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Abstract
This is a short survey of the use of intersection types for reasoning in a finitary way about terms
interpretations in various models of lambda-calculus.
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1 Introduction

Intersection types have been introduced by Coppo and Dezani [6], with the aim of enforcing
the typability power of simple types, but they quite immediately turned out to be a very
powerful tool to reason about the semantics properties of programming languages.

In the general framework of denotational semantics of λ-calculus, intersection types supply
a logical description of various kind of λ-models. In particular they allow for a finitary
description of the interpretation of terms, through type assignment systems, assigning types
to terms starting from a context (finite assignment of types to free variables). Terms are
interpreted by sets either of types or of pairs of the shape (context, type), so reasoning
about the interpretation of a term can be done via type inference; in fact, in order to prove
the equivalence between two terms, it is sufficient to show that they share the same type
derivations. Although the type inference is usually undecidable, such a logical description of
models supplies concrete tools to reason in a finitary way about the interpretation of terms,
since a derivation grasps a finite piece of the semantic-interpretations.

The aim of this brief survey is to illustrate how this technique can be applied to three
different classes of models, in the general settings of continuous, stable and relational
semantics. I recall that a λ-model is a reflexive object in a cartesian closed category, i.e., a
space D such that the set of morphisms from D to D is a retract of D (in a more concise way
D . [D→ D]) [2].

2 Continuous Semantics

The first local description of a continuous λ-model through intersection types is in [3]. Then
various instances of continuous models have been studied (see, between others, [7, 8, 13, 1]).
A general correspondence between intersection types and continuous λ-models has been
described in [18].
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x : {A} `C,∇ x : A
ax

Γ `C,∇ M : A A ≤∇ B
Γ `C,∇ M : B

≤∇
Γ, x : σ `C,∇ M : A

Γ, x : σ ∪ τ `C,∇ M : A
w

Γ, x : σ `C,∇ M : A
Γ `C,∇ λx.M : σ → A → I

Γ `C,∇ M : σ → A (∆B `C,∇ N : B)B∈σ

Γ
⋃

B∈σ ∆B `C,∇ MN : A
→ E

Figure 1 The continuous parametric type assignment system.

I Definition 1.
Types (TC) are defined (starting from a countable set C of constants) as:

A, B ::= a | σ → A

where a ∈ C, and σ is a finite set of types.
Let ∇ be any pre-order on TC, extended to sets in the following way:

σ ⊆ τ ⇒ τ ≤ σ
σ ≤ τ, A ≤ B ⇒ σ ∪ {A} ≤ τ ∪ {B}

and closed under:

σ′ ≤ σ, A ≤ B ⇔ σ → A ≤ σ′ → B

Let '∇ be the congruence induced by ∇, and ≤∇ the partial order on TC/ '∇.

I Remark. In order to describe different approaches in a uniform manner, I do not use explicit
the intersection connective. A set of types {A1, ..., An} corresponds to the more standard
notation A1 ∧ ...∧ An, where the intersection connective ∧ is considered modulo idempotency,
associativity and commutativity.

The continuous type assignment system, parametric with respect to C,∇, assigning to
λ-terms types in TC is defined in Figure 1, where Γ,∆ (contexts) are functions from variables
to finite subsets of TC , such that Γ(x) 6= ∅ for a finite number of variables.

Every type assignment system of this kind can be seen as a finitary description of the
interpretation of terms in a continuous λ-model DC,∇. In fact, for every set of types TC and
every partial order ≤∇, the set of subsets of TC/ '∇ equipped with the partial order defined
as: (σ vC,∇ τ if and only if τ ≤∇ σ) is a prime-algebraic lattice DC,∇, whose prime elements
are the singleton over TC/ '∇.

Moreover, types are notations for step functions, interpreting σ → A as a step function
approximating f , for every continuous function f such that A ∈ f(τ), for each τ wC,∇ σ.
Under this interpretation DC,∇ is a linear solution of the domain equation D . [D ⇒c D],
where [.⇒c .] denotes the space of continuous functions ordered pointwise, and the linearity
of the solution means that both the immersion-projection functions map prime elements into
prime elements. Let us call linear continuous models the models of this class. So DC,∇ gives
rise to a linear continuous λ-model DC,∇. On the other direction, every linear continuous
model can be described through a set of types equipped by a suitable intersection relation.
Let J.KDC,∇ be the interpretation function in DC,∇, defined as usual: the following theorem
holds.
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I Theorem 2. Γ `C,∇ M : A if and only if A ∈ JMKDC,∇
ρ , for all ρ such that Γ(x) ⊆ ρ(x).

