p+ 1)th set.
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of C in very “complex” subsets. When we impose such a limitation on the circuit complexity
of the queries that the algorithm makes, we obtain the following strengthening of Theorem 3,
which asserts that the same lower bound holds even if the algorithm is guaranteed that S
can be decided by a relatively simple circuit.

I Theorem 4. (the lower bound for parallel algorithms holds even for “simple” circuits;
informal). Assume that for any query Q ⊆ {0, 1}n that the algorithm from Theorem 3
makes, the set Q can be decided by a circuit from a circuit class C. Then, the lower bound
in Theorems 3 holds even if the algorithm is guaranteed that the set S can be decided by a
conjunction of negations of n · p circuits from C.

One corollary of Theorem 4 is that if the algorithm only estimates the acceptance
probability of C on subcubes of {0, 1}n, then even the guarantee that C is a polynomial-sized
CNF does not allow to bypass the lower bound in Theorem 3.

Note that the size of the circuit for S in Theorem 4 is larger than the total number of
queries made by the algorithm. This is no coincidence: If the algorithm is given the size of
C, and is allowed to make a number of queries that is polynomial in the size of C, then the
algorithm can simply query, in parallel, the singletons in the output-set of a pseudorandom
generator for C (assuming that such a generator exists; see, e.g., [12, Prop 7.8]). In contrast,
Theorem 4 asserts that when the number of queries is smaller than the size of the circuit,
and the algorithm uses density estimations (rather than only query singletons), the guarantee
that C is a conjunction of negations of n · p circuits from C does not suffice in order to bypass
the lower bound in Theorem 3.

When S is the set of satisfying inputs for a circuit C, the setting of |S| = (1− o(1)) · 2n
corresponds to circuits that accept almost all of their inputs. This setting, called quantified
derandomization, has recently been introduced by Goldreich and Wigderson (see [2, 9, 10]).

1.2 Lower bounds on algorithms with large estimation error
The second question that we consider in this paper is what happens when the estimation
error µ is too large to use the method of conditional probabilities (i.e., µ = ω(1/n)). In this
setting, we are not necessarily interested in parallel algorithms, but simply ask what is the
number of estimations needed in order to find a string s ∈ S.

Similarly to the previous section, we show that a naive algorithmic approach essentially
cannot be improved upon. Specifically, consider an algorithm that works in iterations; in
each iteration, the algorithm equipartitions the “current” search space into 24µ·n sets, obtains
estimates for the density of S in each of the sets, and recurses into the set in which S has
the highest estimated density. Since the depth of the recursion tree is less than 1/4µ, an
estimation error of µ suffices for this algorithm. 3 This yields the following upper bound.

I Theorem 5. (an upper bound for algorithms with large estimation errors; informal). For
any error µ > 0, an algorithm that only uses density estimations with error µ can find a
string in an unknown set S of size |S| ≥ 2n−1 using less than 2

µ · 2
4µ·n density estimations.

Note that when the estimation error is µ = O(log(n)/n), the algorithm described above
uses poly(n) density estimations. Our main result in the current section is that whenever
µ ≥ 4·log(n)

n , the upper bound in Theorem 5 is essentially tight. To see this, observe that

3 Indeed, when µ = O(log(n)/n), this is essentially the same algorithm as the parallel algorithm from
Theorem 1; the number of estimations in each iteration is p = 24·µ·n = poly(n).
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when µ ≥ 4·log(n)
n , the upper bound in Theorem 5 is 2

µ · 2
4µ·n = 2O(µ·n); and when µ > 1/4,

the upper bound exceeds 2n. Thus, it is nearly matched by the following lower bound.

I Theorem 6. (a lower bound on the number of estimations needed by algorithms with large
estimation errors; informal). For any error µ ≥ 4·log(n)

n , at least 2Ω(µ·n) density estimations
are needed in order to find a string in an unknown set S of size |S| ≥ 2n−1. Moreover, if
µ ≥ 1

4 + Ω(1), then Ω(2n/n) estimations are needed to find a string in S of size |S| ≥ 2n−1.

Theorem 6 implies in particular that if the error satisfies µ = ω(log(n)/n), then the
problem cannot be solved efficiently (i.e., using only poly(n) estimations). We also generalize
Theorems 5 and 6, by showing a trade-off between the density of S, denoted by ρ, and the
number of estimations required to find a string in S. This generalization is most interesting
when considering sets S with small density (e.g., density ρ = O(µ)), in which case the
problem is much more difficult.

