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Abstract
The beacon model is a recent paradigm for guiding the trajectory of messages or small robotic
agents in complex environments. A beacon is a fixed point with an attraction pull that can move
points within a given polygon. Points move greedily towards a beacon: if unobstructed, they
move along a straight line to the beacon, and otherwise they slide on the edges of the polygon.
The Euclidean distance from a moving point to a beacon is monotonically decreasing. A given
beacon attracts a point if the point eventually reaches the beacon.

The problem of attracting all points within a polygon with a set of beacons can be viewed
as a variation of the art gallery problem. Unlike most variations, the beacon attraction has the
intriguing property of being asymmetric, leading to separate definitions of attraction region and
inverse attraction region. The attraction region of a beacon is the set of points that it attracts.
It is connected and can be computed in linear time for simple polygons. By contrast, it is known
that the inverse attraction region of a point – the set of beacon positions that attract it – could
have Ω(n) disjoint connected components.

In this paper, we prove that, in spite of this, the total complexity of the inverse attraction
region of a point in a simple polygon is linear, and present a O(n logn) time algorithm to
construct it. This improves upon the best previous algorithm which required O(n3) time and
O(n2) space. Furthermore we prove a matching Ω(n logn) lower bound for this task in the
algebraic computation tree model of computation, even if the polygon is monotone.
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Figure 1 Points on an edge e slide towards the orthogonal projection h of the beacon on the
supporting line of e.

1 Introduction

Consider a dense network of sensors. In practice, it is common that routing between two
nodes in the network is performed by greedy geographical routing, where a node sends the
message to its closest neighbor (by Euclidean distance) to the destination [11]. Depending
on the geometry of the network, greedy routing may not be successful between all pairs of
nodes. Thus, it is essential to determine nodes of the network for which this type of routing
works. In particular, given a node in the network, it is important to compute all nodes that
can successfully send a message to (or receive a message from) the input node. Motivated by
this application Biro et al. [3] introduced the beacon routing model.

Let P be a simple polygon with n vertices. A beacon b is a point in P that can induce
an attraction pull towards itself within P . The attraction of b causes points in P to move
towards b as long as their Euclidean distance is maximally decreasing. As a result, a point
p moves along the ray

−→
pb until it either reaches b or an edge of P . In the latter case, p

slides on the edge towards h, the orthogonal projection of b on the supporting line of the
edge (Figure 1). Note that among all points on the supporting line of the edge, h has the
minimum Euclidean distance to b.

We say b attracts p, if p eventually reaches b. Interestingly, beacon attraction is not
symmetric. The attraction region of b, denoted by AR(b), is the set of all points in P that b
attracts2. The inverse attraction region of a point p, denoted by IAR(p), is the set of all
beacon positions in P that can attract p.

The study of beacon attraction problems in a geometric domain, initiated by Biro et
al. [3], finds its root in sensor networks, where the limited capabilities of sensors makes
it crucial to design simple mechanisms for guiding their motion and communication. For
instance, the beacon model can be used to represent the trajectory of small robotic agents in
a polygonal domain, or that of messages in a dense sensor network. Using greedy routing, the
trajectory of a robot (or a message) from a sender to a receiver closely follows the attraction
trajectory of a point (the sender) towards a beacon (the receiver). However, greedy routing
may not be successful between all pairs of nodes. Thus, it is essential to characterize for
which pairs of nodes of the network for which this type of routing works. In particular,
given a single node, it is important to compute the set of nodes that it can successfully
receive messages from (its attraction region), and the set of node that it can successfully
send messages to (its inverse attraction region).

In 2013, Biro et al. [5] showed that the attraction region AR(b) of a beacon b in a simple
polygon P is simple and connected, and presented a linear time algorithm to compute AR(b).

2 We consider the attraction region to be closed, i.e., b attracts all points on the boundary of AR(b).
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Computing the inverse attraction region has proven to be more challenging. It is known [5]
that the inverse attraction region IAR(p) of a point p is not necessarily connected and can
have Θ(n) connected components. Kouhestani et al. [14] presented an algorithm to compute
IAR(p) in O(n3) time and O(n2) space. In the special cases of monotone and terrain polygons,
they showed improved algorithms with running times O(n logn) and O(n) respectively.

