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Abstract
HAHA is a tool that helps in teaching and learning Hoare logic. It is targeted at an introductory
course on software verification. We present a set of new features of the HAHA verification
environment that exploit Coq. These features are (1) generation of verification conditions in Coq
so that they can be explored and proved interactively and (2) compilation of HAHA programs
into CompCert certified compilation tool-chain.

With the interactive Coq proving support we obtain an interesting functionality that makes
it possible to carefully examine step-by-step verification conditions and systematically discover
flaws in their formulation. As a result Coq back-end serves as a kind of specification debugger.
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1 Introduction

Mainstream imperative programming languages give programmers a platform in which they
describe computation as a sequence of operations that transform the state of a computing
machine (and interact with the outside world). The resulting programs, as produced by
humans, may contain mistakes. A systematic approach to eliminate mistakes leads to
an arrangement where one has to provide (at least approximately) the solution again, in
a different way, and then confront the two solutions to check if they match well enough. In
the mainstream software engineering this is achieved on the one hand by various requirement
management frameworks and on the other hand by various testing methodologies.

Software verification techniques bring here an alternative paradigm, which is based on
Hoare logic [18]. The different description of the software artefact consists here in giving
explicit specification for invariant properties of states that hold between atomic instructions.
The obvious advantage of this approach over testing is that a verified condition ensures
correctness not limited to a finite base of available test cases, but for all allowed situations.

It is worth stressing that this possibility requires understanding of mechanisms that make
it possible to generalise beyond the results of experiments that are directly available to our
perception. However, this requires good command of additional theoretical constructions,
which are complicated by themselves and require additional educational effort.
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8:2 Coq Support in HAHA

The experience of our faculty, most probably shared by other places, shows that typical
student sees Hoare logic as tedious, boring, obscure and, above all, impractical. Therefore, it
is important to counter this view by showing them the topic in an attractive modern way.

There is a wide variety of mature software verification tools (e.g. ESC/Java [10, 20],
Frama-C [5, 12], Verifast [19], Microsoft VCC [13], KeY [6]) that have proven to be usable
in the verification process of software projects. However their design is geared towards
applications in large scale software development, rather than education, which results in
automatising of various tasks at the cost of making the principles behind them difficult to
understand. In particular, the base logic behind such systems, with automatic verification
condition generation, handling of procedure call stack and heap, is much more complicated
than the initial one designed by Hoare. This opens room for tools in which students are
exposed to basic techniques only, and HAHA1 verification environment fits into this scope.

HAHA was successfully applied in the curriculum of University of Warsaw [26]. So far it
relied on the proving back-end of Z3 [15]. However, development of a Hoare logic proof with
help of Z3 has limitations. In particular, the process of invariant writing is not systematic –
in case the formulas are too weak or in some way incorrect, the process of problem discovery
is based on guesswork. For some formulas Z3 is able to generate counterexamples, which
helps in error correction. Still, the solver does not always find them.

This was our main reason to develop a verification condition generator that produces
formulas in the format acceptable for an interactive theorem prover, in our case Coq. The
interactive prover enables here the possibility to stepwise examine the verification condition
assumptions so that complete understanding is obtained on how they are used to arrive at
the prescribed conclusion. Such a stepwise examination is very similar to examination of
a program operation with a debugger, but this time the main focus is not on the code of the
program, but on another class of statements in an artificial language, namely specifications.

A successful application of this workflow requires two basic elements. First, the formulas
should be generated in a comprehensive way that can be easily related to the point of the code
they come from and students should be able to quickly start proof construction on their own.
Second, most of the generated verification conditions should be discharged automatically. It
is acceptable that only few of them are left for manual proof development. We show here
how these goals were achieved.

In addition, HAHA can be considered as a small programming language. Therefore, it
is crucial to be able to compile programs written in it. As the programs, once verified, are
supposed to be highly dependable, we decided to connect compilation to a highly dependable
compiler chain of CompCert [22]. As a result we obtained a basis for a miniature platform
that enables development of highly dependable small programs.

The paper is structured as follows. Overview of HAHA and its features is in Section 2.
Section 3 presents the translation of HAHA programs with assertions to Coq. It is followed
in Section 4 by description of the Coq proof tactic to automate handling of most of the proof
goals. Section 5 illustrates how Coq can be used to debug specifications. Translation of
HAHA programs to CompCert languages is shown in Section 6. We conclude in Section 7.

2 Overview of HAHA

We present the features of HAHA tool and programming language by showing how a particular
example procedure can be verified with its help. The code of the procedure is presented

1 HAHA is available from the page http://haha.mimuw.edu.pl

http://haha.mimuw.edu.pl
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function i n s e r t (A : ARRAY[ Z ] , n : Z , e : Z) : ARRAY[ Z ]

var j : Z
stop : BOOLEAN
B : ARRAY[ Z ]

begin
B := A
j := n−1
stop := f a l s e
while j >= 0 /\ not stop do
begin

i f (B[ j ] <= e ) then begin
stop := true

end
e l s e begin

B[ j +1] := B[ j ]
j := j−1

end
end
B[ j +1] := e
i n s e r t := B

end

Figure 1 The insert procedure implemented in the HAHA programming language.

in Figure 1 and it describes the well known insert procedure that inserts an element into
a sorted array, so that the array remains sorted after the operation.

The input language of HAHA is that of while programs over integers and arrays. The
code of programs is packaged into functions, which serve as the basic structural component
that is sufficient for code management in the small. The basic language constructs of HAHA
are standard and similar to those of Pascal programming language so we omit its grammar.
We only remark here that one bigger departure from the standard Pascal syntax is that
we do not use semicolon to terminate statements. As a consequence one line can hold only
one statement, which agrees with major coding style guidelines [17, 25]. This design choice
brings some difficulties in applying standard LALR parser generators, but it has the effect
of keeping the source code of programs more legible for humans. As for the semantics, we
designed the language so that its mechanisms and datatypes match those supported by state
of the art satisfiability solvers, e.g. Z3 [15] or CVC4 [1]. The main datatypes of the language
are arbitrary precision integer numbers and unbounded arrays. This design choice makes it
possible to postpone discussion on programming mistakes associated with strict keeping of
the available ranges and integer bounds to other stages of instruction.

In our example the function insert from Figure 1 works as follows. It takes three input
arguments, the array A to insert element to, the length n of its range filled with values of
interest, and the value e to insert into the array. We assume that the input array is sorted
and the function looks for the location into which the value e can be inserted by traversing
the array in a loop from the index n−1 down to 0. In case the first element that is not
greater than e is found, a boolean flag stop is set. Then the function inserts e in the found
place so that the ordering of the resulting array is preserved.

The procedure cannot directly modify the input array.2 Therefore, we have to copy its
content to an array B and then operate on it. The array with inserted element e is returned
as the result, which is realised by the final, typical for Pascal, assignment insert := B.