I Theorem 7. (a general trade-off between density, error, and the number of queries needed
to solve the problem; informal). For any error µ ≥ 12 · log(n)/n, the following holds:
1. For any density ρ ≤ (2− Ω(1)) · µ, at least 2n/poly(n) density estimations are needed to

find a string in a set S of size |S| ≥ ρ · 2n.
2. For any density ρ ≥ (2−o(1))·µ, it holds that 2Θ((µ/ρ)·n) density estimations are necessary

and sufficient to find a string in a set S of size |S| ≥ ρ · 2n.

1.3 Lower bounds on algorithms with no estimation error
Finally, we consider the setting suggested by Motwani, Naor, and Naor [7], in which there is
no estimation error (i.e., µ = 0). They conjectured that a naive “equipartition and recurse”
will still be essentially optimal in this setting.

We focus on the question of the required number of queries to solve the problem (and
leave open the question of parallelism). Recall that the algorithm obtains density values,
and not binary answers, and thus a naive information-theoretic lower bound of n queries
does not hold. Nevertheless, we show that n−O(1) queries are still necessary.

I Theorem 8. (the minimal number of exact density queries; informal). Consider algorithms
that, for an unknown set S of size |S| > ρ · 2n−1, can query an oracle to obtain the exact
density of S in any subset Q ⊆ {0, 1}n. Then, the number of queries that such algorithms
need in order to find a string s ∈ S is at least n− blog(1/(1− ρ))c − 1.

The lower bound in Theorem 8 is tight, up to a single bit. The proofs of Theorem 8 and
of the corresponding upper bound appear in [8, Sec. 7].

1.4 Organization
In Section 2 we discuss the context of our results and previous related work. In Section 3
we explain the techniques used to obtain our results, in high-level. Section 4 contains the
formal definitions of the algorithms described above. In Section 5 we prove the lower bounds
on solving the problem in parallel (i.e., Theorems 2 and 3), and the corresponding upper
bound (i.e., Theorem 1) is proved in [8, Apdx. A]. In Section 6 we prove the lower bounds
on solving the problem when the estimation error is large (i.e., Theorems 6 and 7), and the
corresponding upper bounds (i.e., Theorem 5 and the upper bound in Item (2) of Theorem 7)
are proved in [8, Apdx. A].
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2 Background and previous works

Several years ago, Goldreich [1] considered the hypothesis that promise-BPP = promise-P,
which in particular implies that the density of satisfying inputs for a given circuit can be
estimated in polynomial time. Goldreich showed that it follows that BPP search problems
(see the definition in [1, Sec. 3]) can also be solved in deterministic polynomial time, and
in particular, there exists a deterministic polynomial-time algorithm that finds a satisfying
input for a given circuit that accepts most of its inputs. Indeed, his reduction of search
problems to problems of estimating the density of solutions in subsets of the search space
is based on the method of conditional probabilities. The current work can be viewed as an
extension of his study, which considers a more generic reduction of the task of finding a
satisfying input for a circuit C to estimating the density of satisfying inputs for C in subsets
of the domain, 4 and asks whether his solution for this problem can be improved upon, in
general, with only limited “non-black-box” information about the circuit C.

Thus, this work is situated within a line of works that study the limitations of “black-box”
techniques in derandomization. Although many of the best current derandomization results
are based on constructions that are essentially black-box (i.e., on pseudorandom generators
that use very little information about the circuit that they wish to “fool”), black-box
techniques nevertheless have disadvantages in the context of derandomization. In particular,
constructing a black-box pseudorandom generator (or a hitting-set generator) for a circuit
class necessitates proving strong corresponding lower bounds against that circuit class; 5 and
black-box techniques cannot be used in certain settings for hardness amplification, which is
a common strategy to try and prove the lower bounds necessary to construct pseudorandom
generators via the hardness-randomness paradigm (see, e.g., [13, 11]).

The current work also extends the study of Karp, Upfal, and Wigderson [6], who proved
lower bounds for the setting in which the target set S is only guaranteed to be non-empty
(rather than dense), and the algorithm can obtain, for any set Q ⊆ {0, 1}n, an answer to
whether or not a solution exists in Q (i.e., whether or not Q ∩ S = ∅). The authors showed
that the “equipartition-and-recurse” strategy is optimal in this setting, since any strategy
requires n/ log(p + 1) iterations to find a solution, in general, where p is the number of
decision problems that can be solved in parallel in each iteration.

