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Abstract
Inspired by the works of Forman on discrete Morse theory, which is a combinatorial adaptation
to cell complexes of classical Morse theory on manifolds, we introduce a discrete analogue of the
stratified Morse theory of Goresky and MacPherson. We describe the basics of this theory and
prove fundamental theorems relating the topology of a general simplicial complex with the critical
simplices of a discrete stratified Morse function on the complex. We also provide an algorithm
that constructs a discrete stratified Morse function out of an arbitrary function defined on a finite
simplicial complex; this is different from simply constructing a discrete Morse function on such a
complex. We borrow Forman’s idea of a “user’s guide,” where we give simple examples to convey
the utility of our theory.
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1 Introduction

It is difficult to overstate the utility of classical Morse theory in the study of manifolds.
A Morse function f : M → R determines an enormous amount of information about the
manifold M: a handlebody decomposition, a realization of M as a CW-complex whose
cells are determined by the critical points of f , a chain complex for computing the integral
homology of M, and much more.

With this as motivation, Forman developed discrete Morse theory on general cell com-
plexes [11]. This is a combinatorial theory in which function values are assigned not to
points in a space but rather to entire cells. Such functions are not arbitrary; the defining
conditions require that function values generically increase with the dimensions of the cells in
the complex. Given a cell complex with set of cells K, a discrete Morse function f : K → R
yields information about the cell complex similar to what happens in the smooth case.
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While the category of manifolds is rather expansive, it is not sufficient to describe all
situations of interest. Sometimes one is forced to deal with singularities, most notably in
the study of algebraic varieties. One approach to this is to expand the class of functions
one allows, and this led to the development of stratified Morse theory by Goresky and
MacPherson [15]. The main objects of study in this theory are Whitney stratified spaces,
which decompose into pieces that are smooth manifolds. Such spaces are triangulable.

The goal of this paper is to generalize stratified Morse theory to finite simplicial complexes,
much as Forman did in the classical smooth case. Given that stratified spaces admit simplicial
structures, and any simplicial complex admits interesting discrete Morse functions, this could
be the end of the story. However, we present examples in this paper illustrating that the
class of discrete stratified Morse functions defined here is much larger than that of discrete
Morse functions. Moreover, there exist discrete stratified Morse functions that are nontrivial
and interesting from a data analysis point of view. Our motivations are three-fold.
1. Generating discrete stratified Morse functions from point cloud data. Consider

the following scenario. Suppose K is a simplicial complex and that f is a function defined
on the 0-skeleton of K. Such functions arise naturally in data analysis where one has a
sample of function values on a space. Algorithms exist to build discrete Morse functions
on K extending f (see, for example, [18]). Unfortunately, these are often of potentially
high computational complexity and might not behave as well as we would like. In our
framework, we may take this input and generate a discrete stratified Morse function
which will not be a global discrete Morse function in general, but which will allow us to
obtain interesting information about the underlying complex.

2. Filtration-preserving reductions of complexes in persistent homology and
parallel computation. As discrete Morse theory is useful for providing a filtration-
preserving reduction of complexes in the computation of both persistent homology [6, 21,
25] and multi-parameter persistent homology [1], we believe that discrete stratified Morse
theory could help to push the computational boundary even further. First, given any
real-valued function f : K → R, defined on a simplicial complex, our algorithm generates
a stratification of K such that the restriction of f to each stratum is a discrete Morse
function. Applying Morse pairing to each stratum reduces K to a smaller complex of
the same homotopy type. Second, if such a reduction can be performed in a filtration-
preserving way with respect to each stratum, it would lead to a faster computation of
persistent homology in the setting where the function is not required to be Morse. Finally,
since discrete Morse theory can be applied independently to each stratum of K, we can
design a parallel algorithm that computes persistent homology pairings by strata and
uses the stratification (i.e. relations among strata) to combine the results.

3. Applications in imaging and visualization. Discrete Morse theory can be used to
construct discrete Morse complexes in imaging (e.g. [5, 25]), as well as Morse-Smale
complexes [7, 8] in visualization (e.g. [16, 17]). In addition, it plays an essential role in
the visualization of scalar fields and vector fields (e.g. [23, 24]). Since discrete stratified
Morse theory leads naturally to stratification-induced domain partitioning where discrete
Morse theory becomes applicable, we envision our theory to have wide applicability for
the analysis and visualization of large complex data.

Contributions. Throughout the paper, we hope to convey via simple examples the usability
of our theory. It is important to note that our discrete stratified Morse theory is not a simple
reinterpretation of discrete Morse theory; it considers a larger class of functions defined on
any finite simplicial complex and has potentially many implications for data analysis. Our
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contributions are:
1. We describe the basics of a discrete stratified Morse theory and prove fundamental

theorems that relate the topology of a finite simplicial complex with the critical simplices
of a discrete stratified Morse function defined on the complex.

