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Abstract
The problem of Approximate Nearest Neighbor (ANN) search is fundamental in computer science
and has benefited from significant progress in the past couple of decades. However, most work
has been devoted to pointsets whereas complex shapes have not been sufficiently treated. Here,
we focus on distance functions between discretized curves in Euclidean space: they appear in
a wide range of applications, from road segments and molecular backbones to time-series in
general dimension. For `p-products of Euclidean metrics, for any p ≥ 1, we design simple and
efficient data structures for ANN, based on randomized projections, which are of independent
interest. They serve to solve proximity problems under a notion of distance between discretized
curves, which generalizes both discrete Fréchet and Dynamic Time Warping distances. These
are the most popular and practical approaches to comparing such curves. We offer the first
data structures and query algorithms for ANN with arbitrarily good approximation factor, at
the expense of increasing space usage and preprocessing time over existing methods. Query time
complexity is comparable or significantly improved by our algorithms; our approach is especially
efficient when the length of the curves is bounded.

2012 ACM Subject Classification Theory of computation→ Data structures design and analysis

Keywords and phrases Approximate nearest neighbor, polygonal curves, Fréchet distance, dy-
namic time warping

Digital Object Identifier 10.4230/LIPIcs.SoCG.2018.37

1 Introduction

The problem of Approximate Nearest Neighbor (ANN) search is fundamental in computer
science: one has to preprocess a dataset so as to answer proximity queries efficiently, for
a given query object. ANN has been enjoying a lot of attention and significant progress
has been achieved in the past couple of decades. However, most work has been devoted to
vector spaces, and complex objects have not been sufficiently treated. Here, we focus on
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distance functions for polygonal curves which lie in the Euclidean space. Polygonal curves are
essentially point sequences of varying length and have a wide range of applications ranging
from road segments in low dimensions to time-series in arbitrary dimension and protein
backbone structures. In general, the problem we aim to solve is as follows.

I Definition 1 (ANN). Input are n polygonal curves V1, . . . , Vn, where each Vi is a sequence
vi1, . . . , vimi with each vij ∈ Rd, and each mi ≤ m for some pre-specified m. Given distance
function d(·, ·), ε > 0, preprocess V1, . . . , Vn into a data structure s.t. for any query polygonal
curve Q, the data structure reports Vj for which the following holds

∀i : d(Q,Vj) ≤ (1 + ε) · d(Q,Vi).

There are various ways to define dissimilarity or distance between two curves. Two
popular dissimilarity measures are the Discrete Fréchet Distance (DFD) and the Dynamic
Time Warping (DTW) distance which are both widely studied and applied to classification
and retrieval problems for various types of data. DFD satisfies the triangular inequality,
unlike DTW.

It is common, in distance functions of curves, to involve the notion of a traversal for
two curves. Intuitively, a traversal corresponds to a time plan for traversing the two curves
simultaneously, starting from the first point of each curve and finishing at the last point of
each curve. With time advancing, the traversal advances in at least one of the two curves.
DFD is the minimum over traversals, maximum distance of points while traversing. DTW is
the minimum over traversals, sum of distances while traversing.

We denote by `dp the normed space (Rd, ‖ · ‖p), where for any x = (x1, . . . , xd) ∈ Rd,
‖x‖p = (

∑
i |xi|p)

1/p. We also use the notation Õ(f(d,m, n)), which hides polylogarithmic
factors in f(d,m, n) or polynomial factors in 1/ε.

1.1 Previous work
The ANN problem has been mainly addressed for datasets consisting of points. Efficient de-
terministic solutions exist when the dimension is constant, e.g. [5], while for high-dimensional
data the state-of-the-art solutions are mainly based on the notion of Locality Sensitive
Hashing, e.g. [8, 4], or on random projections, e.g. [1, 2]. Another line of work focuses on
subsets of general metrics which satisfy some sort of low intrinsic dimension assumption,
e.g. [9]. This is only a small fraction of the body of work on pointsets; however, very little is
known about distances between curves.

Let us start with point sequences, which are closely related to curves. For metrics
M1, . . . ,Mk, we define the `p-product ofM1, . . . ,Mk as the metric with domainM1×· · ·×Mk

and distance function

d((x1, . . . , xk), (y1, . . . , yk)) =
(

k∑
i=1

dpMi
(xi, yi)

)1/p

.

If there exists an ANN data structure with approximation factor c for each M1, . . . ,Mk, then
one can build a data structure for the `p-product with approximation factor O(c log logn)
[3, 10].