So the interpretation of a term inMC,∇ is simply the set of types that can be assigned to it.
I Remark. If we define a filter to be a set of types closed under ≤∇, it turns out that the set
of types derivable for a given term is a filter. This justifies the fact that models of this kind
have been called “filter models” in the literature.

I Example 3.
1. The filter model in [3] (where C is an infinite set of type constants and ∇ is the pre-

order induced by the empty set of rules) supplies a solution of the domain equation
D = C× [D⇒ D], through a coding where the type constant a codes the prime element
(a,⊥), the type σ → A codes the prime element (⊥, σ → A), and the equation is solved by
the bijection (⊥, σ → A) 7→ σ → A.

2. The D∞ model of Scott [19] is described by C = {a} and ∇ is induced by the rules
{a ≤ ∅ → a, ∅ → a ≤ a} ([18]).

3. The Park model [17] is described by C = {a}, and ∇ is induced by the rules {a ≤ {a} →
a, {a} → a ≤ a} ([13]).

3 Stable semantics

The stable semantics is based on the notion of stable functions, introduced by Berry [4]. Here
I will consider a particular class of models based on stable functions, namely the coherence
spaces of Girard [11, 10]. A general correspondence between intersection types and stable
λ-model has been described in [15], based on a previous work studying the correspondence
between intersection types and qualitative models [12].

I Definition 4. Let C be a countable set of constants. Types and coherence type theory are
mutually defined as follows.

Types (TC,∇) are defined as:

A, B ::= a | σ → A

where a ∈ C, and σ is a finite set of types, such that ˝∇ (σ). i.e., A ˝∇ B, for all
A, B ∈ σ, A 6'4 B.
A coherence type theory ∇ is a pair (˝∇,'∇), where

˝∇ is a symmetric and antireflexive relation on TC,∇, closed under

σ → A ˝∇ τ → B⇔ either A ˝∇ B or ∃A′ ∈ σ, ∃B′ ∈ τ such that A′ ˇ∇ B′

(where A′ ˇ∇ B′ means A′ 6˝∇ B′ and A′ 6'∇ B′).
'∇ is an equivalence on types, extended to sets to sets in such a way that:

σ '∇ τ ⇔ their elements are pairwise '∇ .

The stable parametric type assignment system, parametric with respect to C,∇ is defined
in Figure 2, where Γ,∆ (contexts) are functions from variables to finite sets of types, such that
Γ(x) = σ implies ˝∇ (σ) and such that Γ(x) 6= ∅ for a finite number of variables. Moreover
F∇(∆1, ...,∆n) means (x : σ ∈ ∆i and x : τ ∈ ∆j imply either ˝∇ (σ, τ) or σ '4 τ).

Every type assignment system of this kind can be seen as a finitary description of the
interpretation of terms in a stable linear λ-model. In fact, for every choice of C and ∇,
SC,∇ = (TC/ '∇,¨), where ¨ (coherence) is the set theoretic union of ˝∇ and '∇, is a
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x : {A} `C,∇ x : A
ax

Γ `C,∇ M : A A '∇ B
Γ `C,∇ M : B

'∇

Γ, x : σ `C,∇ M : A
Γ `C,∇ λx.M : σ → A → I

Γ `C,∇ M : σ → A (∆B `C,∇ N : B)B∈σ F∇(Γ ∪ (
⋃

B∈σ ∆B))
Γ

⋃
B∈σ ∆B `C,∇ MN : A

→ E

Figure 2 The stable parametric type assignment system.

coherence space. Moreover, types supply a notation for finite pieces of stable functions,
interpreting σ → A as an element of the trace of every stable function f , such that A ∈ f(σ)
and ∀τ ⊆ σ, A ∈ f(τ) if and only if τ '∇ σ. Under this interpretation SC,∇ is a linear
solution of the domain equation D . [D ⇒s D], where [. ⇒s .] denotes the space of stable
functions ordered pointwise. Let define linear stable models the models of this class.

So SC,∇ gives rise to a λ-model, let SC,∇. On the other direction, every linear stable model
can be described through a set of types equipped by a suitable type theory. Let J.KSC,∇ be
the interpretation function in SC,∇, defined in the usual way; the following theorem holds.

I Theorem 5. Γ `C,∇ M : A if and only if A ∈ JMKSC,∇
ρ , for all ρ such that Γ(x) ⊆ ρ(x).

So the interpretation of a term in SC,∇ is simply the set of types that can be assigned to it.

I Example 6.
1. Let C be a countable infinite set, ∇ = (¨,'), where ¨ is the minimum relation induced

by the rules: a ˝ A,∀a ∈ C, A ∈ TC,∇ and ' is the minimum congruence on types,
satisfying the conditions of Def.4. Then (TC,∇,¨) supplies a solution of the equation
S = C & [S⇒s S], choosing the type a to describe the token (1, a), and σ → A to describe
the token (2, σ → A). The solution is induced by the bijection (2, σ → A) 7→ σ → A.