2. We provide an algorithm that constructs a discrete stratified Morse function on any finite
simplicial complex equipped with a real-valued function.

A simple example. We begin with an example from [13], where we demonstrate how a
discrete stratified Morse function can be constructed from a function that is not a discrete
Morse function. As illustrated in Figure 1, the function on the left is a discrete Morse
function where the green arrows can be viewed as its discrete gradient vector field; function
f in the middle is not a discrete Morse function, as the vertex f−1(5) and the edge f−1(0)
both violate the defining conditions of a discrete Morse function. However, we can equip f
with a stratification s by treating such violators as their own independent strata, therefore
converting it into a discrete stratified Morse function.
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1 3

5
2 4

1 3

0

5
2 4

1 3

0

f (f, s)

Figure 1 The function on the left is a discrete Morse function. The function f in the middle is
not a discrete Morse function; however, it can be converted into a discrete stratified Morse function
when it is equipped with an appropriate stratification s.

2 Preliminaries on discrete Morse theory

We review the most relevant definitions and results on discrete Morse theory and refer the
reader to the full version [20] for a review of classical Morse theory. Discrete Morse theory is
a combinatorial version of Morse theory [11, 13]. It can be defined for any CW complex but
in this paper we will restrict our attention to finite simplicial complexes.

Discrete Morse functions. Let K be any finite simplicial complex, where K need not be
a triangulated manifold nor have any other special property [12]. When we write K we
mean the set of simplices of K; by |K| we mean the underlying topological space. Let
α(p) ∈ K denote a simplex of dimension p. Let α < β denote that simplex α is a face of
simplex β. If f : K → R is a function define U(α) = {β(p+1) > α | f(β) ≤ f(α)} and
L(α) = {γ(p−1) < α | f(γ) ≥ f(α)}. In other words, U(α) contains the immediate cofaces of
α with lower (or equal) function values, while L(α) contains the immediate faces of α with
higher (or equal) function values. Let |U(α)| and |L(α)| be their sizes.

I Definition 1. A function f : K → R is a discrete Morse function if for every α(p) ∈ K, (i)
|U(α)| ≤ 1 and (ii) |L(α)| ≤ 1.

Forman showed that conditions (i) and (ii) are exclusive – if one of the sets U(α) or L(α)
is nonempty then the other one must be empty ([11], Lemma 2.5). Therefore each simplex
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α ∈ K can be paired with at most one exception simplex: either a face γ with larger function
value, or a coface β with smaller function value. Formally, this means that if K is a simplicial
complex with a discrete Morse function f , then for any simplex α, either (i) |U(α)| = 0 or
(ii) |L(α)| = 0 ([13], Lemma 2.4).

I Definition 2. A simplex α(p) is critical if (i) |U(α)| = 0 and (ii) |L(α)| = 0. A critical
value of f is its value at a critical simplex.

I Definition 3. A simplex α(p) is noncritical if either of the following conditions holds: (i)
|U(α)| = 1; (ii) |L(α)| = 1; as noted above these conditions can not both be true ([11],
Lemma 2.5).

Given c ∈ R, we have the level subcomplex Kc = ∪f(α)≤c ∪β≤α β. That is, Kc contains
all simplices α of K such that f(α) ≤ c along with all of their faces.

Results. We have the following two combinatorial versions of the main results of classical
Morse theory (see the full version).

I Theorem 4 (DMT Part A, [12]). Suppose the interval (a, b] contains no critical value of f .
Then Kb is homotopy equivalent to Ka. In fact, Kb simplicially collapses onto Ka.

A key component in the proof of Theorem 4 is the following fact [11]: for a simplicial
complex equipped with an arbitrary discrete Morse function, when passing from one level
subcomplex to the next, the noncritical simplices are added in pairs, each of which consists
of a simplex and a free face.

The next theorem explains how the topology of the sublevel complexes changes as one
passes a critical value of a discrete Morse function. In what follows, ė(p) denotes the boundary
of a p-simplex e(p). Adjunction spaces, such as the space appearing in this result, are defined
in Section 3.1 below.

I Theorem 5 (DMT Part B, [12]). Suppose σ(p) is a critical simplex with f(σ) ∈ (a, b], and
there are no other critical simplices with values in (a, b]. Then Kb is homotopy equivalent to
attaching a p-cell e(p) along its entire boundary in Ka; that is, Kb = Ka ∪ė(p) e(p).