Motwani, Naor, and Naor [7] considered a setting in which S can be dense (rather than
just non-empty), and conjectured that a similar lower bound would hold in this setting even
if the algorithm trying to find a string s ∈ S can obtain, for any Q ⊆ {0, 1}n, the exact
number of solutions in Q (i.e., the value |S ∩Q|). Thus, Theorems 2 and 3 affirm a weak
version of their conjecture, where the difference is that in our case, instead of obtaining the
exact number of solutions in Q, the algorithm can only obtain an estimate of the number of
solutions in Q. In addition, Theorem 8 proves their conjecture for the special case of p = 1
(i.e., when there is no parallelism).

3 Our techniques

To understand the challenge, let us first recall the techniques of Karp, Upfal, and Wigderson [6].
They proved their lower bound (for algorithms that can only probe for the existence of a

4 That is, we only consider the hypothesis that one can efficiently estimate the density of satisfying inputs
for C on subsets of its domain, rather than the hypothesis that promise-BPP = promise-P.

5 Analogous implications of any derandomization of a circuit class (i.e., not necessarily a black-box one)
are known, but the implied lower bounds are weaker and less direct (see, e.g., [3, 4, 5, 14]).
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solution in any subset) by an adversarial argument: For any algorithm A, they simulated the
execution of A, and supplied adversarial answers, in order to delay A’s progress in finding
s ∈ S. In their argument, in each iteration, the adversary has to answer A’s queries in a
manner that is consistent with the current information available to A (i.e., with all previous
answers). However, since the adversary only provides “yes/no” answers, relatively little
information is revealed about S in each iteration, and thus relatively few constraints are
imposed upon the adversary when engineering answers in subsequent iterations.

As noted by [7], it is not a-priori clear how to extend the foregoing strategy to a setting
in which A obtains the exact number of solutions in any subset that it queries. This is the
case because in the latter setting, the adversary has to answer A’s queries with exact density
values that are perfectly consistent with some fixed set S; this requirement imposes strict
constraints on the adversary in each iteration. This seems to require much more careful
engineering of answers on the adversary’s part.

The key observation underlying our lower bounds is that if we, as adversaries, are allowed a
small error in our answers to A, then we do not need to engineer the answers so carefully. One
approach to take advantage of this relaxed setting, which we use in the proofs of Theorems 2
and 3, is to start the simulation with a “tentative” set S, modify this set adversarially
throughout the execution, and answer A in each iteration according to the current state of
S (instead of engineering artificial answers). If the modifications that we make to the set
S throughout the execution are not too substantial, then the final version of S is not very
different from any of the tentative ones, which implies that the error in our answers was
never too big. This approach also allows us to show that there exists a relatively simple
circuit that decides S (i.e., to obtain Theorem 4).

An alternative approach, which we use in the proofs of Theorems 6 and 7, is to answer A’s
queries according to some set of rules, and in the end construct an adversarial distribution
of sets such that a set sampled from the distribution will be consistent with our answers, up
to a small error, with high probability. That is, the fact that we are allowed a small error
allows us to avoid the explicit construction of a single adversarial set, and instead rely on
an adversarial distribution of sets. Specifically, we will answer each query Q ⊆ {0, 1}n of A
only according to the size of Q; and in the end we will construct a distribution SA over sets
S ⊆ {0, 1}n, which depends on the specific queries that A issued, such that a set S ∼ SA
will be consistent with our answers, up to an error of µ, with high probability.

In contrast, in Theorem 8 we consider algorithms without an estimation error, and thus
we indeed need to fully engineer exact adversarial answers. To do so, we maintain a template
for the set S, which is a partition of {0, 1}n such that each set P in the partition is labeled
with the density of S in P . Given each query of A, we refine the partition, while making sure
that unless the partition is extremely refined, no set P in the partition is fully contained in
S. Thus, the algorithm needs to use many queries, in order to yield an extremely refined
partition, which will allow it to find a singleton s ∈ S.

4 Preliminaries

All logarithms in the paper are to base 2. We formally define the algorithms described in
Section 1 by using the notion of oracle machines, where the oracle is the device supplying
density estimations. An oracle function for a set S gets as input a sequence of p density
queries, and outputs p estimations for the density of S in each of the queried sets, where
each estimation is correct up to a relative additive error of µ.

