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Abstract
We define a shallow embedding of logical proof-irrelevant Pure Type Systems (piPTSs) into mini-
mal first-order logic. In logical piPTSs a distinguished sort ∗p of propositions is assumed. Given
a context Γ and a Γ-proposition τ , i.e., a term τ such that Γ ` τ : ∗p, the embedding translates τ
and Γ into a first-order formula FΓ(τ) and a set of first-order axioms ∆Γ. The embedding is not
complete in general, but it is strong enough to correctly translate most of piPTS propositions
(by completeness we mean that if Γ `M : τ is derivable in the piPTS then FΓ(τ) is provable in
minimal first-order logic from the axioms ∆Γ). We show the embedding to be sound, i.e., if FΓ(τ)
is provable in minimal first-order logic from the axioms ∆Γ, then Γ ` M : τ is derivable in the
original system for some term M . The interest in the proposed embedding stems from the fact
that it forms a basis of the translations used in the recently developed CoqHammer automation
tool for dependent type theory.
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1 Introduction

In this paper we define a shallow embedding of any logical proof-irrelevant Pure Type System
into untyped minimal first-order logic. Proof-irrelevant PTSs (piPTSs) extend ordinary PTSs
with proof-irrelevance by incorporating it into the conversion rule. In logical piPTSs a
distinguished sort ∗p of propositions is assumed and some restrictions are put on the rules
and axioms of the system. The class of logical piPTSs is fairly broad. In particular, a
proof-irrelevant version of the Calculus of Constructions with a separate set universe may be
presented as a logical piPTS.

Our embedding is shallow, which means that terms of type ∗p are translated directly to
first-order formulas. The embedding (or an optimised variant of it) is intended to be used to
translate dependent type theory goals to formalisms of automated theorem provers (ATPs)
for first-order logic. Hence, it is important for efficiency (i.e. the success rate of the ATPs on
translated problems) that the embedding be shallow.

The interest in our embedding is justified by the fact that it is used as a basis of the
translations employed in the recently developed CoqHammer tool, which is the first hammer
for a proof assistant based on dependent type theory [15]. The embedding presented in this
paper is only a small “core” version of the translation used in [15]. In particular, here we
do not deal at all with inductive types. The translation in [15] handles most of the Coq
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9:2 A Shallow Embedding of Pure Type Systems into First-Order Logic

logic and introduces many optimisations. Consequently, it is quite complex and not easily
amenable to a direct theoretical investigation.

The aim of this present paper is to isolate a “core” of the translation from [15] and prove
its soundness: in a logical piPTS, for any context Γ and a Γ-proposition τ , i.e., a term τ such
that Γ ` τ : ∗p, if ∆Γ `FOL FΓ(τ), i.e., the translation FΓ(τ) of τ is derivable in minimal
first-order logic from the axioms ∆Γ which are the translation of Γ, then there exists a termM

such that Γ `M : τ in the piPTS. The terminology comes from the hammer and automated
reasoning literature [9, 8], where this implication is referred to as soundness and usually
formulated in terms of satisfiability. The implication in the other direction, i.e., if Γ `M : τ
then ∆Γ `FOL FΓ(τ), is called completeness of the embedding. In type-theoretic literature,
e.g. [2, 18], the terminology is flipped. We stick with automated reasoning terminology when
referring to soundness or completeness.

Our embedding is not complete, i.e., there exist a context Γ and a Γ-proposition τ such
that Γ ` M : τ for some M , but ∆Γ 6`FOL FΓ(τ). However, the presented embedding
is “complete enough” to be practically usable, i.e., sufficiently many of the derivable Γ-
propositions are provable after the translation for the practical purpose of using an extended
and optimised version of the embedding in a hammer tool for dependent type theory. Some
empirical evidence for this claim is provided in [15, 14] where over 40% of the translations
of Coq standard library theorems are reproved by first-order ATPs, using a (substantially)
extended and optimised version of the present embedding. In this paper we do not attempt
to rigorously justify or even formulate the “complete enough” claim, but only illustrate the
(in)completeness on several examples.

The soundness proof is the main result of this paper. We present the result in a general
framework of logical proof-irrelevant Pure Type Systems to avoid unnecessary reliance on
any particular variant of dependent type theory. Our soundness proof employs constructive
proof-theoretic methods. Assuming the decidability of type checking in the original piPTS,
our soundness proof implicitly provides an algorithm to transform a natural deduction proof
of the translation of a piPTS proposition into a piPTS term inhabiting the proposition.

1.1 Motivation

In order to give some motivation for our work, we now briefly describe the architecture of a
hammer and the relation of the embedding in this paper to the translation used in [15]. For
more background on hammers see e.g. [15, 9].

The goal of a hammer is, given a context Γ and a Γ-proposition τ , to find a term M such
that Γ `M : τ . In practice, the context Γ consists of all declarations accessible at a given
point from the proof assistant kernel (typically there are thousands or tens of thousands of
them). Hammers work in three phases.
1. Lemma selection which heuristically chooses a subset of the accessible declarations that

are likely useful for the conjecture τ . These declarations, together with the declarations
they depend on, form a context Γ0 ⊆ Γ. Typically, the size of Γ0 is on the order of
hundreds of declarations.

2. Translation of the conjecture τ together with the context Γ0 to the input formats of
first-order automated theorem provers (ATPs) like Vampire [22] or Eprover [25], and
running the ATPs on the translations.

3. Proof reconstruction which uses the information obtained from a successful ATP run to
re-prove the conjecture in the logic of the proof assistant or to directly reconstruct the
proof term.
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The reason for employing first-order ATPs is that they are currently the strongest and
most optimised general-purpose automated theorem provers. They are capable of efficiently
handling problems with hundreds of axioms, which is necessary for a hammer tool. The use of
state-of-the-art first-order ATPs is the reason why shallowness of the embedding is essential,
because the ATPs are heavily optimised for directly handling the primitives of first-order
logic. For instance, a declaration x : τ , where τ = Πy : A.py → qy is a Γ-proposition
but A is not (for an appropriate context Γ), should be translated directly to a formula of
the form ∀y.TA(y) → p(y) → q(y) where p, q are first-order predicates and the first-order
predicate TA(y) states that y has type A. In contrast, it would be much less efficient to use
a deep embedding with Γ-propositions translated to first-order terms and using a binary
“inhabitation” predicate T , where the above declaration x : τ would be translated to an axiom
T (x, CΓ(τ)) and a conjecture τ ′ to ∃y.T (y, CΓ(τ ′)), with CΓ(α) the translation of a type α to
a first-order term. Such a translation would require the ATPs to synthesise first-order terms
corresponding to proof terms which would impact the success rate, even if T (x, CΓ(τ)) was
optimised to e.g. ∀yz.TA(y)→ T (z, py)→ T (xyz, qy).

The translation in [15] is in fact not sound because of some optimisations. Also the ATPs
employed in practice are classical. In the proof reconstruction phase in [15] the conjecture
is actually re-proved in the logic of Coq using the lemmas which were needed in an ATP
proof. This is feasible because there are typically only a few of these lemmas, so a much
weaker method than a state-of-the-art ATP may be used in this final phase. Another issue is
that the piPTS formalism does not exactly correspond to common variants of type theory
because it assumes proof irrelevance. Since proof irrelevance is crucial to our translation, no
soundness proof is possible for ordinary PTSs. However, we believe our soundness proof is
still valuable for three main reasons. First, it contributes to the general understanding of the
extended translation in [15], and in particular to understanding of which aspects of it are
“safe” and which might be not. Second, the proof being constructive implicitly provides an
algorithm to transform a natural deduction proof of the translation of a conjecture τ into
a piPTS term inhabiting τ . A simplified explicit presentation of the algorithm is given in
Algorithm 76. It could form a basis of a partial method for source-level proof reconstruction,
i.e., a method for translating a proof found by an ATP back into a proof term in the logic of
the proof assistant (possibly using the excluded middle axiom). In mature hammer systems
optional source-level proof reconstruction increases success rates. Third, isolating a sound
“core” of the translation from [15] might help in devising practical translations for other type
theories than just the logic of Coq handled in [15].

From the point of view of proof theory, what we here call completeness of the embedding
is perhaps more interesting than soundness. However, all hammer tools essentially give up
on completeness. From the automated reasoning perspective it is soundness, or at least
understanding the reasons for the lack of it, which is more important.

2 First-order logic

We define a proof notation system for minimal first-order intuitionistic logic. This system of
notation is a restriction of the system λP1 from [28, Chapter 8].

I Definition 1. An individual term (t, s) is a variable (x, y, z) or a function application
(f(t1, . . . , tn)). A formula (ϕ,ψ) is an atom (R(t1, . . . , tn)), an implication (ϕ → ψ) or a
universally quantified formula (∀x.ϕ). A proof term (M,N) is a proof variable (X,Y, Z), an
individual abstraction (λx.M), a proof abstraction (λX : ϕ.M), an application of a proof
term (MN) or of an individual term (Mt). An environment (∆) is a finite set of proof
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9:4 A Shallow Embedding of Pure Type Systems into First-Order Logic

∆, X : ϕ ` X : ϕ

∆, X : ϕ `M : ψ
∆ ` (λX : ϕ.M) : ϕ→ ψ

∆ `M : ϕ→ ψ ∆ ` N : ϕ
∆ `MN : ψ

∆ `M : ϕ
∆ ` (λx.M) : ∀xϕ

x /∈ FV(∆) ∆ `M : ∀xϕ
∆ `Mt : ϕ[t/x]

Figure 1 Rules of minimal first-order logic.

variable declarations of the form X : ϕ. We usually write ∆, X : ϕ instead of ∆ ∪ {X : ϕ}.
The system of first-order minimal logic is given by the rules in Figure 1. The relation of
β-reduction on proof terms is defined as the contextual closure of the following rules.

(λx.M)t →β M [t/x] (λX : ϕ.M)N →β M [N/X]

We write ∆ `FOL M : ϕ to denote derivability in first-order minimal logic. We drop the
subscript when obvious. We also omit the proof terms when irrelevant, writing e.g. ψ, θ ` ϕ.

I Lemma 2. If ∆ `M : ϕ and ∆ `M : ϕ′ then ϕ = ϕ′.

For the proofs of the following two theorems see e.g. [28, Chapter 8].

I Theorem 3 (Confluence and strong normalisation). If ∆ `M : ϕ then M is confluent and
strongly normalising (wrt. β-reduction).

I Theorem 4 (Subject reduction). If ∆ `M : ϕ and M →∗β M ′ then ∆ `M ′ : ϕ.

Proof terms in η-long normal form or η-lnf are defined inductively (wrt. an implicit
environment).

If N is an η-lnf of type α then λx.N is an η-lnf of type ∀x.α.
If N is an η-lnf of type β then λX : α.N is an η-lnf of type α→ β.
If N1, . . . , Nn are η-lnf or individual terms and XN1 . . . Nn is of an atom type, then
XN1 . . . Nn is an η-lnf.

I Lemma 5. If ∆ `M : ϕ then there exists N in η-lnf such that ∆ ` N : ϕ.

Proof. Take the β-normal form of M and η-expand it as much as possible, respecting the
type and introducing no new β-redexes. The easy details are left to the reader. J

The target of a formula is defined inductively: target(R(t1, . . . , tn)) = R, target(ϕ →
ψ) = target(ψ) and target(∀x.ϕ) = target(ϕ).

I Lemma 6. If ∆ `M : R(t1, . . . , tn) and M is in η-lnf then there is (X : ϕ) ∈ ∆ such that
M = XN1 . . . Nk and target(ϕ) = R and each Ni is an individual term or a proof term in
η-lnf.

3 Proof-irrelevant Pure Type Systems

In this section we define proof-irrelevant Pure Type Systems. These extend Pure Type
Systems with proof-irrelevance, incorporating it into the conversion rule. Our definition of
proof-irrelevant Pure Type Systems is new. It is similar to the definition of a proof-irrelevant
version of ECC from [30]. A related treatment of proof-irrelevance for some extensions of the
Calculus of Constructions is also present in [5]. The study of the meta-theory of ordinary
Pure Type Systems was initiated in [20].
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(axiom) 〈〉 ` s1 : s2 if (s1, s2) ∈ A

(start)
Γ ` A : s

Γ, x : A ` x : A if x ∈ V s \ dom(Γ)

(weakening)
Γ ` A : B Γ ` C : s

Γ, x : C ` A : B if x ∈ V s \ dom(Γ)

(product)
Γ ` A : s1 Γ, x : A ` B : s2

Γ ` (Πx : A.B) : s3 if (s1, s2, s3) ∈ R

(application)
Γ `M : (Πx : A.B) Γ ` N : A

Γ `MN : B[N/x] if N ∼ x

(abstraction)
Γ, x : A `M : B Γ ` (Πx : A.B) : s

Γ ` (λx : A.M) : (Πx : A.B)

(conversion)
Γ `M : A Γ ` B : s

Γ `M : B if B =βε A

Figure 2 Rules of proof-irrelevant PTSs.

I Definition 7. The set T of preterms of a proof-irrelevant Pure Type System (piPTS) is
defined by the grammar:

T ::= V s | S | T T | λV s : T .T | ΠV s : T .T | ε

Here S is a set of sorts, and V s is a set of variables of sort s ∈ S. The constant ε represents
an arbitrary proof. Its role is technical – it will never occur in well-typed terms. The
set FV(M) of free variables of a preterm M is defined in the usual way. To save on notation
we sometimes treat FV(M) as a list. We use x, y, z, . . . for variables, N,M,A,B, . . . for
preterms, and s, s′, s1, s2, . . . for sorts. We sometimes write xs to indicate that xs ∈ V s. We
assume there exists a sort ∗p ∈ S of propositions.

Note that we tag variables with the sorts of their types, like in [30, 24]. This already
appears in [20, 18, 2]. We treat preterms up to α-equivalence, but we do not consider bound
variables of different sorts to be α-convertible. For example, if s1 6= s2 then λxs1 : ∗p.xs1 6=α

λxs2 : ∗p.xs2 . Also, whenever we write λx : A.M we assume x /∈ FV(A).

I Definition 8. The ε-reduction is defined as the contextual closure of the rewrite rules:

x∗
p →ε ε εM →ε ε λx : A.ε →ε ε

I Definition 9. A term N is on the same level as a variable x, notation N ∼ x, if one of
the following cases holds:

x ∈ V ∗p and N →∗ε ε, or
x /∈ V ∗p and N 6→∗ε ε.

I Definition 10. We define restricted β-reduction as follows:

(λx : A.M)N →β M [N/x] if N ∼ x

The restriction N ∼ x is necessary to ensure confluence of βε-reduction on preterms. Without
the restriction, for e.g. M = (λx∗p : A.x∗p)∗p we would have M →∗ε ε and M →β ∗p.
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9:6 A Shallow Embedding of Pure Type Systems into First-Order Logic

I Definition 11. The specification of a proof-irrelevant PTS is a triple (S,A,R), where S
is a set of sorts, A is a set of axioms of the form (s1, s2) with s1, s2 ∈ S, and R is a set of
rules of the form (s1, s2, s3) with s1, s2, s3 ∈ S. We often write (s1, s2) for (s1, s2, s2) ∈ R.
A context is a finite list of declarations of the form x : A, or more formally a function from a
finite subset of the set of variables to the set of terms. We denote the empty context by 〈〉. If
Γ = x1 : A1, . . . , xn : An then dom(Γ) = {x1, . . . , xn} and Γ(xi) = Ai. We denote contexts
by Γ,Γ′, etc. We write Γ′ ⊇ Γ if dom(Γ) ⊆ dom(Γ′) and Γ(x) = Γ′(x) for x ∈ dom(Γ). A
judgement has the form Γ ` A : B. We write Γ ` A : B : C if Γ ` A : B and Γ ` B : C. The
proof-irrelevant PTS (piPTS) determined by the specification (S,A,R) is defined by the
rules and axioms in Figure 2. We often identify a piPTS with its specification.

I Definition 12. Let Γ be a context and A a preterm.
1. Γ is legal if Γ `M : N for some M,N ∈ T .
2. A is a Γ-term if Γ ` A : B or Γ ` B : A for some B ∈ T .
3. A is a Γ-subject if Γ ` A : B for some B ∈ T .
4. A is a Γ-type if Γ ` A : s for some s ∈ S.
5. A is a Γ-proposition if Γ ` A : ∗p.
6. A is a Γ-proof if Γ ` A : B : ∗p,
7. A is legal if there exists Γ′ such that A is a Γ′-term.

In comparison to ordinary PTSs, as presented in [2, Section 5.2], we only change the
application and conversion rules. The side condition in the application rule is necessary
because we modify the notion of β-reduction. We need the side condition to prove standard
lemmas about piPTSs, in particular the substitution lemma. However, for a class of logical
piPTSs, defined below, this side condition may be omitted: Γ ` M : A iff Γ `− M : A
where `− is the derivation system with the side condition in the application rule omitted
(see Lemma 34). The conversion rule is changed to incorporate proof-irrelevance into the
system – this is the major difference with ordinary PTSs. In contrast to [30] we do not a
priori require x ∈ V s1 in the product rule.

I Definition 13. Let λS = (S,A,R) be a piPTS.
λS is functional if

1. (s, s1), (s, s2) ∈ A implies s1 = s2,
2. (s, s′, s1), (s, s′, s2) ∈ R implies s1 = s2.

λS is logical if
1. it is functional,
2. (∗p, ∗p, ∗p) ∈ R,
3. all rules in R involving ∗p have the form (s, ∗p, ∗p) or (∗p, s, s),
4. there is no s ∈ S with (s, ∗p) ∈ A,
5. there exists s ∈ S with (∗p, s) ∈ A.

Functional PTSs are called singly-sorted in [2]. The notion of functional PTSs comes
from [20], and also appears in [18]. A notion of logical PTSs similar to ours occurs in [12, 6],
but it differs in some technical details. The restrictions in the definition of a logical piPTS
ensure that the sort of propositions ∗p has the expected properties, which turn out to be
needed in the soundness proof.

I Example 14. A paradigmatic example of a logical piPTS is the calculus of construc-
tions CCs with a separate impredicative set universe ∗s.
S = {∗p, ∗s,�}.
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A = {(∗p,�), (∗s,�)}.
R = {(∗p, ∗p), (∗s, ∗p), (∗p, ∗s), (∗s, ∗s), (�, ∗p), (∗p,�), (�, ∗s), (∗s,�), (�,�)}.