The associated gradient vector field. Given a discrete Morse function f : K → R we may
associate a discrete gradient vector field as follows. Since any noncritical simplex α(p) has
at most one of the sets U(α) and L(α) nonempty, there is a unique face ν(p−1) < α with
f(ν) ≥ f(α) or a unique coface β(p+1) > α with f(β) ≤ f(α). Denote by V the collection of
all such pairs {σ < τ}. Then every simplex in K is in at most one pair in V and the simplices
not in any pair are precisely the critical cells of the function f . We call V the gradient
vector field associated to f . We visualize V by drawing an arrow from α to β for every pair
{α < β} ∈ V . Theorems 4 and 5 may then be visualized in terms of V by collapsing the pairs
in V using the arrows. Thus a discrete gradient (or equivalently a discrete Morse function)
provides a collapsing order for the complex K, simplifying it to a complex L with potentially
fewer cells but having the same homotopy type.

The collection V has the following property. By a V -path, we mean a sequence

α
(p)
0 < β

(p+1)
0 > α

(p)
1 < β

(p+1)
1 > · · · < β(p+1)

r > α
(p)
r+1

where each {αi < βi} is a pair in V . Such a path is nontrivial if r > 0 and closed if αr+1 = α0.
Forman proved the following result.
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I Theorem 6 ([11]). If V is a gradient vector field associated to a discrete Morse function
f on K, then V has no nontrivial closed V -paths.

In fact, if one defines a discrete vector field W to be a collection of pairs of simplices of
K such that each simplex is in at most one pair in W , then one can show that if W has
no nontrivial closed W -paths there is a discrete Morse function f on K whose associated
gradient is precisely W .

3 A discrete stratified Morse theory

Our goal is to describe a combinatorial version of stratified Morse theory. To do so, we
need to: (a) define a discrete stratified Morse function; and (b) prove the combinatorial
versions of the relevant fundamental results. Our results are very general as they apply to
any finite simplicial complex K equipped with a real-valued function f : K → R. Our work
is motivated by relevant concepts from (classical) stratified Morse theory [15], whose details
are found in the full version.

3.1 Background
Open simplices. To state our main results, we need to consider open simplices (as opposed
to the closed simplices of Section 2). Let {a0, a1, · · · , ak} be a geometrically independent
set in RN , a closed k-simplex [σ] is the set of all points x of RN such that x =

∑k
i=0 tiai,

where
∑k
i=0 ti = 1 and ti ≥ 0 for all i [22]. An open simplex (σ) is the interior of the closed

simplex [σ].
A simplicial complex K is a finite set of open simplices such that: (a) If (σ) ∈ K then all

open faces of [σ] are in K; (b) If (σ1), (σ2) ∈ K and (σ1) ∩ (σ2) 6= ∅, then (σ1) = (σ2). For
the remainder of this paper, we always work with a finite open simplicial complex K.

Unless otherwise specified, we work with open simplices σ and define the boundary σ̇ to
be the boundary of its closure. We will often need to talk about a “half-open” or “half-closed”
simplex, consisting of the open simplex σ along with some of the open faces in its boundary
σ̇. We denote such objects ambiguously as [σ) or (σ], specifying particular pieces of the
boundary as necessary.

Stratified simplicial complexes. A simplicial complex K equipped with a stratification is
referred to as a stratified simplicial complex. 2 A stratification of a simplicial complex K is a
finite filtration

∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K,

such that for each i, Ki −Ki−1 is a locally closed subset of K. 3 We say a subset L ⊂ K is
locally closed if it is the intersection of an open and a closed set in K. We will refer to a
connected component of the space Ki −Ki−1 as a stratum; and the collection of all strata is
denoted by S = {Sj}. We may consider a stratification as an assignment from K to the set
S, denoted s : K → S.

In our setting, each Sj is the union of finitely many open simplices (that may not form a
subcomplex of K); and each open simplex σ in K is assigned to a particular stratum s(σ)
via the mapping s.

2 Our notion of a stratified simplicial complex can be considered as a relaxed version of the notion in [2].
3 Technically we should speak of the geometric realization |Ki −Ki−1| being a locally closed subspace of
|K|; we often confuse these notations as it should be clear from context.

SoCG 2018
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Adjunction spaces. Let X and Y be topological spaces with A ⊆ X. Let f : A → Y be
a continuous map called the attaching map. The adjunction space X ∪f Y is obtained by
taking the disjoint union of X and Y by identifying x with f(x) for all x in A. That is, Y is
glued onto X via a quotient map, X ∪f Y = (X q Y )/{f(A) ∼ A}. We sometimes abuse the
notion as X ∪A Y , when f is clear from the context (e.g. an inclusion).