2 We keep input array immutable to avoid more complicated binary verification conditions and be at the
same time able to refer to the input array in the postcondition.
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8:4 Coq Support in HAHA

1 predicate s o r t ed (A : ARRAY[ Z ] , l : Z , h : Z) =
2 f o r a l l i : Z , j : Z , l <= i /\ i <= j /\ j < h −> A[ i ] <= A[ j ]
3
4 function i n s e r t (A : ARRAY[ Z ] , n : Z , e : Z) : ARRAY[ Z ]
5 precondition n >= 0 // length i s non−negat ive
6 precondition s o r t : s o r t e d (A, 0 , n ) // array i s so r t e d
7 postcondition s o r t ed ( i n s e r t , 0 , n+1) // the r e s u l t i s s o r t e d
8 var j : Z
9 stop : BOOLEAN

10 B : ARRAY[ Z ]
11 begin
12 B := A
13 { s o r t e d (B, 0 , n ) /\ n >= 0 }
14 j := n−1
15 { s o r t e d (B, 0 , n ) /\ j = n−1 /\ n >= 0 }
16 stop := f a l s e
17 { s o r t e d (B, 0 , n ) /\ j = n−1 /\ n >= 0 /\ not stop }
18 while j >= 0 /\ not stop do
19 invariant 0 <= j+1 /\ j+1 <= n
20 invariant onSort ing : s o r t ed (B, 0 , n ) /\ ( j+1 < n −> s o r t e d (B, 0 , n+1))
21 invariant j+1 < n −> f o r a l l k : Z , j < k /\ k <= n −> e <= B[ k ]
22 invariant stop −> ( f o r a l l k : Z , 0 <= k /\ k <= j −> B[ k ] < e )
23 invariant j+1 < n −> B[ j +1] > e
24 begin
25 i f (B[ j ] <= e ) then begin
26 stop := true
27 end
28 e l s e begin
29 B[ j +1] := B[ j ]
30 { 0 < j+1 /\ j+1 <= n }
31 { s t r o n g e r S o r t i n g : so r t e d (B, 0 , n+1) }
32 { f o r a l l k : Z , j < k /\ k <= n −> e <= B[ k ] }
33 { stop −> ( f o r a l l k : Z , 0 <= k /\ k <= j −> B[ k ] <= e ) }
34 { B[ j ] > e /\ B[ j +1] = B[ j ] }
35 j := j−1
36 end
37 end
38 { ( j+1 = 0 \/ stop ) /\ 0 <= j+1 /\ j+1 <= n }
39 { s o r t e d (B, 0 , n ) /\ ( j+1 < n −> s o r t e d (B, 0 , n+1)) }
40 { stop −> f o r a l l k : Z , 0 <= k /\ k <= j −> B[ k ] < e }
41 { j+1 < n −> B[ j +1] > e }
42 B[ j +1] := e
43 { s o r t e d (B, 0 , n+1) }
44 i n s e r t := B
45 end

Figure 2 The insert procedure with the specifications.

The HAHA environment does not accept directly a program written in the form presented
in Figure 1. HAHA programs must contain all necessary specifications to be valid. The
version of the program, which is accepted by the HAHA parser, is presented in Figure 2.

The code starts with additional definitions of predicates, which encapsulate under com-
prehensible identifiers essential properties that we deal with in description of the procedure
states. We define there, in particular, the predicate sorted
predicate s o r t ed (A : ARRAY[ Z ] , l : Z , h : Z) =

f o r a l l i : Z , j : Z , l <= i /\ i <= j /\ j < h −> A[ i ] <= A[ j ]

As we can see, interpreting the expressions in natural way, the predicate holds true when the
argument array A is ordered in the range A[l ] ,. . . , A[h−1].

Another addition to the original code is a range of lines that describes the input-output
property of the function. This area contains a number of properties of the input (marked
with the keyword precondition) and a property of the result (marked with postcondition).
The preconditions express that (1) the area of the values that are relevant for the procedure
has at least one element, and (2) the array A is sorted in the range A[1],. . . ,A[n−1]. Note
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Figure 3 The user interface of HAHA.

that we can name a precondition as it is the case with the second one in our code.
For educational purposes the language has an assertion mechanism that forces program-

mers to insert state descriptions between every two consecutive instructions of their code. We
can see that the assertions are enclosed within curly brackets { ... }. This makes it possible to
stay very close to the original Hoare logic. In addition, programmers immediately see how big
the relevant state they have to keep in mind is and observe its subtle changes along the code
of their procedure. This feature forces them to explicate their understanding of programs,
and as a result makes them aware of all the program details. To avoid literal repetition of
assertions, we forbid assertions to occur at the beginning or at the end of a block. We can
see this feature in our example by observing the lack of asserts in the loop body before the
if keyword in line 25 in Figure 2. The asserts may be named as in line 31 and distributed in
many statements enclosed in brackets to support structured reading of the properties (see,
for example, the block of asserts between lines 30 and 34).

Loop invariants are a necessary element of any system based on Hoare logic. HAHA
makes it possible to describe them through its invariant keyword, which can be used before
the loop body to describe the constant property of the state at the entry to the loop, before
the loop condition is checked. The textual location of the invariants is a little bit different
than their reference point, but it remains in accordance with standard approach [2, 7]. Again
the invariants can be named (see line 20) and understood separately, but they are combined
into a conjunction when treated as a precondition for the body of the loop.

The way the procedure looks like in the user interface of HAHA is presented in Figure 3.

TYPES 2016
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We can see there a window with the source code of the insert procedure. The editor
shown there has features that are expected from a modern IDE, such as syntax highlighting,
automated completion proposals and error markers. Once a program is entered, we can push
one of buttons to start a verification condition generator, which implements the rules of
Hoare logic. The resulting formulas are then passed to a proving back-end, which can be
either Z3 or Coq, depending on the button pressed. If the solver is unable to ascertain the
correctness of the program, error markers are generated to point the user to parts which could
not be proven. A very useful feature of Z3 back-end is the ability to find counterexamples
for incorrect assertions. These are included in error descriptions displayed by the editor.

We should remark here that to illustrate the way the Coq proof assistant can be used
to debug specifications, we introduced in the specifications presented in Figure 2 a small
mistake that is exploited hereafter in our explanations.

Axioms. In some cases the proving back-end is too weak to automatically handle some of
the proof steps. This can be ameliorated by the use of axioms. A typical situation concerns
axiomatisation of multiplication. We can for instance add an axiom
axiom mult i : f o r a l l x : Z , ( x + 1)∗( x + 1) = x∗x + 2∗x + 1

which conveys some basic property of interest. Fortunately, our example program does not
need axioms and actually they are not needed in case we want to use Coq as the proving
back-end (although they can help to automatically prove a number of verification conditions).

3 Export to Coq

Motivations. There are several advantages of letting Coq work as the proving back-end in
a tool such as HAHA. First of all, this gives the users one more option to choose, possibly
one with which they can feel more comfortable. Second, SMT solvers such as Z3 always offer
limited strength. This is partly mitigated by the presence of axiom construct in HAHA, but
on the other hand axioms may be wrong and as a result they weaken the guarantees for the
resulting program. Therefore, Coq back-end offers the possibility to prove arbitrarily difficult
conditions in a way that guarantees strong confidence.

However, we would like to focus on another possibility the Coq back-end offers. One of
the frequent problems in development of formal specifications in the small, i.e. in devising
asserts and loop invariants within programmed functions or procedures, is that the formulas
given by developers are not always good enough to carry out the proving process. There
are at least three reasons for this situation. One is that the given invariant formulas are too
weak to close the loop body verification effort. Another one is that a given formula has some
error, which is not visible to the author. At last, the formulas may be strong enough, but
they use a feature the proving back-end has difficulty to deal with (e.g. it has to make a
proof by induction to exploit the information contained in the formula in a useful way).

The mentioned above weaknesses of specifications result from insufficient understanding
of the algorithm details. The reason why the author gives a false specification and cannot
immediately see the problem in it is that the person does not fully understand the situation
in the particular location of the code. This calls for a process in which better understanding
can be gained. Actually, going through an attempt to formally prove a property is a way to
systematically find a gap in the understanding of the situation at hand.

Generation of verification conditions – general idea. The general idea of verification
condition generation in HAHA is simple. Since asserts are given explicitly between all
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instructions, one has to directly apply the Hoare logic rules. However, the proof must be
done in an appropriate context of defined symbols as well as predicates and the proving
back-end must be supplied with this. We sketch below the main ideas behind this. The
semantics of the translation is rather standard, but as the result must serve educational
purposes we have to make it clear and easily accessible to the users. Therefore, we provide it
here in the form close to the actual Coq text, including comments and spaces, to illustrate
that the generated code can easily be related to the initial source and has a comprehensible
form.