All (piPTS analogons of) systems of the lambda-cube [2, Definition 5.1.10] are also logical
piPTSs if we take ∗p = ∗. But since they do not have a distinct sort ∗s for a set universe,
translating them using our embedding does not make much sense – terms intuitively denoting
set elements would be erased instead of translated to first-order terms.

I Example 15. Let (S,A,R) be any logical piPTS. Let � be such that (∗p,�) ∈ A and let
α ∈ V � and x ∈ V ∗p . We have α : ∗p ` (α→ α) : ∗p and α : ∗p ` ((α→ α)→ α→ α) : ∗p,
because (∗p, ∗p, ∗p) ∈ R. Hence by the abstraction rule α : ∗p ` (λx : α.x) : α → α and
α : ∗p ` (λx : α → α.x) : (α → α) → α → α. Also (λx : α.x) ∼ x, because x ∈ V ∗

p

and λx : α.x →ε λx : α.ε →ε ε. So α : ∗p ` ((λx : α → α.x)(λx : α.x)) : α → α by the
application rule.

The meta-theory of piPTSs is similar to that of ordinary PTSs (see [2, Section 5.2]). The
proofs follow the same pattern, except that there is one difficulty caused by the mismatch
between βε-reduction in the conversion rule and β-reduction for which the subject reduction
theorem holds. Below we only state a few results concerning piPTSs. We delegate the proofs
and other details to Appendix A.

The relation →ε (Definition 8) is confluent and strongly normalising. By nfε(M) we
denote the normal form of M w.r.t. →ε. Note that FV(nfε(M)) ⊆ FV(M).

I Lemma 16. If N ∼ x then nfε(M [N/x]) = nfε(M)[nfε(N)/x].

I Lemma 17 (Confluence of βε-reduction). If M →∗βε M1 and M →∗βε M2 then there
exists M ′ such that M1 →∗βε M ′ and M2 →∗βε M ′.

I Lemma 18. If M =βε N then M →∗ε ε is equivalent to N →∗ε ε.

I Lemma 19. If N does not contain ε and M →∗βε N then M →∗β N .

I Lemma 20 (Free variable lemma). If Γ = x1 : A1, . . . , xn : An and Γ ` B : C then:
1. the x1, . . . , xn are all distinct,
2. FV(B),FV(C) ⊆ {x1, . . . , xn},
3. FV(Ai) ⊆ {x1, . . . , xi−1} for i = 1, . . . , n.

I Lemma 21 (Start lemma). Let Γ be a legal context.
1. If (s1, s2) ∈ A then Γ ` s1 : s2.
2. If (x : A) ∈ Γ then Γ ` x : A and there is s ∈ S with Γ1 ` A : s and x ∈ V s, where

Γ = Γ1, x : A,Γ2.

I Lemma 22 (Substitution lemma). If Γ, x : A,Γ′ ` B : C and Γ ` D : A and D ∼ x then
Γ,Γ′[D/x] ` B[D/x] : C[D/x].

I Lemma 23 (Thinning lemma). If Γ ` A : B and Γ′ ⊇ Γ is a legal context then Γ′ ` A : B.

I Lemma 24 (Generation lemma).
1. If Γ ` s : A then there is s′ ∈ S with A =βε s

′ and (s, s′) ∈ A.
2. If Γ ` x : A then there are s ∈ S and B such that A =βε B and Γ ` B : s and (x : B) ∈ Γ

and x ∈ V s.
3. If Γ ` (Πx : A.B) : C then there is (s1, s2, s3) ∈ R with Γ ` A : s1 and Γ, x : A ` B : s2

and C =βε s3.
4. If Γ ` (λx : A.M) : C then there are s ∈ S and B such that Γ ` (Πx : A.B) : s and

Γ, x : A `M : B and C =βε Πx : A.B.
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9:8 A Shallow Embedding of Pure Type Systems into First-Order Logic

5. If Γ ` MN : C then there are A,B such that Γ ` M : (Πx : A.B) and Γ ` N : A and
C =βε B[N/x] and N ∼ x.

I Corollary 25. In a logical piPTS, if Γ ` (Πx : A.B) : ∗p then Γ, x : A ` B : ∗p.

Proof. By the generation lemma there are s, s′ ∈ S such that (s, s′, ∗p) ∈ R and Γ, x : A `
B : s′. Because the piPTS is logical, we have s′ = ∗p. J

I Lemma 26 (Correctness of types lemma). If Γ `M : A then there is s ∈ S such that A = s

or Γ ` A : s.

I Lemma 27 (Uniqueness of types lemma).
1. In a functional piPTS, if Γ ` A : B and Γ ` A : B′ then B =βε B

′.
2. In a logical piPTS, if Γ `M1 : A1 and Γ `M2 : A2 and M1 =βε M2 and M1 6→∗ε ε and

M2 6→∗ε ε then A1 =βε A2.

I Corollary 28. In a functional piPTS, if Πx : A.B is a Γ-term and Γ ` A : s then x ∈ V s.

Proof. By the correctness of types and the generation lemmas Γ, x : A is a legal context. By
the start lemma Γ ` A : s′ and x ∈ V s′ for some s′ ∈ S. But s′ = s by the uniqueness of
types lemma. J

I Theorem 29 (Subject reduction theorem). If Γ ` A : B and A→∗β A′ then Γ ` A′ : B.

Subject reduction obviously does not hold for βε-reduction, because ε is not meant to be
typable. This generates a small difficulty in proving the following theorem. See Appendix A.

I Theorem 30. Assume the piPTS is logical and M is a Γ-term. Then M is a Γ-proof if
and only if M →∗ε ε.

I Lemma 31. In a logical piPTS, if M is a Γ-term and M =βε N and Γ ` N : s then
Γ `M : s.

I Lemma 32. In a logical piPTS, if Γ `M : A and Γ, x : A is a legal context then M ∼ x.

I Definition 33. Given a piPTS specification (S,A,R), we write Γ `− M : N if the
judgement Γ `M : N is derivable in the piPTS determined by the specification (i.e. using
the rules in Figure 2), but with the side condition N ∼ x omitted in the application rule.

I Lemma 34. In a logical piPTS, Γ `− M : N is equivalent to Γ `M : N .

I Remark. We have not investigated the normalisation or decidability properties of piPTSs.
We expect that the (strong) normalisation of an ordinary PTS carries over to its proof-
irrelevant version. The same is expected about the decidability of type checking and type
inference. The normalisation of our proof-irrelevant version of the Calculus of Constructions
(CCs from Example 14) may probably be shown by adapting a proof-irrelevant model of the
ordinary Calculus of Constructions. We do not attempt to answer these questions in the
present paper.
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4 The embedding

In this and the following section we assume a fixed logical piPTS λS = (S,A,R).
By TFOL we denote the set of first-order terms, by FFOL the set of first-order formulas,

by VFOL the set of first-order variables, and by ΣFOL the first-order signature. We assume
that each piPTS variable is also a first-order variable and ε and all piPTS sorts are also first-
order constants. Further, we assume five functions Λ0 : VFOL ×FFOL × TFOL → ΣFOL and
Λ1 : VFOL×TFOL×TFOL → ΣFOL and Φ : FFOL → ΣFOL and G0 : VFOL×FFOL×TFOL×S →
ΣFOL and G1 : VFOL×TFOL×TFOL×S → ΣFOL returning unique fresh first-order constants.
The functions are assumed to yield equal results for terms which differ only in the names of
variables, e.g., if σ is a renaming then Λ1(x, r, t) = Λ1(σ(x), σ(r), σ(t)). The functions are
assumed to give different results for terms which differ not only in the names of variables.

The intention here is that Λ0,Λ1,Φ,G0,G1 return “fresh” first-order symbol names to be
used for translations of “lifted-out” lambda-expressions, propositions or dependent products.
The functions should return equal results for translations of lambda-expressions differing only
in the names of bound variables (the translations then differ only in the names of first-order
variables). Note that such functions always exist – e.g. for Λ1(x, r, t) one may simply choose
a new symbol name for each new triple (x, r, t) with variable names standardised, e.g, by
renaming to xi the i-th distinct variable in the triple, counting from the left.

We assume that the first-order signature contains a unary relation symbol P , two binary
relation symbols T and E, and a binary function symbol @. An atom P (t) is to be intuitively
interpreted as “t is provable”, and T (u, t) is to be interpreted as “u has type t”. The symbol E
represents equality. We prefer to work in minimal first-order logic without equality and add
necessary equality axioms in the translation. Using first-order logic with equality would
complicate the proof notation system λP1 and the definition of η-long normal forms. The
symbol @ represents application. We usually write tu instead of @(t, u), and we assume
application to be left-associative.

We often abbreviate e.g. MN1 . . . Nn by M ~N , and M [N1/x1] . . . [Nn/xn] by M [ ~N/~x],
and Πx1 : A1 . . .Πxn : An.B by Π~x : ~A.B, and λx1 : A1 . . . λxn : An.M by λ~x : ~A.M . We
sometimes treat a list of variables ~x as a set. When we write e.g. ~x = FV(ϕ, t) then ~x is the
list of free variables occurring in ϕ, t in the fixed order from left to right.

The embedding translates a context Γ and a Γ-proposition τ into a set of axioms ∆Γ and
a first-order formula FΓ(τ). The embedding uses two functions:
1. FΓ which translates Γ-propositions to first-order formulas,
2. CΓ which translates Γ-terms to first-order individual terms.

I Definition 35. The functions FΓ and CΓ are defined by mutual induction on the structure
of piPTS terms.

The definition of FΓ is as follows.
if Γ ` A : ∗p then FΓ(Πx : A.B) = FΓ(A)→ FΓ,x:A(B),
if Γ 0 A : ∗p then FΓ(Πx : A.B) = ∀x.T (x, CΓ(A))→ FΓ,x:A(B),
if M is not a product then FΓ(M) = P (CΓ(M)).

The definition of CΓ is as follows. If M is a Γ-proof then CΓ(M) = ε. Otherwise, we are
in one of the following cases.

M = s ∈ S. Then CΓ(s) = s.
M = x is a variable. Then CΓ(x) = x.
M = NQ. Then CΓ(NQ) = CΓ(N)CΓ(Q).

TYPES 2016



9:10 A Shallow Embedding of Pure Type Systems into First-Order Logic

M = λx : A.N with Γ ` A : ∗p. Let ϕ = FΓ(A) and t = CΓ,x:A(N) and ~y = FV(ϕ, t)\{x}
and f = Λ0(x, ϕ, t). Then CΓ(λx : A.N) = f~y. The idea here is to “lift-out” the
translation of a complex lambda-expression M by introducing a name f for it. In ∆Γ
there will be an axiom describing the functional behaviour of f .
M = λx : A.N with Γ 0 A : ∗p. Let r = CΓ(A) and t = CΓ,x:A(N) and ~y = FV(r, t) \ {x}
and f = Λ1(x, r, t). Then CΓ(λx : A.N) = f~y.
M = Πx : A.B and Γ ` M : ∗p. Let ϕ = FΓ(Πx : A.B) and ~y = FV(ϕ) and f = Φ(ϕ).
Then CΓ(Πx : A.B) = f~y.
M = Πx : A.B and Γ ` M : s with s 6= ∗p, and Γ ` A : ∗p. Let ϕ = FΓ(A) and
t = CΓ,x:A(B) and ~y = FV(ϕ, t) \ {x} and f = G0(x, ϕ, t, s). Then CΓ(Πx : A.B) = f~y.
M = Πx : A.B and Γ ` M : s with s 6= ∗p, and Γ 0 A : ∗p. Let t1 = CΓ(A) and
t2 = CΓ,x:A(B) and ~y = FV(t1, t2)\{x} and f = G1(x, t1, t2, s). Then CΓ(Πx : A.B) = f~y.

Note that it follows from the uniqueness of types lemma that all cases in the definition
of FΓ (resp. CΓ) are exclusive.

I Example 36. Suppose the piPTS is CCs from Example 14. Let Γ = α : ∗s, p : α → ∗p
and τ = Πx : α.px → px. Then Γ ` τ : ∗p and FΓ(τ) = ∀x.T (x, α) → P (px) → P (px).
In practice, the atom P (px) may often be further optimised to Pp(x) with Pp a first-order
predicate corresponding to p. This optimisation is performed in [15]. For Q = λx.ΛX :
T (x, α).ΛY : P (px).Y in η-lnf we have `FOL Q : FΓ(τ). The first-order proof Q may be
translated back into a piPTS proof term M = λx : α.λy : px.y. In CCs we have Γ `M : τ .

Now let Γ′ = α : ∗s, p : α → ∗p, a : α, q : pa → ∗p and τ ′ = Πx : pa.qx → qx. Then
Γ′ ` τ ′ : ∗p and FΓ′(τ ′) = P (pa)→ P (qε)→ P (qε). For Q = ΛX : P (pa).ΛY : P (qε).Y in
η-lnf we have `FOL Q : FΓ′(τ ′). The proof Q may be translated back to a piPTS proof term
M = λx : pa.λy : qx.y. In CCs we have Γ′ `M : τ ′.

I Definition 37. The translation dΓe of a context Γ is defined inductively:
d〈〉e = ∅,
dΓ, x : Ae = dΓe,FΓ(A) if Γ ` A : ∗p,
dΓ, x : Ae = dΓe, T (x, CΓ(A)) if Γ 0 A : ∗p.

The set ∆Γ will consist of dΓe and a set of axioms ∆Ax. To precisely formulate the
axioms we need a technical definition of a function AΓ such that for a FOL formula ϕ the
formula AΓ(ϕ) is ϕ prepended with the declarations in Γ translated into guards.

I Definition 38. The function A takes a legal context and a FOL formula and returns a
FOL formula. It is defined by induction on the length of the context Γ:

A〈〉(ϕ) = ϕ,
AΓ,x:A(ϕ) = AΓ(∀x.T (x, CΓ(A))→ ϕ) if Γ ` A : s and s 6= ∗p,
AΓ,x:A(ϕ) = AΓ(FΓ(A)→ ϕ) if Γ ` A : ∗p.

The A-length of a legal context Γ, denoted lenA(Γ), is defined inductively:
lenA(〈〉) = 0,
lenA(Γ, x : A) = lenA(Γ) + 2 if Γ ` A : s and s 6= ∗p,
lenA(Γ, x : A) = lenA(Γ) + 1 if Γ ` A : ∗p.

The A-length of Γ indicates how many arguments need to be applied to a first-order proof
of AΓ(ϕ) in order to obtain a proof of ϕ. It follows from the uniqueness of types lemma
that AΓ and lenA(Γ) are well-defined for a legal context Γ.

I Example 39. In CCs let Γ = α : ∗s, a : α, p : α→ ∗p, q : pa and ϕ = P (pa). Then

AΓ(ϕ) = ∀α.T (α, ∗s)→ ∀a.T (a, α)→ ∀p.T (p, fα)→ P (pa)→ P (pa)
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where f = G1(x, α, ∗p,�). The A-length of Γ is 7, i.e., lenA(Γ) = 7.

We need to define a set of axioms ∆Ax for our embedding. These will be axioms concerning
the constants introduced in the translation via the functions Λ0, Λ1, Φ, G0 and G1, and
axioms for equality.

I Definition 40. The set ∆Λ0 contains the following FOL formulas which describe the
behaviour of the constants representing “lifted-out” lambda-expressions with propositional
arguments.

Given a variable x, a FOL formula ϕ and a FOL term t, let f = Λ0(x, ϕ, t). Let Γ and
A,B be such that:

Γ ` A : ∗p, and
λx : A.B is a Γ-term but not a Γ-proof, and
ϕ = FΓ(A) and,
t = CΓ,x:A(B).

Let ~y = FV(ϕ, t) \ {x}. Then ∆Λ0 contains the FOL formula:
AΓ(ϕ→ E(f~yε, t)).

I Definition 41. The set ∆Λ1 contains the following FOL formulas which describe the beha-
viour of the constants representing “lifted-out” lambda-expressions with non-propositional
arguments.

Given a variable x and FOL terms r, t, let f = Λ1(x, r, t). Let Γ and A,B be such that:
Γ 0 A : ∗p, and
λx : A.B is a Γ-term but not a Γ-proof, and
r = CΓ(A), and
t = CΓ,x:A(B).

Let ~y = FV(r, t) \ {x}. Then ∆Λ1 contains the FOL formula:
AΓ(∀x.T (x, r)→ E(f~yx, t)).

I Example 42. In CCs let Γ = α : ∗s and M = λx : α.x. Then Γ ` M : α → α : ∗s. We
have CΓ(α) = α and CΓ,x:α(x) = x. Let f = Λ1(x, α, x). Then ∆Λ1 contains the FOL formula

∀α.T (α, ∗s)→ ∀x.T (x, α)→ E(fαx, x).

Recall that E represents equality.

I Definition 43. The set ∆Φ contains the following FOL formulas which are axioms for the
constants representing “lifted-out” propositions. Given a FOL formula ϕ, let f = Φ(ϕ) and
~y = FV(ϕ). Then ∆Φ contains ∀~y.ϕ→ P (f~y).

I Definition 44. The set ∆G0 contains the following FOL formulas which describe the beha-
viour of the constants representing “lifted-out” dependent product types with propositional
source types.

Given a variable x, a FOL formula ϕ, a FOL term t and a sort s 6= ∗p, let f = G0(x, ϕ, t, s).
Let Γ and A,B be such that:

Γ ` A : ∗p, and
Γ ` Πx : A.B : s, and
ϕ = FΓ(A), and
t = CΓ,x:A(B).

Let ~y = FV(ϕ, t) \ {x} and z /∈ FV(ϕ, t). Then ∆G0 contains:
AΓ(∀z.T (z, f~y)→ ϕ→ T (zε, t)).
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I Definition 45. The set ∆G1 contains the following FOL formulas which describe the
behaviour of the constants representing “lifted-out” dependent product types with non-
propositional source types.

Given a variable x, FOL terms t1, t2, and a sort s 6= ∗p, let f = G1(x, t1, t2, s). Let Γ and
A,B be such that:

Γ 0 A : ∗p, and
Γ ` Πx : A.B : s, and
t1 = CΓ(A), and
t2 = CΓ,x:A(B).

Let ~y = FV(t1, t2) \ {x} and z /∈ FV(t1, t2). Then ∆G1 contains:
AΓ(∀z.T (z, f~y)→ ∀x.T (x, t1)→ T (zx, t2)).