Let us now focus on curves: the two existing approaches both solve the approximate near
neighbor problem, instead of the optimization ANN. It is known that a data structure for
the approximate near neighbor problem can be used as a building block for solving the ANN
problem. This procedure has provable guarantees on metrics [8], but it is not clear whether
it can be extended to non-metric distances such as the DTW.
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The first result for DFD by Indyk [10], defined by any metric (X, d(·, ·)), achieved
approximation factor O((logm+ log logn)t−1), where m is the maximum length of a curve,
and t > 1 is a trade-off parameter. The solution is based on an efficient data structure for `∞-
products of arbitrary metrics, and achieves space and preprocessing time inO(m2|X|)tm1/t ·n2t,
and query time in (m logn)O(t). Table 1 states these bounds for appropriate t = 1 + o(1),
hence a constant approximation factor. It is not clear whether the approach may achieve a
1 + ε approximation factor by employing more space.

Quite recently, a new data structure was devised for the DFD of curves defined by
the Euclidean metric [7]. The approximation factor is O(d3/2). The space required is
O(24mdn logn + mn) and each query costs O(24mdm logn). They also provide a trade-off
between space/query time, and the approximation factor. At the other extreme of this
trade-off, they achieve space in O(n logn+mn), query time in O(m logn) and approximation
factor O(m). Our methods can achieve any user-desired approximation factor at the expense
of a reasonable increase in the space and time complexities.

Furthermore, they show in [7] that the result establishing an O(m) approximation extends
to DTW, whereas the other extreme of the trade-off has remained open.

Table 1 summarizes space and query time complexities, and approximation factors of
the main methods for searching among discrete curves under the two main dissimilarity
measures.

1.2 Our contribution
Our first contribution is a simple data structure for the ANN problem in `p-products of finite
subsets of `d2, for any p. The key ingredient is a random projection from points in `2 to points
in `p. Although this has proven a relevant approach for ANN of pointsets, it is quite unusual
to employ randomized embeddings from `2 to `p, p > 2, because such norms are considered
“harder" than `2 in the context of proximity searching. After the random projection, the
algorithm “vectorizes" all point sequences. The original problem is then translated to the
ANN problem for points in `d′p , for d′ ≈ d ·m to be specified later, and can be solved by
simple bucketing methods in space Õ

(
d′n · (1/ε)d′

)
and query time Õ(d′ logn), which is

very efficient when d ·m is low.
Then, we present a notion of distance between two polygonal curves, which generalizes

both DFD and DTW (for a formal definition see Definition 13). The `p-distance of two
curves minimizes, over all traversals, the `p norm of the vector of all Euclidean distances
between paired points. Hence, DFD corresponds to `∞-distance of polygonal curves, and
DTW corresponds to `1-distance of polygonal curves.

Our main contribution is an ANN structure for the `p-distance of curves, when 1 ≤ p <∞.
This easily extends to `∞-distance of curves by solving for the `p-distance, where p is
sufficiently large. Our target are methods with approximation factor 1+ε. Such approximation
factors are obtained for the first time, at the expense of larger space or time complexity.
Moreover, a further advantage is that our methods solve ANN directly instead of requiring
to reduce it to near neighbor search. While a reduction to the near neighbor problem has
provable guarantees on metrics [8], we are not aware of an analogous result for non-metric
distances such as the DTW.

Specifically, when p > 2, there exists a data structure with space and preprocessing time
in

Õ

(
n ·
(
d

pε
+ 2
)O(dm·αp,ε)

)
,

SoCG 2018
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Table 1 Summary of previous results compared to this paper’s: X denotes the domain set of the
input metric. The first method is deterministic while the rest are randomized. All previous results
are tuned to optimize the approximation factor. The parameters ρu, ρq satisfy (1 + ε)√ρq + ε

√
ρu ≥√

1 + 2ε.

Space Query Approx. Comments

DFD
O(m2|X|)m

1−o(1)
×O(n2−o(1)) (m logn)O(1) O(1) any metric [10]

Õ(24mdn) Õ(24md logn) O
(
d3/2) `d2, [7]

Õ(n)×
(

d
logm + 2

)O(m·d log(1/ε))
Õ(d · 22m logn) 1 + ε `d2, Thm 16

DTW
Õ(mn) O(m logn) O(m) `d2, rand.[7]
Õ(n)× 2O(m·d log(1/ε)) Õ(d · 22m logn) 1 + ε `d2, Thm 17
Õ
(
22mn1+ρu

)
Õ
(
22mnρq

)
1 + ε `d2, Thm 18

where αp,ε depends only on p, ε, and query time in Õ(22m logn). When specialized to DFD
and compared to [7], our space and preprocessing time complexity is higher by the exponent
log(1/ε) but our query time is linear instead of being exponential in d.