Gluing theorem for homotopy equivalences. In homotopy theory, a continuous mapping
i : A → X is a cofibration if there is a retraction from X × I to (A × I) ∪ (X × {0}). In
particular, this holds if X is a cell complex and A is a subcomplex of X; it follows that the
inclusion i : A→ X a closed cofibration.

I Theorem 7 (Gluing theorem for adjunction spaces ([4], Theorem 7.5.7)). Suppose we have
the following commutative diagram of topological spaces and continuous maps:

Y A X

Y ′ A′ X ′

f

ϕY

i

ϕA ϕX

f ′
i′

where ϕA, ϕX and ϕY are homotopy equivalences and inclusions i and i′ are closed cofibrations,
then the map φ : X ∪f Y → X ′ ∪f Y ′ induced by φA, φX ad φY is a homotopy equivalence.

In our setting, since we are not in general dealing with closed subcomplexes of simplicial
complexes, this theorem does not apply directly. However, the condition that the maps i, i′
be closed cofibrations is not necessary (see [26], 5.3.2, 5.3.3), and in our setting it will be
the case that our various pairs (X,A) will satisfy the property that X × {0} ∪A× [0, 1] is a
retract of X × [0, 1].

Stratum-preserving homotopies. If X and Y are two filtered spaces, we call a map f :
X → Y stratum-preserving if the image of each component of a stratum of X lies in a
stratum of Y [14]. A map f : X → Y is a stratum-preserving homotopy equivalence if there
exists a stratum-preserving map g : Y → X such that g ◦ f and f ◦ g are homotopic to the
identity [14].

3.2 A primer
Discrete stratified Morse function. Let K be a simplicial complex equipped with a strati-
fication s and a discrete stratified Morse function f : K → R. We define

Us(α) = {β(p+1) > α | s(β) = s(α) and f(β) ≤ f(α)},

Ls(α) = {γ(p−1) < α | s(γ) = s(α) and f(γ) ≥ f(α)}.

I Definition 8. Given a simplicial complex K equipped with a stratification s : K → S, a
function f : K → R (equipped with s) is a discrete stratified Morse function if for every
α(p) ∈ K, (i) |Us(α)| ≤ 1 and (ii) |Ls(α)| ≤ 1.

In other words, a discrete stratified Morse function is a pair (f, s) where f : K → R is a
discrete Morse function when restricted to each stratum Sj ∈ S. We omit the symbol s
whenever it is clear from the context.

I Definition 9. A simplex α(p) is critical if (i) |Us(α)| = 0 and (ii) |Ls(α)| = 0. A critical
value of f is its value at a critical simplex.
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I Definition 10. A simplex α(p) is noncritical if exactly one of the following two conditions
holds: (i) |Us(α)| = 1 and |Ls(α)| = 0; or (ii) |Ls(α)| = 1 and |Us(α)| = 0.

The two conditions in Definition 10 mean that, within the same stratum as s(α): (i)
∃β(p+1) > α with f(β) ≤ f(α) or (ii) ∃γ(p−1) < α with f(γ) ≥ f(α); conditions (i) and (ii)
cannot both be true.

Note that a classical discrete Morse function f : K → R is a discrete stratified Morse
function with the trivial stratification S = {K}. We will present several examples in Section 4
illustrating that the class of discrete stratified Morse functions is much larger.

Violators. The following definition is central to our algorithm in constructing a discrete
stratified Morse function from any real-valued function defined on a simplicial complex.

I Definition 11. Given a simplicial complex K equipped with a real-valued function,
f : K → R. A simplex α(p) is a violator of the conditions associated with a discrete Morse
function if one of these conditions hold: (i) |U(α)| ≥ 2; (ii) |L(α)| ≥ 2; (iii) |U(α)| = 1 and
|L(α)| = 1. These are referred to as type I, II and III violators; the sets containing such
violators are not necessarily mutually exclusive.

3.3 Main results
To describe our main results, we work with the sublevel set of an open simplicial complex K,
where Kc = ∪f(α)≤cα, for any c ∈ R. That is, Kc contains all open simplices α of K such
that f(α) ≤ c. Note that Kc is not necessarily a subcomplex of K. Suppose that K is a
simplicial complex equipped with a stratification s and a discrete stratified Morse function
f : K → R. We now state our two main results which will be proved in Section 5.

I Theorem 12 (DSMT Part A). Suppose the interval (a, b] contains no critical value of f .
Then Kb is stratum-preserving homotopy equivalent to Ka.

I Theorem 13 (DSMT Part B). Suppose σ(p) is a critical simplex with f(σ) ∈ (a, b], and
there are no other critical simplices with values in (a, b]. Then Kb is homotopy equivalent to
attaching a p-cell e(p) along its boundary in Ka; that is, Kb = Ka ∪ ˙e(p)|Ka

e(p).