I Example 46. In CCs let Γ = α : ∗s, p : α→ ∗s. We have CΓ(α) = α and CΓ,x:α(px) = px

and Γ ` Πx : α.px : ∗s. Let f = G1(x, α, px, ∗s). Then ∆G1 contains

∀α.T (α, ∗s)→ ∀p.T (p, gα)→ ∀z.T (z, fα)→ ∀x.T (x, α)→ T (zx, px)

where g = G1(x, α, ∗s,�) and ∆G1 also contains

∀α.T (α, ∗s)→ ∀p.T (p, gα)→ ∀z.T (z, gα)→ ∀x.T (x, α)→ T (zx, ∗s).

Also dΓe = T (α, ∗p), T (p, gα). In [15] there is a distinction between a local context which
contains variables bound locally by a λ or a Π, and a global environment which contains
the preselected declarations accessible in the proof assistant kernel (Γ0 from Section 1.1).
The guards are not generated for the declarations in the global environment. Assuming Γ
here corresponds to the global environment (it is the context translated together with the
conjecture), in [15] the last axiom above would be optimised to

∀z.T (z, gα)→ ∀x.T (x, α)→ T (zx, ∗s).

I Definition 47. The set ∆τ0 contains the following FOL formulas which describe the types
of the constants representing “lifted-out” lambda-expressions with propositional arguments.

Given a variable x, a FOL formula ϕ, FOL terms t, u and a sort s 6= ∗p, let f = Λ0(x, ϕ, t)
and g = G0(x, ϕ, u, s). Let Γ and A,B,M be such that:

Γ ` A : ∗p, and
Γ ` (λx : A.M) : Πx : A.B : s, and
ϕ = FΓ(A), and
t = CΓ,x:A(M), and
u = CΓ,x:A(B).

Let ~y = FV(ϕ, t) \ {x} and ~z = FV(ϕ, u) \ {x}. Then ∆τ0 contains the FOL formula:
AΓ(T (f~y, g~z)).

I Definition 48. The set ∆τ1 contains the following FOL formulas which describe the
types of the constants representing “lifted-out” lambda-expressions with non-propositional
arguments.

Given a variable x, FOL terms r, t, u and a sort s 6= ∗p, let f = Λ1(x, r, t) and g =
G1(x, r, u, s). Let Γ and A,B,M be such that:

Γ 0 A : ∗p, and
Γ ` (λx : A.M) : Πx : A.B : s, and
r = CΓ(A), and
t = CΓ,x:A(M), and
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u = CΓ,x:A(B).
Let ~y = FV(r, t) \ {x} and ~z = FV(r, u) \ {x}. Then ∆τ1 contains the FOL formula:

AΓ(T (f~y, g~z)).

I Definition 49. The set ∆E , which axiomatises the equality predicate E, contains the
following FOL formulas:

(reflexivity) ∀x.E(x, x),
(symmetry) ∀xy.E(x, y)→ E(y, x),
(transitivity) ∀xyz.E(x, y)→ E(y, z)→ E(x, z),
(congruence) ∀xyx′y′.E(x, x′)→ E(y, y′)→ E(xy, x′y′),
(substitutivity for P ) ∀xx′.E(x, x′)→ P (x)→ P (x′),
(substitutivity for T ) ∀xyx′y′.E(x, x′)→ E(y, y′)→ T (x, y)→ T (x′, y′).

I Definition 50. We set ∆Ax = ∆Λ0 ∪ ∆Λ1 ∪ ∆Φ ∪ ∆G0 ∪ ∆G1 ∪ ∆τ0 ∪ ∆τ1 ∪ ∆E and
∆Γ = ∆Ax ∪ dΓe.

I Remark. Strictly speaking, the set ∆Ax is infinite, because ∆Λ0 ,∆Λ1 ,∆Φ,∆G0 ,∆G1 ,∆τ0 ,∆τ1

are. However, in practice one needs to add the axioms only for the constants f , contexts Γ
and terms A,B,M that actually occur during the translation of a given conjecture and
its context. There are only finitely many of them. Also, to make proof reconstruction
computable we assume that for any constant f ∈ Λ1(x, r, t) (and analogously for Λ0,G0,G1) it
is possible to compute Γ, A,B satisfying the conditions in Definition 41. In practice, Γ, A,B
may be associated to f during the translation when an axiom for f is first added.

I Example 51. In CCs let Γ = α : ∗s, p : (α→ α)→ ∗p and

τ = p(λx : α.x)→ p((λx : α→ α.x)(λx : α.x)).

We have dΓe = T (α, ∗s), T (p, τ1α) and FΓ(τ) = P (p(fα)) → P (p(gα(fα))) where f =
Λ1(x, α, x) and g = Λ1(x, τ2α, x) and τ2 = G1(x, α, α, ∗s) and τ1 = G1(x, τ2α, ∗s,�). The
set ∆Ax contains, among others, the following axioms:
∀α.T (α, ∗s)→ ∀p.T (p, τ1α)→ ∀x.T (x, τ2α)→ E(gαx, x),
∀α.T (α, ∗s)→ T (fα, τ2α).

In practice, these may be optimised to:
∀x.T (x, τ2α)→ E(gαx, x),
T (fα, τ2α).

One may derive ∆Ax, dΓe `FOL E(gα(fα), fα). Using the axioms for equality from ∆E one
may thus show ∆Ax, dΓe, P (p(fα)) `FOL P (p(gα(fα))). Hence ∆Ax, dΓe `FOL FΓ(τ). Also
there is M with Γ `M : τ in CCs. The use of equality axioms from ∆E in the derivation
of ∆Ax, dΓe `FOL FΓ(τ) corresponds to the use of the conversion rule in the derivation of
Γ `M : τ .

Now consider τ ′ = p(λx : α.x)→ p(λx : α.(λx : α.x)x). Then

FΓ(τ ′) = P (p(fα))→ P (p(hα))

where h = Λ1(x, α, fαx). In ∆Ax we have the axioms
∀α.T (α, ∗s)→ ∀p.T (p, τ1α)→ ∀x.T (x, τ2α)→ E(hαx, fαx),
∀α.T (α, ∗s)→ ∀p.T (p, τ1α)→ ∀x.T (x, α)→ E(fαx, x).

We have ∆Ax, dΓe 0 FΓ(τ ′), because ∆Γ 0FOL E(hα, fα) – only ∆Γ, x : α ` E(hαx, fαx).
On the other hand, Γ ` (λD : p(λx : α.x).D) : τ ′ because λx : α.x =β λx : α.(λx : α.x)x.
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I Example 52. In CCs let Γ = p : ∗p, q : p→ ∗p and τ = Πx : p.Πy : p.qx→ qy. Then dΓe =
T (p, ∗p), T (q, τ1p) and FΓ(τ) = P (p) → P (p) → P (qε) → P (qε) where τ1 = G0(x, p, ∗p,�).
The formula FΓ(τ) is an intuitionistic tautology. Also Γ ` (λx : p.λy : p.λD : qx.D) : τ ,
because qx =ε qy. This example shows that proof irrelevance is necessary for soundness.

I Remark. The incompleteness of the embedding is due to the fact that not enough axioms
are present in ∆Ax. After adding axioms expressing the ξ-rule of β-equality, axioms allowing
to form new types, axioms corresponding to piPTS axioms, etc., one would probably obtain
a complete embedding.
I Remark. Assuming the decidability of type checking, the embedding is computable.

Any renaming σ, i.e. a bijection on the set of variables which respects variable sorts,
extends in a natural way to a function on first-order terms, formulas (renaming both free
and bound variables), piPTS terms, and piPTS contexts.

I Lemma 53. Let σ be a renaming.
1. If Γ `M : A then σ(Γ) ` σ(M) : σ(A).
2. Cσ(Γ)(σ(M)) = σ(CΓ(M)).
3. Fσ(Γ)(σ(M)) = σ(FΓ(M)).
4. Aσ(Γ)(σ(ϕ)) = σ(AΓ(ϕ)).

5 Soundness

For the soundness theorem one would want to prove: if ∆Ax, dΓe ` FΓ(A) and Γ ` A : ∗p
then there is M with Γ `M : A. However, in the soundness proof we need a weaker notion
than the function FΓ. The problem is that FΓ does not have the necessary substitution
properties. For instance if N = Πz : A.B with Γ ` A : ∗p and Γ ` N : ∗p, then CΓ(N) = f

with f = Φ(FΓ(N)), and we have

FΓ,x:∗p(Πy : x.x)[CΓ(N)/x] = (P (x)→ P (x))[CΓ(N)/x]
= P (f)→ P (f)

while

FΓ((Πy : x.x)[N/x]) = FΓ(Πy : N.N)
= FΓ(N)→ FΓ,y:N (N)
= (FΓ(A)→ FΓ,z:A(B))→ (FΓ,y:N (A)→ FΓ,y:N,z:A(B)).

In the proof we would need these two expressions to be equal. An analogous problem occurs
with CΓ. For example if Γ ` A : s and Γ 0 A→ A : ∗p, then

CΓ,x:A→A(λy : A.xy)[CΓ(λz : A.z)/x] = (fx)[CΓ(λz : A.z)/x] = fg

where f = Λ1(y, CΓ,x:A→A(A), xy) and g = Λ1(z, CΓ(A), z), but

CΓ,x:A→A((λy : A.xy)[(λz : A.z)/x]) = CΓ,x:A→A((λy : A.(λz : A.z)y)) = h

where h = Λ1(y, CΓ,x:A→A(A), g′y) and g′ = Λ1(z, CΓ,x:A→A,y:A(A), z).
The problem is essentially that lambda-abstractions and dependent products may contain

free variables. In our setting it does not seem possible to easily solve this problem by
e.g. first translating all lambda-abstractions to supercombinators, i.e., terms of the form
λx1 : A1 . . . λxn : An.t with FV(t) ⊆ {x1, . . . , xn}, and changing the definition of CΓ to
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translate multiple consecutive lambda-abstractions at once, thus eliminating the need for
the free variables ~y in the axioms in ∆Λi

. First of all, this is because for a translation to
supercombinators to preserve typing additional assumptions on the piPTS would be necessary.
Secondly, this would not help with the problem with dependent products exemplified above,
which essentially stems from the fact that with our embedding a piPTS proposition may be
translated using either F or C depending on where it occurs in a term.

We therefore use weaker relations �FΓ and �CΓ instead of the functions FΓ and CΓ.

I Definition 54. First, we define a relation Γ′  Γ which expresses the fact that Γ may be
obtained from Γ′ by repeated substitutions (in the sense of the substitution lemma) and
context extensions. More precisely, we define  as the transitive-reflexive closure of the
relation given by the rule:

Γ1, x : A,Γ2  Γ if Γ ⊇ Γ1,Γ2[N/x] is a legal context and Γ1 ` N : A and N ∼ x.

We write Γ′  ~x, ~N Γ to make the terms and the variables substituted for explicit, e.g.,

Γ1, x : A,Γ2, y : B,Γ3  y,x,N1,N2 Γ1,Γ2[N2/x],Γ3[N1/y][N2/x]

if Γ1, x : A,Γ2 ` N1 : B and Γ1 ` N2 : A and N1 ∼ y and N2 ∼ x. Note that the order of
the terms and the variables in the subscript is significant. If additionally Ni �CΓi

ti (the
relation �CΓ is defined below) for appropriate Γi, then we write Γ′  ~x, ~N,~t Γ. For instance,

Γ1, x : A,Γ2, y : B,Γ3  x,y,N1,N2,t1,t2 Γ1,Γ2[N1/x],Γ3[N1/x][N2/y]

if Γ1 ` N1 : A and Γ1,Γ2[N1/x] ` N2 : B[N1/x] and N1 ∼ x and N2 ∼ y and N1 �CΓ1
t1 and

N2 �CΓ1,Γ2[N1/x] t2.

I Definition 55. The relation �FΓ between Γ-propositions and first-order formulas, and the
relation �CΓ between Γ-subjects and first-order terms, are defined by mutual induction on
the structure of piPTS terms.

The definition of �FΓ is as follows.
if Γ ` A : ∗p and A �FΓ ϕ and B �FΓ,x:A ψ then Πx : A.B �FΓ ϕ→ ψ,
if Γ 0 A : ∗p and A �CΓ t and B �FΓ,x:A ϕ then Πx : A.B �FΓ ∀x.T (x, t)→ ϕ,
if A �CΓ t then A �FΓ P (t).

The last case is not exclusive with the first two.
The definition of �CΓ is as follows. If M is a Γ-proof then M �CΓ ε. Otherwise, we are in

one of the following cases.
M = s ∈ S. Then s �CΓ s.
M = x is a variable. Then x �CΓ x.
M = NQ. If N �CΓ t1 and Q �CΓ t2 then NQ �CΓ t1t2.
M = (λx : A.Q)[ ~N/~x] and there is Γ′ such that Γ′ ` A : ∗p and Γ′  ~x, ~N,~t Γ. Assume
A[ ~N/~x] �FΓ ϕ[~t/~x] and Q[ ~N/~x] �CΓ,x:A[ ~N/~x] t[~t/~x]. Let f = Λ0(x, ϕ, t) and ~y = FV(ϕ, t) \
{x}. Then M �CΓ (f~y)[~t/~x].
M = (λx : A.Q)[ ~N/~x] and there is Γ′ such that Γ′ 0 A : ∗p and Γ′  ~x, ~N,~t Γ. Assume
A[ ~N/~x] �CΓ r[~t/~x] and Q[ ~N/~x] �CΓ,x:A[ ~N/~x] t[~t/~x]. Let f = Λ1(x, r, t) and ~y = FV(r, t) \
{x}. Then M �CΓ (f~y)[~t/~x].
M = (Πx : A.B)[ ~N/~x] and there is Γ′ such that Γ′ ` (Πx : A.B) : ∗p and Γ′  ~x, ~N,~t Γ.
Assume M �FΓ ϕ[~t/~x]. Let f = Φ(ϕ) and ~y = FV(ϕ). Then M �CΓ (f~y)[~t/~x].
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M = (Πx : A.B)[ ~N/~x]. and there is Γ′ such that Γ′ ` (Πx : A.B) : s with s 6= ∗p and
Γ′ ` A : ∗p and Γ′  ~x, ~N,~t Γ. Assume A[ ~N/~x] �FΓ ϕ[~t/~x] and B[ ~N/~x] �CΓ,x:A[ ~N/~x] t[~t/~x].
Let f = G0(x, ϕ, t, s) and ~y = FV(ϕ, t) \ {x}. Then M �CΓ (f~y)[~t/~x],
M = (Πx : A.B)[ ~N/~x] and there is Γ′ such that Γ′ ` (Πx : A.B) : s with s 6= ∗p and
Γ′ 0 A : ∗p and Γ′  ~x, ~N,~t Γ. Assume A[ ~N/~x] �CΓ u1[~t/~x] and B[ ~N/~x] �CΓ,x:A[ ~N/~x] u2[~t/~x].
Let f = G1(x, u1, u2, s) and ~y = FV(u1, u2) \ {x}. Then M �CΓ (f~y)[~t/~x].

Note that not all cases are mutually exclusive.

I Lemma 56.
1. If A is a Γ-proposition then A �FΓ FΓ(A).
2. If A is a Γ-subject then A �CΓ CΓ(A).

Proof. Induction on the definition of FΓ(A) and CΓ(A), using the generation lemma and
Corollary 25. J

I Definition 57. The relation � between contexts and first-order environments is defined
inductively:
〈〉 � ∅,
if Γ ` A : ∗p and A �FΓ ϕ and Γ � ∆ then Γ, x : A � ∆, ϕ,
if Γ 0 A : ∗p and A �CΓ t and Γ � ∆ then Γ, x : A � ∆, T (x, t).

The relation � is a “relaxed” analogon of the function d−e from Definition 37.

I Definition 58. We define the relation ψ �A
Γ;Γ′ ϕ by induction on Γ′:

ϕ �A
Γ;〈〉 ϕ,

ψ �A
Γ;Γ′,x:A ϕ if Γ,Γ′ ` A : s and s 6= ∗p and A �CΓ,Γ′ t and ∀x.T (x, t)→ ψ �A

Γ;Γ′ ϕ.
ψ �A

Γ;Γ′,x:A ϕ if Γ,Γ′ ` A : ∗p and A �FΓ,Γ′ ψA and ψA → ψ �A
Γ;Γ′ ϕ.

Intuitively, ψ �A
Γ;Γ′ ϕ means that ϕ is ψ with prepended relaxed translations of the de-

clarations in Γ′ into guards, like in AΓ′(ψ) from Definition 38. The context Γ provides
additional declarations for the purpose of typing – they are not translated into guards. By a
“relaxed” translation of M we mean a first-order term t (resp. formula θ) satisfying M �CΓ′′ t

(resp. M �FΓ′′ θ) for appropriate Γ′′.

I Lemma 59. If Γ is a legal context then Γ � dΓe and ϕ �A
〈〉;Γ AΓ(ϕ).

Proof. Induction on Γ, using Lemma 56. J

I Lemma 60. If Γ′  ~x, ~N,~t Γ and Γ′, y : A is a legal context and y is fresh, i.e., it does not
occur in Γ′,Γ or any intermediate context, then Γ′, y : A ~x, ~N,~t Γ, y : A[ ~N/~x].

Proof. Induction on the definition of Γ′  ~x, ~N,~t Γ. J

I Lemma 61. If Γ′ ` A : B and Γ′  ~x, ~N Γ then Γ ` A[ ~N/~x] : B[ ~N/~x].

Proof. Follows by repeatedly applying the substitution and thinning lemmas. J

From now on, whenever we write M �FΓ t we implicitly assume that M is a Γ-proposition.
Similarly, whenever we write M �CΓ t we assume M is a Γ-subject. Note that it follows from
the generation lemma and Lemma 61 that if e.g. Πx : A.B �FΓ ϕ → ψ and Πx : A.B is a
Γ-proposition, then A is a Γ-proposition and B is a (Γ, x : A)-proposition (and analogously
for all other cases of Definition 55). So the assumption that the left-hand sides of �F are
propositions is preserved for A �FΓ ϕ and B �FΓ,x:A ψ. We will often use this observation
implicitly. Because of page limits, proofs of many of the following helper lemmas have been
moved to Appendix B.
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I Lemma 62.
1. If M �FΓ ϕ and Γ′ ⊇ Γ is a legal context then M �FΓ′ ϕ.
2. If M �CΓ t and Γ′ ⊇ Γ is a legal context then M �CΓ′ t.

I Corollary 63. If ψ �A
Γ;Γ0

ϕ and Γ′ ⊇ Γ and Γ′,Γ0 is a legal context then ψ �A
Γ′;Γ0

ϕ.

