New Bounds for Range Closest-Pair Problems

Jie Xue

Department of Computer Science & Engineering, University of Minnesota
Minneapolis, MN, USA

http://cs.umn.edu/~xuexx193

xuexx193@Qumn.edu

Yuan Li
Facebook Inc.
Seattle, WA, USA
lydxlx@fb.com

Saladi Rahul

Department of Computer Science, University of Illinois
Urbana, IL, USA

http://cs.umn.edu/~rahuls

saladi.rahul@gmail.com

Ravi Janardan

Department of Computer Science & Engineering, University of Minnesota
Minneapolis, MN, USA

http://cs.umn.edu/~janardan

janardan@umn.edu

—— Abstract

Given a dataset S of points in R?, the range closest-pair (RCP) problem aims to preprocess S
into a data structure such that when a query range X is specified, the closest-pair in S N X can
be reported efficiently. The RCP problem can be viewed as a range-search version of the classical
closest-pair problem, and finds applications in many areas. Due to its non-decomposability, the
RCP problem is much more challenging than many traditional range-search problems. This paper
revisits the RCP problem, and proposes new data structures for various query types including
quadrants, strips, rectangles, and halfplanes. Both worst-case and average-case analyses (in the
sense that the data points are drawn uniformly and independently from the unit square) are
applied to these new data structures, which result in new bounds for the RCP problem. Some
of the new bounds significantly improve the previous results, while the others are entirely new.

2012 ACM Subject Classification Theory of computation — Computational geometry, Theory
of computation — Data structures design and analysis

Keywords and phrases Closest-pair, Range search, Candidate pairs, Average-case analysis
Digital Object Identifier 10.4230/LIPIcs.SoCG.2018.73

Related Version A full version of this paper is available at [12], http://arxiv.org/abs/1712.
09749.

1 Introduction

The closest-pair problem is one of the most fundamental problems in computational geometry
and finds many applications, e.g., collision detection, similarity search, traffic control, etc.
In this paper, we study a range-search version of the closest-pair problem called the range
closest-pair (RCP) problem. Let X be a certain collection of ranges called query space. The

© Jie Xue, Yuan Li, Saladi Rahul, and Ravi Janardan; [:,:j

licensed under Creative Commons License CC-BY]
34th International Symposium on Computational Geometry (SoCG 2018). } !

Editors: Bettina Speckmann and Csaba D. Téth; Article No. 73; pp. 73:1-73:14 TN j\—l‘

\\v Leibniz International Proceedings in Informatics BN
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

|
-

[N

http://cs.umn.edu/~xuexx193
mailto:xuexx193@umn.edu
mailto:lydxlx@fb.com
http://cs.umn.edu/~rahuls
mailto:saladi.rahul@gmail.com
http://cs.umn.edu/~janardan
mailto:janardan@umn.edu
http://dx.doi.org/10.4230/LIPIcs.SoCG.2018.73
http://arxiv.org/abs/1712.09749
http://arxiv.org/abs/1712.09749
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

73:2

New Bounds for Range Closest-Pair Problems

RCP problem with query space X (or the X-RCP problem for short) aims to preprocess
a given dataset S of points into a low-space data structure such that when a query range
X € X is specified, the closest-pair in S N X can be reported efficiently. The motivation for
the RCP problem is clear and similar to that of range search: in many situations, one is
interested in local information (i.e., local closest-pairs) inside specified ranges rather than
global information (i.e., global closest-pair) of the dataset.

The RCP problem is quite challenging due to a couple of reasons. First, in the RCP
problem, the objects of interest are in fact point-pairs instead of single points, and in a
dataset there is a quadratic number of point-pairs to be dealt with. Moreover, the RCP
problem is non-decomposable in the sense that even if the query range X € X can be written
as X = X1 U Xy, the closest-pair in S N X cannot be computed from the closest-pairs in
SNX; and SNXs,. The non-decomposability makes many traditional range-search techniques
inapplicable to the RCP problem, and thus makes the problem much more challenging.