Remarks. Kc as defined above falls under a nonclassical notion of a “simplicial complex” as
defined in [19]: K is a “simplicial complex” if it is the union of finitely many open simplices
σ1, σ2, ...σt in some RN such that the intersection of the closure of any two simplices σi and
σj is either a common face of them or empty. Thus the closure [K] = {[σi]}ti=1 of K is a
classical finite simplicial complex; and K is obtained from [K] by omitting some open faces.

3.4 Algorithm
We give an algorithm to construct a discrete stratified Morse function from any real-valued
function on a simplicial complex.

Given a simplicial complex K equipped with a real-valued function, f : K → R, define a
collection of strata S as follows. Each violator σ(p) is an element of the collection S. Let
V denote the set of violators and denote by Sj the connected components of K \ V. Then
we set S = V ∪ {Sj}. Denote by s : K → S the assignment of the simplices of K to their
corresponding strata.

We realize this as a stratification of K by taking K1 =
⋃
j Sj and then adjoining the

elements of V one simplex at a time by increasing function values (we may assume that f
is injective). This filtration is unimportant for our purposes; rather, we shall focus on the
strata themselves. We have the following theorem whose proof is delayed to Section 5.

SoCG 2018
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I Theorem 14. The function f equipped with the stratification s produced by the algorithm
above is a discrete stratified Morse function.

The algorithm described above is rather lazy. An alternative approach would be to remove
violators one at a time by increasing dimension, and after each removal, check to see if what
remains is a discrete Morse function globally. This requires more computation at each stage,
but note that the extra work is entirely local–one need only check simplices adjacent to the
removed violator. Example 1 below illustrates how this more aggressive approach can lead
to further simplification of the complex.

4 Discrete stratified Morse theory by example

We apply the algorithm described in 3.4 to a collection of examples to demonstrate the utility
of our theory. For each example, given an f : K → R that is not necessarily a discrete Morse
function, we equip f with a particular stratification s, thereby converting it to a discrete
stratified Morse function (f, s). These examples help to illustrate that the class of discrete
stratified Morse functions is much larger than that of discrete Morse functions.

Example 1: upside-down pentagon. As illustrated in Figure 2 (left), f : K → R defined
on the boundary of an upside-down pentagon is not a discrete Morse function, as it contains
a set of violators: V = {f−1(10), f−1(1), f−1(2)}, since |U(f−1(10))| = 2 and |L(f−1(1))| =
|L(f−1(2))| = 2, respectively.

We construct a stratification s by considering elements in V and connected components
in K \ V as their own strata, as shown in Figure 2 (top middle). The resulting discrete
stratified Morse function (f, s) is a discrete Morse function when restricted to each stratum.

Recall that a simplex is critical for (f, s) if it is neither the source nor the target of a
discrete gradient vector. The critical values of (f, s) are therefore 1, 2, 3, 4, 9 and 10. The
vertex f−1(3) is noncritical for f since |U(f−1(3))| = 1 and |L(f−1(3))| = 0; however it is
critical for (f, s) since |Us(f−1(3))| = Ls(f−1(3))| = 0.

One of the primary uses of classical discrete Morse theory is simplification. In this
example, we can collapse a portion of each stratum following the discrete gradient field
(illustrated by green arrows, see Section 2). Removing the Morse pairs (f−1(7), f−1(5)) and
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Figure 2 Example 1: upside-down pentagon. Left: f is not a discrete Morse function. Top
middle: (f, s) is a discrete stratified Morse function where violators are in red. Top right: the
simplified simplicial complex following the discrete gradient vector field (green arrows). Bottom
middle and bottom right: the results following a more aggressive algorithm in Section 3.
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Figure 3 Example 2: pentagon. Middle: there are four strata pieces associated with the discrete
stratified Morse function (f, s).
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Figure 4 Example 3: split octagon. f is defined on the triangulation of a stratified space.

(f−1(8), f−1(6)) simplifies the original complex as much as possible without changing its
homotopy type, see Figure 2 (top right).

Note that if we follow the more aggressive algorithm described at the end of Section
3 above, we would first remove the violator f−1(10) and check to see if what remains is
a discrete Morse function. In this case, we see that this is indeed the case: we have the
additional Morse pairs (f−1(3), f−1(1)) and (f−1(4), f−1(2)). The resulting simplification
yields a complex with one vertex and one edge, see Figure 2 (bottom right).

Example 2: pentagon. For our second pentagon example, f can be made into a discrete
stratified Morse function (f, s) by making f−1(0) (a type II violator) and f−1(9) (a type I
violator) their own strata (Figure 3). The critical values of (f, s) are 0, 1, 3, 7, 8 and 9. The
simplicial complex can be reduced to one with fewer cells by canceling the Morse pairs, as
shown in Figure 3 (right).