I Lemma 64. Assume N ∼ x. Then M →∗ε ε iff M [N/x]→∗ε ε.

I Lemma 65. Assume Γ1 ` N : A and N �CΓ1
t and N ∼ y.

1. If M �FΓ1,y:A,Γ2
ϕ then M [N/y] �FΓ1,Γ2[N/y] ϕ[t/y].

2. If M �CΓ1,y:A,Γ2
u then M [N/y] �CΓ1,Γ2[N/y] u[t/y].

I Corollary 66.
1. If M �FΓ′ ϕ and Γ′  ~x, ~N,~t Γ then M [ ~N/~x] �FΓ ϕ[~t/~x].
2. If M �CΓ′ ϕ and Γ′  ~x, ~N,~t Γ then M [ ~N/~x] �CΓ ϕ[~t/~x].

I Lemma 67. Assume y ∈ V ∗p .
1. If M �FΓ ϕ then y /∈ FV(ϕ).
2. If M �CΓ t then y /∈ FV(t).

I Lemma 68.
1. If M �FΓ ϕ then FV(ϕ) = FV(nfε(M)).
2. If M �CΓ t then FV(t) = FV(nfε(M)).

I Lemma 69. Assume Γ =ε Γ′.
1. If M �FΓ ϕ and M ′ �FΓ′ ϕ then M =ε M

′.
2. If M �CΓ t and M ′ �CΓ′ t then M =ε M

′.

I Lemma 70. If ψ ∈ ∆ and Γ � ∆ and ψ has target P , then there are Γ1,Γ2,∆1,∆2 and C
such that Γ = Γ1, x : C,Γ2 and ∆ = ∆1, ψ,∆2 and Γ1 � ∆1 and Γ1 ` C : ∗p and C �FΓ1

ψ.

I Lemma 71. If ψ ∈ ∆ and Γ � ∆ and ψ has target T , then ψ = T (x, t) and there are
Γ1,Γ2 and C such that Γ = Γ1, x : C,Γ2 and C �CΓ1

t.

I Lemma 72. If C �FΓ ϕ then C = Πx1 : A1 . . .Πxn : An.B with B �CΓ,Γ0
t and P (t) �A

Γ;Γ0
ϕ

and Γ0 = x1 : A1, . . . , xn : An.

I Definition 73. Assume ∆Ax,∆ ` Q : ϕ and Γ � ∆. A Γ,∆, A, ϕ-reconstruction of Q, or
just a reconstruction of Q, is defined as follows, depending on the form of ϕ.
1. If A �FΓ ϕ and Γ ` A : ∗p then any M such that Γ `M : A is a Γ,∆, A, ϕ-reconstruction

of Q.
2. If ϕ = T (t, t′) and A �CΓ t′ and Γ ` A : s with s 6= ∗p then any M such that M �CΓ t and

Γ `M : A is a Γ,∆, A, ϕ-reconstruction of Q.
3. If ϕ = E(t′, t) and A �CΓ t′ (resp. A �CΓ t) and A is a Γ-subject then any Γ-subject M

such that M �CΓ t (resp. M �CΓ t′) and M =βε A is a Γ,∆, A, ϕ-reconstruction of Q.
Note that if A �FΓ ϕ then ϕ does not have the form T (t, t′) or E(t, t′), so the three above
cases are actually exclusive. We stress that the notion of a reconstruction depends on
the Γ,∆, A, ϕ, but we often omit them when clear.

A first-order proof term Q is reconstructible if for any Γ,∆, A, ϕ, satisfying the appropriate
conditions as above, a Γ,∆, A, ϕ-reconstruction of Q exists.

I Lemma 74. Suppose Γ � ∆ and ∆Ax,∆ ` XQ1 . . . Qm : ψ, where each Qi is either an
individual term or a reconstructible proof term. Let Γ0 = x1 : A1, . . . , xn : An be such that
m = lenA(Γ0) and Γ,Γ0 is a legal context. If (X : γ) ∈ ∆Ax,∆ with ϕ �A

Γ;Γ0
γ, then there

exist N1, . . . , Nn and u1, . . . , un such that ψ = ϕ[~u/~x] and Γ,Γ0  ~x, ~N,~u Γ.
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I Theorem 75 (Soundness of the embedding). Every first-order proof term Q in η-long
normal form is reconstructible.

The proof of the soundness of the embedding is a bit long and tedious because of the many
cases that need to be considered. As mentioned before, the soundness proof implicitly defines
an algorithm to transform a first-order proof term Q in η-lnf into its reconstruction. More
precisely, given a proof term Q in η-lnf and Γ,∆, A, ϕ satisfying the conditions in Definition 73,
the algorithm constructs a Γ,∆, A, ϕ-reconstruction M of Q. We first informally sketch this
algorithm. The proof of Theorem 75 is essentially a proof of its correctness. Because any
proof term may be β-reduced and η-expanded to a proof term in η-lnf (Lemma 5), this
provides a general proof reconstruction method.

I Algorithm 76. Assume ∆Ax,∆ ` Q : ϕ and Γ � ∆. We assume that Γ � ∆ is given
constructively, i.e., given (X : ϕ) ∈ ∆ it is possible to retrieve (x : C) ∈ Γ such that C �FΓ ϕ,
or ϕ = T (x, t) and C �CΓ t (c.f. Definition 57 and Lemma 62). We have the following cases.
For the sake of readability we do not treat all cases in full generality.
1. A �FΓ ϕ and Γ ` A : ∗p. We seek M with Γ `M : A. Consider possible forms of ϕ.

ϕ = ϕ1 → ϕ2. Then Q = λX : ϕ1.Q
′ (because Q is in η-lnf) and A = Πx : B.C (by

Definition 55) with B �FΓ ϕ1 and C �FΓ,x:B ϕ2. Recursively construct a Γ′,∆′, C, ϕ2-
reconstruction M ′ of Q′, where Γ′ = Γ, x : B and ∆′ = ∆, ϕ1. Take M = λx : B.M ′.
ϕ = ∀x.T (x, t) → ψ. Then Q = λxλX : T (x, t).Q′ and A = Πx : B.C. Recursively
construct a Γ′,∆′, C, ψ-reconstruction M ′ of Q′, where Γ′ = Γ, x : B and ∆′ =
∆, T (x, t). Take M = λx : B.M ′.
ϕ = P (tA) with A �CΓ tA. Then Q = XD1 . . . Dk where (X : ψ) ∈ ∆Ax,∆ and
target(ψ) = P , and each Di is a first-order proof term in η-long normal form or an
individual term. We consider possible forms of ψ.

(X : ψ) ∈ ∆. For example, Q = XtD1D2 where D1, D2 are proof terms in
η-lnf and ψ = ∀x.T (x, tB) → ψ′ → P (fx) and ∆Ax,∆ ` D1 : T (t, tB) and
∆Ax,∆ ` D2 : ψ′[t/x] and f is a variable. There is (z : C) ∈ Γ such that
C �FΓ ψ and C = Πx : B.Πy : B′.fx. Recursively construct a Γ,∆, B, T (x, tB)-
reconstruction M1 of D1 and a Γ,∆, B′, ψ′[t/x]-reconstruction M2 of D2. Take
M = zM1M2.
(X : ψ) ∈ ∆E and ψ = ∀xx′.E(x, x′) → P (x) → P (x′). Then Q = XttAD1D2
and ∆Ax,∆ ` D1 : E(t, tA) and ∆Ax,∆ ` D2 : P (t). Recursively construct a
Γ,∆, A,E(t, tA)-reconstruction B of D1 and then a Γ,∆, B, P (t)-reconstruction M ′
of D2. Take M = M ′.
(X : ψ) ∈ ∆Φ and e.g. ψ = ∀y.ψ′ → P (fy) and FV(ψ′) = {y} and f = Φ(ψ′). Then
tA = ft and Q = XtD with ∆Ax,∆ ` D : ψ′[t/y]. Since A �CΓ ft, by Definition 55
there are Γ′, N with Γ′  y,N,t Γ. So N �CΓ t by Definition 54 and the thinning
lemma. Also A �FΓ ψ′[t/y] (Definition 55). Recursively construct a Γ,∆, A, ψ′[t/y]-
reconstruction M of D. This is also a Γ,∆, A, P (ft)-reconstruction of Q.

2. ϕ = T (t, t′) and A �CΓ t′ and Γ ` A : s with s 6= ∗p. We seek M such that M �CΓ t and
Γ ` M : A. We have Q = X ~D where (X : ψ) ∈ ∆Ax,∆ and target(ψ) = T . Consider
possible forms of ψ.

(X : ψ) ∈ ∆. Then ψ = T (x, t′) and t = x and there is (x : C) ∈ Γ such that C �CΓ t′.
Take M = x.
(X : ψ) ∈ ∆G1 and e.g. ψ = ∀z.T (z, f) → ∀x.T (x, r1) → T (zx, r2) where f =
G1(x, r1, r2, s) and FV(r1, r2) ⊆ {x}. Then Q = XuD1wD2 and t = uw and
t′ = r2[w/x] and ∆Ax,∆ ` D1 : T (u, f) and ∆Ax,∆ ` D2 : T (w, r1). We may
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compute Γ0, C with C = Πx : C1.C2 and C1 �CΓ0
r1 and C2 �CΓ0,x:C1

r2 and C �CΓ0
f

(see Remark 4). One shows that Γ = Γ0 may be assumed in the case FV(r1, r2) ⊆ {x}.
Recursively construct a Γ,∆, C, T (u, f)-reconstruction M1 of D1 and a Γ,∆, C1, r1-
reconstruction M2 of D2. Take M = M1M2.
(X : ψ) ∈ ∆τ1 and e.g. ψ = T (f, g) where f = Λ1(x, r, t) and g = G1(x, r, u, s) with
FV(r, t, u) ⊆ {x}. We may compute C,N such that C �CΓ r and N �CΓ,x:C t, so
λx : C.N �CΓ f . Take M = λx : C.N .
(X : ψ) ∈ ∆E . Then ψ = ∀xyx′y′.E(x, x′) → E(y, y′) → T (x, y) → T (x′, y′) and
Q = Xuu′tt′D1D2D3 where ∆Ax,∆ ` D1 : E(u, t) and ∆Ax,∆ ` D2 : E(u′, t′) and
∆Ax,∆ ` D3 : T (u, u′). Recursively construct a Γ,∆, A,E(u′, t′)-reconstruction A′

of D2, then a Γ,∆, A, T (u, u′)-reconstruction M ′ of D3, then a Γ,∆,M ′, E(u, t)-
reconstruction N of D1. Take M = N .

3. ϕ = E(t0, t1) and e.g. A �CΓ t0. We need to find M with M �CΓ t1 and M =βε A.
Since E(t0, t1) is an atom and Q is in η-lnf, Q = X ~D where (X : ψ) ∈ ∆Ax,∆ and
target(ψ) = E. Consider possible forms of ψ.

(X : ψ) ∈ ∆Λ1 and e.g. ψ = ∀x.T (x, r1) → E(fx, r2) where f = Λ1(x, r1, r2) and
FV(r1, r2) ⊆ {x}. Then Q = XuD and t0 = fu and t1 = r2[u/x] and ∆Ax,∆ `
D : T (u, r1). We may compute C,N such that C1 �CΓ r1 and C2 �CΓ,x:C1

r2 and
λx : C.N �CΓ f . Recursively construct a Γ,∆, C, r1-reconstruction M1 of D. Then
(λx : C.N)M1 �CΓ fu and A �CΓ fu, so A =βε N [M1/x], using Lemma 69. Also
N [M1/x] �CΓ r2[u/x]. Take M = N [M1/x].
(X : ψ) ∈ ∆E and ψ = ∀xyx′y′.E(x, x′) → E(y, y′) → E(xy, x′y′). Then Q =
Xuwu′w′D1D2 and ∆Ax,∆ ` D1 : E(u, u′) and ∆Ax,∆ ` D2 : E(w,w′) and t0 = uw

and t1 = u′w′. Since A �CΓ uw, we have A = A1A2 with A1 �CΓ u and A2 �CΓ w. Recurs-
ively construct a Γ,∆, A1, E(u, u′)-reconstruction B1 of D1 and a Γ,∆, A2, E(w,w′)-
reconstruction B2 of D2. Take M = B1B2.

Cases omitted in the above sketch are trivial or similar to other cases considered.

Together with Lemma 56, Lemma 59 and Lemma 5, Theorem 75 gives us the following.

I Corollary 77. If ∆Ax, dΓe ` FΓ(A) and Γ ` A : ∗p then there exists M such that Γ `M : A.

We now give a rigorous proof of the soundness of the embedding.

Proof of Theorem 75. We show that every first-order proof term Q in η-lnf is reconstructible.
We proceed by induction on the size of Q. First of all, note that because of Lemma 68 for
any M , Γ and x ∈ V ∗p and ϕ, t,∆ with M �FΓ ϕ, M �CΓ t, Γ � ∆, we have x /∈ FV(ϕ, t,∆).
Hence we may assume that if x ∈ V ∗p then x does not occur free in any individual term used
in Q.

We need to consider the three cases in Definition 73.
1. Assume ∆Ax,∆ ` Q : ϕ and Γ � ∆ and Γ ` A : ∗p and A �FΓ ϕ. We need to find M with

Γ `M : A. We consider possible forms of ϕ.
ϕ = ϕ1 → ϕ2. Then A = Πx : B.C and Γ ` B : ∗p and B �FΓ ϕ1 and C �FΓ,x:B ϕ2
and Q = λX : ϕ1.Q

′. Hence ∆Ax,∆, X : ϕ1 ` Q′ : ϕ2. Note that Γ, x : B � ∆, X : ϕ1.
Also Γ, x : B ` C : ∗p by Corollary 25. Thus by the inductive hypothesis there is M ′
with Γ, x : B `M ′ : C. Because Γ ` (Πx : B.C) : ∗p, by the abstraction rule we obtain
Γ ` (λx : B.M ′) : (Πx : B.C). Hence take M = λx : B.M ′.
ϕ = ∀x.T (x, t) → ψ. Then A = Πx : B.C and Γ 0 B : ∗p and B �CΓ t and
C �FΓ,x:B ψ. Hence Q = λxλX : T (x, t).Q′, so ∆Ax,∆, X : T (x, t) ` Q′ : ψ. Note that
Γ, x : B � ∆, X : T (x, t). By Corollary 25 we have Γ, x : B ` C : ∗p. Thus by the
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inductive hypothesis there is M ′ with Γ, x : B ` M ′ : C. Since Γ ` A : ∗p, by the
abstraction rule we obtain Γ ` (λx : B.M ′) : A. Hence take M = λx : B.M ′.
ϕ = P (tA) with A �CΓ tA. Then Q = XD1 . . . Dk where (X : ψ) ∈ ∆Ax,∆ and
target(ψ) = P , and each Di is a first-order proof term in η-long normal form or an
individual term. By the inductive hypothesis all proof terms among D1, . . . , Dk are
reconstructible. We consider possible forms of ψ.

(X : ψ) ∈ ∆. By Lemma 70 there are Γ1,Γ2,∆1,∆2 and C such that Γ1 � ∆1 and
Γ = Γ1, x : C,Γ2 and ∆ = ∆1, ψ,∆2 and Γ1 ` C : ∗p and C �FΓ1

ψ. By Lemma 72
we have C = Πx1 : A1 . . .Πxn : An.B and P (t) �A

Γ1,Γ0
ψ and B �CΓ1,Γ0

t where
Γ0 = x1 : A1, . . . , xn : An. We may assume that x1, . . . , xn /∈ dom(Γ). Hence Γ,Γ0 is
a legal context and Γ ⊇ Γ1, so P (t) �A

Γ;Γ0
ψ by Corollary 63. By Lemma 74 there are

N1, . . . , Nn and u1, . . . , un such that ϕ = P (tA) = P (t)[~u/~x], i.e. tA = t[~u/~x], and
Γ,Γ0  ~x, ~N,~u Γ. By Lemma 62 we have B �CΓ,Γ0

t. Hence B[ ~N/~x] �CΓ t[~u/~x] = tA

by Corollary 66. Since also A �CΓ tA, by Lemma 69 we obtain A =ε B[ ~N/~x].
Because Γ,Γ0  ~x, ~N,~u Γ we must have Γ ` Ni : Ai[N1/x1] . . . [Ni−1/xi−1] and
Ni ∼ xi for i = 1, . . . , n. Recall that Γ ` x : Πx1 : A1 . . .Πxn : An.B. Hence,
using the application rule n times we conclude that Γ ` xN1 . . . Nn : B[ ~N/~x]. Thus
Γ ` xN1 . . . Nn : A by the conversion rule.
(X : ψ) ∈ ∆E and ψ = ∀xx′.E(x, x′) → P (x) → P (x′). Then k = 4, D1 = t1,
D2 = t2 are individual terms, and ∆Ax,∆ ` D3 : E(t1, t2) and ∆Ax,∆ ` D4 : P (t1)
and P (t2) = P (tA). Hence t2 = tA. Because D3 is reconstructible (by induction),
there is a Γ-term B with B �CΓ t1 and B =βε A. By Lemma 31 we have Γ ` B : ∗p.
Since ∆Ax,∆ ` D4 : P (t1) and B �CΓ t1 and Γ ` B : ∗p and Γ � ∆, because D4 is
reconstructible there is M with Γ `M : B. By the conversion rule also Γ `M : A.
(X : ψ) ∈ ∆Φ and ψ = ∀~y.ψ′ → P (f~y) and ~y = FV(ψ′) and f = Φ(ψ′). Then
tA = f~t and ∆Ax,∆ ` X~tDk : P (f~t) and ∆Ax,∆ ` Dk : ψ′[~t/~y] for some individual
terms t1, . . . , tn (without loss of generality we may assume that FV(ti) ∩ FV(ψ′) =
∅). Since A �CΓ f~t, by the definition of �CΓ there exist B,C and N1, . . . , Nm
and u1, . . . , um and Γ′ such that Γ′ ` (Πx : B.C) : ∗p and Γ′  ~x, ~N,~u Γ and
A = (Πx : B.C)[ ~N/~x] �FΓ ψ′[~u/~x] and (Πx : B.C)[ ~N/~x] �CΓ (f~y)[~u/~x] = f~t.
Let u′i = ui[ui+1/xi+1] . . . [um/xm]. Because f~t = (f~y)[u′1/x1, . . . , u

′
m/xm] and ~y =

FV(ψ′) = {y1, . . . , yn}, without loss of generality we may assume u′i = ti and xi = yi
for i ≤ n, and xi /∈ FV(ψ′) for i > n. Then ψ′[~u/~x] = ψ′[u′1/x1, . . . , u

′
m/xm] =

ψ′[u′1/y1, . . . , u
′
n/yn] = ψ′[~t/~y]. By Lemma 61 we have Γ ` (Πx : B.C)[ ~N/~x] : ∗p.