The RCP problem in R? has been studied in prior work over the last fifteen years, e.g.,
[1, 5, 6, 9, 10]. In this paper, we revisit this problem and make significant improvements to
the existing solutions. Following the existing work, the query types considered in this paper
are orthogonal queries (specifically, quadrants, strips, rectangles) and halfplane query.

1.1 Our contributions, techniques, and related work

The closest-pair problem and range search are both classical topics in computational geometry;
see [2, 11] for references. The RCP problem is relatively new. The best existing bounds in
R? and our new results are summarized in Table 1 (Space refers to space cost and Qtime
refers to query time), and we give a brief explanation below.

Table 1 Summary of the best existing bounds and our new results for the RCP problem in R?
(each row corresponds to an RCP data structure for the corresponding query space).

Que Source Worst-case Average-case
uer ur
Y Space Qtime Space Qtime
Quadrant [6] O(nlogn) O(logn) - -
Theorem 3 O(n) O(logn) O(log®n) | O(loglogn)
Strip [10] O(nlog®n) O(logn) - -
Theorem 6 O(nlogn) O(logn) O(n) O(logn)
[6] O(nlog®n) O(log? n) - -
Rectangle [10] O(nlog®n) O(log® n) - -
[6] - - O(nlog* n) O(log* n)
Theorem 15 | O(nlog®n) | O(log®n) | O(nlogn) O(logn)
Halfplane 1] O(nlogn) O(n®5+9) - -
Theorem 18 O(n) O(logn) O(log®n) | O(loglogn)

Related work. The RCP problem for orthogonal queries was studied in [6, 9, 10]. The
best known solution for quadrant query was given by [6], while [10] gave the best known
solution for strip query. For rectangle query, there are two best known solutions (in terms
of worst-case bounds) given by [6] and [10] respectively. The above results only considered
worst-case performance of the data structures. The authors of [6] for the first time applied
average-case analysis to RCP data structures in the model where the data points are drawn
independently and uniformly from the unit square. Unfortunately, [6] only gave a rectangle

J. Xue, Y. Li, S. Rahul, and R. Janardan

RCP data structure with low average-case preprocessing time, while its average-case space
cost and query time are even higher than the worst-case counterparts of the data structure
given by [10] (even worse, its worst-case space cost is super-quadratic). In fact, in terms of
space cost and query time, no nontrivial average-case bounds were known for any kind of
query before this paper. The RCP problem for halfplane query was studied in [1]. Two data
structures were proposed. We only present the first one in Table 1. The second one (not in
the table), while having higher space cost and query time than the first one, can be built
in O(nlog®n) time. Both data structures require (worst-case) super-linear space cost and
polynomial query time.

Our contributions. In this paper, we improve all the above results by giving new RCP data
structures for various query types. The improvements can be seen in Table 1. In terms of
worst-case bounds, the highlights are our rectangle RCP data structure which simultaneously
improves the two best known results (given by [6] and [10]) and our halfplane RCP data
structure which is optimal and significantly improves the bounds in [1]. Furthermore, by
applying average-case analysis to our new data structures, we establish the first nontrivial
average-case bounds for all the query types studied. Our average-case analysis applies to

datasets generated in not only the unit square but also an arbitrary axis-parallel rectangle.

These average-case bounds demonstrate that our new data structures might have much better
performance in practice than one can expect from the worst-case bounds. Finally, we also
give an O(n log? n)-time algorithm to build our halfplane RCP data structure, matching the
preprocessing time in [1]. The preprocessing for our orthogonal RCP data structures is not
considered in this paper; we are still in the process of investigating this.