In this paper, we prove that, in spite of not being connected, the inverse attraction region
IAR(p) always has total complexity3 O(n). Using this fact, we present the first optimal
O(n logn) time algorithm for computing IAR(p) for any simple polygon P , improving upon
the previous best known O(n3) time algorithm. Since this task is at the heart of other
algorithms for solving beacon routing problems, this improves the time complexity of several
previously known algorithms such as approximating minimum beacon paths and computing
the weak attraction region of a region [5].

To prove the optimality of our algorithm, we show an Ω(n logn) lower bound in the
algebraic computation tree model and in the bounded degree algebraic decision tree model,
even in the case when the polygon is monotone.

Due to space limitations some of the proofs are omitted and can be found in the full
version of this paper [12].

Related work
Greedy routing has been studied extensively in the literature of sensor network as a local
(and therefore inexpensive) protocol for message sending. As a result, many applications in
wireless and sensor networks utilize greedy routing to choose the next hop in their message
sending protocol [10]. In the geometric domain, greedy routing has been studied in both
discrete and continuous spaces. Bose et al. [6] studied routing problems in ad hoc wireless
networks modeled as unit graphs and Kermarrec and Tan [11] presented an approximation
algorithm to decompose a polygon into minimum number of routable regions, i.e., regions in
which greedy routing always works. Beacon routing, discussed in this paper, is essentially
greedy routing in a polygonal environment representing an infinitely dense sensor network.

Several geometric problems related to the beacon model have been studied in recent
years. Biro et al. [3] studied the minimum number of beacons necessary to successfully
route between any pair of points in a simple n-gon P . This can be viewed as a variant of
the art gallery problem, where one wants to find the minimum number of beacons whose
attraction regions cover P . They proved that

⌈
n
2

⌉
beacons are sometimes necessary and

always sufficient, and showed that finding a minimum cardinality set of beacons to cover a
simple polygon is NP-hard. For polygons with holes, Biro et al. [4] showed that

⌈
n
2

⌉
− h− 1

beacons are sometimes necessary and
⌈

n
2

⌉
+ h− 1 beacons are always sufficient to guard a

polygon with h holes. Combinatorial results on the use of beacons in orthogonal polygons
have been studied by Bae et al. [1] and by Shermer [17]. Biro et al. [5] presented a polynomial
time algorithm for routing between two fixed points using a discrete set of candidate beacons
in a simple polygon and gave a 2-approximation algorithm where the beacons are placed
with no restrictions. Kouhestani et al. [15] give an O(n logn) time algorithm for beacon
routing in a 1.5D polygonal terrain.

Kouhestani et al. [13] showed that the length of a successful beacon trajectory is less than√
2 times the length of a shortest (geodesic) path. In contrast, if the polygon has internal

holes then the length of a successful beacon trajectory may be unbounded.

3 Total number of vertices and edges of all connected components.
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Figure 2 The angle between a straight movement towards the beacon and the following slide
movement is always greater than π/2.

2 Preliminaries

A dead point d 6= b is defined as a point that remains stationary in the attraction pull of b.
The set of all points in P that eventually reach (and stay) on d is called the dead region of b
with respect to d. A split edge is defined as the boundary between two dead regions, or a
dead region and AR(b). In the latter case, we call the split edge a separation edge.

If beacon b attracts a point p, we use the term attraction trajectory, denoted by AT (p, b),
to indicate the movement path of a point p from its original location to b. The attraction
trajectory alternates between a straight movement towards the beacon (a pull edge) and a
sequence of consecutive sliding movements (slide edges), see Figure 2.

I Lemma 1. Consider the attraction trajectory AT (p, b) of a point p attracted by beacon b.
Let αi denote the angle between the i-th pull edge and the next slide edge on AT (p, b). Then
αi is greater than π/2.

Note that, similarly, the angle between the i-th pull edge and the previous slide edge is
also greater than π/2.