Since also A = (Πx : B.C)[ ~N/~x] �FΓ ψ′[~t/~y] and ∆Ax,∆ ` Dk : ψ′[~t/~y], because Dk

is reconstructible there exists M such that Γ `M : A.
2. Assume ∆Ax,∆ ` Q : T (t, t′) and Γ � ∆ and Γ ` A : s and s 6= ∗p and A �CΓ t′. We

need to find M with M �CΓ t and Γ `M : A. Since T (t, t′) is an atom and Q is in η-lnf,
we have Q = X ~D where (X : ψ) ∈ ∆Ax,∆ and target(ψ) = T and ~D is a sequence of
first-order individual terms and reconstructible (by induction) proof terms in η-lnf. We
consider possible forms of ψ.

(X : ψ) ∈ ∆. By Lemma 71 we have ψ = T (x, r) and there are Γ1,Γ2 and C such that
Γ = Γ1, x : C,Γ2 and C �CΓ1

r. Then t = x and t′ = r. By Lemma 62 we have C �CΓ t′.
Since also A �CΓ t′, by Lemma 69 we obtain A =ε C. Because Γ ` x : C and Γ ` A : s,
by the conversion rule Γ ` x : A.
(X : ψ) ∈ ∆G1 and ψ = AΓ′(∀z.T (z, f~y) → ∀x.T (x, r1) → T (zx, r2)) where f =
G1(x, r1, r2, s) and ~y = FV(r1, r2) \ {x} and z /∈ FV(r1, r2) and Γ′ = x1 : A1, . . . , xn :
An. Then Q = X ~RuP1wP2 and there are C1, C2 such that r1 = CΓ′(C1) and r2 =
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CΓ′,x:C1(C2) and Γ′ ` (Πx : C1.C2) : s and s 6= ∗p and Γ′ 0 C1 : ∗p. Note that ψ is
closed, because ~y = FV(r1, r2) \ {x} ⊆ dom(Γ′) by Lemma 68. Hence, by Lemma 53
we may assume dom(Γ) ∩ dom(Γ′) = ∅, possibly renaming the variables in Γ′, ψ, r1, r2
and Πx : C1.C2. Hence Γ,Γ′ is a legal context. Let ψ′ = ∀z.T (z, f~y)→ ∀x.T (x, r1)→
T (zx, r2). By Lemma 59 and Corollary 63 we have ψ′ �A

Γ;Γ′ ψ. By Lemma 74 there are
N1, . . . , Nn and u1, . . . , un such that Γ,Γ′  ~x, ~N,~u Γ and ∆Ax,∆ ` X ~R : ψ′[~u/~x]. Note
that z /∈ ~y. Hence ∆Ax,∆ ` P1 : T (u, (f~y)[~u/~x]). Let C ′i = Ci[ ~N/~x]. By Lemma 56
and Lemma 60 and Corollary 66 we have C ′1 �CΓ r1[~u/~x] and C ′2 �CΓ,x:C1[ ~N/~x] r2[~u/~x].
Also Γ,Γ′ ` (Πx : C1.C2) : s by the thinning lemma, and Γ,Γ′ 0 C1 : ∗p by the
generation, thinning and uniqueness of types lemmas. Hence Πx : C ′1.C ′2 �CΓ (f~y)[~u/~x].
We also have Γ ` (Πx : C ′1.C ′2) : s (and s 6= ∗p) by Lemma 61. Because P1 is
reconstructible, there is M1 with Γ ` M1 : (Πx : C ′1.C ′2) and M1 �CΓ u. Note that
x /∈ FV(r1) by Lemma 68, because C1 �CΓ′ r1 and x /∈ dom(Γ′). Since also z /∈ FV(r1),
we have ∆Ax,∆ ` P2 : T (w, r1[~u/~x]). Since Γ,Γ′ 0 C1 : ∗p and Γ,Γ′ ` (Πx : C1.C2) : s,
by the generation lemma and Lemma 61 we have Γ ` C ′1 : s′ for some s′ ∈ S, s′ 6= ∗p.
Since also C ′1 �CΓ r1[~u/~x], because P2 is reconstructible there is M2 with M2 �CΓ w and
Γ ` M2 : C ′1. By Lemma 32 we have M2 ∼ x. Hence Γ ` M1M2 : C ′2[M2/x] by the
application rule. Because M1 is not a Γ-proof (recall that Γ ` M1 : (Πx : C ′1.C ′2) : s
with s 6= ∗p), neither is M1M2 by Theorem 30. Hence M1M2 �CΓ uw = t. Since
C ′2 �CΓ,x:C′

1
r2[~u/~x], by Lemma 65 we have C ′2[M2/x] �CΓ r2[~u/~x][u/x] = t′. Since also

A �CΓ t′, we have C ′2[M2/x] =ε A by Lemma 69. Thus Γ `M1M2 : A by the conversion
rule. Therefore, we may take M = M1M2.
(X : ψ) ∈ ∆G0 . This case is analogous to the previous one.
(X : ψ) ∈ ∆τ1 and ψ = AΓ′(T (f~y, g~z)) where f = Λ1(x, r, u) and g = G1(x, r, w, s)
and ~y = FV(r, u) \ {x} and ~z = FV(r, w) \ {x} and Γ′ = x1 : A1, . . . , xn : An. Then
Q = X ~R and there are C1, C2, N such that r = CΓ′(C1) and u = CΓ′,x:C1(N) and
w = CΓ′,x:C1(C2) and Γ′ ` (λx : C1.N) : Πx : C1.C2 : s and Γ′ 0 C1 : ∗p. By
Lemma 53 we may assume that dom(Γ)∩dom(Γ′) = ∅, possibly renaming the variables
in Γ′, ψ, r, u, w and Πx : C1.C2 and λx : C1.N . Hence Γ,Γ′ is a legal context. Let
ψ′ = T (f~y, g~z). By Lemma 59 and Corollary 63 we have ψ′ �A

Γ;Γ′ ψ. By Lemma 74
there are N1, . . . , Nn and u1, . . . , un such that Γ,Γ′  ~x, ~N,~u Γ and ∆Ax,∆ ` X ~R :
ψ′[~u/~x]. We thus have t = (f~y)[~u/~x] and t′ = (g~z)[~u/~x]. By the generation lemma, the
thinning lemma and the uniqueness of types lemma Γ,Γ′ 0 C1 : ∗p. By the generation
lemma C1 is a Γ′-subject and N is a Γ′, x : C1-subject. Hence C1[ ~N/~x] �CΓ r[~u/~x] and
N [ ~N/~x] �CΓ,x:C1[ ~N/~x] u[~u/~x] by Lemma 56 and Corollary 66. Hence by Definition 55
we have (λx : C1.N)[ ~N/~x] �CΓ (f~y)[~u/~x]. Also Γ ` (λx : C1.N)[ ~N/~x] : C[ ~N/~x]
by Lemma 60, where C = Πx : C1.C2. We have C2[ ~N/~x] �CΓ,x:C1[ ~N/~x] u[~u/~x] by
Lemma 56 and Corollary 66. Also Γ,Γ′ ` C : s by the thinning lemma. Thus
C[ ~N/~x] �CΓ (g~z)[~u/~x] = t′ by Definition 55. Since also A �CΓ t′, by Lemma 69 we
obtain A =ε C[ ~N/~x]. Thus Γ ` (λx : C1.N)[ ~N/~x] : A by the conversion rule. So we
may take M = (λx : C1.N)[ ~N/~x].
(X : ψ) ∈ ∆τ0 . This case is analogous to the previous one.
(X : ψ) ∈ ∆E . Then ψ = ∀xyx′y′.E(x, x′) → E(y, y′) → T (x, y) → T (x′, y′) and
Q = Xuu′tt′D1D2D3 where ∆Ax,∆ ` D1 : E(u, t) and ∆Ax,∆ ` D2 : E(u′, t′) and
∆Ax,∆ ` D3 : T (u, u′). Since A �CΓ t′, because D2 is reconstructible there exists a
Γ-term A′ such that A′ �CΓ u′ and A′ =βε A. Since Γ ` A : s (s 6= ∗p), by Lemma 31
we have Γ ` A′ : s. Hence, because D3 is reconstructible there exists M ′ such that
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M ′ �CΓ u and Γ `M ′ : A′. Because D1 is reconstructible there is a Γ-subject M with
M �CΓ t and M =βε M

′. By the uniqueness of types lemma and Theorem 30 we have
M ′ 6→∗ε ε, hence also M 6→∗ε ε by Lemma 18. Since M is a Γ-subject, there is B with
Γ ` M : B. Then B =βε A

′ by the second point in the uniqueness of types lemma.
Since Γ ` A : s and B =βε A

′ =βε A, we have Γ ` M : A by the conversion rule.
Therefore, we have found M with M �CΓ t and Γ `M : A, as desired.

3. Assume ∆Ax,∆ ` Q : E(t0, t1) and Γ � ∆ and M �CΓ tq with q ∈ {0, 1}. We need to
find N with N �CΓ t1−q and N =βε M . Since E(t0, t1) is an atom and Q is in η-lnf,
Q = X ~D where (X : ψ) ∈ ∆Ax,∆ and target(ψ) = E and ~D is a sequence of first-order
individual terms and reconstructible (by induction) proof terms in η-lnf. We consider
possible forms of ψ.

(X : ψ) ∈ ∆Λ0 and ψ = AΓ′(ϕ → E(f~yε, r)) where Γ′ = x1 : A1, . . . , xn : An and
dom(Γ) ∩ dom(Γ′) = ∅ (we may assume this by Lemma 53) and f = Λ0(x, ϕ, r) and
~y = FV(ϕ, r) \ {x} and there are B,C1, C2 with ϕ = FΓ′(C1) and r = CΓ′,x:C1(C2)
and Γ′ ` (λx : C1.C2) : B and Γ′ ` C1 : ∗p and Γ′ ` B : s and s 6= ∗p. We have
ψ = AΓ′,x:C1(E(f~yε, r)). We may assume x /∈ dom(Γ), so Γ,Γ′, x : C1 is a legal
context. Thus by Lemma 59 and Corollary 63 we obtain E(f~yε, r) �A

Γ;Γ′,x:C1
ψ.

Hence by Lemma 74 there are N1, . . . , Nn, U and u1, . . . , un, u such that E(t0, t1) =
E(f~yε, r)[~u/~x][u/x] and Γ,Γ′, x : C1  ~x,x, ~N,U,~u,u Γ. Note that then also Γ,Γ′  ~x, ~N,~u Γ
and Γ,Γ′, x : C1  ~x, ~N,~u Γ, x : C1[ ~N/~x]. We have C1 �FΓ,Γ′ ϕ and C2 �CΓ,Γ′,x:C1

r by
Lemma 56 and Lemma 62. Hence C1[ ~N/~x] �FΓ ϕ[~u/~x] and C2[ ~N/~x] �CΓ,x:C1[ ~N/~x] r[~u/~x]
by Corollary 66. Also Γ,Γ′ ` (λx : C1.C2) : B : s and Γ,Γ′ ` C1 : ∗p by the
thinning lemma. Hence Γ ` (λx : C1.C2)[ ~N/~x] : B[ ~N/~x] : s by Lemma 61, i.e.,
(λx : C1.C2)[ ~N/~x] is not a Γ-proof (by the uniqueness of types lemma, recalling that
s 6= ∗p). Thus (λx : C1.C2)[ ~N/~x] �CΓ (f~y)[~u/~x]. Since Ni �CΓ ui and Ni is a Γ-term and
x /∈ dom(Γ), by Lemma 68 and the free variable lemma we obtain x /∈ FV(u1, . . . , un).
Also x /∈ ~y. Hence (f~y)[~u/~x] = (f~y)[~u/~x][u/x]. Because Γ,Γ′, x : C1  ~x,x, ~N,U,~u,u Γ,
we have U ∼ x and Γ ` U : C1[ ~N/~x] : ∗p. Hence U is a Γ-proof, and thus U �CΓ
ε. Because (λx : C1.C2)[ ~N/~x] is not a Γ-proof, neither is ((λx : C1.C2)[ ~N/~x])U ,
by Theorem 30. Therefore ((λx : C1.C2)[ ~N/~x])U �CΓ ((f~y)[~u/~x][u/x])ε = t0. We
also have C2[ ~N/~x][U/x] �CΓ r[~u/~x][u/x] = t1 by Corollary 66. Note that ((λx :
C1.C2)[ ~N/~x])U =β C2[ ~N/~x][U/x]. First assume q = 0, i.e.,M �CΓ t0. Using Lemma 69
we obtain M =βε C2[ ~N/~x][U/x] �CΓ t1. Now assume q = 1, i.e., M �CΓ t1. Using
Lemma 69 we obtain M =βε ((λx : C1.C2)[ ~N/~x])U �CΓ t0. Also ((λx : C1.C2)[ ~N/~x])U
and C2[ ~N/~x][U/x] are Γ-subjects, by the generation lemma, the application rule (recall
that U ∼ x) and the subject reduction theorem.
(X : ψ) ∈ ∆Λ1 . This case is analogous to the case (X : ψ) ∈ ∆Λ0 .
(X : ψ) ∈ ∆E and ψ = ∀x.E(x, x). This case follows from reflexivity of =βε.
(X : ψ) ∈ ∆E and ψ = ∀xy.E(x, y) → E(y, x). This case follows directly from the
inductive hypothesis.
(X : ψ) ∈ ∆E and ψ = ∀xyz.E(x, y)→ E(y, z)→ E(x, z). This case follows from the
inductive hypothesis and the transitivity of =βε.
(X : ψ) ∈ ∆E and ψ = ∀xyx′y′.E(x, x′) → E(y, y′) → E(xy, x′y′). Then Q =
Xuwu′w′D1D2 and ∆Ax,∆ ` D1 : E(u, u′) and ∆Ax,∆ ` D2 : E(w,w′) and t0 = uw

and t1 = u′w′. Assume q = 0, i.e., M �CΓ uw (the case q = 1 is analogous). Then
M = M1M2 with M1 �CΓ u and M2 �CΓ w. Since M is a Γ-subject, by the generation
lemma Γ `M1 : Πz : A.B and Γ `M2 : A and M2 ∼ z for some A,B. Because D1, D2
are reconstructible there are Γ-subjects N1, N2 such that Ni =βε Mi and N1 �CΓ u′
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and N2 �CΓ w′. Because nfε(M) 6= ε, also nfε(M1) 6= ε. Hence by the second point
in the uniqueness of types lemma, the generation lemma and the conversion rule
Γ ` N1 : Πz : A.B. Without loss of generality we may assume nfε(M2) 6= ε, because
otherwise u′ = w′ = ε and we may take N2 = M2. If nfε(M2) 6= ε then analogously
as with M1 we conclude Γ ` N2 : A. Note that also N2 ∼ z, because M2 ∼ z and
M2 =βε N2. Hence N1N2 is a Γ-subject by the application rule. Using Theorem 30 we
may also conclude that N1N2 is not a Γ-proof. Thus M =βε N1N2 �CΓ u′w′ = t1. J

6 Conclusions and related work

Below we make a few remarks on the embedding, the soundness proof and related work.

I Remark. In the literature there are various translations of languages with dependent types
to less expressive logics, but as far as we know none of them are both shallow, include the
Calculus of Constructions as the source formalism, and target first-order logic. The paper [16]
defines a deep embedding of the Calculus of Constructions into a higher-order logic and
shows it complete. In [17] a similar deep embedding of LF into a fragment of higher-order
logic is shown sound and complete. The paper [21] shows how to simulate dependent types
in higher-order logic.

In [27] a translation from first-order logic with dependent types into ordinary first-order
logic is shown sound by model-theoretic methods. The aim of [27] is also to use the translation
with first-order ATPs. The logic is much simpler than dependent type theory – it allows
dependent types, but not function types, i.e., no λ-abstraction or partial application is
possible.

The paper [29] defines a sound and complete deep embedding Tri of Martin-Löf’s type
theory into first-order logic. The embedding is deep in the sense that e.g. b ∈ B is translated
to In(b, B), so b is not erased. For a fragment F2, which essentially disallows dependent
function types as arguments, the translation may be optimized to a shallow one, i.e., In(b, B)
is optimised to Inh(B). This restriction corresponds to disallowing quantifiers on the left side
of implication, which makes it possible to prove soundness and completeness of the embedding.
In contrast to our approach, since there is no separate sort of propositions, all terms inhabiting
types are erased, not only those intuitively representing proofs of propositions.

The general ideas behind the translations in [29, 27] are broadly similar to ours, but our
work is not a direct extension of any of them.

The paper [19] defines a translation Tr from λP to FOL in order to show a conservativity
result. The general idea of Tr, to translate a dependent type Πx : A.B into a quantification
and an implication, is similar to how we translate piPTS propositions. Essentially, the
translation Tr is defined only for terms that “originate from” an embedding of FOL into λP ,
not on arbitrary λP -terms.

In [26] an essentially deep embedding from LF to the higher-order hereditary Harrop
language is shown sound and complete. It is deep because even in its optimised variant the
proof terms are retained as additional arguments. On the other hand, it allows to omit more
type guards than our translation.

The report [1] defines and proves sound a translation from a fragment of the dependently
typed F? language to intuitionistic first-order logic. The soundness proof uses a broadly
similar method to the one in this paper, using induction on first-order proof terms in η-long
normal form. However, the considered language fragment is essentially simpler and the
soundness proof does not have to deal with the problems mentioned at the beginning of
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Section 5, or with proof irrelevance. On the other hand, the target fragment of first-order
logic is richer and includes conjunction and falsity.

I Remark. Our soundness proof relies on proof-irrelevance incorporated into the piPTS
conversion rule. Proof-irrelevance is necessary for the soundness of a shallow embedding.
It is an open question if the embedding is sound for the Calculus of Constructions with
proof-irrelevance expressed by axioms.

