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Abstract
We give a completeness theorem for the BCD theory of intersection types in an operational
semantics based on logical relations.
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1 Introduction

The theorem of Coppo, Dezani, and Pottinger ([3], [6])states that an untyped lambda term
is strongly normalizable if and only if it provably has an intersection type. Here we consider
which terms have which types.

We define an operational semantics for the collection of intersection types which assigns
to every intersection type A a set of strongly normalizable terms [[A]]. We show that the
theory of intersection types BCD (Barendregt, Coppo, Dezani) proves X : A for an untyped
term X if and only if X : [[A]] for all interpretations of [[, ]] in the operational semantics.
Here we shall use the notation “:” for both the formal statement that X has type A, and
also set theoretic membership.

Our view of what operational semantics should be begins with Tait style proofs ([8])
of strong normalization. These proofs consider a complete lattice of sets S of strongly
normalizable untyped terms([2] 9.3). Not all such sets are considered but the lattice operations
are union and intersection. We require that S is closed under reduction, and possibly some
other conditions,such as head expansion with strong normalizable arguments, depending on
the variant. The operation → is then introduced

S → T = {X|for all Y : S ⇒ (XY ) : T}.

This is certainly familiar from the theory of logical relations ([2] 3.3) for the simple typed
case, positive recursive types, and our principal concern in this note; intersection types.
Given an intersection type A, if the atoms (atomic types) of A are evaluated among the sets
S then A has a value among the sets S. This will be the interpretation [[A]].

2 Beth Models

SN is the set of strongly normalizable untyped terms. Here, we do not distinguish beta from
beta-eta strong normalizability since they are equivalent. A Beth model consists of a pair
(O,E) where O is a poset with partial order [, and E is a monotone map from O x Atoms
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into the subsets of SN closed under beta reduction and we shall assume that E(p, a) is non
empty except possibly when p is the [ smallest element of O, should this exist.

For λ terms X we define the “forcing relation” |= by

p |= X : a if for all q]p there exists r]q s.t. X : E(r, a)
p |= X : A/\B if p |= X : Ap |= X : B
p |= X : A→ B if whenever q]p and q |= U : A there exists r]q

such that r |= (XU) : B

and we assume that E satisfies the generalized monotonicity property if [Y/x]X : E(p, a), q]p,
and q |= Y : A then there exists r]q such that (\xXY ) : E(r, a) where [Y/x] is the the
substitution operation (the term Y for the variable x).

I Definition 1. An O chain (linearly ordered subset) W is generic if
(i) for any X and atom a there exists p : W such that either X : E(p, a) or there is no q]p

such that q |= X : a, and
(ii) for each A→ B there exists p : W such that either p |= X : A→ B or there exists U

and q : W such that q]p and q |= U : A but there is no r]q such that r |= (XU) : B. We
could just as easily use directed subsets of O instead of chains but chains suffice.
For what follows the reader should consult the definition of BCD in [2] which appears
on pages 582-583,but without the top element (Utop). When we wish to include the
top element, Utop, together with its axiom ([2] page 583), we will write BCD + Utop.
Especially, the reader should look at the definitions of equality and the ordering of
types on page 582. These are reproduced in the appendix.

Facts
1. if p |= X : A and q]p then q |= X : A
2. p |= X : A iff for each q]p there exists r]q s.t. r |= X : A
3. if p |= X : A and

A < B or A = B in BCD (page 582)

then p |= X : B
4. if W is generic then for any X and atom a there exists p : W such that for all q]p we

have q |= X : a or there is no q]p s.t. q |= X : a
5. if W is generic then for any X and A/\B there exists a p : W such that p |= X : A/\B

or there is no q]p such that q |= X : A/\B
6. if W is an O chain with a maximal element then there exists a generic O chain extending

W .

I Proposition 2. Let W be a generic O chain and set R(A) = {X| there exists p : W such
that p |= X : A}. Let X : SN then
(i) X : R(a) iff there exists p : W s.t. X : E(p, a)
(ii) X : R(A→ B) iff for each

U : R(A) we have (XU) : R (B)
(iii) X : R(A/\B) iff X : R(A) & X : R(B)

Proof. by induction on A. The basis case (i) is by definition. Induction step; Case (ii) ⇒.
Suppose that we have a p : W such that p |= X : A⇒ B and we have U : R(A). Thus there
exists q : W such that q |= U : A. By fact (1) we may assume that q]p. Now for any r]q
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there exists t]r such that t |= (XU) : B but W is generic so there must be an r : W such
that r |= (XU) : B. That is (XU) : R(B). ⇐. Suppose that for each U : R(A) we have
(XU) : R(B). Now if there is no p : W such that p |= X : A→ B, since W is generic, there
exists p : W and aU such that p |= U : A but there is no q]p such that q |= (XU) : B. But
by fact (1) this contradicts the hypothesis. Case (iii) similar to case (ii). J

The proposition clearly states that if the atoms a are evaluated {X| for some p : W we
have X : E(p, a)} then the value of the type A mentioned in the introduction is R(A)

I Example 3 (finite sets). In this case we let O be the collection of finite sets of SN
terms closed under beta-eta reduction and ordered by inclusion. We set E(p, a) = p.
Suppose that A = A(1) → (...(A(t) →)...) and ∼ (p |= X : A). Then there exists q]p and
Y (1), ..., Y (t) s, t q |= Y (i) : A(i) for i = 1, ..., t but there is no r]q with XY (1)...Y (t) : r. But
this can only be the case if XY (1)...Y (t) is not SN . Thus we can find a generic W such that
X : R(A) or there exists Y (1), ..., Y (t) s.t. Y (i) : R(A(i)) for i = 1, ..., t and XY (1)...Y (t) is
not SN .