Prelude. The prelude of the Coq file contains declarations necessary to introduce the
model of HAHA datatypes. We model base types of HAHA, i.e. integers (Z ), and booleans
(BOOLEAN ) as Z and bool respectively. The combined type of arrays (ARRAY[τ ] ) is
modelled as functions from integers to the type of array elements (Z → τ ′ ). In particular
the type ARRAY[BOOLEAN] is modelled as the Coq type of functions Z → bool.

As a consequence the prelude in the Coq file for our example starts with library imports
that introduce integer numbers to model the type Z and the domains of arrays. We also
import booleans to model conditions in if and while instructions. At last, the file with our
set of tactics and notations is imported.
Requi re Export ZArith ZArith . Int ZArith . Zbool .
Loca l Open Scope Z_scope .
Load " t a c t i c s . v " .

The file tactics.v contains not only the definitions of tactics, which are described further
here in Section 4, but also a basic support for our handling of booleans and arrays, i.e.
a bracket notation and a bunch of lemmas that describe basic properties of the array update
operation and booleans. In particular the update operation is defined there as follows.
De f i n i t i o n update {Y} (A : array [Y] ) ( where_ : Z) ( va l : Y) :=

fun ( i : Z)⇒ i f (Z . eqb i where_ ) then va l e l s e A[ i ] .

However, the notation for update is more comfortable: the expression A[i ←e ] means the
array A updated at the index i with the value e.

Representation of programs. The subsequent part of the file contains the module with
representation of HAHA programs together with their verification conditions. The programs
in HAHA are triples the first argument of which is a sequence of predicates, the second one
is a sequence of axioms and the last one is a sequence of functions. Translation of a program
in this form produces a Coq module called main. The module has the following structure
(∗ ∗ V e r i f i c a t i o n context : Program c o r r e c t n e s s ∗)
Module main .
. . . Definitions of predicates . . .
. . . Definitions of axioms . . .
. . . Declarations of variables that represent functions . . .
. . . Verification conditions . . .
End main .

We would like to stress that we add to the mentioned below declarations comments that
explain their relation to the original source code and verification conditions visible in the
HAHA interface. We show now how the content of a Coq file sections actually looks like.

Predicates. Predicate is actually a triple of the form (id, args, ex) where id is an identifier
of the predicate, args is its list of arguments and ex is the actual formula represented by the
predicate. These elements are turned to a Coq definition as follows

TYPES 2016
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(∗ ∗ D e f i n i t i o n o f the p r e d i c a t e id ?
− the Coq name i s s l i g h t l y d i f f e r e n t than in HAHA. ∗)

De f i n i t i o n id′P (args′) : Prop := ex′ .

where id′, args′ and ex′ are Coq translations of the identifier, arguments and formula.
As naming constraints in Coq and HAHA are different, the identifier in HAHA cannot

be transferred to Coq with no change. Therefore, we warn the user about it in the comment.
We maintain this style of comment for other definitions in the generated file. This repeated
routine helps beginners a lot, while experienced users quickly learn to ignore it. In addition,
the translation operation adds the suffix P to each identifier to stress that this identifier
represents a predicate.3

Each HAHA argument of the form id : τ is represented in Coq by an expression of the
form (id′ : τ ′) where id′ is the Coq representation of the identifier id and τ ′ is the Coq
representation of the type τ . The result of translation for a sequence of such arguments is a
sequence of above described Coq arguments separated with spaces.

The result of the translation for the HAHA predicate sorted, which we mentioned in our
overview of the HAHA language in Section 2, page 4, looks as follows.
(∗ ∗ D e f i n i t i o n o f the p r e d i c a t e s o r t ed ?
− the Coq name i s s l i g h t l y d i f f e r e n t than in HAHA. ∗)

De f i n i t i o n sortedP (A : array [ Z ] ) ( l : Z) (h : Z) : Prop :=
f o r a l l ( i : Z) ( j : Z) , l <= i ∧ i <= j ∧ j < h → A[ i ] <= A[ j ] .

As we can see, the expression that defines the body of the predicate is similar to the expression
in the HAHA text, which makes the whole definition easy to digest by novice users.

Axioms. Axioms differ from predicates in that they are not parametrised so an axiom is
a pair of the form (id, ex) and is turned to a Coq axiom definition as follows.
(∗ ∗ D e f i n i t i o n o f the axiom id
− the Coq name i s s l i g h t l y d i f f e r e n t than in HAHA. ∗)

Axiom id′A : ex′ .

with meaning analogous to the one explained for the predicates. We make here one small
departure by changing suffixing of the name with P to suffixing with A.

This translation applied to an example axiom written in HAHA in page 2 results in
(∗ ∗ D e f i n i t i o n o f the axiom mult i
− the Coq name i s s l i g h t l y d i f f e r e n t than in HAHA. ∗)

Axiom multiA : f o r a l l ( x : Z) , ( x + 1) ∗ ( x + 1) = x ∗ x + 2 ∗ x + 1 .

Functions. The internal structure of functions is more complicated. They are actually
tuples of the form (id, args, τ, com, pres, posts, locs, ht) where id is the name of the function,
args is the list of its arguments, τ is the type of the returned result, com is a sequence of
potential comments concerning the code, pres is the sequence of function preconditions, posts
is the sequence of function postconditions, locs is the sequence of local variable declarations,
and at last ht is the Hoare triple that is the body of the function.

This tuple is turned into a sequence of Coq declarations as follows.
(∗ ∗ Dec la ra t i on o f the f u n c t i o n name id
− the Coq name i s s l i g h t l y d i f f e r e n t than in HAHA. ∗)

Parameter id′F : args′ → τ ′.

3 Similar solution is adopted in Why3 [16], but there the names are prefixed. Our experience shows that
it is easier to remember identifiers with suffixes that are devoted to the function than ones with prefixes
so we adopted here a solution in accordance with the former choice.
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(∗ ∗ V e r i f i c a t i o n context : Cor rec tnes s o f id′ ∗)
Module cor rec tnes s_ id′ .

. . . translation of the body that depends on id, args, τ, pres, posts, locs, ht . . .
End cor rec tnes s_ id′ .

Again id′ is the translation of the HAHA identifier to a Coq one with F as suffix. The
arguments are translated as args′. This time the argument types are simply the Coq type
names or their representations. Similarly, τ ′ is the result type name.

Before we present the details of translation for items located in the module body, let us
see a concrete example for the result of this translation for our insert function insert :
(∗ ∗ Dec la ra t i on o f the f u n c t i o n name i n s e r t
− the Coq name i s s l i g h t l y d i f f e r e n t than in HAHA. ∗)

Parameter i n s e r t F : array [ Z ] → Z → Z → array [ Z ] .

(∗ ∗ V e r i f i c a t i o n context : Cor rec tnes s o f i n s e r t ∗)
Module c o r r e c t n e s s _ i n s e r t .
. . .
End c o r r e c t n e s s _ i n s e r t .

The further translation is divided into two main parts. The first one provides a represent-
ation of the local identifiers (i.e. function arguments, the function result identifier and local
variables) while the second one, a representation of the verification conditions the proof of
which guarantees the correctness of the source program.

The translation of local identifiers translates HAHA declarations of local variables into a
series of Coq parameter constructions. For a list of local variables locs = (id : τ)locs′, where
id is an identifier, τ is a type and locs′ is a list of variable declarations, we obtain:
Parameter id′ : τ ′ .
locs′′

where id′ is a translation of the identifier id, τ ′ is the translation of the type τ and at last
locs′′ is the translation of the remaining identifiers.

The translation of local identifiers in the program from Figure 1 is as follows.
Parameter A : array [ Z ] .
Parameter n : Z .
Parameter e : Z .
(∗ Var iab le with the f u n c t i o n r e s u l t . ∗)
Parameter i n s e r t : array [ Z ] .
Parameter j : Z .
(∗ For boolean types we need both bool and Prop r e p r e s e n t a t i o n . ∗)
Parameter stop : bool .
Parameter stopP : Prop .
(∗ Module that ensure s e q u i v a l e n c e o f stop and stopP . ∗)
Module StopR .