Example 3: split octagon. The split octagon example (Figure 4) begins with a function f
defined on a triangulation of a stratified space that consists of two 0-dimensional and three
1-dimensional strata. The violators are f−1(0), f−1(10), f−1(24), f−1(30) and f−1(31). The
result of canceling Morse pairs yields the simpler complex shown on the right.

Example 4: tetrahedron. In Figure 5, the values of the function f defined on the simplices
of a tetrahedron are specified for each dimension. For each simplex α ∈ K, we list the
elements of its corresponding U(α) and L(α) in Table 1. We also classify each simplex in
terms of its criticality in the setting of classical discrete Morse theory. According to Table 1,
violators with function values of 10, 14 (type I), 6 (type II), 7, 8, 11, 12 (type III) form their
individual strata in (f, s). Given such a stratification s, every simplex is critical except for
f−1(2) and f−1(3). Observing that the space is homeomorphic to S2 and collapsing the
single Morse pair (f−1(2), f−1(3)) yields a space of the same homotopy type.

SoCG 2018
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Figure 5 Example 4: tetrahedron. Left: f is defined on the simplices of increasing dimensions.
Right: violators are highlighted in red; not all simplicies are shown for (f, s).

Table 1 Example 4: tetrahedron. For simplicity, a simplex α is represented by its function value
f(α) (as f is 1-to-1). In terms of criticality for each simplex: C means critical; R means regular; I,
II and III correspond to type I, II and III violators.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
U(α) ∅ ∅ {2} ∅ ∅ ∅ {15} {6} ∅ {4, 7} {6} {9} ∅ {8, 11, 12}
L(α) ∅ {3} ∅ {10} {7} {8, 11} {10} {14} {12} ∅ {14} {14} ∅ ∅
Type C R R R R II III III R I III III C I

4

1

23

5
67

8
910

4

1

23

5
67

8
91011 11

f (f, s)

Figure 6 Example 5: split solid square. Every simplex is critical for (f, s).

Example 5: split solid square. As illustrated in Figure 6, the function f defined on a split
solid square is not a discrete Morse function; there are three type I violators f−1(9), f−1(10),
and f−1(11). Making these violators their own strata helps to convert f into a discrete
stratified Morse function (f, s). In this example, all simplices are considered critical for
(f, s). For instance, consider the open 2-simplex f−1(4), we have L(f−1(4)) = {f−1(11)}
and U(f−1(4)) = ∅; with the stratification s in Figure 6 (right), Ls(f−1(4)) = ∅ and so 4 is
not a critical value for f but it is a critical value for (f, s). Since every simplex is critical for
(f, s), there is no simplification to be done.

5 Proofs of main results

We now provide the proofs of our main results, Theorem 12, Theorem 13, and Theorem 14.
To better illustrate our ideas, we construct “filtrations” by sublevel sets based upon the
upside-down pentagon example (Figure 7).

5.1 Proof of Theorem 12
Proof. For simplicity, we suppose K is connected and f is 1-to-1; otherwise, based on
the principle of simulation of simplicity [9], we may perturb f slightly without changing
which cells are critical in Ka or Kb so that f : K → R is 1-to-1. By partitioning (a, b]
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Figure 7 Example 1: upside-down pentagon. We show Kc as c increases from 1 to 10.

into smaller intervals if necessary, we may assume there is a single noncritical cell σ with
f(σ) ∈ (a, b]. Since σ is noncritical, either (a) |Ls(σ)| = 1 and |Us(σ)| = 0 or (b) |Us(σ)| = 1
and |Ls(σ)| = 0.

Since case (a) requires that p ≥ 1, we assume for now that is the case. There exists
a single ν(p−1) < σ with f(ν) > f(σ); such a ν /∈ Kb. Meanwhile, any other (p − 1)-face
ν̃(p−1) < σ satisfies f(ν̃) < f(σ), implying ν̃ ∈ Ka. The set {ν̃} of such ν̃ corresponds to
the portion of the boundary of σ that lies in Ka, that is, Kb = Ka ∪{ν̃} [σ), where ν̃ are
open faces of σ. Note that we use the half-closed simplex [σ) to emphasize its boundary ν̃
in Ka. We now apply Theorem 7 by setting A = A′ = Y = {ν̃}, X = X ′ = Ka, Y ′ = [σ);
i, i′, ϕY and f ′ the corresponding inclusions, and all other maps the identity. Since the
diagram commutes and the pairs (Ka, {ν̃}) and (σ, {ν̃}) both satisfy the homotopy extension
property, the maps i = i′ and ϕY are cofibrations. It follows that Ka = Ka ∪{ν̃} {ν̃} and
Kb = Ka ∪{ν̃} [σ) are homotopy equivalent.