When p ∈ [1, 2], there exists a data structure with space and preprocessing time in

Õ
(
n · 2O(dm·αp,ε)

)
,

where αp,ε depends only on p, ε, and query time in Õ
(
22m logn

)
. This leads to the first

approach that achieves 1 + ε approximation for DTW at the expense of space, preprocessing
and query time complexities being exponential in m. Hence our method is best suited when
the curve size is small.

Our results for DTW and DFD are summarized in Table 1 and juxtaposed to existing
approaches in [7, 10].

The rest of the paper is structured as follows. In Section 2, we present a data structure
for ANN in `p-products of `2, which is of independent interest. In Section 3, we employ this
result to address the `p-distance of curves. We conclude with future work.

2 `p-products of `2

In this section, we present a simple data structure for ANN in `p-products of finite subsets
of `2. Recall that the `p-product of X1, . . . , Xm, which are finite subsets of `2, is a metric
space with ground set X1 ×X2 × · · · ×Xm and distance function:

d((x1, . . . , xm), (y1, . . . , ym)) = ‖‖x1 − y1‖2, . . . , ‖xm − ym‖2‖p =
(

m∑
i=1
‖xi − yi‖p2

)1/p

.

For ANN, the algorithm first randomly embeds points from `2 to `p. Then, it is easy to
translate the original problem to ANN in `p for large vectors corresponding to point sequences.

2.1 Concentration inequalities
In this subsection, we prove concentration inequalities for central absolute moments of the
normal distribution. Most of these results are probably folklore and the reasoning is quite
similar to the one followed by proofs of the Johnson-Lindenstrauss lemma, e.g. [11].

The 2-stability property of standard normal variables, along with standard facts about
their absolute moments imply the following claim.
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I Claim 2. Let v ∈ Rd and let G be k × d matrix with i.i.d random variables following
N(0, 1). Then,

E
[
‖Gv‖pp

]
= cp · k · ‖v‖p2,

where cp = 2p/2·Γ( p+1
2 )√

π
is a constant depending only on p > 1.

Proof. Let g = (X1, . . . , Xd) be a vector of random variables which follow N(0, 1) and
any vector v ∈ Rd. The 2-stability property of gaussian random variables implies that
〈g, v〉 ∼ N(0, ‖v‖22). Recall the following standard fact for central absolute moments of
Z ∼ N(0, σ2):

E[|Z|p] = σp ·
2p/2 · Γ

(
p+1

2
)

√
π

.

Hence,

E
[
‖Gv‖pp

]
= E

[
k∑
i=1
|〈gi, v〉|p

]
= k · ‖v‖p2 ·

2p/2 · Γ
(
p+1

2
)

√
π

. J

In the following lemma, we give a simple upper bound on the moment generating function
of |X|p, where X ∼ N(0, 1).

I Lemma 3. Let X ∼ N(0, σ2), p ≥ 1, and t > 0, then E[exp(−t|X|p)] ≤ exp(−tE[|X|p] +
t2E[|X|2p]).

Proof. We use the easily verified fact that for any x ≤ 1, exp(x) ≤ 1 + x + x2 and the
standard inequality 1 + x ≤ ex, for all x ∈ R.

E
[
e−t|X|

p
]
≤ 1− t · E [|X|p] + t2 · E

[
|X|2p

]
≤ e−tE[|X|p]+t2E[|X|2p]. J

I Claim 4. Let X ∼ N(0, 1). Then, there exists constant C > 0 s.t. for any p ≥ 1,
E[|X|2p] ≤ C · E[|X|p]2.

Proof. In the following, we denote by f(p) ≈ g(p) the fact that there exist constants
0 < c < C s.t. for any p > 1, f(p) ≤ C·g(p) and f(p) ≥ c·g(p). In addition, f(p) & g(p) means
that ∃C > 0 s.t. ∀p > 1, C · f(p) ≥ g(p). In other words, g(p) ≈ f(p) ⇐⇒ g(p) = Θ(f(p))
and f(p) & g(p) ⇐⇒ f(p) = Ω(g(p)). In the following we make use of the Stirling
approximation and standard facts about moments of normal variables.