Our techniques. An important notion in our techniques is that of a candidate pair, i.e., a
pair of data points that is the answer to some RCP query. Our solutions for the quadrant
and strip RCP problems use the candidate pairs to construct a planar subdivision and take
advantage of point-location techniques to answer queries. The data structures themselves are
simple, and our main technical contribution here occurs in the average-case analysis of the
data structures. The analysis requires a study of the expected number of candidate pairs in a
random dataset, which is of both geometric and combinatorial interest. Our data structure for
the rectangle RCP problem is subtle; it is constructed by properly combining two simpler data
structures, each of which partially achieves the desired bounds. The high-level framework of
the two simpler data structures is identical: it first “decomposes” a rectangle query into four
quadrant queries and then simplifies the problem via some geometric observations similar to

those in the standard divide-and-conquer algorithm for the classical closest-pair problem.

Also, the analysis of the data structures is technically interesting. Our solution for the
halfplane RCP problem applies the duality technique to map the candidate pairs to wedges in
the dual space and form a planar subdivision, which allows us to solve the problem by using
point-location techniques on the subdivision, similarly to the approach for the quadrant and
strip RCP problems. However, unlike the quadrant and strip cases, to bound the complexity
of the subdivision here is much more challenging, which requires non-obvious observations
using the properties of duality and the problem itself. The average-case bounds of the data
structure follow from a technical result bounding the expected number of candidate pairs,
which also involves a nontrivial proof.

Organization. Section 1.2 presents the notations and preliminaries that are used throughout
the paper. We suggest that the readers read this section carefully before moving on. Our
solutions for quadrant, strip, rectangle, and halfplane queries are presented in Section 2, 3, 4,

73:3

SoCG 2018

73:4

New Bounds for Range Closest-Pair Problems

and 5, respectively. In Section 6, we conclude our results and give some open questions for
future work. Due to space limitations, proofs are omitted in this paper and can be found
in the full version [12]. For the convenience of the reader, for some technical lemmas and
theorems, we give short proof sketches in this paper which provide an overview of the proofs.
Also, the details of the preprocessing algorithm for our halfplane RCP data structure is
presented in [12].

1.2 Notations and Preliminaries

We introduce the notations and preliminaries that are used throughout the paper.

Query spaces. The following notations denote various query spaces (i.e., collections of ranges
in R?): Q quadrants, P strips, U 3-sided rectangles, R rectangles, H halfplanes (quadrants,
strips, 3-sided rectangles, rectangles under consideration are all axis-parallel). Define Q" =
{[z,0) X [y,00) : &,y € R} C Q as the sub-collection of all northeast quadrants, and define
O™, @™, Q¢ similarly. Define P¥ = {[z1,22] X R : 21,29 € R} C P as the sub-collection of
all vertical strips, and similarly P" horizontal strips. If is a vertical (resp., horizontal) line,
an l-anchored strip is a vertical (resp., horizontal) strip containing l; define P; C P as the sub-
collection of all I-anchored strips. Define Ut = {[x1, 2] X (—00,%] : z1, 72,y € R} C U as the
sub-collection of all bottom-unbounded 3-sided rectangles, and define U1, U, U4~ similarly.
If [is a non-vertical line, denote by IT (resp., I+) the halfplane above (resp., below) I; define
HT = {I" : | is a non-vertical line} C H (resp., H* = {I* : [is a non-vertical line} C H).

Candidate pairs. For a dataset .S and query space X, a candidate pair of S with respect
to X refers to a pair of points in S which is the closest-pair in S N X for some X € X. We
denote by &(5, X) the set of the candidate pairs of S with respect to X. If [is a line, we
define @;(S, X) C §(S, X) as the subset consisting of the candidate pairs that cross [(i.e.,
whose two points are on opposite sides of 1).

Data structures. For a data structure D, we denote by D(S) the data structure instance
of D built on the dataset S. The notations Space(D(S)) and Qtime(D(S)) denote the space
cost and query time (i.e., the maximum time for answering a query) of D(S), respectively.