For case (b), σ has a single coface τ (p+1) > σ with f(τ) < f(σ). Thus τ ∈ Ka and
any other coface τ̃ > σ must have a larger function value; that is, τ̃ 6∈ Kb. Denote by K ′a
the set Ka \ τ . Let {ω} denote the boundary of τ in K ′a. Then Ka = K ′a ∪{ω} [τ), and
Kb = K ′a∪{ω} ([τ)∪σ) and σ is a free face of τ . We apply Theorem 7 by setting A = A′ = {ω},
X = X ′ = K ′a, Y = [τ), Y ′ = [τ) ∪ σ. The maps i, i′, ϕY and f ′ are inclusions and also
cofibrations, while all other maps are the identity. Attaching σ to τ is clearly a homotopy
equivalence and so we see that Ka and Kb are homotopy equivalent in this case as well.

Finally, it is clear that the above homotopy equivalence is stratum-preserving; in particular,
the retracts associated with the inclusion/cofibration ϕY : {ν̃} → [σ) in case (a), and
ϕY : [τ) → [τ) ∪ σ in case (b) are both completely contained within their own strata.
Therefore, Ka and Kb are stratum-preserving homotopy equivalent. J

Examples of attaching regular simplices. Let’s examine how this works in our upside-down
pentagon example (Figure 7). Applying Theorem 12 going from K4 to K5, we attach the
open simplex f−1(5) to its boundary in K4, which consists of the single vertex f−1(4). The
simplex f−1(5) is a regular simplex and so K4 ' K5. This is precisely case (a) in the proof
of Theorem 12. Similarly, K6 ' K7, as f−1(6) is a regular simplex in its stratum, and this
corresponds to case (b) in the proof of Theorem 12.

5.2 Proof of Theorem 13
Proof. Again, we may assume that f is 1-to-1. We may further assume that σ is the only
simplex with a value between (a, b] and prove that Kb is homotopy equivalent to Ka ∪σ̇|Ka

σ.

SoCG 2018



54:12 Discrete Stratified Morse Theory: A User’s Guide

Based on the definition of Kc, since f(σ) > a, we know that σ ∩Ka = ∅. We now consider
several cases. Let σ and (σ) denote open simplices and [σ] denote the closure.

Case (a), suppose σ is not on the boundary of a stratum. Since σ is critical in its own
stratum s(σ) , then for every ν(p−1) < σ in the same stratum as σ (i.e. s(ν) = s(σ)), we have
f(ν) < f(σ), so that f(ν) < a, which implies ν ∈ Ka. In addition any such ν is not on the
boundary of a stratum (otherwise σ would be part of the boundary). This means that all
(p− 1)-dimensional open faces of σ lying in s(σ) are in Ka; this is precisely the boundary of
σ in Ka, denoted σ̇|Ka . Therefore Kb = Ka ∪σ̇|Ka

σ.
Case (b), suppose σ is on the boundary of a stratum. There are two subcases: (i) σ is a

violator in the sense of Definition 11 and therefore forms its own stratum; or (ii) σ is not a
violator.

Case (b)(i), suppose σ is a type I violator; that is, globally |U(σ)| ≥ 2. Then for any
τ (p+1) > σ in U(σ) we have f(τ) ≤ f(σ). If follows that f(τ) < a, implying τ ∈ Ka.
Denote the set of such τ as {τ}. Meanwhile, if |L(σ)| = 0, then for all ν(p−1) < σ we have
f(ν) < f(σ); that is, all the (p − 1)-dimensional faces of σ are in Ka. Denote the set of
such ν as {ν}. The set {ν} is precisely σ̇|Ka

. Therefore, Kb = Ka ∪σ̇|Ka
σ, where we are

attaching σ along its whole boundary (which lies in Ka) and realizing it as a portion of τ̇ for
each τ ∈ {τ}. On the other hand, if |L(σ)| 6= 0, let µ(p−1) < σ denote any face of σ not in
L(σ). Again denote the set of such µ as {µ}. The remaining (p− 1) faces ν < σ all lie in
Ka; denote these by {ν}. Note that {ν} = σ̇|Ka . Then σ̇ = {ν} ∪ {µ} and Kb = Ka ∪σ̇|Ka