E
[
|X|2p

]
=

2p · Γ
( 2p+1

2

)
√
π

≈ (2p− 1)!! = (2p)!
2p · p! ≈

(
(2p)2p

e

)
· √p · 1

2p ·
(
p
e

)p ≈ 2ppp√p
ep ≈ 2p · p!

E [|X|p]2 ≈ ((p− 1)!!)2 &

(
2p/2+1/2 ·

(
(p/2 + 1/2)

e

)(p/2+1/2)
)2

≈ 2p · p
p+1

ep+1 & 2p · p! J

The following lemma is the main ingredient of our embedding, since it provides us with a
lower tail inequality for one projected vector.

I Lemma 5. Let G be a k × d matrix with i.i.d. random variables following N(0, 1) and
consider vector v ∈ Rd, s.t. ‖v‖2 = 1. For appropriate constant c′ > 1, for p ≥ 1 and
δ ∈ (0, 1),

Pr[‖Gv‖pp ≤ (1− δ) · E[‖Gv‖pp]] ≤ e−c
′·k·δ2

.

SoCG 2018
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Proof. For X ∼ N(0, 1) and any t > 0,

Pr
[
‖Gv‖pp ≤ (1− δ) · E

[
‖Gv‖pp

]]
≤ E

[
e−t|X|

p
]k
· e(t(1−δ)k·E[|X|p]) ≤

≤ ek(−t·E[|X|p]+t2·C·E[|X|p]2+t·(1−δ)·E[|X|p]).

The last inequality derives from Claim 4. Now, we set t = δ
2
√
C·E[|X|p] , and we assume wlog

C > 4. Hence,

Pr[‖Gv‖pp ≤ (1− δ) · E[‖Gv‖pp]] ≤ e−c
′·k·δ2

,

for some constant c′ > 1. J

Finally, we make use of the following one-sided Johnson-Lindenstrauss lemma (see
e.g. [11]).

I Theorem 6. Let G be a k × d matrix with i.i.d. random variables following N(0, 1) and
consider vector v ∈ Rd. Then, for constant C > 0,

Pr
[
‖Gv‖2 ≥ (1 + ε)‖v‖2

√
k
]
≤ e−C·k·ε

2
.

Standard properties of `p norms imply a loose upper tail inequality.

I Corollary 7. Let G be a k × d matrix with i.i.d. random variables following N(0, 1) and
consider vector v ∈ Rd. Let p ≥ 2. Then, for constant C > 0,

Pr
[
‖Gv‖p ≥ (1 + ε)‖v‖2

√
k
]
≤ e−C·k·ε

2
.

Proof. Since p ≥ 2, we have that ∀x ∈ Rd ‖x‖p ≤ ‖x‖2. Hence, by Theorem 6,

Pr[‖Gv‖p ≥ (1 + ε)‖v‖2
√
k] ≤ Pr[‖Gv‖2 ≥ (1 + ε)‖v‖2

√
k] ≤ e−C·k·ε

2
. J

However, an improved upper tail inequality can be derived when p ∈ [1, 2].

I Lemma 8. Let G be a k × d matrix with i.i.d. random variables following N(0, 1) and
consider vector v ∈ Rd. Let p ∈ [1, 2] . Then, for constant C > 0,

Pr
[
‖Gv‖p ≥ (3 · cp · k)1/p‖v‖2

]
≤ e−C·k.

Proof. Let X ∼ N(0, 1).

E
[
e|X|

p/3
]

= 1√
2π

∫ +∞

−∞
e|x|

p/3−x2/2dx ≤
√

2√
π

∫ +∞

0
ex

2/3−x2/2dx =
√

3.

Now, assume wlog ‖v‖2 = 1,

Pr
[
‖Gv‖pp ≥ 3 · E

[
‖Gv‖pp

]]
≤ E

[
e|X|

p/3
]k
· e−k·E[|X|p] ≤ e−k(cp−2/3) ≤ e−k/10,

where cp = 2p/2·Γ( p+1
2 )√

π
. J
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2.2 Embedding `2 into `p

In this subsection, we present our main results concerning ANN for `p-products of `2. First,
we show that a simple random projection maps points from `d2 to `kp, where k = Õ(d), without
arbitrarily contracting norms. The probability of failure decays exponentially with k. For our
purposes, there is no need for an almost isometry between norms. Hence, our efforts focus
on proving lower tail inequalities which imply that, with good probability, no far neighbor
corresponds to an approximate nearest neighbor in the projected space.