I Remark. Note the use of the function AΓ in the axioms in ∆Λ0 , ∆Λ1 , ∆G0 and ∆G1 . In
contrast, for the axioms in ∆Φ the use of AΓ is not necessary – we may simply quantify over
the free variables without requiring them a priori to have the right types. This is because
they all occur in the target atom P (f~y) which in the soundness proof is assumed to encode a
well-typed term. This is not necessarily true for the axioms which use AΓ, and our soundness
proof cannot be easily adapted to avoid the use of AΓ.

Nonetheless, we expect that the use of AΓ could be avoided without compromising
soundness. For instance, the axioms in ∆Λ1 could be ∀~yx.T (x, r) → E(f~yx, t) or even
∀~yx.E(f~yx, t). We expect the embedding to remain sound after this modification, because we
would essentially omit the type information only for free variables of subterms that are “lifted
out” of already well-typed terms. The problems that arise in the study of such a modified
embedding are broadly similar to problems that arise in the study of systems of illative
combinatory logic [3, 13] or the “liberal” Pure Type Systems from [10]. Domain-free Pure
Type Systems [7], domain-free variants of the Calculus of Inductive Constructions [4], the
Implicit Calculus of Constructions [23] and generally the work on ignoring computationally
irrelevant information also seem related.

In fact, in the practical translation from [15] we omit type information for free variables
of the terms “lifted-out” by the translation. This may increase the success rate in some
circumstances, as then the formulas are simpler and the ATPs do not need to prove too
many well-typedness conditions. See [15, Section 5.6].

I Remark. In [8, 11] it is shown that in a translation from (polymorphic) many-sorted classical
first-order logic to untyped classical first-order logic much of the type information may be
omitted using monotonicity inference. The methods of the cited papers are model-theoretic,
so they are probably not useful in our setting. Nonetheless, it is an interesting problem to
investigate the possibility of adapting monotonicity inference to embeddings of constructive
dependent type theory into first-order logic.
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A Properties of proof-irrelevant Pure Type Systems

In this appendix we develop the meta-theory of proof-irrelevant Pure Type Systems. The
development follows [2, Section 5.2] and is mostly standard, except for one difficulty caused
by the mismatch between βε-reduction used in the conversion rule and β-reduction for which
the subject reduction theorem holds.

First, we need some lemmas concerning ε-reduction, β-reduction and βε-reduction. Note
that →ε is not closed under substitutions. As a result, neither is →β , because it depends
on →ε through the side condition N ∼ x. For example, M = (λx∗p : A.x∗p)y∗p →β y

∗p . But
M [∗p/y∗p ] 6→β ∗p because ∗p 6∼ x∗p . However, both relations are closed under substitutions
if the condition N ∼ x is required when substituting N for x.

I Lemma 78. If M →ε M
′ and N ∼ x then M [N/x]→∗ε M ′[N/x].

Proof. Induction on M . The assumption N ∼ x is needed when x ∈ V ∗p and M = x →ε

ε. J

I Lemma 79 (Confluence and strong normalisation of ε-reduction). ε-reduction is confluent
and strongly normalising.

Proof. It is obvious that ε-reduction is strongly normalising. One also easily checks that the
reflexive closure of →ε has the diamond property. J

I Corollary 80. If M →∗ε M ′ and M ∼ x then M ′ ∼ x.

I Lemma 16. If N ∼ x then nfε(M [N/x]) = nfε(M)[nfε(N)/x].

Proof. Note that M [N/x]→∗ε nfε(M)[nfε(N)/x] by Lemma 78. It suffices to show that the
latter term is in ε-normal form. Otherwise, nfε(M) must have a subterm of the form xt

or λy.x, and nfε(N) = ε. But then x ∈ V ∗p , which contradicts the fact that nfε(M) is in
ε-normal form. J

I Lemma 81. If M ∼ x and N ∼ y then M [N/y] ∼ x.

Proof. Follows directly from Lemma 16. J

I Lemma 82. If M →β M
′ and N ∼ x then M [N/x]→β M

′[N/x].

Proof. Induction on M , using Lemma 81. J

I Lemma 83. If M →∗βε M ′ and N →∗βε N ′ and N ∼ x then M [N/x]→∗βε M ′[N ′/x].

Proof. Using Lemma 78 and Lemma 82 repeatedly we obtain M [N/x]→∗βε M ′[N/x]. Since
N →∗βε N ′, we have M ′[N/x]→∗βε M ′[N ′/x]. J

I Lemma 84. If M →β M1 and M →ε M2 then there is M ′ with M1 →∗ε M ′ and M2 →βε

M ′.

Proof. Induction on M . The interesting case is when M = (λx : A.B)C →β B[C/x] = M1.
Then C ∼ x. First assume M2 = (λx : A.B)C ′ with C →ε C

′. Then C ′ ∼ x by Corollary 80.
Hence M2 →β B[C ′/x]. We also have B[C/x]→∗ε B[C ′/x], so we may take M ′ = B[C ′/x].
Now assume M2 = (λx : A.B′)C with B →ε B

′. Then B[C/x] →∗ε B′[C/x] by Lemma 78.
Also M2 →β B

′[C/x], so we may take M ′ = B′[C/x]. Finally, assume M2 = εC where B = ε

and λx : A.B →ε ε. Then M1 = B[C/x] = ε. Since M2 = εC →ε ε, we may take M ′ = ε.
The remaining cases are easy. J
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I Corollary 85. If M →∗β M1 and M →∗ε M2 then there is M ′ with M1 →∗ε M ′ and
M2 →∗βε M ′.

I Lemma 86. If M →β N →∗ε ε then M →∗ε ε.

Proof. Induction on the length of the reduction N →∗ε ε.
If M = (λx.M ′)Q and N = M ′[Q/x] and Q ∼ x then nfε(N) = nfε(M ′)[nfε(Q)/x]

by Lemma 16. Hence nfε(M ′)[nfε(Q)/x] = ε. This is possible if either nfε(M ′) = ε, or
nfε(M ′) = x and nfε(Q) = ε. If nfε(M ′) = ε then M →∗ε ε. In the other case x ∈ V ∗p

because Q ∼ x and Q→∗ε ε. Hence also M →∗ε ε.
If M = M ′Q and N = N ′Q then M ′ →β N

′ →∗ε ε. Then M ′ →∗ε ε by the inductive
hypothesis, and thus M →∗ε ε.

Otherwise M = λx.M ′ and N = λx.N ′ and M ′ →β N
′. Then M ′ →β N

′ →∗ε ε, so by
the inductive hypothesis M ′ →∗ε ε. Hence M →∗ε ε. J

I Corollary 87. If M →∗βε M ′ then M ∼ x iff M ′ ∼ x.

I Lemma 88 (Postponement of ε-reduction). If M →∗βε M ′ then there exists N such that
M →∗β N →∗ε M ′.

Proof. One shows: ifM →ε N →β M
′ then there is N ′ withM →β N

′ →∗ε M ′. This follows
easily, using Lemma 78, because ε-reduction cannot create or duplicate β-redexes. J

I Corollary 89 (β-reduction requests ε-reduction). If M →∗β M1 and M →∗ε M2 then there
are M ′2,M ′ with M1 →∗ε M ′ and M2 →∗β M ′2 →∗ε M ′.

I Lemma 90 (Confluence of β-reduction). If M →∗β M1 and M →∗β M2 then there exists M ′
such that M1 →∗β M ′ and M2 →∗β M ′.

Proof. By a straightforward adaptation of the Tait–Martin-Löf method. The parallel
reduction relation →1 is defined as follows:

x→1 x, s→1 s, ε→1 ε,
if M →1 M

′ and N →1 N
′ and N ∼ x then (λx : A.M)N →1 M

′[N ′/x],
if M →1 M

′ and N →1 N
′ then MN →1 M

′N ′,
if A→1 A

′ and M →1 M
′ then λx : A.M →1 λx : A′.M ′,

if A→1 A
′ and M →1 M

′ then Πx : A.M →1 Πx : A′.M ′.
One then shows:
1. if M →1 M

′ and N →1 N
′ and N ∼ x then M [N/x]→1 M

′[N ′/x],
2. if M →1 M1 and M →1 M2 then there exists M ′ with M1 →1 M

′ and M2 →1 M
′.

The first point is shown by induction on M , using Lemma 81 when M = (λy : A.M1)M2 →1
M ′1[M ′2/y] = M ′. The second point is shown by a standard argument, using the first point
and Corollary 87. Confluence of β-reduction then follows from the second point, because
→β ⊆ →1 ⊆ →∗β . J

I Lemma 17 (Confluence of βε-reduction). If M →∗βε M1 and M →∗βε M2 then there
exists M ′ such that M1 →∗βε M ′ and M2 →∗βε M ′.

Proof. This follows from the confluence of β- and ε-reduction and the fact that β-reduction
requests ε-reduction. More precisely, one shows that →∗β · →∗ε has the diamond property.
See Figure 3. J

I Corollary 91. If M =βε M
′ and N ∼ x and N =βε N

′ then M [N/x] =βε M
′[N ′/x].
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Figure 3 Confluence of βε-reduction.

Note that confluence of βε-reduction on arbitrary preterms would fail if we did not restrict
β-reduction as in Definition 10. For example, for M = (λx∗p : A.x∗p)∗p we would have
M →∗ε ε and M →β ∗p.

I Lemma 18. If M =βε N then M →∗ε ε is equivalent to N →∗ε ε.

Proof. Suppose M →∗ε ε. By confluence of βε-reduction N →∗βε ε. So N →∗β N ′ →∗ε ε by
Lemma 88. Now by repeatedly applying Lemma 86 we obtain N →∗ε ε. J

I Lemma 19. If N does not contain ε and M →∗βε N then M →∗β N .

Proof. By postponement of ε-reduction there is M ′ with M →∗β M ′ →∗ε N . Because N does
not contain ε, we must in fact have M ′ = N . J

Proofs of most of the following lemmas for ordinary PTSs may be found e.g. in [2,
Section 5.2]. The proofs for piPTSs are essentially the same or very similar. We only briefly
indicate how to carry out the proofs and note the differences with the standard proofs.

I Lemma 20 (Free variable lemma). If Γ = x1 : A1, . . . , xn : An and Γ ` B : C then:
1. the x1, . . . , xn are all distinct,
2. FV(B),FV(C) ⊆ {x1, . . . , xn},
3. FV(Ai) ⊆ {x1, . . . , xi−1} for i = 1, . . . , n.

Proof. Induction on the derivation Γ ` B : C. J

I Lemma 21 (Start lemma). Let Γ be a legal context.
1. If (s1, s2) ∈ A then Γ ` s1 : s2.
2. If (x : A) ∈ Γ then Γ ` x : A and there is s ∈ S with Γ1 ` A : s and x ∈ V s, where

Γ = Γ1, x : A,Γ2.

Proof. Since Γ is legal, Γ ` B : C for some B,C. The lemma follows by induction on the
length of the derivation of Γ ` B : C. J

I Lemma 22 (Substitution lemma). If Γ, x : A,Γ′ ` B : C and Γ ` D : A and D ∼ x then
Γ,Γ′[D/x] ` B[D/x] : C[D/x].

Proof. Induction on the derivation of Γ, x : A,Γ′ ` B : C. We need the assumption D ∼ x
and Corollary 91 to treat the conversion rule. For the application rule we need Lemma 81. J
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I Lemma 23 (Thinning lemma). If Γ ` A : B and Γ′ ⊇ Γ is a legal context then Γ′ ` A : B.

Proof. Induction on the derivation of Γ ` A : B. J

I Lemma 24 (Generation lemma).
1. If Γ ` s : A then there is s′ ∈ S with A =βε s

′ and (s, s′) ∈ A.
2. If Γ ` x : A then there are s ∈ S and B such that A =βε B and Γ ` B : s and (x : B) ∈ Γ

and x ∈ V s.
3. If Γ ` (Πx : A.B) : C then there is (s1, s2, s3) ∈ R with Γ ` A : s1 and Γ, x : A ` B : s2

and C =βε s3.
4. If Γ ` (λx : A.M) : C then there are s ∈ S and B such that Γ ` (Πx : A.B) : s and

Γ, x : A `M : B and C =βε Πx : A.B.
5. If Γ ` MN : C then there are A,B such that Γ ` M : (Πx : A.B) and Γ ` N : A and

C =βε B[N/x] and N ∼ x.

Proof. Completely analogous to the standard proof for ordinary PTSs, using the thinning
lemma. J

I Lemma 26 (Correctness of types lemma). If Γ `M : A then there is s ∈ S such that A = s

or Γ ` A : s.

Proof. Induction on the derivation Γ `M : A. The non-obvious case is when the application
rule is used. Then M = M1M2 and A = C[M2/x] and Γ `M1 : (Πx : B.C) and Γ `M2 : B
and M2 ∼ x. By the inductive hypothesis there is s′ ∈ S such that Γ ` (Πx : B.C) : s′.
By the generation lemma there is s ∈ S such that Γ, x : B ` C : s. Since Γ ` M2 : B and
M2 ∼ x, by the substitution lemma we obtain Γ ` C[M2/x] : s, so Γ ` A : s. Note that the
side condition M2 ∼ x in the application rule was necessary to carry out the proof. J

I Theorem 29 (Subject reduction theorem). If Γ ` A : B and A→∗β A′ then Γ ` A′ : B.

Proof. Completely analogous to the standard proof, using the generation, correctness of
types and substitution lemmas, and Corollary 91. To be able to apply the substitution
lemma and Corollary 91 the side condition in the application rule is necessary. J

Subject reduction obviously does not hold for βε-reduction, because ε is not meant to be
typable. The following lemma is a direct consequence of subject reduction.

I Lemma 92. If Γ `M : A and A =βε s then Γ `M : s.

Proof. By confluence of βε-reduction and Lemma 19 we have A→∗β s. By the correctness
of types lemma Γ ` A : s′ or A = s′. If A = s′ then s = s′ and we are done. So assume
Γ ` A : s′. Then Γ ` s : s′ by the subject reduction theorem. Hence Γ ` M : s by the
conversion rule. J

The mismatch between the β-reduction in the subject reduction theorem and the βε-
conversion in the conversion rule generates some difficulties in the meta-theory of piPTSs.
In ordinary functional PTSs, it is a direct consequence of the subject reduction theorem
and the uniqueness of types lemma (to be stated below) that if Γ ` B : s and B =β B

′ and
Γ ` A′ : B′ then Γ ` B′ : s. This can also be easily established for functional piPTSs, by a
similar proof. But we would want a stronger analogous property with βε-conversion instead
of β-conversion. Then the standard argument breaks down, because subject reduction does
not hold for βε-reduction.
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In particular, we are interested in showing that in a logical piPTS if M is a Γ-proof then
M →∗ε ε. This presents a difficulty already when M = x. Then we have Γ ` x : A : ∗p for
some A. But from this we cannot immediately conclude x ∈ V ∗p because the derivation
of Γ ` x : A may end with the conversion rule. From the generation lemma we may only
conclude that there are s ∈ S and B =βε A such that Γ ` B : s and (x : B) ∈ Γ and x ∈ V s.
It would suffice if from Γ ` B : s and Γ ` A : ∗p and B =βε A we could conclude s = ∗p.
But this does not seem completely straightforward to establish without subject reduction
for βε-reduction. We will ultimately show this property using a slight sharpening of the
uniqueness of types lemma for logical piPTSs.

Our next aim is to show that in a logical piPTS a Γ-type does not ε-reduce to ε. For this
we need the following technical definition.

I Definition 93. We define the relation B  Γ C inductively:
if B =βε C then B  Γ C,
if there exist N and C ′ such that Γ ` N : A and N ∼ x and B[N/x] =βε C

′  Γ C then
Πx : A.B  Γ C.

I Lemma 94. If Γ ` B : s and B =βε B
′  Γ C then B  Γ C.

Proof. If B′ =βε C then this is obvious. Otherwise B′ = Πx : A0.B0 and Γ ` N : A0
and N ∼ x and B0[N/x] =βε C ′  Γ C. By the confluence of βε-reduction we have
B = Πx : A1.B1 with A1 =βε A0 and B1 =βε B0. Since N ∼ x, by Corollary 91 we obtain
B1[N/x] =βε B0[N/x] =βε C

′. Because Γ ` B : s, by the generation lemma Γ ` A1 : s′ for
some s′ ∈ S. Hence Γ ` N : A1 by the conversion rule. Thus B  Γ C. J

I Lemma 95. In a logical piPTS, if Γ ` B : ∗p and B =βε B
′  Γ C, then there exists C ′

such that Γ ` C ′ : ∗p and C ′ =βε C.

Proof. Induction on the definition of B′  Γ C. If B′ =βε C then this is obvious. Otherwise
B′ = Πx : A1.B1 and Γ ` N : A1 and N ∼ x and B1[N/x] =βε C1  Γ C. By the
confluence of βε-reduction B = Πx : A0.B0 with A0 =βε A1 and B0 =βε B1. Because
Γ ` (Πx : A0.B0) : ∗p and the piPTS is logical, by the generation lemma Γ ` A0 : s
for some s ∈ S and Γ, x : A0 ` B0 : ∗p. Since Γ ` N : A1, by the conversion rule
Γ ` N : A0. Hence Γ ` B0[N/x] : ∗p by the substitution lemma. By Corollary 91 we also
have B0[N/x] =βε B1[N/x]. Thus Γ ` B0[N/x] : ∗p and B0[N/x] =βε C1 and C1  Γ C. We
may therefore apply the inductive hypothesis to obtain C ′ with Γ ` C ′ : ∗p and C ′ =βε C. J

I Lemma 96. In a logical piPTS, if Γ `M : s then M 6→∗ε ε.

Proof. By induction on M we show that if (?) below holds for M then M 6→∗ε ε. Then
taking n = 0 in (?) gives us the lemma.
(?) There exist A1, . . . , An and N1, . . . , Nn such that

Γ, x1 : A1, . . . , xn : An `M : B

and Ni ∼ xi and Γ ` Ni : Ai[N1/x1] . . . [Ni−1/xi−1] for i = 1, . . . , n and

B[N1/x1] . . . [Nn/xn] Γ s.

Assume (?) and M →∗ε ε. Let Γ′ = Γ, x1 : A1, . . . , xn : An. There are three possibilities.
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1. M = x ∈ V ∗p . Then by the generation lemma there is B′ with B′ =βε B and Γ′ ` B′ : ∗p.
Using the substitution lemma repeatedly we obtain Γ ` B′[N1/x1] . . . [Nn/xn] : ∗p. Using
Corollary 91 repeatedly we obtain

B′[N1/x1] . . . [Nn/xn] =βε B[N1/x1] . . . [Nn/xn] Γ s.