De f i n i t i o n varb := stop .
De f i n i t i o n varP := stopP .
Inc lude BoolRepresents .

End StopR .
Parameter B : array [ Z ] .

One additional complexity is associated with booleans. Since these may occur both in
expressions that represent values and in predicates, we need polymorphic representation for
them. We decided to represent such variables as two Coq variables, in bool (stop) and one in
Prop (stopP), the equivalence of which is handled by the content of the (StopR) module. This
module, in particular, contains an axiom (stop = true) ↔ stopP and some helper lemmas.

As mentioned, the second part of the function translation procedure generates verification
conditions. This procedure first combines the list of preconditions into one formula that is
the conjunction of the list elements. It then combines the list of postconditions into one
formula using the same connective. We can now add the combined precondition formula
as the assumption and the combined postcondition formula as the final condition of the
mentioned above Hoare triple ht.
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Hoare triples. A Hoare triple is a triple (pres, stmt, post) where pres, post are sequences
of possibly named assertions and stmt is a HAHA instruction.

The translation to Coq depends on the kind of the instruction in stmt. We describe
translation for the block, assignment and loop instructions since these show all phenomena
of interest. The translation for the remaining instructions follows the same lines.

Triples for blocks. A block is an alternating sequence of instructions and assertions. It
starts and ends with an instruction. In the translation of blocks we follow the rule

{ψ} I {ϕ}
{ψ}begin I end {ϕ} .

In HAHA the situation is a little bit more complex since the body of a block is not an
instruction but a sequence of instructions. As a result the Hoare triple in HAHA for which
we want to define translation has the form

(asserts1, ((st1, asserts2) · sts, st2), asserts3)

where asserts1, asserts2, asserts3 are assertions, st1, st2 are statements, and sts stands for
the remaining, possibly empty, part of the block (concatenated with the first statement-assert
pair by · operator). As mentioned before, the external assertions asserts1, asserts3 are
deduced from the external context (i.e. these are external assertions, invariants, pre- or
postconditions). Suppose first that sts is not empty. The result of translation starts a new
module and generates conditions as follows.
(∗ ∗ V e r i f i c a t i o n context : Block at l i n e s bstart − bend ∗)
Module block_Lbstart_bend .

. . . translation of asserts1, st1, asserts2 . . .

. . . translation of asserts2, (sts, st2), asserts3 . . .
End block_Lbstart_bend .

where bstart is the first line of the block body and bend is the last line of the block, and
asserts2 is the first assert in sts .

In case sts is empty the translation looks slightly differently:
(∗ ∗ V e r i f i c a t i o n context : Block at l i n e s bstart − bend ∗)
Module block_Lbstart_bend .

. . . translation of asserts1, st1, asserts2 . . .

. . . translation of asserts2, st2, asserts3 . . .
End block_Lbstart_bend .

To illustrate notation in the prescriptions above, we present here the actual code for module
creation resulting from the block in lines 31–51 of the Figure 1.
(∗ ∗ V e r i f i c a t i o n context : Block at l i n e s 31 − 51 ∗)
Module block_L31_51 .
. . .
End block_L31_51 .

Triples for assignments. An assignment is a pair (lv, e) where lv is an lvalue one can assign
something to and e is an expression. Translation for assignments follows the Hoare’s rule

ψ =⇒ ϕ[e/lv]
{ψ} lv := e {ϕ}

. (1)

Assume now that the Hoare triple for the assignment above has the form (asserts1, (lv, e),
(name, assert2)) where asserts1 is the precondition, name is the name of the postcondition
assert and assert2 is the expression of the assert. The result of translation is as follows.
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Lemma asserts1′′ :
asserts1′

→
assert2′ .

The value asserts1′′ is a name of the lemma which retrieves from asserts1 the line number
n the assertion starts and generates the string of the form Assertion_at_Ln+ 1. In case the
assertion has a label, the name is simply the text of the label. The expression asserts1′ is the
translation of the expressions in asserts1. The situation with assert2′ is more complicated.
We have to construct a verification condition as prescribed in the assumption part of the
rule (1). As a result, we have to construct first assert2[e/lv] and the translation of this
expression to Coq results in assert2′ above.

Consider the instruction in line 12 and the following assert in line 13 in Figure 2:
B := A
{ s o r t e d (B, 0 , n) /\ n >= 0 }

For the assert the following lemma is generated.
Lemma Assertion_at_L13 :

n >= 0 ∧
( sortedP A 0 n)
→

( sortedP A 0 n) ∧ n >= 0 .
Proof .

(∗ Give i n t r o s with meaningful names ∗)
haha_solve .

Admitted .
(∗ ∗ Change above to Qed .

when the lemma i s proved so that
"No more subgoa l s . "
occurs . ∗)

Note that as it is prescribed by the Hoare logic rule, B is replaced in the condition by A.
Additionally, the instruction has no assertion that explicitly precedes it, as this is the first
instruction of the function body block. In that case the preconditions of the function become
the preceding assertion, in this case the conjunction of function preconditions.

One more thing we would like to bring attention to now is that aside from the verification
conditions the tool generates a simple proof script. The proof script is strong enough to
ascertain the validity of the conditions in most of the cases. We end the script with Admitted
keyword and suggest to change it to Qed when the proof is completed. When the Coq script
is finished the lemmas which end with Admitted give rise to error markers while those which
successfully end with Qed lead to clean situation with no alarms in the code.4

Loops. The translation of the verification conditions follows here the while rule

ϕ =⇒ θ {θ ∧ e} I {θ} θ ∧ ¬e =⇒ ψ

{ϕ}while edo I end {ψ} .

A while loop is a triple (ex, inv, b) where ex is the boolean loop guard expression, inv is the
list of loop invariants and b is the Hoare triple that holds the body of the loop. If asserts1
is the list of asserts before the loop and asserts2 is the list of the asserts after the loop the
resulting translation looks as follows

4 In case Qed ends a reasoning which is not successful, the Coq file cannot be compiled and a message is
returned to the user that verification cannot be carried out.
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(∗ ∗ V e r i f i c a t i o n context : Loop statement at l i n e n∗)
Module loop_Ln .
(∗ ∗ V e r i f i c a t i o n context : I n v a r i a n t s b e f o r e the loop ∗)
Module pre .
. . . translation of asserts1 =⇒ inv . . .
End pre .
(∗ ∗ V e r i f i c a t i o n context : Loop p o s t c o n d i t i o n . ∗)
Module post .
. . . translation of inv ∧ ¬ev =⇒ asserts2 . . .
End post .
(∗ ∗ V e r i f i c a t i o n context : I n v a r i a n t s a f t e r a s i n g l e i t e r a t i o n . ∗)
Module i n v a r i a n t s .
. . . translation of the augmented body b′ . . .
End i n v a r i a n t s .
End loop_Ln .

where b′ is b with inv ∧ ex as its initial list of conditions and inv as the final one.

Conditionals. The translation of conditionals does not bring any essentially new elements,
so we omit it here due to lack of space.

Expressions. The translation for equations is obvious and does not require much description.
One thing we can note here is that the array operations take advantage of the function
manipulation operations defined in the prelude of the Coq file, and our notations make
expressions look close to their counterparts in HAHA.

4 Proof Handling in Coq

The Coq system is difficult to interact with. We mitigate the difficulties in three ways (1) by
introduction of extensive comments on the Coq script, (2) by attaching an intuitive how-to
instruction to each generated Coq file so that students can consult it to make proving steps
of interest and (3) by development of automatic proving tactics.

The Coq system provides a wide variety of automatic verification tools, but they are not
tailored to the kind of properties that result from verification condition generators. For this
reason, one can significantly improve performance of proving with Coq by developing tactics
adapted to the most often used patterns. We devised our own tactic instead of e.g. adopting
the work of Chlipala [9] since it is important for such a tactic to be predictable, and it is
difficult to control such a big tactic as the one of Chlipala with this regard.