I Definition 9. (p-parallel µ-error density estimators). For n, p ∈ N, and µ < 1, and a
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set S ⊆ {0, 1}n, a function fS : P({0, 1}n)p → [0, 1]p is called a p-parallel µ-error density
estimator for S if for every ~Q = (Q1, Q2, ..., Qp) ∈ P({0, 1}n)p, and every j ∈ [p], it holds
that

∣∣∣ν̃(Qj)− |Qj∩S|
|Qj |

∣∣∣ ≤ µ, where ν̃(Qj) is the jth element in the sequence fS( ~Q). 6

I Definition 10. (hitters with access to density estimators). Let µ : N → [0, 1), and let
p : N → N. A deterministic algorithm A is called a hitter with oracle access to p-parallel
µ-error density estimators if for every n ∈ N and S ⊆ {0, 1}n, given input 1n and oracle access
to a p(n)-parallel µ(n)-error density estimator for S, the algorithm A outputs a string s ∈ S.

We deliberately avoid the question of how A specifies its queries to the oracle, and just
assume that all queries can be perfectly communicated. Our lower bounds are thus solely
information-theoretic. On the other hand, the algorithms establishing the upper bounds in
the paper only use queries about subcubes of {0, 1}n, which can be easily communicated in
any reasonable model of an oracle Turing machine.

When p = 1 (i.e., when there is no parallelism), we just refer to a µ-error density
estimator and to a hitter with oracle access to µ-error density estimators. A
hitter as in Definition 10 operates in iterations, where in each iteration it issues a query-tuple
to the oracle (i.e., a sequence of p sets), and receives an answer-tuple (i.e., p correponsing
density estimations). When we will discuss a specific query (resp., specific answer), we
will usually mean one of the p sets queried in some iteration (resp., one of the p density
estimations given in the answer).

5 Lower bounds on parallel algorithms

Let us begin by stating Theorem 2 and proving it. For simplicity, we will prove a lower
bound of n

log(p)+log(1/µ)+1 , instead of n
log(p+1)+log(1/µ) .

7

I Theorem 11. (a lower bound for parallel algorithms; Theorem 2, restated). For µ : N→
(0, 1

2 ) and p : N → N, let A be a hitter with oracle access to p-parallel µ-error density
estimators. Then, for any n ∈ N, there exists a set S ⊆ {0, 1}n of size |S| ≥ 2n−1 and a
p(n)-parallel µ(n)-error density estimator fS for S such that the number of iterations that A
uses when given oracle access to fS is at least

n

log(p(n)) + log(1/µ(n)) + 1 .

Proof overview. Let n ∈ N, and let p = p(n) and µ = µ(n). Assume towards a contradiction
that A always uses R < n

log(p)+log(1/µ)+1 iterations. We will construct a set S and a p-parallel
µ-error density estimator fS that “fool” A: That is, fS answers all of A’s queries in a manner
that is consistent with S, up to a relative error of µ, but in the end of the execution of A,
the algorithm outputs a string that is not in S.

It will be more convenient to work with a definition for hitters that is slightly different
from the one in Definition 10: Instead of requiring that the algorithm outputs a string s ∈ S
in the end of the execution, we require that the hitter will ask the oracle about a singleton
Q = {s}, and receive an answer ν̃({s}) > µ (which implies that s ∈ S). The number of
iterations required to solve the problem is identical in both definitions, up to ±1 iteration.

We will simulate the execution of A, and answer the algorithm’s queries adversarially,
in order to delay its progress in finding small sets that contain elements in S. Specifically,

6 We denote by P({0, 1}n) the power set of {0, 1}n.
7 The proof of the slightly tighter lower bound appears in [8, Thm. 11].
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let us call a set Q a positive set if at some point during the execution of A, the algorithm
queried the oracle about the set Q and was answered by a non-zero value (i.e., by ν̃(Q) > 0).
Our goal is that in the end of the execution, all positive sets will be of size at least 2, which
will imply that A did not find any positive singleton.

Our answers throughout the execution of A have to be consistent with some fixed set S,
up to an estimation error of µ. To ensure this, we will maintain a “tentative” version of the
set S, and provide answers in each iteration according to the tentative set at that iteration.
We will show that the final version of the set S, which is the tentative set in the end of the
execution, is not very different from any of the non-final versions. Thus, the answers given
to A are consistent, up to a small error (less than µ), with the set S.