Hence by Lemma 95 there is C with Γ ` C : ∗p and C =βε s. By Lemma 19 and the
confluence of βε-reduction we have C →∗β s. Hence by the subject reduction theorem we
obtain Γ ` s : ∗p. This contradicts the fact that the piPTS is logical.

2. M = M1M2 with M1 →∗ε ε. By the generation lemma there exist A0 and B0 such that
Γ′ ` M1 : (Πx : A0.B0) and Γ′ ` M2 : A0 and B =βε B0[M2/x] and M2 ∼ x. Let
M ′2 = M2[N1/x1] . . . [Nn/xn]. Using the substitution lemma repeatedly we obtain

Γ `M ′2 : A0[N1/x1] . . . [Nn/xn].

Also M ′2 ∼ x by repeated use of Lemma 81. By the correctness of types and generation
lemmas there is s′ with Γ′, x : A0 ` B0 : s′. Using the substitution lemma repeatedly
with the Ni’s and M ′2 we obtain

Γ ` B0[N1/x1] . . . [Nn/xn][M ′2/x] : s′.

Using Corollary 91 repeatedly we also obtain

B0[M2/x][N1/x1] . . . [Nn/xn] =βε B[N1/x1] . . . [Nn/xn] Γ s.

By α-conversion we may assume x /∈ FV(N1, . . . , Nn). Thus

B0[M2/x][N1/x1] . . . [Nn/xn] = B0[N1/x1] . . . [Nn/xn][M ′2/x].

Hence

(Πx : A0.B0)[N1/x1] . . . [Nn/xn] Γ s.

Now applying the inductive hypothesis yields a contradiction.
3. M = λx : A0.M

′ with M ′ →∗ε ε. By the generation lemma there are s′ ∈ S and B0
such that Γ′ ` (Πx : A0.B0) : s and Γ′, x : A0 ` M ′ : B0 and B =βε Πx : A0.B0.
By the confluence of βε-reduction we have B = Πx : C0.D0 with A0 =βε C0 and
B0 =βε D0. Let A∗p

0 = A0[N1/x1] . . . [Nn/xn] and analogously for B∗p

0 , C∗p

0 and D∗
p

0 .
Since B[N1/x1] . . . [Nn/xn] = Πx : C∗p

0 .D∗
p

0  Γ s, there is N with Γ ` N : C∗p

0 and
N ∼ x and D∗p

0 [N/x] =βε C  Γ s (the case Πx : C∗p

0 .D∗
p

0 =βε s is impossible by the
confluence of βε-reduction). By repeated use of Corollary 91 we have A∗p

0 =βε C
∗p

0
and B∗

p

0 [N/x] =βε D
∗p

0 [N/x]. Since Γ′ ` (Πx : A0.B0) : s′, by the generation lemma
there are s1, s2 ∈ S with Γ′ ` A0 : s1 and Γ′, x : A0 ` B0 : s2. By repeated use of
the substitution lemma Γ ` A∗p

0 : s1. Since also C∗p

0 =βε A
∗p

0 and Γ ` N : C∗p

0 , by
the conversion rule we have Γ ` N : A∗p

0 . Now by repeated use of the substitution
lemma we obtain Γ ` B∗p

0 [N/x] : s2. Since also B∗p

0 [N/x] =βε C  s, by Lemma 94
we obtain B∗

p

0 [N/x]  Γ s. Therefore, because Γ′, x : A0 ` M ′ : B0 and N ∼ x and
Γ ` N : A0[N1/x1] . . . [Nn/xn] and B0[N1/x1] . . . [Nn/xn][N/x] Γ s, we may apply the
inductive hypothesis to conclude M ′ 6→∗ε ε. This gives a contradiction. J

A simpler proof of Lemma 96 would be possible if we changed the definitions in one of
the following two ways.
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(1) In the definition of a logical piPTS, require (s, ∗p, ∗p) ∈ R for any s ∈ S.
(2) In the definition of a piPTS, add the side condition x ∈ V s1 in the product rule, and

restrict ε-reduction of lambda-abstractions to:

λxs : A.ε →ε ε if (s, ∗p, ∗p) ∈ R

Then we could prove (?) below by a relatively straightforward induction, without relying on
Lemma 99. Lemma 96 would then easily follow from (?).
(?) In a logical piPTS, if Γ ` M : C and M →∗ε ε then there is C ′ with C ′ =βε C and

Γ `M : C ′ : ∗p.
However, none of the changes (1) or (2) seem to allow avoiding the use of Lemma 99 in the
proof of Lemma 100.

I Definition 97. An n-ary term context C[�1, . . . ,�n] is a term with n holes into which
some terms N1, . . . , Nn may be substituted possibly capturing their free variables, yielding
C[N1, . . . , Nn]. For example, C[�1,�2] = λxy.�1�2 is a term context, and C[x, xy] =
λxy.x(xy).

We write Γ1 =ε Γ2 if Γ1 = x1 : A1, . . . , xn : An and Γ2 = x1 : A′1, . . . , xn : A′n and
Ai =ε A

′
i. The following simple lemma will be used implicitly.

I Lemma 98. IfM =ε M
′ then there are x1, . . . , xn and an n-ary term context C[�1, . . . ,�n]

such that M = C[N1, . . . , Nn] and M ′ = C[N ′1, . . . , N ′n] and Ni →∗ε ε and N ′i →∗ε ε.

Proof. Follows from confluence of ε-reduction. J

For logical piPTSs we need a somewhat sharpened version of the uniqueness of types
lemma.

I Lemma 27 (Uniqueness of types lemma).
1. In a functional piPTS, if Γ ` A : B and Γ ` A : B′ then B =βε B

′.
2. In a logical piPTS, if Γ `M1 : A1 and Γ `M2 : A2 and M1 =βε M2 and M1 6→∗ε ε and

M2 6→∗ε ε then A1 =βε A2.

Proof. We show the second point. The proof of the first point is similar but simpler,
and it is also completely analogous to the standard uniqueness of types proof for ordinary
functional PTSs.

So assume the piPTS is logical. First, we show the following condition (?).
(?) If Γ1 ` M1 : A1 and Γ2 ` M2 : A2 and M1 =ε M2 and Γ1 =ε Γ2 and M1 6→∗ε ε and

M2 6→∗ε ε then A1 =βε A2.
We proceed by induction on M1. We have the following possibilities.

M1 = s = M2. By the generation lemma there are s1, s2 ∈ S such that A1 =βε s1 and
A2 =βε s2 and (s, s1), (s, s2) ∈ A. Hence s1 = s2 because the piPTS is functional. Thus
A1 =βε A2.
M1 = x = M2. By the generation lemma there exist C1, C2 such that A1 =βε C1 and
A2 =βε C2 and (x : C1) ∈ Γ1 and (x : C2) ∈ Γ2. Since Γ1 =ε Γ2, we have C1 =ε C2.
Thus A1 =βε A2.
M1 = Πx : B1.C1 and M2 = Πx : B2.C2 with B1 =ε B2 and C1 =ε C2. By the
generation lemma there exist (s1, s2, s3), (s′1, s′2, s′3) ∈ R such that Γ1 ` B1 : s1 and
Γ1, x : B1 ` C1 : s2 and Γ2 ` B2 : s′1 and Γ2, x : B2 ` C2 : s′2 and A1 =βε s3 and
A2 =βε s

′
3. Note that B1 6→∗ε ε and B2 6→∗ε ε and C1 6→∗ε ε and C2 6→∗ε ε, by Lemma 96.

Hence, by the inductive hypothesis and the confluence of βε-reduction s1 = s′1 and
s2 = s′2. Thus s3 = s′3 because the piPTS is functional. Hence A1 =βε A2.
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M1 = λx : B1.N1 and M2 = λx : B2.N2 and B1 =ε B2 and N1 =ε N2. By the generation
lemma there exist s1, s2 ∈ S and C1, C2 such that Γi ` Bi : si and Γi, x : Bi ` Ni : Ci
and Ai =βε Πx : Bi.Ci. Note that Ni 6→∗ε ε because Mi 6→∗ε ε. Hence, by the inductive
hypothesis C1 =βε C2. Hence A1 =βε A2, because also B1 =ε B2.
M1 = N1N

′
1 and M2 = N2N

′
2 and N1 =ε N2 and N ′1 =ε N

′
2. By the generation lemma

there exist x1, x2, B1, B2, C1, C2 such that Γi ` Ni : (Πxi : Bi.Ci) and Γi ` N ′i : Bi and
N ′i ∼ xi and Ai =βε Ci[N ′i/xi]. Note that Ni 6→∗ε ε because Mi 6→∗ε ε. Hence, by the
inductive hypothesis Πx1 : B1.C1 =βε Πx2 : B2.C2. Thus x1 = x2 and C1 =βε C2 by
confluence of βε-reduction. Hence C1[N ′1/x1] =βε C2[N ′2/x2] by Corollary 91. Therefore
A1 =βε A2.

We have thus shown (?). Now assume Γ ` Mi : Ai and M1 =βε M2 and Mi 6→∗ε ε. By
confluence of βε-reduction and by Lemma 88 there are N1, N2 withMi →∗β Ni and N1 =ε N2.
By the subject reduction theorem Γ ` Ni : Ai. Because Mi →∗β Ni and Mi 6→∗ε ε, Lemma 86
implies that Ni 6→∗ε ε. Hence by (?) we obtain A1 =βε A2. J

I Lemma 99. In a logical piPTS, if Γ ` B : s and B =βε B
′ and Γ ` A′ : B′ then Γ ` B′ : s.

Proof. By the correctness of types lemma there are two cases.
B′ = s′. Then B →∗β s′ by confluence of βε-reduction and Lemma 19. Hence Γ ` s′ : s
by the subject reduction theorem, i.e., Γ ` B′ : s.
Γ ` B′ : s′. Note that B 6→∗ε ε and B′ 6→∗ε ε by Lemma 96. Hence, by the second point
of the uniqueness of types lemma and by confluence of βε-reduction s = s′. Therefore
Γ ` B′ : s. J

I Lemma 100. In a logical piPTS, if Γ `M : C : ∗p then M →∗ε ε.

Proof. Induction on M . We have the following cases.
M = s. By the generation lemma there is s′ ∈ S such that C =βε s

′. By confluence
of βε-reduction and Lemma 19 we have C →∗β s′. By the subject reduction theorem
Γ ` s′ : ∗p. This is a contradiction, because the piPTS is logical.
M = x. By the generation lemma there are s ∈ S and B such that B =βε C and Γ ` B : s
and (x : B) ∈ Γ and x ∈ V s. By Lemma 99 we obtain Γ ` C : s, and thus s = ∗p by the
uniqueness of types lemma. So x ∈ V ∗p . Hence M = x→ε ε.
M = Πx : A.B. By the generation lemma there is s′ ∈ S with C =βε s

′. Like in the case
M = s, using confluence of βε-reduction, Lemma 19 and the subject reduction theorem,
we derive a contradiction.
M = λx : A.N . By the generation lemma there are s ∈ S and B such that Γ ` (Πx :
A.B) : s and Γ, x : A ` N : B and C =βε Πx : A.B. By Lemma 99 we have Γ ` C : s,
and thus s = ∗p by the uniqueness of types lemma. Since Γ ` (Πx : A.B) : ∗p, by the
generation lemma there is (s1, s2, ∗p) ∈ R such that Γ, x : A ` B : s2. Because the piPTS
is logical s2 = ∗p. Hence Γ, x : A ` N : B : ∗p. By the inductive hypothesis N →∗ε ε.
Hence M = λx : A.N →∗ε λx : A.ε→ε ε.
M = M1M2. By the generation lemma there are A,B such that Γ `M1 : (Πx : A.B) and
Γ ` M2 : A and C =βε B[M2/x] and M2 ∼ x. By the correctness of types lemma and
the generation lemma there is (s1, s2, s3) ∈ R such that Γ ` (Πx : A.B) : s3 and Γ, x :
A ` B : s2. Since Γ `M2 : A and M2 ∼ x, by the substitution lemma Γ ` B[M2/x] : s2.
By Lemma 99 we have Γ ` C : s2, and thus s2 = ∗p by the uniqueness of types lemma.
Hence s3 = ∗p because the piPTS is logical. Thus Γ `M1 : (Πx : A.B) : ∗p, and by the
inductive hypothesis we conclude M1 →∗ε ε. Therefore M = M1M2 →∗ εM2 →ε ε. J

I Lemma 101. In a logical piPTS, if Γ `M : C and M →∗ε ε then Γ ` C : ∗p.
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Proof. Induction on M . There are three possibilities.
M = x ∈ V ∗p . By the generation lemma there exists B such that B =βε C and Γ ` B : ∗p.
By Lemma 99 we have Γ ` C : ∗p.
M = λx : A.M ′ with M ′ →∗ε ε. By the generation lemma there exist s ∈ S and B

such that Γ ` (Πx : A.B) : s and Γ, x : A ` M ′ : B and C =βε Πx : A.B. By the
generation lemma there is (s1, s2, s) ∈ R with Γ ` A : s1 and Γ, x : A ` B : s2. Since
Γ, x : A `M ′ : B and M ′ →∗ε ε, by the inductive hypothesis and the uniqueness of types
lemma we obtain s2 = ∗p. Because the piPTS is logical also s = ∗p. Then Γ ` C : ∗p by
Lemma 99.
M = M1M2 with M1 →∗ε ε. By the generation lemma there are A,B such that Γ `
M1 : (Πx : A.B) and Γ ` M2 : A and C =βε B[M2/x] and M2 ∼ x. By the inductive
hypothesis Γ `M1 : (Πx : A.B) : ∗p. By the generation lemma there is (s1, s2, ∗p) ∈ R
such that Γ ` A : s1 and Γ, x : A ` B : s2. Because the piPTS is logical, s2 = ∗p.
By the substitution lemma we thus obtain Γ ` B[M2/x] : ∗p. By Lemma 99 we have
Γ ` C : ∗p. J

I Theorem 30. Assume the piPTS is logical and M is a Γ-term. Then M is a Γ-proof if
and only if M →∗ε ε.

Proof. Follows from the correctness of types lemma, Lemma 96, Lemma 100 and Lemma 101.
J

I Lemma 31. In a logical piPTS, if M is a Γ-term and M =βε N and Γ ` N : s then
Γ `M : s.

Proof. By the correctness of types lemma either Γ `M : s′ or M = s′ for some s′ ∈ S. If
Γ ` M : s′ then M 6→∗ε ε and N 6→∗ε ε by Lemma 96, so s′ = s by the uniqueness of types
lemma and confluence of βε-reduction. If M = s′ then N →∗β M = s′ by confluence of
βε-reduction and Lemma 19. Hence Γ `M : s by the subject reduction theorem. J

I Lemma 102. In a logical piPTS, if M is a Γ-proof and Γ `M : A then Γ ` A : ∗p.

Proof. Since M is a Γ-proof, M →∗ε ε by Theorem 30. Hence Γ ` A : ∗p by Lemma 101. J

I Lemma 32. In a logical piPTS, if Γ `M : A and Γ, x : A is a legal context then M ∼ x.

Proof. Since Γ, x : A is a legal context, by the start lemma there is s ∈ S with x ∈ V s and
Γ ` A : s. First, assume s = ∗p. Since then Γ ` M : A : ∗p, the term M is a Γ-proof, and
thus M →∗ε ε by Theorem 30. So M ∼ x ∈ V ∗p . If s 6= ∗p then M is not a Γ-proof, by
Lemma 102 and the uniqueness of types lemma. Hence, then also M ∼ x ∈ V s. J

I Lemma 34. In a logical piPTS, Γ `− M : N is equivalent to Γ `M : N .

Proof. The implication from right to left follows by induction on the length of the derivation
of Γ `M : N . For the other direction we proceed by induction on the length of the derivation
of Γ `− M : N . Lemma 32 is needed to handle the application rule. J

B Proofs for Section 5

I Lemma 62.
1. If M �FΓ ϕ and Γ′ ⊇ Γ is a legal context then M �FΓ′ ϕ.
2. If M �CΓ t and Γ′ ⊇ Γ is a legal context then M �CΓ′ t.
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Proof. Induction on the definition of M �FΓ ϕ and M �CΓ t. We show a few cases. The other
cases are similar, trivial, or follow directly from the inductive hypothesis.

M = Πx : A.B �FΓ ϕ1 → ϕ2 = ϕ. Then Γ ` A : ∗p and A �FΓ ϕ1 and B �FΓ,x:A ϕ2. By
Corollary 28 we have x ∈ V ∗p . By the variable convention we may assume x /∈ dom(Γ′).
By the thinning lemma Γ′ ` A : ∗p. Hence Γ′, x : A ⊇ Γ, x : A is a legal context. So
B �FΓ′,x:A ϕ2 by the inductive hypothesis. Also A �FΓ′ ϕ1 by the inductive hypothesis.
Thus Πx : A.B �FΓ′ ϕ1 → ϕ2.
M = Πx : A.B �FΓ ∀x.T (x, t) → ψ = ϕ. Then Γ 0 A : ∗p and A �CΓ t and B �FΓ,x:A ψ.
By Corollary 28 we have x ∈ V s. By the variable convention we may assume x /∈ dom(Γ′).
Since Πx : A.B is a Γ-subject, by the correctness of types and the generation lemmas
Γ ` A : s for some s ∈ S. So Γ′ ` A : s by the thinning lemma. Hence Γ′, x : A ⊇ Γ, x : A
is a legal context. So B �FΓ′,x:A ψ by the inductive hypothesis. Also A �CΓ′ t by the
inductive hypothesis. We also have Γ′ 0 A : ∗p, because otherwise s = ∗p by the
uniqueness of types lemma. Thus Πx : A.B �FΓ′ ∀x.T (x, t)→ ψ.
M �CΓ ε and M is a Γ-proof. Then M is a Γ′-proof by the thinning lemma, so M �CΓ′ ε.
M = M1M2 �CΓ t1t2 = t and M1 �CΓ t1 and M2 �CΓ t2. We have Mi �CΓ′ ti by the
inductive hypothesis. Note that M is not a Γ′-proof, because otherwise M →∗ε ε by
Theorem 30 and thus M would also be a Γ-proof. Hence M1M2 �CΓ′ t1t2.
M = (λx : A.M ′)[ ~N/~x] �CΓ (f~y)[~t/~x] = t and Γ0 ` (λx : A.M ′) : B and Γ0 0 A : ∗p
and f = Λ1(x, r, t) and ~y = FV(r, t) \ {x} and Γ0  ~x, ~N,~t Γ and A[ ~N/~x] �CΓ r[~t/~x] and
M ′[ ~N/~x] �CΓ,x:A[ ~N/~x] t[~t/~x]. Then also Γ0  ~x, ~N,~t Γ′ by the definition of  . By the
variable convention we may assume x /∈ dom(Γ′), so Γ′, x : A[ ~N/~x] ⊇ Γ, x : A[ ~N/~x] is a
legal context. Thus A[ ~N/~x] �CΓ′ r[~t/~x] and M ′[ ~N/~x] �CΓ′,x:A[ ~N/~x] t[~t/~x] by the inductive
hypothesis. Additionally, like in the case M = M1M2, using Theorem 30 we conclude
that M is not a Γ′-proof. Hence M = (λx : A.M ′)[ ~N/~x] �CΓ′ (f~y)[~t/~x] = t. J

I Lemma 64. Assume N ∼ x. Then M →∗ε ε iff M [N/x]→∗ε ε.