2. Let C = {a}, let ¨ be the minimum relation and let ' be the minimum congruence
induced by {a ' ∅ → a}. Then the resulting λ-model is (in some sense) the stable
corresponding to D∞, built in [12].

3. Let C = {a}, let ¨ be as in the previous point, and let ' be the minimum congruence
induced by {a ' {a} → a}. Then the resulting λ-model is (in some sense) the stable
corresponding to the Park model, built in [12].

4 Relational semantics

The relational semantics has been developed by Bucciarelli, Manzonetto and Ehrhard ([5]). A
general correspondence between intersection types and relational λ-model has been described
in [16].
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x : [A] `C,∇ x : A
ax

Γ `C,∇ M : A A '∇ B
Γ `C,∇ M : B

'∇

Γ, x : σ `C,∇ M : A
Γ `C,∇ λx.M : σ → A → I

Γ `C,∇ M : σ → A (∆B `C,∇ N : B)B∈σ

Γ ]B∈σ ∆B `C,∇ MN : A → E

Figure 3 The relational parametric type assignment system.

I Definition 7.
Types (TC) are defined (starting from a countable set C of constants) as:

A, B ::= a | σ → A

where σ is a finite multiset of types.
A relational type theory '∇ is a congruence on types, behaving on multisets in the
following way:

σ '∇ τ ⇔ σ = [A1, ..., An], τ = [B1, ..., Bn] and Ai '∇ Bi

and closed under:

σ → A '∇ σ′ → B ⇔ σ '∇ σ′, A ' B

I Remark. The multisets of types [A1, ..., An] is an alternative notation for A1 ∧ ...∧ An, where
the intersection connective enjoys associativity and commutativity, but not idempotence; so
the congruence on multisets needs to take into account the multiplicity of elements. Let [ ]
denote the empty multiset.

The relational parametric type assignment system, parametric with respect to C,∇ is defined
in Figure 3, where Γ,∆ (contexts) are functions from variables to finite multisets of types,
such that Γ(x) 6= [ ] for a finite number of variables. Moreover ] denotes the multiset union.

An arrow type denotes a relation from Mfin(TC/ '∇) and TC/ '∇, where Mfin(.) is
the set of finite multisets. It turns out that TC/ '∇ supplies a solution of the equation
U . [U ⇒r U], where U is a set and [. ⇒r .] denotes the space of relations betweenMfin(U)
and U. But this space does not supply directly a λ-model, as shown in [9], since it has not
enough points. It is necessary to consider the space Fin(UV ar, U), which consists of the
finitary morphisms from UV ar to U, where V ar is a countable set of variables, and gives rise
to a λ-model. An element of such a space can be represented by a pre-typing, which is a pair
(Γ; A) of a context and a type, both considered modulo '∇: in fact pre-typings are elements
of a space RC,∇ = Fin((TC/ '∇)V ar, TC/ '∇) which supplies a λ-model RC,∇; let J.KRC,∇ be
its interpretation function, defined in the usual way. The following theorem holds.

I Theorem 8. Γ `C,∇ M : A if and only if (Γ′; A) ∈ JMKRC,∇
ρ , where Γ′ = ]i∆i, (∆i; Ai) ∈ ρ(xi),

for every Ai ∈ Γ(xi).

TYPES 2016
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I Example 9.
Choosing C = {a} and the type theory induced by [ ] → a ' a, we obtain the model
studied in [5].
Choosing C = {a} and the type theory induced by [a] → a ' a, we obtain the model
studied in [14].

5 Conclusion

Comparing the three parametric type assignment systems in Figure 1, 2 and 3, it turns out that
the three systems are quite different, from a proof theoretical point of view. The continuous
system uses idempotent intersection, it enjoys weakening, and requires a subsumption rule.
The stable system uses idempotent intersection too, but it is relevant (in the sense that
weakening is unsound) and requires an equivalence rule. Finally, the relational system uses
non-idempotent intersection, is relevant, and requires an equivalence rule. Moreover the
interpretation of a term is the set of types derivable for it in the first two systems, while is
the set of pre-typings in the third one. Despite these differences, they supply a logical tools
for reasoning in a uniform way about the denotational semantics of terms, in particular for
comparing terms from a semantics point of view. In fact, the following theorem holds.

I Theorem 10. Let MC,∇ be a (continous, stable, relational) λ-model, and let vMC,∇ be the
order relation between interpretations of terms in it. Then:

(∀Γ, A. Γ `C,∇ M : A implies Γ `C,∇ N : A) if and only if M vMC,∇ N.
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