Let r be a reflex vertex of P with adjacent edges e1 and e2. Let H1 be the half-plane
orthogonal to e1 at r, that contains e1. Let H2 be the half-plane orthogonal to e2 at r, that
contains e2. The deadwedge of r (deadwedge(r)) is defined as H1 ∩H2 (Figure 3). Let b be a
beacon in the deadwedge of r. Let ρ be the ray from r in the direction

−→
br and let s be the

line segment between r and the first intersection of ρ with the boundary of P . Note that in
the attraction of b, points on different sides of s have different destinations. Thus, s is a split
edge for b. We say r introduces the split edge s for b to show this occurrence. Kouhestani et
al. [14] proved the following lemma.

I Lemma 2 (Kouhestani et al. [14]). A reflex vertex r introduces a split edge for the beacon
b if and only if b is inside the deadwedge of r.

Let p and q be two points in a polygon P . We use pq to denote the straight-line segment
between these points. Denote the shortest path between p and q in P (the geodesic path)

H1

H2

e1 e2

h

s

b

r

Figure 3 The deadwedge of r is shown by the red angle.
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as SP(p, q). The union of shortest paths from p to all vertices of P is called the shortest
path tree of p, and can be computed in linear time [9] when P is a simple polygon. In our
problem, we are only interested in shortest paths from p to reflex vertices of P . Therefore,
we delete all convex vertices and their adjacent edges in the shortest path tree of p to obtain
the pruned shortest path tree of p, denoted by SPT r(p).

A shortest path map for a given point p, denoted as SPM (p), is a subdivision of P into
regions such that shortest paths from p to all the points inside the same region pass through
the same set of vertices of P [16]. Typically, shortest path maps are considered in the context
of polygons with holes, where the subdivision represents grouping of the shortest paths of the
same topology, and the regions may have curved boundaries. In the case of a simple polygon,
the boundaries of SPM (p) are straight-line segments and consist solely of the edges of P and
extensions of the edges of SPT r(p). If a triangulation of P is given, it can be computed in
linear time [9].

I Lemma 3. During the movement of p on its beacon trajectory, the shortest path distance
of p away from its original location monotonically increases.

3 The structure of inverse attraction regions

The O(n3) time algorithm of Kouhestani et al. [14] to compute the inverse attraction region
of a point p in a simple polygon P constructs a line arrangement A with quadratic complexity
that partitions P into regions, such that, either all or none of the points in a region attract
p. Arrangement A, contains three types of lines:
1. Supporting lines of the deadwedge for each reflex vertex of P ,
2. Supporting lines of edges of SPT r(p),
3. Supporting lines of edges of P .

I Lemma 4 (Kouhestani et al. [14]). The boundary edges of IAR(p) lie on the lines of
arrangement A.

Let uv be an edge of SPT r(p), where u = parent(v). We associate three lines of the
arrangement A to uv: supporting line of uv and the two supporting lines of the deadwedge
of v. By focusing on the edge uv, we study the local effect of the reflex vertex v on IAR(p),
and we show that:
1. Exactly one of the associated lines to uv may contribute to the boundary of IAR(p). We

call this line the effective associated line of uv (Figure 4).
2. The effect of v on the inverse attraction region can be represented by at most two half-

planes, which we call the constraining half-planes of uv. These half-planes are bounded
by the effective associated line of uv.

3. Each constraining half-plane has a domain, which is a subpolygon of P that it affects.
The points of the constraining half-plane that are inside the domain subpolygon cannot
attract p (see the next section).

Our algorithm to compute the inverse attraction region uses SPM (p). For each region
of SPM (p), we compute the set of constraining half-planes with their domain subpolygons
containing the region. Then, we discard points of the region that cannot attract p by locating
points which belong to at least one of these constraining half-planes.

SoCG 2018
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Figure 4 An example of an inverse attraction region with effective associated lines to each reflex
vertex. Points in the colored region attract p. Here La, Lb, Lc, Ld and Le are respectively the
associated lines of the reflex vertices a, b, c, d and e.