Random datasets. If X is a region in R? (or more generally in RY), we write S oc X"
to mean that S is a dataset of n random points drawn independently from the uniform
distribution Uni(X) on X. More generally, if X1, ..., X,, are regions in R? (or more generally
in R?), we write S [T, X; to mean that S is a dataset of n random points drawn
independently from Uni(X7), ..., Uni(X,,) respectively.

Other notions. For a point a € R2, we denote by a.z and a.y the z-coordinate and y-
coordinate of a, respectively. For a,b € R%, we use dist(a, b) to denote the Euclidean distance
between a and b, and use [a, b] to denote the segments connecting a and b (in R! this coincides
with the notation for a closed interval). We say I,...,I, are vertical (resp., horizontal)
aligned segments in R? if there exist r1,...,7,,a, 3 € R such that I; = {r;} x [a, 8] (resp.,
I; = [a, 8] x {ri}). The length of a pair ¢ = (a,b) of points is the length of the segment [a, b].
For S C R? of size at least 2, the notation x(S) denotes the closest-pair distance of S, i.e.,
the length of the closest-pair in S.

The following result regarding the closest-pair distance of a random dataset will be used
to bound the expected number of candidate pairs with respect to various query spaces.

J. Xue, Y. Li, S. Rahul, and R. Janardan

» Lemma 1. Let R be a rectangle of size A x A" where A < A’, and A oc R™. Then
E[xP(A)] =© (max {(A’/mQ)p, (v AA’/m)p}) for any constant p > 1.

In particular, if R is a segment of length ¢, then E[xP(A)] = ©((¢/m?)P).

2 Quadrant query

We consider the RCP problem for quadrant queries, i.e., the Q-RCP
problem. In order to solve the Q-RCP problem, it suffices to consider Wi
the Q<-RCP problem. Let S C R? be a dataset of size n. Suppose

Ww.
B(5, Q) = {$1,...,bm} where ¢; = (a;,b;), and assume ¢y, ..., o
are sorted in increasing order of their lengths. It was shown in [6] W"Q—
that m = O(n). We construct a mapping @(S, Q<) — R? as ¢; — w; L

W5

where w; = (max{a;.z,b;.x}, max{a;.y, b;.y}), and observe that for a ¢
query range Q € Q< , ¢; is contained in Q iff w; € Q. Let W; be the Figure 1 The sub-
northeast quadrant with vertex w;. Then we further have w; € Q iff gjyision induced by
q € W; where q is the vertex of). As such, the closest-pair in SN Q successively overlay-
to be reported is ¢, for n = min{i : ¢ € W;}. We create a planar ing the quadrants.
subdivision I', by successively overlaying Wy, ..., W,, (see Figure 1).
Note that the complexity of I" is O(m), since overlaying each quadrant creates at most two
vertices of I'. By the above observation, the answer for @Q is ¢; iff ¢ is in the cell W\ U;;ll W;.
Thus, we can use the optimal planar point-location data structures (e.g., [4, 8]) to solve the
problem in O(m) space with O(logm) query time. Since m = O(n), we obtain a Q-RCP
data structure using O(n) space with O(logn) query time in worst-case.

Next, we analyze the average-case performance of the above data structure. In fact, it
suffices to bound the expected number of the candidate pairs. Surprisingly, we have the
following poly-logarithmic bound.

» Lemma 2. For S oc R" where R is an azis-parallel rectangle, E[|®(S, Q)|] = O(log®n).