Array updates

The first of our tactics simplifies lookups in updated arrays A[i ←v] [ j ] , depending on the
relation of indexes i and j. For a single update there are the following cases:

the equation i = j or disequation i <> j is already in the context
one can automatically prove (by omega) the equation i = j or disequation i <> j

none of the above.
In the first two cases the tactic simplifies the update expression (either to v or to A[j]) and
moreover in the second case the proved equation is added to the local context for future use.

In the third case, the proof must be split into two branches, for i = j and for i <> j.
The branching operation (disjunction elimination) puts the needed premises into the proof
context of both branches, so the reduction of update expressions is immediate.

Given a number of update-lookup expressions it is of course more efficient to perform
non-splitting reductions first and splitting ones later and this is the case in our tactic.
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This procedure is repeated until no more lookups in updated tables are present in the
context. The tactic running the above procedure is solve_updates.

Rewriting with local hypotheses

Even though there is an automatic rewriting tactic autorewrite in Coq, this tactic does
not use equations from local context, such as premises of the theorem to be proved. Since
equations between variables and other expressions are often present in verification conditions,
we proposed a tactic to do exactly this.

Our tactic simplify takes every equation (over Z) from the local context, orients them
in a way described below and rewrites the whole context with this equation using the Coq
tactic rewrite !H in ∗.

The orientation of the equations is the following:
equations of the form v = exp are oriented from variable v to the expression, provided
that v does not appear in the expression; if it does, the equation is oriented the other
way around,
if neither of the sides of the equation is a variable, the equation is oriented from the
larger one towards the smaller one,
if two sides are of the same nature (two variables, or two expressions of the same size),
the equation is used from left to right.

In the first case one practically eliminates a variable from the context; even though the
equation itself is not removed to help the user in understanding the proof, it is substituted by
the expression everywhere else and does not add up to the complexity of the proof situation.
In other cases one can hope for the decrease in the size of the proof context.

After the reduction, the ring_simplify tactic is called on all hypotheses and the target in
order to tidy up the expressions.

The repeated rewrites (and ring simplifications) are possible thanks to the common
technique of temporary hiding “used-up” hypotheses behind an identity constant, so that
a given equation does not match the normal (_ = _) equation pattern. After the whole
series of rewritings the identity is unfolded and the equations become ready to be used again.

Arithmetic forward reasoning

Although the omega tactic is very efficient when one wants to prove arithmetical facts, there
is no support to generate new facts from existing ones. The simplest example consists
in automatically generating i=n from the context with i<=n and i>=n. Given that the
inequations may come in a variety of forms (e.g. i<n+1, i−1<n, ~i>n etc.) the tactic is
more than a simple goal matching.

We have developed an experimental tactic to perform this kind of forward reasoning. The
tactic is called deduce_equality and its operation consists in the following steps:
1. transform all inequalities into the form i+a < j+b, where i and j are variables and a, b

are arbitrary expressions (hopefully integer constants),
2. given the name of the analysed variable (say i), transform the above inequalities into the

form i < j + b and j + a < i,
3. search for such a pair of inequalities that the difference b− a is minimal; if it is 2 then

one can conclude that i = j + a+ 1; if it is 3 then we have two cases: i = j + a+ 1 or
i = j + a+ 2 etc.

Currently, the tactic needs the name of the variable to concentrate on. While local variables
can be matched on pretty easily, it is much more difficult to get the names of program
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variables, modelled in Coq as parameters. If this tactic is supposed to be used completely
automatically, one has to either find the way to extract them from the environment or the
Coq verification condition generator must pass their names to the tactic.

Cutting the range

It is often the case that some property, typically a loop invariant Inv, is assumed to be true
for some range of arguments at hand, e.g. for i < n, and one has to prove that it holds for
an extended range, e.g. for i < n+ 1, typically to show that the invariant is preserved after
one pass of the loop. In informal proofs one directly concentrates on the “new” part of the
range, i.e. i = n, taking advantage of the simplifications enabled by the distilled equation.

The formal proof should first split the range into “old” and “new” part, then proof the
“old” part using the assumption and leave the user with the “new” part. Unfortunately, given
that there are other side-conditions to our invariant (hopefully easy to prove, but difficult to
get through by automated tactics), from the Coq perspective it is only possible to know how
to split the range by trying to do the proof. So given the goal i < n+ 1 ` Inv, we apply our
assumption i < n → Inv and we are left with the impossible goal i < n + 1 ` i < n from
which we can recover the information that the range should be split into the following two
cases: i < n and n ≤ i < n+ 1.

Our tactic limit_from_hyp performs this kind of assumption analysis in order to split
the range into “old” and “new” part. First, using existential variables and hidden False
assumption, it sets a trap to recover some information from a following failed proof attempt.
Then the tactic tries to apply a hypothesis to the goal. If this succeeds it means that the
conclusion of the hypothesis has the same form as the goal, as in an invariant preservation
proof. In that case, the premises of the applied hypothesis are combined with the current
hypotheses using the arithmetic forward reasoning described in the previous paragraph, in
order to recover the suitable range splitting point thanks to the prepared existential variables.
At this point the tactic “backtracks” using the hidden False assumption. Then it performs the
right range splitting, proves the “old” part of the range connected with the used assumption
and leaves the user with “new” remaining part(s).

The tactics presented above are incorporated into a general automatic tactic haha_solve
the invocation of which is generated as the initial body of proofs by the Coq code generator.

Even though the number of automatically proved conditions did not increase dramatically
after introducing into haha_solve the aforementioned automatic features, these tactics are
very useful when one has to resort to manual proving. Basically, using these tactics, one
can prove a complex condition in a couple of lines, concentrating on higher-level reasoning
instead of technicalities of the proving process.

4.1 Potential for Development

Although haha_solve can prove large majority of the generated verification conditions, there
are still many cases which are out of reach for our automatic tactic, even though the manual
proof is neither long nor particularly involved.

Naturally, there are some clear areas where a progress in automatic proving of verification
conditions can and needs to be done. This includes:
1. Integer division Integer division, modulo etc. are operations which are not covered by

good automatic tactics of Coq, yet they are quite frequent in programming and therefore
in verification conditions.
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Table 1 The numbers of verification conditions in example algorithms.

File Number
of VCs

Number
of un-

proved
VCs

Description

binary_search.haha 8 4 finds a value in an ordered array using bisecting
approach

cubic_root.haha 9 0 computes an integer cubic root using squaring
exponent.haha 19 5 computes a power of one number to the other
heapify.haha 38 14 adds an element to a heap so that the heap

structure remains intact
insert.haha 39 3 inserts an element into an ordered array (op-

timised version)
partition.haha 43 3 does the partition subprocedure of quicksort
sortmod2.haha 35 6 sorts elements modulo 2
square_root.haha 12 5 computes an integer square root using addition
sum.haha 7 2 finds the sum of n subsequent numbers starting

with 1

2. First order The firstorder Coq tactic is not very well suited to be used as part of
automatic tactics as it often takes a long time to complete (even without success)
and cannot be stopped by timeout. In spite of that, elimination and introduction of
existential quantification is necessary to prove verification conditions. It would also be
desirable to add some support for forward reasoning with generally quantified formulas,
i.e. instantiation of quantified formulas with terms at hand to facilitate the proving
process.

3. Transitivity Sometimes proofs of inequalities require transitivity steps. In automatising
such proofs one should allow for transitivity based on existential variables or guided by
the facts present in the proof context. This, however, has to be allowed with caution as
unlimited transitivity traversal can lead to infinite proof search.

4. Using equations the other way around Our automatic rewriting tactic uses some orient-
ation of equalities in rewriting. However, especially in case of expression to expression
rewriting, a possibility to rewrite in the opposite direction could sometimes help the
proving process. Here also one has to be careful to avoid looping rewriting from l to r
and from r to l back again.