Constraining half-planes
Let uv be an edge of SPT r(p), where u = parent(v). We extend uv from u until we reach w,
the first intersection with the boundary of P . Segment uw partitions P into two subpolygons.
Let Pp be the subpolygon that contains p. Any path from p to any point in P \ Pp passes
through uw. Thus a beacon outside of Pp that attracts p, must be able to attract at least one
point on the line segment uw. In order to determine the local attraction behaviour caused
by the vertex v, and to find the effective line associated to uv, we focus on the attraction
pull on the points of uw (particularly the vertex u) rather than p. By doing so we detect
points that cannot attract u, or any point on uw, and mark them as points that cannot
attract p. In other words, for each edge uv ∈ SPT r(p) we detect a set of points in P that
cannot attract u locally due to v. The attraction of these beacons either causes u to move to
a wrong subpolygon, or their attraction cannot move u past v (see the following two cases
for details). Later in Theorem 8, we show that this suffices to detect all points that cannot
attract p.

Let e1 and e2 be the edges incident to v. Let H1 be the half-plane, defined by a line
orthogonal to e1 passing through v, which contains e1, and let H2 be the half-plane, defined
by a line orthogonal to e2 passing through v, which contains e2. Depending on whether u is
in H1 ∪H2, we consider two cases:

Case 1. Vertex u is not in H1 ∪H2 (Figure 5). We show that in this case the supporting
line of uv is the only line associated to v that may contribute to the boundary of IAR(p),
i.e., it is the effective line associated to uv. Let q be an arbitrary point on the open edge
e1. As u is not in H1 ∪H2, the angle between the line segments uq and qv is less than π/2.
Consider an arbitrary attraction trajectory that moves u straight towards q. By Lemma 1,
any slide movement of this attraction trajectory on the edge e1 moves away from v. Now
consider q to be on the edge e2. Similarly any slide on the edge e2 moves away from v. Thus,
the line segment uv can only be crossed once in an attraction trajectory of u (and, similarly,
of any other point on the line segment uw). Note that this crossing movement happens via a
pull edge. We use this observation to detect a set of points that do not attract u and thus
do not attract p.

Now consider the supporting line L of the edge uv. As u is not in H1 ∪H2, L partitions
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Figure 5 Vertex u 6∈ H1∪H2. Subpoly-
gon P2 is the domain of the constraining
half-plane H1, and P1 is the domain of the
constraining half-plane H2.
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Figure 6 Vertex u ∈ H1 ∪H2. Subpolygon P1 is
the domain of the constraining half-plane H2.

the plane into two half-planes L1 containing the edge e1, and L2 containing the edge e2.
Without loss of generality, assume that the parent of u in SPT r(p) lies inside L2 (refer to
Figure 5). Recall that uw partitions P into two subpolygons, and Pp is the subpolygon
containing p. We define subpolygons P1 and P2 as follows. Let ρ1 be the ray originating
at v, perpendicular to L in L1, and let z1 be the first intersection point of ρ1 with the
boundary of P . Define P1 as the subpolygon of P induced by vz1 that contains the edge
e1. Similarly, let ρ2 be the ray originating at v, perpendicular to L inside L2, and let z2 be
the first intersection point of ρ2 with the boundary of P . Define P2 as the subpolygon of
P induced by vz2 that contains the edge e2. We provide the details of the following two
lemmas in the full version of this paper [12].

I Lemma 5. No point in P1 ∩ L2 can attract p.

I Lemma 6. No point in P2 ∩ L1 can attract p.

In summary, in case 1, the effect of uv is expressed by two half-planes: L2, affecting the
subpolygon P1, and L1, affecting the subpolygon P2. We call L1 and L2 the constraining
half-planes of uv, and we call P1 and P2 the domain of the constraining half-planes L2 and
L1, respectively. Furthermore, we call P1 ∩ L2 and P2 ∩ L1 the constraining regions of uv.
Later we show that L is the only effective line associated to uv.