We initialize the tentative set as S0 = {0, 1}n. In iteration i ∈ [R], we modify the current
tentative set, denoted Si−1, and obtain the new tentative set, Si, as follows:

We start iteration i with a guarantee that all positive sets are of size at least hi (where
hi is a parameter to be determined).
Given A’s queries, we remove from the tentative set all the strings from queried-sets that
are “too small”. That is, the new tentative set Si is obtained by removing from Si−1 every
string that belongs to a queried set Q′ such that |Q′| < `i (where `i is also a parameter
to be determined).
We answer the queries of A according to the (current) tentative set Si; that is, the query
Q is answered by |Q ∩ Si|/|Q|. Thus, in the next iteration, all positive sets will be of size
at least hi+1 = `i.

We define S to equal the tentative set at the end of the execution (i.e., S = SR). Let us
now describe our setting of parameters, and explain why it suffices to prove the theorem. In
the first iteration we have h1 = 2n, which holds vacuously. We define `i in each iteration
such that `i/hi = µ/(2 · p). It follows that `R = (µ/(2p))R · h1 = (2p/µ)−R · 2n. Relying on
the hypothesis that R < n

log(p)+log(1/µ)+1 = log2p/µ(2n), we have that `R > 1, which means
that A did not find any positive singleton.

Now, let Q be a positive set that was queried in iteration i, and let us count the number
of strings removed from the tentative set in subsequent iterations. The number of strings
removed in iteration i+1 is less than p ·`i+1 = (µ/2) ·hi+1 = (µ/2) ·`i. Since in iteration i we
answer positively only for sets of cardinality at least `i, we know that |Q| ≥ `i, and thus the
number of strings removed in iteration i+ 1 is less than (µ/2) · |Q|. In subsequent iterations,
the number of strings removed from the tentative set decays exponentially (see [8, Claim
11.4]); hence, when summing over iterations i+1, ..., R, the overall number of strings removed
is less than µ · |Q|. Similarly, the overall number of strings removed from S0 = {0, 1}n is less
than µ · |S0|, and thus we have that |S| > 2n−1. For full details see [8, Thm. 11]. J

We now prove Theorem 3, which asserts a trade-off between the density of S and a lower
bound on the number of iterations needed to find a string s ∈ S.

I Theorem 12. (a lower bound for parallel algorithms and large sets; Theorem 3, restated).
For µ : N→ (0, 1

2 ) and p : N→ N, let A be a hitter with oracle access to p-parallel µ-error
density estimators. Then, for any ε > 0 and n ∈ N, there exists a set S ⊆ {0, 1}n of size
|S| ≥ 2n−2ε·n and a p(n)-parallel µ(n)-error density estimator fS for S such that the number
of iterations that A uses when given oracle access to fS is at least ε·n

log(p(n))+log(1/µ(n))+1 .
8

8 For proof of the slightly stronger lower bound ε·n
log(p+1)+log(1/µ) see [8, Thm. 12].
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Proof overview. In the proof of Theorem 11, the threshold that defines a “small” query
starts out quite high; that is, `1 = α · 2n, where α = (µ/2p). (In each subsequent iteration,
the threshold decreases by a multiplicative factor of α.) Thus, in the first iteration we might
remove `1 · p ≈ µ · 2n strings from the tentative set.

In the current proof we wish to avoid the removal of so many strings from the tentative
set. To do so, we will set the threshold in the first iteration to be about 2ε·n. Specifically,
denoting by R = n

log(p)+log(1/µ)+1 the number of iterations in the proof of Theorem 2, we
will set the threshold `1 to the value that it obtained (in the proof of Theorem 2) in iteration
i ≈ (1 − ε) · R; that is, `1 ≈ α(1−ε)·R · 2n = 2ε·n. Then, in each subsequent iteration, we
will decrease the threshold by a multiplicative factor of α. The number of removed strings
will thus be less than 2ε·n, whereas the number of iterations (i.e., the lower bound) will be
ε · R = ε·n

log(p)+log(1/µ)+1 . For full proof details, see [8, Thm. 12]. J

The circuit complexity of the “hard” set S.