σ.
Now suppose σ is a type II violator, thus globally |L(σ)| ≥ 2. The simplices ν(p−1) < σ

not in L(σ) satisfy f(ν) < f(σ), thus such ν ∈ Ka form the (possibly empty) set {ν}. The
simplices τ (p+1) > σ in U(σ) satisfy f(τ) < f(σ) thus such τ ∈ Ka form the (possibly empty)
set {τ}. The set {ν} is precisely σ̇|Ka

and we again have Kb = Ka ∪σ̇|Ka
σ. Finally, suppose

σ is a type III violator, the proof in this case is similar (and therefore omitted).
Case (b)(ii): σ is not a violator. Since σ is critical for a discrete stratified Morse function,

it is either critical globally (i.e. |U(σ)| = |L(σ)| = 0) or locally (i.e. |Us(σ)| = |Ls(σ)| = 0).
Suppose σ is critical locally but not globally, meaning that either |U(σ)| = 1, |L(σ)| = 0,
or |U(σ)| = 0, |L(σ)| = 1. If |U(σ)| = 1 and |L(σ)| = 0 globally, then |Us(σ)| becomes 0.
If τ (p+1) > σ is the unique element in U(σ), then f(τ) < f(σ) and τ is in Ka. All cells
ν(p−1) < σ satisfy f(ν) < f(σ) and therefore are in Ka. The set {ν} again is precisely σ̇|Ka

and we have Kb = Ka ∪σ̇|Ka
σ, where we are attaching σ as a free face of τ . The cases when

|U(σ)| = 0, |L(σ)| = 1, or |U(σ)| = 0, |L(σ)| = 0 are proved similarly.
In summary, when passing through a single, unique critical cell σ(p) with a function value

in (a, b], Kb = Ka ∪σ̇|Ka
σ. Since σ is homeomorphic to e(p), Kb = Ka ∪ ˙e(p)|Ka

e(p). J

Examples of attaching critical simplices. Returning to the upside-down pentagon (Fig-
ure 7), we have a few critical cells, namely those with critical values 1, 2, 3, 4, 9, and 10.
Attaching f−1(2) to K1, for example, changes the homotopy type, yielding a space with two
connected components. Note that the boundary of this cell, restricted to K1 is empty. When
we attach f−1(9), we do so along its entire boundary (which lies in K8), joining the two
components together. Finally, attaching the vertex f−1(10) to K9 changes the homotopy
type yet again, yielding a circle.

5.3 Proof of Theorem 14
Proof. We assume K is connected. If f itself is a discrete Morse function, then there are no
violators in K. The algorithm produces the trivial stratification S = {K} and since f is a
discrete Morse function on the entire complex, the pair (f, s) trivially satisfies Definition 8.
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If f is not a discrete Morse function, let S = V ∪ {Sj} denote the stratification produced
by the algorithm. Since each violator α forms its own stratum s(α), the restriction of f to
s(α) is trivially a discrete Morse function in which α is a critical simplex. It remains to show
that the restriction of f to each Sj is a discrete Morse function.

If σ is a simplex in Sj , that is, s(σ) = Sj , consider the sets Us(σ) and Ls(σ). Since σ is
not a violator, the global sets U(σ) and L(σ) already satisfy the conditions required of an
ordinary discrete Morse function. Restricting attention to the stratum s(σ) can only reduce
their size; that is, |Us(σ)| ≤ |U(σ)| and |Ls(σ)| ≤ |L(σ)|. It follows that the restriction of f
to Sj is a discrete Morse function. J

Remark. When we restrict the function f : K → R to one of the strata Sj , a non-violator
σ that is regular globally (that is, σ forms a gradient pair with a unique simplex τ) may
become a critical simplex for the restriction of f to Sj , e.g. f−1(3) in Figure 2 (top middle).

6 Discussion

In this paper we have identified a reasonable definition of a discrete stratified Morse function
and demonstrated some of its fundamental properties. Many questions remain to be answered;
we plan to address these in future work.

Relation to classical stratified Morse theory. An obvious question to ask is how our theory
relates to the smooth case. Suppose X is a Whitney stratified space and F : X → R is a
stratified Morse function. One might ask the following: is there a triangulation K of X and
a discrete stratified Morse function (f, s) on K that mirrors the behavior of F? That is, can
we define a discrete stratified Morse function so that its critical simplices contain the critical
points of the function F? This question has a positive answer in the setting of discrete Morse
theory [3], so we expect the same to be true here as well.

Morse inequalities. Forman proved the discrete version of the Morse inequalities in [11].
Does our theory produce similar inequalities?

Discrete dynamics. Forman developed a more general theory of discrete vector fields [10]
in which closed V -paths are allowed (analogous to recurrent dynamics). This yields a
decomposition of a cell complex into pieces and an associated Lyapunov function (constant
on the recurrent sets). This is not the same as a stratification, but it would be interesting
to uncover any connections between our theory and this general theory. In particular, one
might ask if there is some way to glue together the discrete Morse functions on each piece of
a stratification into a global discrete vector field.
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