Case 2. Vertex u is in H1 ∪H2 (refer to Figure 6). Without loss of generality assume u can
see part of the edge e2. Similar to the previous case, we define the subpolygon Pp; let w be
the first intersection of the ray −→vu with the boundary of P . Note that uw partitions P into
two subpolygons. Let Pp be the subpolygon containing p. Now let ρ be the ray originating
at v, along the extension of edge e2. Let z be the first intersection of ρ with the boundary of
P . We use P1 to denote the subpolygon induced by vz that contains e1. We detect points in
P1 that cannot move u (past v) into P1.

I Lemma 7. No point in P1 ∩H2 can attract p.

In summary, in case 2, the effect of uv on IAR(p) can be expressed by the half-plane H2.
We call H2 the constraining half-plane of uv, P1 the domain of H2 and we call P1 ∩H2 the

SoCG 2018
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constraining region of uv. Later we show that the supporting line of H2 is the only effective
line associated to v.

By combining these two cases, we prove the following theorem.

I Theorem 8. A beacon b can attract a point p if and only if b is not in a constraining
region of any edge of SPT r(p).

Proof. By Lemmas 5, 6 and 7, if b is in the constraining region of an edge uv ∈ SPT r(p)
then it does not attract p.

Now let b be a point that cannot attract p. We will show that b is in the constraining
region of at least one edge of SPT r(p). Let s be the separation edge of AR(b) such that b
and p are in different subpolygons induced by s (see, for example, Figure 6). Note that as
the attraction region of a beacon is connected [2], there is exactly one such separation edge.
Let v be the reflex vertex that introduces s and let u be the parent of v in SPT r(p). By
Lemma 2, b is in the deadwedge of v. In addition, as the attraction region of a beacon is
connected, b attracts v. We claim that b is in a constraining region of the edge uv ∈ SPT r(p).
First, we show that b cannot attract u. Consider SP(p, u), the shortest path from p to u. If
SP(p, u) crosses s at some point q then u cannot be the parent of v in SPT r(p), because we
can reach v with a shorter path by following SP(p, u) from p to q and then reaching v from
q. Therefore, SP(p, u) does not cross s, so p and u are in the same subpolygon of P induced
by s. As b does not attract p, we conclude that b does not attract u.

Consider the two cases: u is in H1 ∪ H2 or not. We show that in each case, b is in a
constraining region of uv.

Case 1. Vertex u is not in H1 ∪H2 (refer to Figure 5). Let L be the supporting line of uv,
and similar to the previous case analysis let L1 and L2 be the constraining half-planes, and
let P1 and P2 be the domains of L2 and L1, respectively. Without loss of generality, assume
that b is in the half-plane L2. We show that then b belongs to P1.

As b ∈ L2, the separation edge s extends from v into L1, i.e., s ∈ L1. Then the point p
and subpolygon P2 lie on one side of s, and subpolygon P1 lies on the other side of s. As
beacon b does not attract p, the point p and the beacon b lie on different sides of s, and thus
the beacon b and subpolygon P1 lie on the same side of s.

We will show now that indeed b ∈ P1. Beacon b attracts v and is in the deadwedge of v.
Thus, in the attraction of b, v will enter P1 via a slide move. We claim that v cannot leave P1
afterwards. Consider the supporting line of ρ1 which is a line orthogonal to uv at v. As u is
not in H1 ∪H2, and the deadwedge of v is equal to H1 ∩H2, the deadwedge of v completely
lies to one side of the supporting line. Therefore, in the attraction of v by any beacon inside
the deadwedge of v, any point q 6= v on vz1 moves straight towards the beacon along the ray−→
qb. In other words, in the attraction pull of b no point inside P1 can leave P1. Therefore,
b ∈ P1 and thus b ∈ P1 ∩ L2. By definition, b belongs to a constraining region of uv.