Recall that a motivating example for the problem discussed in this paper is when S is the set
of satisfying inputs for some circuit C, and the algorithm A tries to find a satisfying input for
C. One might intuitively expect that in order to construct a “hard” set S for A (i.e., a set S
that forces A to use many iterations), a “complicated” circuit C will be needed. However, we
observe that the circuit complexity of the “hard” sets that are constructed in the proofs of
Theorems 11 and 12 is proportional only to the circuit complexity of the sets that A queried.
Thus, we can now prove Theorem 4, which asserts that the lower bound in Theorem 12 holds
even if the algorithm is guaranteed that S can be decided by a relatively simple circuit:

I Theorem 13. (the lower bound on parallel algorithm holds even for “simple” sets; The-
orem 4, restated). Let µ, p, and A be as in Theorem 12, and further assume that for every
query Q ⊆ {0, 1}n that A makes, the set Q can be decided by a circuit from a circuit class C.
Then, for any ε > 0 and n ∈ N, there exists a set S ⊆ {0, 1}n of size |S| ≥ 2n − 2ε·n that can
be decided by an conjunction of negations of at most n · p circuits from C and a p(n)-parallel
µ(n)-error density estimator fS for S such that the number of iterations that A uses when
given oracle access to fS is at least ε·n

log(p(n))+log(1/µ(n))+1 .
9

Proof. The set S that is constructed in the proof of Theorem 12 is obtained by starting
from the tentative set S0 = {0, 1}n, and removing subsets that correspond to some of the
algorithm’s queries (i.e., the ones that were deemed “too small” in the relevant iteration).
Thus, the set S is the intersection of the complements of at most (ε · R) · p < n · p subsets
such that each subset can be decided by a circuit from C. J

6 Lower bounds on algorithms with large estimation error

We now formally state Theorem 6, and prove the first part of the theorem; for the “moreover”
part, see [8, Prop. 14]. In fact, we will prove a statement slightly stronger than the one
in the first part of Theorem 6: Instead of proving the lower bound when the set S of size
|S| ≥ 2n−1, we will prove it assuming that |S| ≥ (1− µ) · 2n.

I Theorem 14. (a lower bound for large errors; Theorem 6, restated). Let µ : N→ (0, 1/2)
such that µ(n) ≥ 4·log(n)

n , and let A be a hitter with oracle access to µ-error density estimators.

9 For proof of the slightly stronger lower bound ε·n
log(p+1)+log(1/µ) see [8, Thm. 13].
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Then, for any sufficiently large n ∈ N, there exists a set S ⊆ {0, 1}n of size |S| ≥ (1− µ) · 2n,
and a µ-error density estimator fS for S, such that the number of iterations that A uses
when given oracle access to fS is at least 2Ω(µ·n).

Proof overview. Let µ′ = µ/2, and for simplicity, assume that µ is constant. Similar to
the proofs in Section 5, we simulate A and provide adversarial answers. However, in the
current proof our answers will be given according to one fixed rule, which does not change
throughout the execution (in contrast to the previous proofs, in which the “threshold” for
defining small sets decreased in each iteration).

The main idea is to arrange all sets of size more than n in “levels”, where the ith level
contains sets of size between 2(i−1)·µ′·n and 2i·µ′·n. Then, during the execution, we will
output the same fixed estimate for all queried-sets in the same level; specifically, for sets in
level i, we will output the estimate i · µ′. Note that if we use 1/µ′ levels, then our estimate
for the set {0, 1}n, which is in the highest level, is ν̃({0, 1}n) = 1; this implies that any S
consistent with our answers has density at least 1− µ. To see that there exists a set S that
is consistent with such answers, fix a queried-set Q in level i. If the algorithm makes at most
R � 2µ′·n queries, then the vast majority of strings in Q do not belong to queried-sets of
level i− 2 or less, since the number of such strings is at most R · 2(i−2)·µ′·n � |Q|. Thus, if
we include every string w ∈ Q in S with probability `(w) · µ′, where `(w) is the level of the
smallest queried-set that contains w, then the vast majority of strings in Q will be included
in S with probability either (i− 1) ·µ′ or i ·µ′. Hence, the expected density of S in Q will be
close to the interval

[
(i− 1) · µ′, i · µ′

]
, which implies that, with high probability, the actual

density of S in Q will not deviate from our estimate of ν̃(Q) = i · µ′ by more than 2 · µ′ = µ.
Let us now provide further details for this idea. We partition the power set of {0, 1}n

into levels as follows. The zero level, denoted L0, consists of all sets of size at most (roughly)
n. For i = 1, ..., 1/µ′, the ith level, denoted Li, consists of all sets that are not included in
any level j < i, and that are of size at most 2i·µ′·n. Observe that for every i ≥ 3, every
set in Li is larger than every set in Li−2 by a multiplicative factor of at least 2µ′·n. After
R ≈ µ′ · 2µ′·n iterations, in which we act as above (i.e., answer ν̃(Q) = i · µ′ for Q ∈ Li), we
let S be a random set such that every string w ∈ {0, 1}n is included in S, independently, with
probability `(w) · µ′ (recall that `(w) is the level of the smallest queried-set that contains w,
or `(w) = 1/µ′, if w was not included in any queried-set).