4.2 Efficiency of the Tactics
We have run our translation to Coq procedure on a number of publicly available HAHA
programs that are downloadable from the HAHA web page and that were previously fully
verified with Z3 proving back-end.5 The examples span a variety of different kinds of
algorithms so they can give a reasonable impression on the strength of the tactic. Table 1 shows
the number of total goals and the number of goals that were not discharged automatically.
As we can see the number of the unproved goals is almost always below 10, which means the

5 The example programs and generated Coq files can be downloaded from http://haha.mimuw.edu.pl/
coqexamplex.tgz.
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number of cases to be handled interactively is reasonably small. Moreover, out of the 210
totally generated conditions only 20% (42 goals) were not automatically proved. Of course
there is a big room for improvement, but at least we have reached the satisfactory level of
automatic handling.

5 Specification Debugging Using Coq

To show the support Coq can give in debugging of the specifications, we start working with
the insert algorithm and its specifications presented in Figure 2. As we mentioned, the
specifications in the figure contain mistakes. Let us try to discover it using Coq.

The first step is to generate verification conditions in Coq and see which of them cannot
be proved automatically by our tactic haha_solve. The tactic leaves six assertions to be
solved, namely Assertion_at_L38, in Loop postcondition section, Invariant_at_L22_1, related
to the invariant correctness for the invariant in line 22 in case the first branch of the
conditional is taken, from Invariants after a single iteration section, Invariant_at_L21_2,
Invariant_at_L22_2, Invariant_at_L23_2, related to the invariant correctness for the invariant
in lines 21, 22 and 23 in case the second branch of the conditional is taken, located in Invariants
after a single iteration section, and Assertion_at_L44 after the loop sections.

The correctness of Assertion_at_L38 can be relatively quickly established by simple
logical transformations. Also simple case analysis followed by application of the haha_solve
tactic resolves goals Invariant_at_L21_2, Invariant_at_L22_2, Invariant_at_L23_2, as well
as Assertion_at_L44. A different situation is for Assertion_at_L22_1.
Lemma Invariant_at_L22_1 :

0 <= j + 1 ∧ j + 1 <= n ∧
( sortedP B 0 n) ∧ ( j + 1 < n → ( sortedP B 0 (n + 1 ) ) ) ∧
( j + 1 < n → f o r a l l ( k : Z) , j < k ∧ k <= n → e <= B [ k ] ) ∧
( stopP → f o r a l l ( k : Z) , 0 <= k ∧ k <= j → B [ k ] < e ) ∧
( j + 1 < n → B [ j + 1 ] > e ) ∧
j >= 0 ∧ ~ stopP ∧
B [ j ] <= e
→

True → f o r a l l ( k : Z) , 0 <= k ∧ k <= j → B [ k ] < e .
Proof .

. . .

This form of the verification condition is difficult to digest so we have to decompose it into
smaller pieces. This is done with help of intros and decompose [and] H tactics. The resulting
proof state is as follows
1 subgoal
H0 : True
k : Z
H1 : 0 <= k <= j
H2 : 0 <= j + 1
H4 : j + 1 <= n
H3 : sortedP B 0 n
H5 : j + 1 < n → sortedP B 0 (n + 1)
H6 : j + 1 < n → f o r a l l k : Z , j < k <= n → e <= B [ k ]
H7 : stopP → f o r a l l k : Z , 0 <= k <= j → B [ k ] < e
H8 : j + 1 < n → B [ j + 1 ] > e
H9 : j >= 0
H10 : ~ stopP
H12 : B [ j ] <= e
______________________________________(1/1)
B [ k ] < e

We can now see that the only way to obtain the inequality B [k] < e is by using the hypothesis
H7 or by strengthening of H12, or by some kind of contradiction. We immediately see that
H7 is not usable, as it is guarded by stopP, which does not hold by assumption H10. We can
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now try to see if the assumption B [j ] <= e cannot be made stronger. Indeed, if we forcibly
strengthen the condition using Coq assert tactic:
a s s e r t (B [ j ] < e ) by admit .

then the proof indeed can be completed in two more steps
a s s e r t (B [ k ] <= B [ j ] ) by haha_solve .
haha_solve .

as by sortedness of B the condition B[j ] < e implies the general case. This suggests to take
a closer look at the situation for j. We can see that many assumptions are under the condition
j + 1 < n. As our conclusion must hold also when j+1 = n, we can clear all of them to see
1 subgoal
H0 : True
k : Z
H1 : 0 <= k <= j
H2 : 0 <= j + 1
H4 : j + 1 <= n
H3 : sortedP B 0 n
H9 : j >= 0
H12 : B [ j ] <= e
______________________________________(1/1)
B [ k ] < e

As the assumptions do not bring any information on e, except the one in H12, we can easily
construct a counterexample by letting B[j ] = e. Consequently, the assumptions are not
contradictory.

This makes us conclude that the original invariant in line 22 is not provable. Clearly,
the obstacle in the proof was the situation that the information in assumption H12 used <=
instead of <. Moreover, the information is present in the assumption due to the condition in
the if instruction. Therefore, a reasonable solution would be to weaken the invariant in line
22 to conclude with B [k] <= e, which indeed leads to a proper invariant.

As we can see from the case above, Coq can be used to systematically examine the
situation in a particular point of the code and analyse step-by-step different circumstances
that can occur there. This stepwise examination of situations is very similar to stepwise
examination of the state in a debugger. Moreover, the possibility to temporarily assume new
hypothesis makes it possible to change the internal state of the computation, which is similar
to the state update operation available in debuggers.

6 Compilation Using CompCert

In order to provide an execution path for HAHA programs, a compiler front-end has been
developed. As firm believers in practising what we preach, we decided that the compiler
itself should be formally verified. As such, the front-end is built upon the infrastructure of
the CompCert certified compiler [22], and is itself mostly written and verified in Coq, though
it uses a trusted parser and typechecker written in OCaml. It translates HAHA into the
Cminor intermediate language, which is then compiled to machine code.

6.1 Verified Compilation
By formal verification of a compiler, we understand proving that, given source program S

and output code C, some correctness property Prop(S,C) holds. As Leroy [21] points out,
many possible properties could be described as “correctness”, e.g.
1. “S and C are observationally equivalent”;
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2. “if S has well-defined semantics (does not go wrong), then S and C are observationally
equivalent”;

3. “if S is type- and memory-safe, then so is C”.
4. “C is type- and memory-safe”

The CompCert compiler uses definition 2, and this is also the definition used in the
development of the HAHA front-end.

By the definition above, we consider a compiler Comp to be verified correct if the following
theorem has been formally proved.

∀S,C,Comp(S) = Some(C)→ Prop(S,C)

Or to put it in plain English: if the compiler terminates and produces code in the
target language, then this output program is observationally equivalent with the input
program. A striking consequence of this definition is that a compiler that never produces
any output (Comp(S) = None) is trivially considered correct. Indeed, proofs described here
only provide for freedom from miscompilation issues. Bugs are possible, though they will
be detected at run-time and incorrect code is never produced. Leroy [21] considers this a
quality of implementation issue, to be addressed by proper testing.

In more concrete terms, the correctness theorem for the front-end is stated as follows:

∀S,C,CompHAHA→Cminor(S) = Some(C)→
(∀t, r, terminatesHAHA(S, t, r)→ terminatesCminor(C, t, r))
∧ (∀T, divergesHAHA(S, T )→ divergesCminor(C, T ))

Where S is the source HAHA program, C is the output Cminor program, t and T are
execution traces (terminating and non-terminating, respectively), and r is the program result.
In other words, we prove that the front-end, given a HAHA program, may output only those
Cminor programs that produce exactly the same execution traces and results as the input
program.

6.2 Specification of the HAHA Language
The first step in the process of software verification is providing a formal specification. In the
case of a compiler this means formalising the semantics of the input and target languages. To
this end, CompCert includes Coq definitions of the semantics for all the languages involved –
C99, the target assembly languages and the intermediate languages. The HAHA front-end
also provides similar specifications for its own input and intermediate languages, building
upon the foundations laid by CompCert.