Case 2. Vertex u is in H1 ∪H2 (refer to Figure 6). Without loss of generality let u ∈ H2.
Consider the separation edge s. As the beacon b does not attract u, they lie on the opposite
sides of s. As b is in the deadwedge of v, it is also in H2, the constraining half-plane of
uv. Similar to the previous case, as b attracts v, AT(v, b) never crosses ρ to leave P1 and
therefore, b is in P1. Thus, b ∈ P1 ∩H2 and it belongs to the constraining region of uv. J

I Corollary 9. Consider the edge uv ∈ SPT r(p). If u is not in H1∪H2 (case 1), then among
three associated lines to uv only the supporting line of uv may contribute to the boundary
of IAR(p). If u is in H1 ∪ H2 (case 2), then among three associated lines to uv only the
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Figure 7 The charging scheme: vertex a is charged to the constraining half-plane C of vertex v.
The inverse attraction region of p is the shaded region.

supporting line of H2 may contribute to the boundary of IAR(p), where H2 is the half-plane
orthogonal to the incident edge of v that u can partially see.

4 The complexity of the inverse attraction region

In this section we show that in a simple polygon P the complexity of IAR(p) is linear with
respect to the size of P .

We classify the vertices of the inverse attraction region into two groups: 1) vertices that
are on the boundary of P , and 2) internal vertices. We claim that there are at most a linear
number of vertices in each group. Throughout this section, without loss of generality, we
assume that no two constraining half-planes of different edges of the shortest path tree are
co-linear. Note that we can reach such a configuration with a small perturbation of the input
points, which may just add to the number of vertices of IAR(p).

Biro [2] showed that the inverse attraction region of a point in a simple polygon P is
convex with respect to4 P . Therefore, we have at most two vertices of IAR(p) on each edge
of P , and thus there are at most a linear number of vertices in the first group.

We use the following property of the attraction trajectory to count the number of vertices
in group 2.

I Lemma 10. Let L be the effective line associated to the edge uv ∈ SPT r(p), where
u = parent(v). Let b be a beacon on L ∩ deadwedge(v) that attracts p. Then the attraction
trajectory of p passes through both u and v.

Next we define an ordering on the constraining half-planes. Let C be a constraining half-
plane of the edge uv ∈ SPT r(p) (u = parent(v)), and let C ′ be a constraining half-plane of the
edge u′v′ ∈ SPT r(p) (u′ = parent(v′)). We say C ≤ C ′ if and only if |SP(p, v)| ≤ |SP(p, v′)|
(refer to Figure 7).

We use a charging scheme to count the number of internal vertices. An internal vertex
resulting from the intersection of two constraining half-planes C and C ′ is charged to C ′ if
C ≤ C ′, otherwise it is charged to C. In the remaining of this section, we show that each
constraining half-plane is charged at most twice. Let PC and P ′

C denote the constraining
regions related to C and C ′, respectively. And let LC and LC′ denote the supporting lines of
C and C ′, respectively. In the previous section we showed that the line segments LC ∩PC are
the only parts of LC that may contribute to the boundary of IAR(p). Let s ∈ LC ∩ PC be a
segment outside of the deadwedge of v. The next lemma shows that s does not appear on
the boundary of IAR(p), and we can ignore s when counting the internal vertices of IAR(p).

4 A subpolygon Q ⊆ P is convex with respect to the polygon P if the line segment connecting two arbitrary
points of Q either completely lies in Q or intersects P .

SoCG 2018
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u
p

Figure 8 A constraining half-plane may contribute O(n) vertices of group 2 to the inverse
attraction region. Here the inverse attraction region of p is colored.

I Lemma 11. Let s ∈ LC ∩ PC be a segment outside of the deadwedge of v. Then s (or a
part of s with a non-zero length) does not appear on the boundary of IAR(p).

We define L̃C = LC ∩ PC ∩ deadwedge(v) and L̃C′ = LC′ ∩ PC′ ∩ deadwedge(v′). By
Lemma 11, L̃C and L̃C′ are the subset of LC and LC′ that may appear on the boundary of
IAR(p), therefore, the intersection points of all L̃C and L̃C′ are the only possible locations
for internal vertices of IAR(p). Consider an internal vertex a resulting from the intersection
of L̃C and L̃C′ .

I Lemma 12. Let a = L̃C ∩ L̃C′ be an internal vertex of IAR(p) and let C ′ ≤ C (Figure 7).
Then all points on L̃C are in the domain of C ′.