We now prove bounds concerning the contraction of distances of the embedded points.
Our proof builds upon the inequalities developed in Subsection 2.1.

I Theorem 9. Let G be a k× d matrix with i.i.d. random variables following N(0, 1). Then,
if 2 < p <∞ then,

Pr
[
∃v ∈ Rd : ‖Gv‖p ≤

(cp · k)1/p

1 + ε
· ‖v‖2

]
≤ O

(
k

1
2−

1
p

pε
+ 2
)d
· e−c

′·k·(pε/(2+pε))2
,

if p ∈ [1, 2] then,

Pr
[
∃v ∈ Rd : ‖Gv‖p ≤

(cp · k)1/p

1 + ε
· ‖v‖2

]
≤ O

(
1
ε

)d
· e−c

′·k·(pε/(2+pε))2
,

where c′ > 1 is a constant, ε ∈ (0, 1/2).

Proof. By Lemma 5:

Pr
[
‖Gv‖pp ≤

cp · k
(1 + ε)p · ‖v‖

p
2

]
≤ Pr

[
‖Gv‖pp ≤

cp · k
1 + pε/2 · ‖v‖

p
2

]
≤ e−c

′·k·(pε/(2+pε))2
.

In order to bound the probability of contraction among all distances, we argue that
it suffices to use the strong bound on distance contraction, which is derived in Lemma 5,
and the weak bound on distance expansion from Corollary 7 or Lemma 8, for a δ-dense set
N ⊂ Sd−1 for δ to be specified later. First, a simple volumetric argument [8] shows that
there exists N ⊂ Sd−1 s.t. ∀x ∈ Sd−1 ∃y ∈ N ‖x− y‖2 ≤ δ, and |N | = O (1/δ)d.

We first consider the case p > 2. From now on, we assume that for any u ∈ N ,
‖Gu‖p ≥ (cp · k)1/p/(1 + ε) and ‖Gu‖p ≤ 2

√
k which is achieved with probability

≥ 1−O
(

1
δ

)d
· e−c

′·k·(pε/(2+pε))2
.

Now let x be an arbitrary vector in Rd s.t. ‖x‖2 = 1. Then, there exists u ∈ N s.t.
‖x− u‖2 ≤ δ. Also, by the triangular inequality we obtain the following,

‖Gx‖p ≤ ‖Gu‖p + ‖G(x− u)‖p = ‖Gu‖p + ‖x− u‖2
∥∥∥∥G (x− u)
‖x− u‖2

∥∥∥∥
p

=⇒

=⇒ ‖Gx‖p ≤ ‖Gu‖p + δ

∥∥∥∥G (x− u)
‖x− u‖2

∥∥∥∥
p

. (1)

Let M = maxx∈Sd−1 ‖Gx‖p. The existence of M is implied by the fact that Sd−1 is compact
and x 7→ ‖x‖p, x 7→ Gx are continuous functions. Then, by plugging M into (1),

M ≤ ‖Gu‖p + δM =⇒ M ≤ ‖Gu‖p1− δ ≤
2
√
k

1− δ ,

SoCG 2018
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where the last inequality is implied by Corollary 7. Again, by the triangular inequality,

‖Gx‖p ≥ ‖Gu‖p − ‖G(x− u)‖p ≥
(cp · k)1/p

1 + ε
− 2δ

√
k

1− δ ≥
1− ε/2
1 + ε

· (cp · k)1/p,

for δ ≤ ε·(cp·k)1/p

2
√
k+ε·(cp·k)1/p .

Notice now that

1
δ

= O

(
k1/2−1/p

pε

)
+ 1.

In the case p ∈ [1, 2], we are able to use a better bound on the distance expansion;
namely Lemma 8. We now assume that for any u ∈ N , ‖Gu‖p ≥ (cp · k)1/p/(1 + ε) and
‖Gu‖p ≤ (3 · cp · k)1/p which is achieved with probability

≥ 1−O
(

1
δ

)d
· e−c

′·k·(pε/(2+pε))2
.

Once again, we use inequality (1) to obtain:

M ≤ ‖Gu‖p1− δ ≤
(3 · cp · k)1/p

1− δ =⇒

=⇒ ‖Gx‖p ≥ ‖Gu‖p − ‖Gx−Gu‖p ≥ (cp · k)1/p
(

1
1 + ε

− 31/p · δ
1− δ

)
=⇒

=⇒ ‖Gx‖p ≥ (cp · k)1/p · 1− ε/2
1 + ε

,

for δ ≤ ε/(6(1 + ε) + ε) = Ω(ε). J

Theorem 9 implies that the ANN problem for `p products of `2 translates to the ANN
problem for `p products of `p. The latter easily translates to the ANN problem in `d′p . One
can then solve the approximate near neighbor problem in `d′p , by approximating `d′p balls of
radius 1 with a regular grid with side length ε/(d′)1/p. Each approximate ball is essentially a
set of O(1/ε)d′ cells [8]. Building not-so-many approximate near neighbor data structures for
various radii leads to an efficient solution for the ANN problem [8].