Proof Sketch. Assume R = [0,1] x [0,A] w.o.l.g. It suffices to show E[|®(S, Q<)|] =
O(log®n). Let ai,...,a, be the n random points in S, and E; ; be the event (a;,a;) €
@(S, Q). By linearity of expectation, one can see that E[|®(S, Q<)|] = O(n? - Pr[E1 2)).
So it suffices to bound Pr[Ej 3]. Define random variables Zyax = max{a1.z, 2.2}, Ymax =
max{ai.y, as.y}, and define iy, Ymin similarly. The quadrant Q = (—00, Zmax| X (—00, Ymax|
is the minimal quadrant containing a1, az, and thus (a,as) € ®(S, Q<) iff (a;,as) is the
closest-pair in SN Q. Define A = {i > 3: a; € @}, which is a random subset of {3,...,n}.
We bound Pr[E} 2] through several steps. First, we fix the values of Zmax, Ymax, 4 and
study the corresponding conditional probability of E . Fixing & € (0,1], § € (0, 4], and
nonempty J C {3,...,n}, let Cz g5 5 be the event (Zmax = Z) A (Ymax = §) A (A = J). Consider
Pr[Ey 2 | Cz,45,.5]. Let 0z = Tmax — Tmin and 0y = Ymax — Ymin. We observe that under the
condition Cj 5 7, E1 2 happens only if (6, < k(S7)) A (dy < k(Sy)), where S; = {a;:j € J}.
Furthermore, under C; 3 s, the |J| random points in S; can be viewed as independently
drawn from the uniform distribution on the rectangle [0, Z] x [0, §]. As such, Lemma 1 can be
applied to understand the behavior of £(S). By properly applying Lemma 1 and doing some
careful calculations, we deduce that under the condition Cj g5, (6, < k(Ss)) A (d, < K(Sy))
happens with probablity O(1/[.J|?). Thus, Pr[E; 2 | Cz,5.5] = O(1/|J]?). This further implies
Pr[Eis | |[A] = m] = O(1/m?) for all m € {1,...,n —2}. With this in hand, to bound
Pr[E1 o], it suffices to study Pr[|A| = m]. To calculate Pr[|A] = m] is in fact a combinatorial

73:5

SoCG 2018

73:6

New Bounds for Range Closest-Pair Problems

problem, because |A| only depends on the orderings of the z-coordinates and y-coordinates
of ay,...,a,. Using combinatorial arguments, we obtain Pr[|A] = m] = O((m + 1) logn/n?).
Finally, applying the formula Pr[E; 5] = Enm;zo Pr]|A] = m] - Pr[E12 | |A| = m] and the
bounds achieved, we have Pr[E} o] = O(log? n/n?). As a result, E[|®(S, 9<)[] = O(log® n)
and E[|&(S, Q)] = O(log®n). A complete proof can be found in [12]. <

Using the above lemma, we can immediately conclude that our data structure uses O(log? n)
space in average-case. The average-case query time is in fact O(E[log|®(S, Q)|]). Note that
E[log z] < log E[z] for a positive random variable z, thus E[log|®(S, Q)|] = O(loglogn).

» Theorem 3. There exists a Q-RCP data structure A such that
For any S CR? of size n, Space(A(S)) = O(n) and Qtime(A(S)) = O(logn).
For a random S o< R"™ where R is the unit square or more generally an arbitrary axis-
parallel rectangle, E[Space(A(S))] = O(log® n) and E[Qtime(.A(S))] = O(loglogn).

3 Strip query

We consider the RCP problem for strip queries, i.e., the P-RCP problem. In order to solve the
P-RCP problem, it suffices to consider the PV-RCP problem. Let S C R? be a dataset of size
n. Suppose (S, P¥) = {¢1,...,dm} where ¢; = (a;,b;), and assume ¢, ..., ¢, are sorted
in increasing order of their lengths. It was shown in [10] that m = O(nlogn). We construct
a mapping (9, PV) — R? as ¢; — w; where w; = (min{a;.z, b;.x}, max{a;.z,b;.x}), and
observe that for a query range P = [z1,22] X R € PV, ¢; is contained in P iff w; is in the
southeast quadrant [z, 00) X (—00, z3]. Let W; be the northwest quadrant with vertex w;.
Then we further have w; € [z1,00) X (—o0,zg] iff p € W, where p = (x1,22). As such,
the closest-pair in SN P is ¢, for n = min{i : p € W;}. Thus, as in Section 2, we can
successively overlay W7, ...,W,, to create a planar subdivision, and use point-location to
solve the problem in O(m) space and O(logm) query time. Since m = O(nlogn) here, we
obtain a P-RCP data structure using O(nlogn) space with O(logn) query time in worst-case.