We charge a to C if C ′ ≤ C, otherwise we charge it to C ′. Assume a is charged to C. By
Lemma 12, all points on L̃C to one side of a belong to the domain of C ′ and therefore are
in C ′. Thus, C cannot contribute any other internal vertices to this side of a. This implies
that C can be charged at most twice (once from each end) and as there are a linear number
of constraining half-planes, we have at most a linear number of vertices of group 2, and we
have the following theorem.

I Theorem 13. The inverse attraction region of a point p has linear complexity in a simple
polygon.

Note that, as illustrated in Figure 8, a constraining half-plane may contribute many
vertices of group 2 to the inverse attraction region, but nevertheless it is charged at most
twice.

5 Computing the inverse attraction region

In this section we show how to compute the inverse attraction region of a point inside a
simple polygon in O(n logn) time.

Let region Ri of the shortest path map SPM (p) consist of all points t such that the last
segment of the shortest path from p to t is vit (Figure 9). Vertex vi is called the base of Ri.
Extend the edge of SPT r(p) ending at vi until the first intersection zi with the boundary of
P . Call the segment wi = vizi a window, and point zi – the end of the window; window wi

is a boundary segment of Ri.
We will construct a part of the inverse attraction region of p inside each region of the

shortest path map SPM (p) independently. A point in a region of SPM (p) attracts p only if
its attraction can move p into the region through the corresponding window.
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Figure 9 Ri is a region of SPM (p) with base vi. Segment wi is the window, and zi – its end.

I Lemma 14. Let Ri be a region of SPM (p) with a base vertex vi. If vi lies in some domain
subpolygon Pe, then any point t in Ri lies in Pe.

Let Ri be a region of SPM (p) with a base vertex vi, and letHi be the set of all constraining
half-planes corresponding to the domain subpolygons that contain the point vi. Denote Freei

to be the intersection of the complements of the half-planes in Hi. Note, that Freei is a
convex set. In the following lemma we show that Freei ∩Ri is exactly the set of points inside
Ri that can attract p.

I Lemma 15. The set of points in Ri that attract p is Freei ∩Ri.

This results in the following algorithm for computing the inverse attraction region of p.
We compute the constraining half-planes of every edge of SPT r(p) of p and the corresponding
domain subpolygons. Then, for every region Ri of the shortest path map of p, we compute the
free region Freei, where vi is the base vertex of the region; and we add the intersection of Ri

and Freei to the inverse attraction region of p. The pseudocode is presented in Algorithm 1.
Rather than computing each free space from scratch, we can compute and update free

spaces using the data structure of Brodal and Jacob [7]. Their data structure allows to
dynamically maintain the convex hull of a set of points and supports insertions and deletions in
amortized O(logn) time using O(n) space. In the dual space this is equivalent to maintaining
the intersection of n half-planes. In order to achieve a total O(n logn) time, we need to
provide a way to traverse recursive visibility regions and guarantee that the number of
updates (insertions or deletions of half-planes) in the data structure is O(n). In the rest of
this section, we provide a proof for the following lemma.

Algorithm 1 Inverse attraction region.
Input: Simple polygon P , and a point p ∈ P .
Output: Inverse attraction region of p.
1: Compute SPT r(p) and SPM (p).
2: for each edge e ∈ SPT r(p) do
3: Compute constraining half-planes of e and corresponding domain subpolygons.
4: end for
5: for each region Ri of SPM (p) with base vertex vi do
6: Find all the domain subpolygons that contain vi, and compute Freei.
7: Intersect R with Freei, and add the resulting set to the inverse attraction region of p.
8: end for
9: return Inverse attraction region of p.

SoCG 2018
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I Lemma 16. Free spaces of the recursive visibility regions can be computed in a total time
of O(n logn) using O(n) space.