Dynamic semantics. Unlike recent versions of CompCert, the HAHA front-end relies on
big-step (natural) semantics for the specification of languages involved. As noted by Leroy and
Grall [24], big-step semantics are more convenient for the purpose of proving the correctness of
program transformations, but are at a disadvantage when it comes to describing concurrency
and unstructured control flow constructs [23]. The HAHA language does not have such
problematic features, however, and we have decided that big-step semantics are sufficient to
describe the language and specify correctness theorems in our case.

The specification reuses many elements of CompCert’s infrastructure, like execution traces
and global environments. Detailed description of CompCert internals is beyond the scope of
this paper, however. For a detailed exposition, see [22].



J. Chrząszcz, A. Schubert, and J. Zakrzewski 8:19

The semantics is built upon the following definitions:

v ::= hhz(n ∈ Z) | bool(b ∈ {true, false})
| array(a ∈ Z→ v)
| int(n ∈ Z,−231 ≤ n < 231) | undef values

t ::= ε | cons(E , t) finite trace
T ::= cons(E , T ) infinite trace (coinductive)

Values range over true integers, 32-bit machine integers, Booleans, and arrays. Values
undef appear only to mark invalid arithmetic operations and should never appear in well-
typed programs. Values of variables are never undefined; a variable always has a default
initial value, depending on its type (either zero, false or an array of default values).

Notice that arrays are specified as immutable mappings from integers to values and there
is no concept of a memory state involved. This seems surprising at first, given that the
assignment and LValue syntax suggests mutable data structures. Nevertheless, this choice
was made to simplify the specification of function argument passing semantics, which are
by-value. Otherwise, every array would have to be copied before being passed as an argument,
which would have been costly at runtime and clunky in implementation. Immutable arrays
eliminate this problem, though at the same time they generate some, more manageable in
our opinion, complexity in semantics of assignment statements.

Traces record details of input/output events, such as system calls or volatile loads and
stores.

The following semantic judgements are defined using inductive predicates in Coq:

G,E ` a⇒ v, t terminating expressions
G ` s, E ⇒ out, E′, t terminating statements
G ` E, a := v ⇒ out, E′, t assignments
G ` fn(~v)⇒ v, t terminating calls

` prog ⇒ v, t terminating programs

Expressions can produce a trace t, i.e. generate side effects in the form of function calls.
A separate rule is used to specify the manner assignments affect the local environment,
a nontrivial matter due to having to emulate destructive updates on otherwise immutable
arrays. The semantics of HAHA statements and expressions do not make explicit use of
CompCert memory states. All the state information is contained in environments E and
values themselves. The global environment G contains information about functions defined
in the translation unit.

At the same time, the usual inductive definitions of natural semantics are not sufficient to
describe non-terminating (diverging) programs. In order to cover such cases, we use the ap-
proach proposed first by Cousot and Cousot [11], and later implemented in CompCert, which
complements the ordinary inductive big-step semantics with co-inductive rules describing
non-terminating evaluations.

G,E ` a
∞=⇒ T diverging expressions

G,E ` s
∞=⇒ T diverging statements

G ` fn(~v) ∞=⇒ T diverging calls

` prog
∞=⇒ T diverging programs
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G,E ` e1 ⇒ array(a), t1 G,E ` e2 ⇒ hhz(i), t2 a(i) = v

G,E ` e1[e2]⇒ v, t1 · t2

G,E ` ~e⇒ ~v, t1 G(id) = fd G ` fd(~v)⇒ v, t2

G,E ` id(~e)⇒ v, t1 · t2

G,E ` ~e⇒ ~v, t1 G ` E, id := v ⇒ E′, t2

G ` id := e⇒ o,E2, t1 · t2

G ` s1, E0 ⇒ out_normal, E1, t1 G,E1 ` s2
∞=⇒ T

G,E0 ` (s1; s2) ∞=⇒ t1 � T

G,E ` e1 ⇒ array(a), t1 G,E ` e2 ⇒ hhz(i), t2 G ` E, e1 := a[i := v]⇒ E′, t3

G ` E, e1[e2] := v ⇒ E′, t1 · t2 · t3

Figure 4 Examples of HAHA semantic rules.

6.3 The Target Language: Cminor

Cminor is the input language of CompCert back-end. It is a low-level imperative language,
that has been described as stripped-down variant of C [22]. It is the lowest-level architecture
independent language in the CompCert compilation chain and thus is considered to be the
entry point to the back-end of the compiler [22].

Cminor has the usual structure of expressions, statements, functions, and programs.
Programs are composed of function definitions and global variable declarations. For a more
detailed description of the language we refer to [22].

6.4 Implementation

The HAHA front-end for CompCert has a rather conventional design. It consists of a
parser, type checker, and several translation passes. These are connected with the CompCert
back-end by a simple unverified compiler driver.

The proofs of semantic preservation follow the pattern described by Blazy, Dargaye, and
Leroy in [3]. They proceed by induction over big-step HAHA evaluation derivation and case
analysis of the last rule used. They show that the output expressions and statements evaluate
to the same traces, values, and outcomes as input code, effectively simulating it. Such proofs
are conducted for every front-end pass and then composed into a proof of correctness for the
whole translation chain. Below, we give short descriptions of the front-end passes.

6.4.1 Parsing and Semantic Analysis

The compiler uses its own unverified GLR parser for the HAHA language. Although initially
planned, reusing the Xtext-generated parser of the HAHA environment for a Coq development
proved difficult. The additional complexity in defining its semantics and translation into a
more usable format would overshadow the benefits of that approach.

The parser produces a raw, untyped AST from the input file. This is then passed
into the semantic analyser. Aside from doing type checking, the semantic analysis pass
performs several minor, but important, tasks, like string interning and generation of runtime
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initialisation data for arbitrary precision integer literals, which are stored as global variables
in the output program.

6.4.2 Expression Simplification
The first verified pass of the front-end is removal of logic specifications, which do not affect
the dynamics of program runs. As it is routine we do not describe it.

The purpose of the next pass is to replace HAHA expressions with no direct equivalents in
Cminor. Specifically, function calls, true integer arithmetic, and HAHA array manipulation,
all of which in the end are replaced with function calls are pulled out into separate statements.
It can be thought of as a form of limited three-address code generation. Following a convention
established by CompCert developers, the target language of this pass is called Haha]minor.

The main idea of the simplification algorithm is very simple. During recursive traversal
of the expression tree, every HAHA expression e, which directly results in a side effect, is
replaced with a reference to a fresh temporary variable t. A statement reproducing the
expression’s effect and assigning the resulting value to t is then inserted just before the
expression occurs in the code. Additionally, HAHA loops are turned into infinite loop, with
a conditional break statement inside the iteration.

Temporary variables are semantically similar to HAHA local variables, but separate from
them – they reside in their own environment TE . Every function can have an unlimited
number of temporaries. Although not made explicit in the semantics, identifiers of temporaries
should not collide with the identifiers of locals and this is enforced by runtime assertions in
the later stages of compilation.

The pass is analogous to SimplExpr pass of the CompCert C front-end and uses similar
implementation and verification techniques. The semantic preservation is proved with respect
to a non-executable, relational specification, expressed using inductive predicates. The
specification captures the syntactic conditions under which a Haha]minor construct could be
a valid translation of a given HAHA expression or statement, without prescribing a way in
which new variables are generated. It allows a simpler proof semantic preservation, which
does not have to deal with the details of implementation. Translation functions are written
using monadic programming style, with a dependently typed state monad to generate fresh
identifiers. Their outputs are then proved correct with respect to the specification, which is
sufficient to establish correctness.