Note that A cannot find a positive singleton, since we output the estimate zero for
every queried-set in L0 (i.e., every set of size smaller than (roughly) n). Also note that
strings in queried-sets in L0 are never included in S, and thus our estimate (of zero) for
every queried-set in L0 is always correct. Our main claim is that, with high probability,
for any queried-set Q ∈ Li, where i ≥ 1, the density of S in Q, denoted by δS(Q), satisfies
i · µ′ − µ ≤ δS(Q) ≤ i · µ′ + µ. This claim implies that our estimate for Q is correct, up to an
error of µ. Let us sketch the proof of this claim.

To see that δS(Q) ≤ i · µ′ + µ = (i+ 2) · µ′, note that every w ∈ Q is included in S with
probability `(w) · µ′ ≤ i · µ′, where the inequality is because `(w) is upper bounded by
the level of Q, which is i.
To see that δS(Q) ≥ i · µ′ − µ = (i − 2) · µ′, first note that this lower bound is trivial
for i ≤ 2 (because i− 2 ≤ 0). If i ≥ 3, the number of strings from queried-sets of level
j ≤ i− 2 in Q is at most R ·maxQ′∈Li−2 |Q′|. Now, recall that every set in Li is larger
than every set in Li−2 by a multiplicative factor of at least 2µ′·n, and that R ≈ µ′ · 2µ′·n.
Hence, the vast majority of strings w ∈ Q satisfy `(w) ≥ i− 1, and they will be included
in S with probability at least (i− 1) · µ′.

The foregoing establishes that a random set is consistent with our answers to A. Since we
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output the estimate 1 for any set in level i = 1/µ′, and in particular for the set {0, 1}n ∈ L1/µ′ ,
it follows that the overall density of S is at least (1− µ) · 2n. For full proof details, which
also handle a sub-constant error µ, see [8, Thm. 15]. J

We now prove the lower bound in Item (2) of Theorem 7, which generalizes Theorem 6,
by asserting a trade-off between the density of S and the number of estimations required to
find a string in it. The proof of Item (1) of Theorem 7 appears in [8, Prop. 14].

I Theorem 15. (a lower bound for large errors and arbitrary density; Theorem 7, restated).
Let µ : N → (0, 1/2) such that µ(n) ≥ 12·log(n)

n , and let A be a hitter with oracle access
to µ-error density estimators. Then, for any sufficiently large n ∈ N, and any density
ρ ∈ [µ(n), 1− µ(n)], there exists a set S ⊆ {0, 1}n of size |S| ≥ ρ · 2n, and a µ-error density
estimator fS for S, such that the number of iterations that A uses when given oracle access
to fS is at least 2Ω((µ/ρ)·n).

Proof overview. The proof is obtained by modifying the proof of Theorem 6. In the proof
of Theorem 6, we partitioned the collection of sets of size larger than (roughly) n into 1/µ′
levels. The density of the set S was proportional to the number of levels, because we supplied
the density estimate i · µ′ for sets in level i (and in particular, the estimate 1 for the set
{0, 1}n in level i = 1/µ′). On the other hand, the lower bound on the number of estimates
was proportional to the height of each level i = 2, 3, ..., 1/µ′, where the height of a level is
ratio between the size of the largest set in it and the size of the smallest set in it.

In the current proof, we wish to obtain a set S with smaller density (i.e., density ρ instead
of density 1− µ), but improve the lower bound on the number of estimates. We will do so
by partitioning the subsets of {0, 1}n into fewer levels, each of larger height. Specifically, we
let µ′ = µ/2, and partition the collection of sets of size more than n into slightly more than
ρ/µ′ levels, each of height about 2n/(ρ/µ′). Using an analysis very similar to that in the proof
of Theorem 6, we will obtain a lower bound of about 2(µ′/ρ)·n estimates, and the set S will
be of density about (ρ/µ′) · µ′ = ρ. For full proof details, see [8, Thm. 16]. J
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