Proof. By Lemma 16 we have nfε(M [N/x]) = nfε(M)[nfε(N)/x]. Thus if nfε(M) = ε then
also nfε(M [N/x]) = ε. Conversely, if nfε(M [N/x]) = ε and nfε(M) 6= ε then nfε(M) = x

and nfε(N) = ε. Then also x ∈ V ∗
p , because N ∼ x. This is impossible because then

x→ε ε. J

I Lemma 65. Assume Γ1 ` N : A and N �CΓ1
t and N ∼ y.

1. If M �FΓ1,y:A,Γ2
ϕ then M [N/y] �FΓ1,Γ2[N/y] ϕ[t/y].

2. If M �CΓ1,y:A,Γ2
u then M [N/y] �CΓ1,Γ2[N/y] u[t/y].

Proof. By induction on the definition of M �FΓ1,y:A,Γ2
ϕ and M �CΓ1,y:A,Γ2

u. Again, we
show a few cases.

Let Γ = Γ1, y : A,Γ2 and Γ′ = Γ1,Γ2[N/y]. Note that because we implicitly assume M
is a Γ-subject (Γ-proposition), by the substitution lemma M [N/y] is also a Γ′-subject (Γ′-
proposition). Also note that M is a Γ-proof iff M [N/y] is a Γ′-proof. Indeed, this follows
from Lemma 64 and Theorem 30.

M = Πx : C.B �FΓ ϕ1 → ϕ2 = ϕ. Then Γ ` C : ∗p and C �FΓ ϕ1 and B �FΓ,x:C ϕ2. By
the substitution lemma Γ′ ` C[N/y] : ∗p. By the inductive hypothesis C[N/y] �FΓ′ ϕ1[t/y]
and B[N/y] �FΓ′,x:C[N/y] ϕ2[t/y]. Hence (Πx : C.B)[N/y] = Πx : C[N/y].B[N/y] �FΓ′

ϕ1[t/y]→ ϕ2[t/y] = ϕ[t/y].
M is a Γ-proof and M �CΓ ε. Then by the substitution lemma M [N/y] is also a Γ′-proof.
Hence M [N/y] �CΓ′ ε.
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M = y �CΓ y = u. By the substitution lemma y is a Γ′-subject, so Γ′ is a legal context.
We also have N �CΓ1

t and Γ1 ⊆ Γ′. Hence M [N/y] = N �CΓ′ t = u[t/y] by Lemma 62.
M = M1M2 �CΓ u1u2 and M1 �CΓ u1 and M2 �CΓ u2. By the inductive hypothesis
Mi[N/y] �CΓ′ ui[t/y]. Recall that M [N/y] is not a Γ′-proof, by the discussion in the
second paragraph of the proof of this lemma. Therefore M [N/y] = M1[N/y]M2[N/y] �CΓ′

u1[t/y]u2[t/y] = u[t/y].
M = (λx : A.M ′)[ ~N/~x] �CΓ (f~y)[~t/~x] = u and Γ0 ` (λx : A.M ′) : B and Γ0 0 A : ∗p and
f = Λ1(x, r1, r2) and ~y = FV(r1, r2) \ {x} and Γ0  ~x, ~N,~t Γ and A[ ~N/~x] �CΓ r1[~t/~x] and
M ′[ ~N/~x] �CΓ,x:A[ ~N/~x] r2[~t/~x]. Then by definition also Γ0  ~x,y, ~N,N,~t,t Γ′. Moreover, we
obtain A[ ~N/~x][N/y] �CΓ′ r1[~t/~x][t/y] and M ′[ ~N/~x][N/y] �CΓ′,x:A[ ~N/~x][N/y] r2[~t/~x][t/y] by
the inductive hypothesis. Hence, recalling that M [N/y] is not a Γ′-proof,

M [N/y] = (λx : A.M ′)[ ~N/~x][N/y] �CΓ′ (f~y)[~t/~x][t/y] = u[t/y]. J

I Lemma 67. Assume y ∈ V ∗p .
1. If M �FΓ ϕ then y /∈ FV(ϕ).
2. If M �CΓ t then y /∈ FV(t).

Proof. Induction on the definition of M �FΓ ϕ and M �CΓ t. Note that if y is a Γ-subject
then y is a Γ-proof, by the generation and start lemmas. Hence, the case M = y �CΓ y = t is
impossible. J

I Lemma 68.
1. If M �FΓ ϕ then FV(ϕ) = FV(nfε(M)).
2. If M �CΓ t then FV(t) = FV(nfε(M)).

Proof. Induction on the definition of M �FΓ ϕ and M �CΓ t, using Lemma 67. We show a few
cases. The other cases are similar, trivial, or follow directly from the inductive hypothesis.

M = Πx : A.B �FΓ ϕ1 → ϕ2 = ϕ. Then Γ ` A : ∗p and A �FΓ ϕ1 and B �FΓ,x:A ϕ2.
By the inductive hypothesis FV(nfε(A)) = FV(ϕ1) and FV(nfε(B)) = FV(ϕ2). Note
that nfε(M) = Πx : nfε(A).nfε(B), so FV(nfε(M)) = FV(nfε(A)) ∪ (FV(nfε(B)) \ {x}).
Since Γ ` A : ∗p, we have x ∈ V ∗p by Corollary 28. Thus x /∈ FV(ϕ2) by Lemma 67, so
FV(ϕ2) = FV(nfε(B)) \ {x}. Hence FV(nfε(M)) = FV(nfε(A)) ∪ (FV(nfε(B)) \ {x}) =
FV(ϕ1) ∪ FV(ϕ2) = FV(ϕ).
M = Πx : A.B �FΓ ∀x.T (x, t) → ψ = ϕ. Then Γ ` A : ∗p and A �CΓ t and B �FΓ,x:A ψ.
By the inductive hypothesis FV(nfε(A)) = FV(t) and FV(nfε(B)) = FV(ψ). Note that
nfε(M) = Πx : nfε(A).nfε(B), so FV(nfε(M)) = FV(nfε(A)) ∪ (FV(nfε(B)) \ {x}) =
(FV(nfε(A))∪FV(nfε(B)))\{x} (by the variable convention we may assume x /∈ FV(A)).
Thus FV(ϕ) = (FV(t) ∪ FV(ψ)) \ {x} = FV(nfε(M)).
If M is a Γ-proof and M �CΓ ε = t, then nfε(M) = ε by Theorem 30, so FV(nfε(M)) =
FV(t).
M = x �CΓ x = t. Then M is not a Γ-proof, so nfε(x) = x by Theorem 30. Hence
FV(nfε(M)) = FV(t).
M = M1M2 �CΓ t1t2 = t and M1 �CΓ t1 and M2 �CΓ t2. In this case M is not
a Γ-proof, so M 6→∗ε ε. Hence nfε(M) = nfε(M1)nfε(M2). Thus FV(nfε(M)) =
FV(nfε(M1),nfε(M2)) = FV(t1, t2) = FV(t), using the inductive hypothesis.
M = (λx : A.M ′)[ ~N/~x] �CΓ (f~y)[~t/~x] and Γ′ ` (λx : A.M ′) : B and Γ′ 0 A : ∗p and
f = Λ1(x, r, t) and ~y = FV(r, t) \ {x} and Γ′  ~x, ~N,~t Γ and A[ ~N/~x] �CΓ r[~t/~x] and
M ′[ ~N/~x] �CΓ,x:A[ ~N/~x] t[~t/~x]. By the inductive hypothesis FV(nfε(A[ ~N/~x])) = FV(r[~t/~x])
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and FV(nfε(M ′[ ~N/~x])) = FV(t[~t/~x]). By the variable convention we may assume x /∈
FV(A,N1, . . . , Nn), so

FV(nfε(M)) = FV(nfε(λx : A[ ~N/~x].M ′[ ~N/~x]))
= FV(r[~t/~x], t[~t/~x]) \ {x}.

Let {xi1 , . . . , xik} = FV(r, t) ∩ {x1, . . . , xn} and let t′i = ti[ti+1/xi+1] . . . [tn/xn] for i =
1, . . . , n. We then have r[~t/~x] = r[t′i1/xi1 , . . . , t

′
ik
/xik ] and t[~t/~x] = t[t′i1/xi1 , . . . , t

′
ik
/xik ].

Thus

FV(r[~t/~x], t[~t/~x]) = (FV(r, t) \ {xi1 , . . . , xik}) ∪ FV(t′i1 , . . . , t
′
ik

).

Hence

FV(nfε(M)) = ((FV(r, t) \ {xi1 , . . . , xik}) ∪ FV(t′i1 , . . . , t
′
ik

)) \ {x}.

On the other hand, also t = (f~y)[~t/~x] = (f~y)[t′i1/xi1 , . . . , t
′
ik
/xik ] and ~y = FV(r, t) \ {x}.

By the inductive hypothesis FV(ti) = FV(nfε(Ni)), so x /∈ FV(ti). Hence also x /∈ FV(t′i).
Therefore

FV(t) = (FV(r, t) \ {x, xi1 , . . . , xik}) ∪ FV(t′i1 , . . . , t
′
ik

)
= ((FV(r, t) \ {xi1 , . . . , xik}) ∪ FV(t′i1 , . . . , t

′
ik

)) \ {x}
= FV(nfε(M)).

J

I Lemma 69. Assume Γ =ε Γ′.
1. If M �FΓ ϕ and M ′ �FΓ′ ϕ then M =ε M

′.
2. If M �CΓ t and M ′ �CΓ′ t then M =ε M

′.

Proof. Induction on the definition of M �FΓ ϕ and M �CΓ t. We show a few cases. The other
cases are similar, trivial, or follow directly from the inductive hypothesis.

M = Πx : A.B and M ′ = Πx : A′.B′ and ϕ = ϕ1 → ϕ2. Then A �FΓ ϕ1 and A′ �FΓ ϕ1
and B �FΓ,x:A ϕ2 and B′ �FΓ′,x:A′ ϕ2. By the inductive hypothesis A =ε A

′. Hence
Γ, x : A =ε Γ′, x : A′, so B =ε B

′ by the inductive hypothesis. Therefore M =ε M
′.

t = ε and M is a Γ-proof and M ′ is a Γ′-proof. By Theorem 30 we have M →∗ε ε and
M ′ →∗ε ε, so M =ε M

′.
t = t1t2 andM = M1M2 andM ′ = M ′1M

′
2 andMi �CΓ ti andM ′i �CΓ′ ti. By the inductive

hypothesis Mi =ε M
′
i . Hence M =ε M

′.
t = (f~y)[~t/~x] = (f ~y′)[~t′/~x′] and f = Λ1(x, r, u) = Λ1(x′, r′, u′) and ~y = FV(r, u)\{x} and
~y′ = FV(r′, u′) \ {x′} and M = (λx : A.B)[ ~N/~x] and M ′ = (λx : A′.B′)[ ~N ′/~x′] and there
is a bijection σ : V → V such that σ(y′i) = yi and σ(x′) = x and σ(r′) = r and σ(u′) =
u. We also have A[ ~N/~x] �CΓ r[~t/~x] and B[ ~N/~x] �CΓ,x:A[ ~N/~x] u[~t/~x] and A′[ ~N ′/~x′] �CΓ′

r′[~t′/~x′] and B′[ ~N ′/~x′] �CΓ′,x:A′[ ~N ′/~x′] u
′[~t′/~x′]. Let pi = ti[ti+1/xi+1] . . . [tn/xn] and

p′i = t′i[t′i+1/x
′
i+1] . . . [t′m/x′m]. We have

(f~y)[p1/x1, . . . , pn/xn] = (f ~y′)[p′1/x′1, . . . , p′m/x′m].

Without loss of generality we may assume that there is k ≤ n such that xi = yi and
x′i = y′i and pi = p′i for i ≤ k (this may be always achieved by taking the “missing” pis
(p′is) to be equal to yis (y′is)), and xi /∈ ~y = FV(r, u) \ {x} for i > k. We may also assume
there is k ≤ k′ ≤ m such that x′i = y′i for k < i ≤ k′ and x′i /∈ ~y′ = FV(r′, u′) \ {x′} for
i > k′. Then p′i = yi for k < i ≤ k′. Hence, in fact we may assume k = k′, by taking the
missing pis equal to yis.
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By the variable convention we may also assume x, x′ /∈ {x1, . . . , xn, x
′
1, . . . , x

′
m}. Hence

for i > k we have xi /∈ FV(r, u) and x′i /∈ FV(r′, u′). Recall that σ−1(yi) = y′i. Since also
pi = p′i and xi = σ(x′i) for i ≤ k:

r[~t/~x] = r[p1/x1, . . . , pk/xk]
= r[p′1/σ(x′1), . . . , p′k/σ(x′k)]
= σ−1(r)[p′1/x′1, . . . , p′k/x′k]
= r′[p′1/x′1, . . . , p′k/x′k]
= r′[~t′/~x′]

and

u[~t/~x] = u[p1/x1, . . . , pk/xk]
= u[p′1/σ(x′1), . . . , p′k/σ(x′k)]
= σ−1(u)[p′1/x′1, . . . , p′k/x′k]
= u′[p′1/x′1, . . . , p′k/x′k]
= u′[~t′/~x′].

So by the inductive hypothesis A[ ~N/~x] =ε A
′[ ~N ′/~x′] and thus also Γ, x : A[ ~N/~x] =ε

Γ′, x : A′[ ~N ′/~x′], so B[ ~N/~x] =ε B
′[ ~N ′/~x′] by applying the inductive hypothesis again.

This implies that M =ε M
′. J

I Lemma 74. Suppose Γ � ∆ and ∆Ax,∆ ` XQ1 . . . Qm : ψ, where each Qi is either an
individual term or a reconstructible proof term. Let Γ0 = x1 : A1, . . . , xn : An be such that
m = lenA(Γ0) and Γ,Γ0 is a legal context. If (X : γ) ∈ ∆Ax,∆ with ϕ �A

Γ;Γ0
γ, then there

exist N1, . . . , Nn and u1, . . . , un such that ψ = ϕ[~u/~x] and Γ,Γ0  ~x, ~N,~u Γ.

Proof. Induction on n. If n = 0 then m = 0 and ψ = ϕ, so we are done. Thus suppose
Γ0 = Γ′0, xn+1 : An+1.

First assume Γ,Γ′0 ` An+1 : s and s 6= ∗p. Then An+1 �CΓ,Γ′
0
t and ∀xn+1.T (xn+1, t)→

ϕ �A
Γ;Γ′

0
γ and lenA(Γ′0) = lenA(Γ0)− 2. Also

∆Ax,∆ ` XQ1 . . . Qm−2 : ∀xn+1.T (xn+1, r)→ ψ′

and Qm−1 = un+1 is an individual term and Qm = D is a reconstructible proof term such that
∆Ax,∆ ` D : T (un+1, r) and ψ = ψ′[un+1/xn+1]. By the inductive hypothesis there exist
N1, . . . , Nn and u1, . . . , un such that r = t[~u/~x] and ψ′ = ϕ[~u/~x] and Γ,Γ′0  ~x, ~N,~u Γ. Then
Γ,Γ0  ~x, ~N,~u Γ, xn+1 : An+1[ ~N/~x] by Lemma 60. Also An+1[ ~N/~x] �CΓ r by Corollary 66.
Since Γ,Γ′0 ` An+1 : s, we have Γ ` An+1[ ~N/~x] : s by Lemma 61. Because we also have
∆Ax,∆ ` D : T (un+1, r) and D is reconstructible, by 2 in Definition 73 there is Nn+1
with Nn+1 �CΓ un+1 and Γ ` Nn+1 : An+1[ ~N/~x]. Also Nn+1 ∼ xn+1 by Lemma 32.
Thus Γ,Γ0  ~x,xn+1, ~N,Nn+1,~u,un+1

Γ by definition of  . Moreover, ψ = ψ′[un+1/xn+1] =
ϕ[u1/x1] . . . [un+1/xn+1].

Now assume Γ,Γ′0 ` An+1 : ∗p. Then An+1 �FΓ,Γ′
0
ϕ′ and ϕ′ → ϕ �A

Γ;Γ′
0
γ and lenA(Γ′0) =

lenA(Γ0)− 1. Also

∆Ax,∆ ` XQ1 . . . Qm−1 : α→ ψ

and Qm = D is a reconstructible proof term such that ∆Ax,∆ ` D : α. By the inductive
hypothesis there are N1, . . . , Nn and u1, . . . , un such that α = ϕ′[~u/~x], ψ = ϕ[~u/~x] and
Γ,Γ′0  ~x, ~N,~u Γ. Then Γ,Γ0  ~x, ~N,~u Γ, xn+1 : An+1[ ~N/~x] by Lemma 60. Also An+1[ ~N/~x] �FΓ
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ϕ′[~u/~x] = α by Corollary 66. Since Γ,Γ′0 ` An+1 : ∗p, we have Γ ` An+1[ ~N/~x] : ∗p
by Lemma 61. Because we also have ∆Ax,∆ ` D : α and D is reconstructible, by 1 in
Definition 73 there is Nn+1 with Γ ` Nn+1 : An+1[ ~N/~x]. Because Nn+1 is a Γ-proof, we
have Nn+1 �CΓ ε. Also Nn+1 ∼ xn+1 by Lemma 32. Thus Γ,Γ0  ~x,xn+1, ~N,Nn+1,~u,ε

Γ
by definition of  . Moreover, because xn+1 ∈ V ∗

p we have xn+1 /∈ FV(ψ), and thus
ψ = ϕ[u1/x1] . . . [un/xn][ε/xn+1]. J
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