To give an example, the specification for expression is a predicate of the form:

a ∼ s, a′, ~id

where a is a HAHA expression, s is a Haha]minor statement that reproduces the side effects of
a, a′ is the translated expression and ~id is the set of temporary variables that are referenced
in a′. Example rules are given in Figure 5. Notice that uniqueness and disjointedness of
temporaries in subexpressions is specified in an abstract way.

6.4.3 Further Simplifications
The next pass translates Haha]minor into the Hahaminor intermediate language. On a program
transformation level, this pass performs two basic tasks, which account for differences in
function call semantics between the two languages:
1. Explicit local variable initialisation.
2. Insertion of return statements.

TYPES 2016
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t ∈ tmps
hhz(n) ∼ tmp(t) := alloc(n), tmp(t), tmps

typeof(e) = hhz e ∼ s′, e′, tmps′ t ∈ tmps t /∈ tmps′ tmps′ ⊆ tmps
op1(e) ∼ (s′; tmp(t) := op1(e′)), tmp(t), tmps

typeof(e1) 6= hhz typeof(e2) 6= hhz e1 ∼ s1, e
′
1, tmps1 e2 ∼ s2, e

′
2, tmps2

tmps1 ∩ tmps2 = ∅ tmps1 ⊆ tmps tmps2 ⊆ tmps
op2(e1, e2) ∼ (s1; s2), op2(e′

1, e
′
2), tmps

Figure 5 Example rules of the expression translation specification.

HAHA and all the intermediate languages up to Haha]minor use Pascal-like special variable
to hold the return value of the function. No special return statement is provided. Once the
execution of the function body finishes, the value of the special variable is returned to the
caller. Additionally, all the local variables are automatically initialised to default values. On
the other hand, in Cminor the return value at the end of the function is undefined unless an
explicit return statement is provided. Local variables are initially considered undefined and
need to have values explicitly assigned.

Initialising variables in the translated program is very simple: it is sufficient to prepend to
the function body the appropriate assignments of default values. Providing explicit returns
is equally simple. The lack of any unstructured control flow features in the HAHA language
means that it is sufficient to simply append a return statement to the function body.

Aside from that, there exists another significant semantic difference between the two lan-
guages, Hahaminor deals away with the second local “temporary” environment of Haha]minor
and has only a single environment for local variables. This is an important simplification
step before the final pass of Cminor generation, which has plenty of difficulties in proving
semantic preservation on its own.

Proof of Correctness

Relating environments. The Haha]minor intermediate language uses two local environ-
ments: one for temporary variables introduced by the expression simplification pass, and one
for “old” locals. Hahaminor, on the other hand, uses only a single environment. Accordingly,
one of the key issues in verification of this pass is to define sensible relation connecting both
Haha]minor environments to the resulting combined Hahaminor environment.

The matching relation MatchEnv(E,TE , E′) between a Haha]minor local and temporary
environments E and TE , and a Hahaminor environment E′ is defined as follows, assuming
that the sets of temporaries and locals are disjoint:

For all local variables x, E(x) = E′(x).
For all Haha]minor temporary variables t, TE(t) = E′(t).

The disjointedness property, despite being easy to provide, is difficult to prove. Instead,
a choice was made to insert runtime assertions that would enforce this property in the
translation procedures. In the spirit of the definition given in Section 6.1, if the compiler
contained a bug that violated this invariant, an error would be produced.
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6.4.4 Cminor Code Generation
The next and final pass of the front-end translates Hahaminor into Cminor code, which
can then be fed into the CompCert back-end. The translation deals with the encoding of
operations of HAHA values into lower-level constructs available in Cminor.

Boolean values are turned into integers and operations on them are rewritten accordingly.
Loops are put inside blocks and break statements are replaced with exit statements that
jump outside the block of the innermost loop:

break⇒ exit(0) s⇒ s′

loop(s)⇒ block(loop(s′))
Array operations and arbitrary precision arithmetic are lowered into runtime library calls.
The pointers to initialisation data for integers are provided by the means of an axiom, that
is instantiated during program extraction to a hash table lookup.

Proof of Correctness

Despite the simplicity of the code transformations in this pass, the proof of semantic
preservation is rather involved. The most problematic aspect is bridging the incompatible
worlds of HAHA and Cminor values.

The runtime functions which implement manipulation on HAHA values are specified to
accept and return opaque pointers. A sensible preservation proof needs a way to associate
those pointers with values they represent.

Following Dargaye [14], we divide memory blocks into following categories:
Stack blocks (SB). At every function call, Cminor allocates a new stack block to contain
the function’s activation record. The block is freed upon exit from the call.
Heap blocks (HB(v)). Pointers to these blocks represent HAHA integer and array objects.
Global blocks (GB). Functions and integer constant initialisation data. A global block is
allocated at the very beginning of program execution and it remains live for the entire
runtime of the program.
Invalid blocks (INVALID).

Let f(M, b) be a mapping assigning one of those categories to memory blocks b, for a given
memory state M . We may define a value matching relation, parametrised by a memory state
M and the mapping f , as follows:

int(n) ≈(M,f) int(n)
true ≈(M,f) int(1)
false ≈(M,f) int(0)
∀v, undef ≈(M,f) v

f(M, blk) = HB(hhz(n))
hhz(n) ≈(M,f) ptr(blk, 0)
f(M, blk) = HB(array(a))

array(a) ≈(M,f) ptr(blk, 0)

Values that are represented by pointers are manipulated using runtime library functions,
whose behaviour is specified using axioms.

Relating environments. The matching relation MatchEnv(M,f,E,E′) that connects a
Hahaminor local environment E, block mapping f , and Cminor memory state M and environ-
ment E′ is defined as follows:

For all Hahaminor variables x, E(x) = v there exists Cminor value v′, such that E′(x) = v′

and v ≈M,f tv.
f ‖M ,

where f ‖M denotes a relation that holds if for all b:
b is not a valid block of M , iff f(b) = INVALID,
b is a valid block of M , iff f(b) 6= INVALID.

TYPES 2016
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6.4.5 Runtime Support for HAHA Programs
Like many high-level languages, HAHA has numerous features that do not map directly to
features of commodity hardware or the Cminor language. Some of those features, like HAHA
Booleans, can be relatively cheaply transformed into inline code. Others require complex
algorithms and make use of features like dynamic memory allocation, which in practice
require external libraries implementing them.

Since developing the language runtime was considered to be of secondary importance, it
was decided to wrap off-the-shelf open-source components to provide most of the functionality.
As such, currently the runtime system forms a trusted computing base. Still, we do not
consider this a fatal blow, as the libraries we used are widely used and considered reliable.

Current implementation of arbitrary precision integer arithmetic is a thin wrapper around
the GNU Multiple Precision Arithmetic Library (GMP).

The unusual semantics of HAHA arrays, namely unbounded size and immutability, can be
efficiently implemented using functional dictionaries. Indeed, they are currently implemented
using balanced binary search trees.

Memory management is currently provided by the Boehm-Demers-Weiser conservative
garbage collector [4]. Given that the compiler is not intended to be used in production
environments, we consider conservative collection to be adequate.

7 Conclusions and Further Work

Current version of HAHA (0.57) can be viewed as a basic verification platform for program-
ming in the small. It allows one to write imperative procedures and their input-output
specifications. Then the specifications can be interactively examined and proved in the Coq
proof assistant. Our Coq scripts are systematically filled with information that makes it easy
to connect the proof script with the code of the original program. A program, once verified,
can be compiled through CompCert compilation chain with its behavioural guarantees. In
this way, one can use a types-based tool to teach students the basics of the contemporary
software verification technology.

The further steps in the development of HAHA include addition of automatic verification
condition computation in the style of weakest precondition generation and introduction of
function call stack. However, we are very cautious in introduction of these elements as they
will inevitably make presentation of various expressions in the proving back-end complicated
and likely to be less readable as it is commonly seen. One possible way to achieve this is to
extend ideas used in the CFML project [8] and hide in a careful way the notational overhead
introduced there to achieve a more general solution.
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