I Example 4. In this case we consider sets S : O of closed beta-eta normal terms for which
there exists an integer n such that X : S iff every path in the Bohm tree of X has at most
n lambdas and every node in the Bohm tree ([1] pg 212) of X has at most n descendants.
Then for any partial recursive function f which is total on S and maps S to S there exists
M : R(S → S) such that for any N : S we have MN = f(N) modulo beta-eta conversion.

I Proposition 5. Suppose that O has a smallest element 0. Then, 0 |= X : A iff for every
generic W we have X : R(A).

Proof. Immediate by facts (1)–(6). J

We next consider the theory BCD with its provability relation ` as described in [2] and
reproduced in the appendix. A basis F is a map from a finite set of lambda calculus variables,
dom(F ), to the set of types. Below we shall often conflate F with the finite set

{x : F (x)|x : dom(F )}.

Let O,E be as above and W generic.

I Proposition 6 (soundness). Suppose that @ is a substitution and F is a base such that for
all x : dom(F ),@(x) : R(F (x)). Then if in BCD

F ` X : A

we have @(X) : R(A).

Now let O be the set of bases partially ordered by F [G iff dom(F ) is contained in dom(G)
and for each x : dom(F ) we have G(x) and F (x) are equal types in BCD. Now define E(a)
by X : E(F, a) if FV (X) is contained in dom(F ) and F ` X : a. Clearly E is [ monotone.
In addition, E(F, a) is closed under beta-eta reduction. However, generally E(F, a) is not
closed under beta head expansion for reasons similar to the case of BCD. In particular this
happens when (\uUV ) reduces to X, u is not free in U and there is an x : FV (V )/\FV (U)
such that the basis entry x : F (x) prevents V from having a BCD type. Thus we have to
verify the generalized monotonicity property to insure soundness.First, we observe that there
is no difference between E and |= at atomic types.
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Fact 7. F |= X : a iff X : E(F, a)

Proof. If FV (X) is contained in dom(F ) then the equivalence follows from the monotonicity
of E and the weakening rule of BCD ([2] page 585). Otherwise suppose that F |= X : a. For
each x : FV (X)− dom(F ) add a new atom a(x) and extend F to G by G(x) = a(x). Then
G |= X : a so by the previous argument G ` X : a in BCD. But we may substitute Utop for
each a(x) and (\x.xx)(\x.xx) for each x. So in BCD + Utop we have

F ` [..., (\x.xx)(\x.xx)/x, ...]X : a

and this contradicts the fact that if a term has a BCD type (Utop free) in BCD + Utop then
it is strongly normalizable (theorem 17.2.15 (i) [2]). J

I Lemma 7. Suppose that FV (X) is contained in dom(F ).

F |= X : A iff F ` X : A in BCD

Proof. this is proved by induction on A. The basis case is by fact 7. For the induction
step the case A = B/\C is obvious. We consider the case A = B → C. ⇒. Suppose
that F |= X : B → C. Let z be a new variable and extend F by G by with G(z) = B.
Since G |= z : B by induction hypothesis G |= z : B thus there exists H]G such that
H |= Xz : C. Again by induction hypothesis H ` Xz : C in BCD. Reasoning in BCD,
H − {z : B} ` \z(Xz) : B → C. Now by hypothesis FV (X) is contained in dom(F ), so by
weakening, F ` \z(Xz) : B → C. Hence by subject reduction for eta ([2] page 621)

F ` X : B → C.

Conversely,suppose that F ` X : A. Let G]F and G |= U : B. By induction hypothesis
G ` U : B in BCD Thus by induction hypothesis G |= (XU) : C. Hence

F |= X : B → C. J

I Corollary 8. Generalized monotonicity holds and we have a Beth model.

From the lemma we get the completeness theorem.

I Theorem 9. Let M be closed. Then BCD `M : A iff for every Beth model (O,E) and
generic W,M : R(A).

Proof. ⇒. This is the soundness proposition. ⇐. Consider the Beth model defined by the
conditions above. By proposition 2 0 |= M : A. Hence by the lemma `M : A in BCD. J
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A Appendix

(1) terms and types
variables x, y, z, ... are terms
if X and Y are terms then so are (XY ) and \xX
atoms a, b, c, ... are types
if A and B are types then so are A/\B and A→ B

(2) (quasi) order on types
A less than or equal A
A/\B less than or equal A
A/\B less than or equal B
(A→ B)/\(A→ C) less than or equal A→ (B/\C)
if C less than or equal A and C less than or equal B

then C less than or equal A/\B
if C less than or equal B and B less than or equal A

then C less than or equal A
if A less than or equal C and D less than or equal B

then C → D less than or equal A→ B

A equals B if A less than or equal B and
B less than or equal A

(3) axioms and rules of BCD
F ` x : A if (x : A) belongs to F
if F, x : A ` X : B then F ` \xX : A→ B

if F ` X : A→ B and F ` Y : A then F ` (XY ) : B
if F ` X : A and F ` X : B then F ` X : A/\B
if F ` X : A and A less then or equal B in BCD

then F ` X : B
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