I Theorem 10. There exists a data structure which solves the ANN problem for point
sequences in `p-products of `2, and satisfies the following bounds on performance:

If p ∈ [1, 2], then space usage and preprocessing time is in

Õ(dmn)×
(

1
ε

)O(m·d·αp,ε)
,

query time is in Õ(dm logn), and αp,ε = log(1/ε) · (2 + pε)2 · (pε)−2.
If 2 < p <∞, then space usage and preprocessing time is in

Õ(dmn)×
(
d

pε
+ 2
)O(m·d·αp,ε)

,

query time is in Õ(dm logn), and αp,ε = log(1/ε) · (2 + pε)2 · (pε)−2.
We assume ε ∈ (0, 1/2]. The probability of success is Ω(ε) and can be amplified to 1− δ, by
building Ω(log(1/δ)/ε) independent copies of the data-structure.
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Proof. Let δp,ε = pε/(2 + pε). We first consider the case p > 2. We employ Theorem 9 and
we map point sequences to point sequences in `kp, for

k = Θ
(
d log d

pε

δ2
p,ε

)
.

Hence, Theorem 9 implies that,

Pr
[
∃v ∈ Rd : ‖Gv‖p ≤

(cp · k)1/p

1 + ε
· ‖v‖2

]
≤ ε/10.

Then, by concatenating vectors, we map point sequences to points in `kmp .
Now, fix query point sequence Q = q1, . . . , qm ∈

(
Rd
)m and its nearest neighbor U∗ =

u1, . . . , um ∈
(
Rd
)m. By a union bound, the probability of failure for the embedding is at

most

ε/2 + Pr
[
m∑
i=1
‖Gui −Gqi‖pp ≤ (1 + ε)p · cp · k

m∑
i=1
‖ui − qi‖p2

]
,

since we already know that

Pr
[
∃v ∈ Rd : ‖Gv‖p ≤

(cp · k)1/p

1 + ε
· ‖v‖2

]
≤ ε/2.

Hence, we now bound the second probability. Notice that

E

[
m∑
i=1
‖Gui −Gqi‖pp

]
=

m∑
i=1

E
[
‖G(ui − qi)‖pp

]
= cp · k

m∑
i=1
‖ui − qi‖p2.

By Markov’s inequality, we obtain,

Pr

[
m∑
i=1
‖Gui −Gqi‖pp ≤ (1 + ε)p · cp · k

m∑
i=1
‖ui − qi‖p2

]
≤ (1 + ε)−p.

Hence, the total probability of failure is 1+ε/10
(1+ε)p . In the projected space, we build AVDs[8].

The total space usage, and the preprocessing time is

Õ(dmn)×O(1/ε)km = Õ(dmn)×
(
d

pε
+ 2
)O(m·d·log(1/ε)/δ2

p,ε)
.

The query time is Õ(dm logn). The probability of success can be amplified by repetition.
By building Θ

(
log(1/δ)

ε

)
data structures as above, the probability of failure becomes δ.

The same reasoning is valid in the case p ∈ [1, 2], but it suffices to set

k = Θ
(
d log 1

ε

δ2
p,ε

)
. J

When p ∈ [1, 2], we can also utilize "high-dimensional" solutions for `p and obtain data
structures with complexities polynomial in d · m. Combining Theorem 9 with the data
structure of [4], we obtain the following result.
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I Theorem 11. There exists a data structure which solves the ANN problem for point
sequences in `p-products of `2, p ∈ [1, 2], and satisfies the following bounds on performance:
space usage and preprocessing time is in Õ(n1+ρu), and the query time is in Õ(nρq ), where
ρq, ρu satisfy:

(1 + ε)p√ρq + ((1 + ε)p − 1)√ρu ≥
√

2(1 + ε)p − 1

We assume ε ∈ (0, 1/2]. The probability of success is Ω(ε) and can be amplified to 1− δ, by
building Ω(log(1/δ)/ε) independent copies of the data-structure.