Proof. Consider a region Ri of SPM (p) with a base vertex vi. By Lemma 14 and The-
orem 8, the set of constraining half-planes that affect the inverse attraction region inside Ri

corresponds to the domain subpolygons that contain vi.
Observe that the vertices of a domain subpolygon appear as one continuous interval along

the boundary of P , as there is only one boundary segment of the subpolygon that crosses
P . Then, when walking along the boundary of P , each domain subpolygon can be entered
and exited at most once. All the domain polygons can be computed in O(n logn) time by
shooting n rays and computing their intersection points with the boundary of P [8].

Let the vertices of P be ordered in the counter-clockwise order. For each domain
subpolygon Pe, mark the two endpoints (e.g., vertices v and z in Figure 6) of the boundary
edge that crosses P as the first and the last vertices of Pe in accordance to the counter-
clockwise order. Then, to obtain the optimal running time, we modify the second for-loop
of the Algorithm 1 in the following way. Start at any vertex v0 of P , find all the domain
subpolygons that contain v0, and initialize the dynamic convex hull data structure of Brodal
and Jacob [7] with the points dual to the lines supporting the constraining half-planes of the
corresponding domain subpolygons. If v0 is a base vertex of some region R0 of SPM (p), then
compute the intersection of R0 and the free space Free0) that we obtain from the dynamic
convex hull data structure. Walk along the boundary of P in the counter-clockwise direction,
adding to the data structure the dual points to the supporting lines of domain polygons
being entered, removing from the data structure the dual points to the supporting lines of
domain polygons being exited, and computing the intersection of each region of SPM (p)
with the free space obtained from the data structure.

The correctness of the algorithm follows from Lemma 15, and the total running time is
O(n logn). Indeed, there will be O(n) updates to the dynamic convex hull data structure,
each requiring O(logn) amortized time. Intersecting free spaces with regions of SPM (p) will
take O(n logn) time in total, as the complexity of IAR(p) is linear. For the pseudocode of
the algorithm please refer to the full version of this paper [12]. J

5.1 Lower bound
The proof of the following theorem is based on a reduction from the problem of computing
the lower envelope of a set of lines, which has a lower bound of Ω(n logn) [18].

I Theorem 17. Computing the inverse attraction region of a point in a monotone (or a
simple polygon) has a lower bound of Ω(n logn).

Proof. Consider a set of lines L. Let lb and ls denote the lines in L with the biggest and
smallest slope, respectively. Note that the leftmost (rightmost) edge of the lower envelope of
L is part of lb (ls).

Without loss of generality assume that the slopes of the lines in L are positive and
bounden from above by a small constant ε. We construct a monotone polygon as follows.
The right part of the polygon is comprised of an axis aligned rectangle R that contains all
the intersection points of the lines in L (Figure 10). Note that R can be computed in linear
time. To the left of R, we construct a “zigzag” corridor in the following way. For each line l
in L, in an arbitrary order, we add a corridor perpendicular to l which extends above the
next arbitrarily chosen line (Figure 11). We then add a corridor with slope 1 going downward
until it hits the next line. This process is continued for all lines in L.

Let the point p be the leftmost vertex of the upper chain of the corridor structure.
Consider the inverse attraction region of p in the resulting monotone polygon. A point in
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Figure 10 The final monotone polygon constructed for 3 lines.
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Figure 11 Adding a corridor for a line of L.

R can attract p, only if it is below all lines of L, i.e., only if it is below the lower envelope
of L. In addition the point needs to be above the line Lu, where Lu is the rightmost line
perpendicular to a lower edge of the corridors with a slope of −1 (refer to Figure 10). In
order to have all vertices of the lower envelope in the inverse attraction region, we need to
guarantee that Lu is to the left of the leftmost vertex of the lower envelope, w. Let Lp be a
line through w with a scope equal to −1. Let q be the intersection of Lp with ls. We start
the first corridor of the zigzag to the left of q. As the lines have similar slopes this guarantees
that Lu is to the left of vertices of the lower envelope. Now it is straightforward to compute
the lower envelope of L in linear time given the inverse attraction region of p. J

We conclude with the main result of this paper.

I Theorem 18. The inverse attraction region of a point in a simple polygon can be computed
in Θ(n logn) time.
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