Proof. We proceed as in the proof of Theorem 10. We employ Theorem 9 and by Markov’s
inequality, we obtain,

Pr

[
m∑
i=1
‖Gvi −Gui‖pp ≤ (1 + ε)p · cp · k

m∑
i=1
‖vi − ui‖p2

]
≤ (1 + ε)−p.

Then, by concatenating vectors, we map point sequences to points in `kmp , where k = Õ(d).
For the mapped points in `kmp , we build the LSH-based data structure from [4] which
succeeds with high probability 1− o(1). By independence, both the random projection and
the LSH-based structure succeed with probability Ω(ε)× (1− o(1)) = Ω(ε). J

3 Polygonal curves

In this section, we show that one can solve the ANN problem for a certain class of distance
functions defined on polygonal curves. Since this class is related to `p-products of `2, we
invoke results of Section 2, and we show an efficient data structure for the case of short
curves, i.e. when m is relatively small compared to the other complexity parameters.

First, we need to introduce a formal definition of the traversal of two curves.

I Definition 12. Given polygonal curves V = v1, . . . , vm1 , U = u1, . . . , um2 , a traversal
T = (i1, j1), . . . , (it, jt) is a sequence of pairs of indices referring to a pairing of vertices from
the two curves such that:
1. i1, j1 = 1, it = m1, jt = m2.
2. ∀(ik, jk) ∈ T : ik+1 − ik ∈ {0, 1} and jk+1 − jk ∈ {0, 1}.
3. ∀(ik, jk) ∈ T : (ik+1 − ik) + (jk+1 − jk) ≥ 1.
Now, we define a class of distance functions for polygonal curves. In this definition, it is
implied that we use the Euclidean distance to measure distance between any two points.
However, the definition could be easily generalized to arbitrary metrics.

I Definition 13 (`p-distance of polygonal curves). Given polygonal curves V = v1, . . . , vm1 ,
U = u1, . . . , um2 , we define the `p-distance between V and U as the following function:

dp(V,U) = min
T∈T

 ∑
(ik,jk)∈T

‖vik − ujk‖
p
2

1/p

,

where T denotes the set of all possible traversals for V and U .

The above class of distances for curves includes some widely known distance functions. For
instance, d∞(V,U) coincides with the DFD of V and U (defined for the Euclidean distance).
Moreover d1(V,U) coincides with DTW for curves V , U .
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I Theorem 14. Suppose that there exists a randomized data structure for the ANN problem
in `p products of `2, with space in S(n), preprocessing time T (n) and query time Q(n), with
probability of failure less than 2−2m−1m−1. Then, there exists a data structure for the ANN
problem for the `p-distance of polygonal curves, 1 ≤ p < ∞, with space in m · 22m · S(n),
preprocessing time m ·22m ·T (n) and query time m ·22m ·Q(n), where m denotes the maximum
length of a polygonal curve, and the probability of failure is less than 1/2.

Proof. We denote by X the input dataset. Given polygonal curves V = v1, . . . , vm1 , Q =
q1, . . . , qm2 , and traversal T , one can define VT = v1, . . . , vl, QT = q1, . . . , ql, sequences of l
points (allowing consecutive duplicates) s.t. ∀k, vik = VT [k] and qjk = QT [k], if and only if
(ik, jk) ∈ T .

One traversal of V , Q is uniquely defined by its length l ∈ {max(m1,m2), . . . ,m1 +m2},
the set of indices A = {k ∈ {1, . . . , l} | ik+1 − ik = 0 and jk+1 − jk = 1} for which only Q
is progressing and the set of indices B = {k ∈ {1, . . . , l} | ik+1 − ik = 1 and jk+1 − jk = 1}
for which both Q and V are progressing. We can now define Vl,A,B, Ql,A,B to be the
corresponding sequences of l points. In other words if l, A,B corresponds to traversal T ,
Vl,A,B = VT , Ql,A,B = QT . Observe that it is possible that curve V is not compatible with
some triple l, A,B.

We build one ANN data structure, for `p products of `2, for each possible l, A,B. Each
data structure contains at most |X| point sequences which correspond to curves that are
compatible to l, A,B. We denote by m = max(m1,m2). The total number of data structures
is upper bounded by

2m∑
l=m

m∑
t=0

(
l

t

)
·
(
l − t
m− t

)
≤

2m∑
l=m

m∑
t=0

(
l

t

)
·
(

l

m− t

)
=

2m∑
l=m

(
2l
m

)
≤ m ·

(
2m
m

)
≤ m · 22m.

For any query curve Q, we create all possible combinations of l, A,B and we perform
one query per ANN data structure. We report the best answer. The probability that the
building of one of the ≤ m · 22m data structures is not successful is less than 1/2 due to a
union bound. J

We now investigate applications of the above results, to the ANN problem for some
popular distance functions for curves.

Discrete Fréchet Distance

DFD is naturally included in the distance class of Definition 13 for p = ∞. However,
Theorem 14 is valid only when p is bounded. To overcome this issue, p is set to a suitable
large value.

I Claim 15. Let V = v1, . . . , vm1 ∈ Rd and U = u1, . . . , um2 ∈ Rd be two polygonal curves.
Then for any traversal T of V and U :

(1 + ε)−1 ·

 ∑
(ik,jk)∈T

‖vik − ujk‖
p

1/p

≤ max
(ik,jk)∈T

‖vik − ujk‖ ≤

 ∑
(ik,jk)∈T

‖vik − ujk‖
p

1/p

,

for p ≥ log (|T |) / log(1 + ε).

Proof. For any x ∈ R|T |, it is known that ‖x‖∞ ≤ ‖x‖p ≤ (|T |)1/p ‖x‖∞. J
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I Theorem 16. There exists a data structure for the ANN problem for the DFD of curves,
with space and preprocessing time

Õ(dm2n)×
(

d

logm + 2
)O(m·d·log(1/ε))

,

and query time Õ(d · 22m logn), where m denotes the maximum length of a polygonal curve,
and ε ∈ (0, 1/2]. The data structure succeeds with probability 1/2, which can be amplified by
repetition.

Proof. We combine Theorem 14 with Theorem 10 for p ≥ logm/ log(1 + ε) ≥ ε−1 logm.
Notice that in order to plug the data structure of Theorem 10 into Theorem 14 we need to
amplify the probability of success to 1− 2−2m−1 ·m−1. Hence, the data structure for the
ANN problem for `p-products of `p needs space and preprocessing time

Õ(dm2n)×
(
d

pε
+ 2
)O(m·d·αp,ε)

,

and each query time costs O(dm2), where αp,ε = log(1/ε) ·(2+pε)2 ·(pε)−2. Now, substituting
p and invoking Theorem 14 completes our proof. J

Dynamic Time Warping

DTW corresponds to the `1-distance of polygonal curves as defined in Definition 13. Now,
we combine Theorem 14 with each of the Theorems 10 and 11.

I Theorem 17. There exists a data structure for the ANN problem for DTW of curves, with
space and preprocessing time

Õ(dm2n)×
(

1
ε

)O(m·d·ε−2)
,

and query time Õ(d · 22m logn), where m denotes the maximum length of a polygonal curve,
and ε ∈ (0, 1/2]. The data structure succeeds with probability 1/2, which can be amplified by
repetition.

Proof. We first amplify the probability of success for the data structure of Theorem 10 to
1 − 2−2m−1 ·m−1. Hence, the data structure for the ANN problem for `1-products of `1
needs space and preprocessing time

Õ(dm2n)× 2O(m·d·αp,ε),

and each query time costs O(dm2), where αp,ε = log(1/ε) · (2 + ε)2 · (ε)−2. We plug this data
structure into Theorem 14. J

I Theorem 18. There exists a data structure for the ANN problem for DTW of curves, with
space and preprocessing time Õ(22mn1+ρu), and the query time is in Õ(22mnρq ), where ρq, ρu
satisfy:

(1 + ε)√ρq + ε
√
ρu ≥

√
1 + 2ε.

We assume ε ∈ (0, 1/2]. The data structure succeeds with probability 1/2, which can be
amplified by repetition.

Proof. First amplify the probability of success for the data structure of Theorem 11 to
1 − 2−2m−1 · m−1, by building independently Õ(m) such data structures. We plug the
resulting data structure into Theorem 14. J
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4 Conclusion

Thanks to the simplicity of the approach, it should be easy to implement it and should have
practical interest. We plan to apply it to real scenarios with data from road segments or
time series.

The key ingredient of our approach is a randomized embedding from `2 to `p which is the
first step to the ANN solution for `p-products of `2. The embedding is essentially a gaussian
projection and it exploits the 2-stability property of normal variables, along with standard
properties of their tails. We expect that a similar result can be achieved for `p-products of
`q, where q ∈ [1, 2). One related result for ANN [6], provides with dimension reduction for
`q, q ∈ [1, 2).
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