Next, we analyze the average-case performance of our data structure. Again, it suffices
to bound the expected number of the candidate pairs. For later use, we study here a more
general case in which the queries are 3-sided rectangles.

» Lemma 4. Let S o« [[;, I; where I1, ..., I, are distinct vertical (resp., horizontal) aligned
segments sorted from left to right (resp., from bottom to top). Suppose a; € S is the point
drawn on I;. Then fori,j € {1,...,n} withi < j and X € {U*, U} (resp., X € {UT,UT}),

loo(i — g
Pr{(a;, a;) € B(S, X)] = O (05(3 , 2”) .
(=)
From the above lemma, a direct calculation gives us the following corollary.

» Corollary 5. For S < R"™ where R is an axis-parallel rectangle, E[|®(S,U)|] = ©(n) and
E[|2(S,P)[] = ©(n).

Using the above argument and our previous data structure, we conclude the following.

» Theorem 6. There exists a P-RCP data structure B such that
For any S C R? of size n, Space(B(S)) = O(nlogn) and Qtime(B(S)) = O(logn).
For a random S o< R™ where R is the unit square or more generally an arbitrary axis-
parallel rectangle, E[Space(B(S))] = O(n) and E[Qtime(B(S))] = O(logn).

J. Xue, Y. Li, S. Rahul, and R. Janardan

4 Rectangle query

We consider the RCP problem for rectangle queries, i.e., the R-RCP problem. Interestingly,
our final solution for the R-RCP problem is a combination of two simpler solutions, each of
which partially achieves the desired bounds.

We first describe the common part of our two solutions. Let S C R? be a dataset of size
n. The common component of our two data structures is a standard 2D range tree built on
S [3]. The main tree (or primary tree) 7 is a range tree built on the x-coordinates of the
points in S. Each node u € T corresponds to a subset S(u) of a-consecutive points in S,
called the canonical subset of u. At u, there is an associated secondary tree Ty, which is a
range tree built on the y-coordinates of the points in S(u). With an abuse of notation, for
each node v € Ty, we still use S(v) to denote the canonical subset of v, which is a subset of
y-consecutive points in S(u). As in [6], for each (non-leaf) primary node u € 7, we fix a
vertical line [, such that the points in the canonical subset of the left (resp., right) child of u
are to the left (resp., right) of l,,. Similarly, for each (non-leaf) secondary node v, we fix a
horizontal line I, such that the points in the canonical subset of the left (resp., right) child
of v are above (resp., below) l,,. Let v € T, be a secondary node. Then at v we have two
lines Iy and I, which partition R? into four quadrants. We denote by S1(v), ..., S4(v) the
subsets of S(v) contained in these quadrants; see Figure 2a for the correspondence. In order
to solve the problem, we need to store some additional data structures at the nodes of the
tree (called sub-structures). At each secondary node v, we store four Q-RCP data structures

A(S1(v)), ..., A(S4(v)) (Theorem 3).

Now let us explain what we can do by using this 2D range tree (with the sub-structures).

Let R = [x1, 2] X [y1,¥2] € R be a query rectangle. We first find in T the splitting node
u € T corresponding to the range [z1, 23], which is by definition the LCA of all the leaves
whose corresponding points are in [1,z2] X R. Then we find in 7y, the splitting node v € Ty,
corresponding to the range [y1,y2]. If either of the splitting nodes does not exist or is a leaf
node, then |[S N R| < 1 and nothing should be reported. So assume u and v are non-leaf
nodes. By the property of splitting node, we have SN R = S(v) N R, and the lines I,, and
ly both intersect R. Thus, [, and I, decompose R into four smaller rectangles Ry, ..., Ry4;
see Figure 2b for the correspondence. By construction, we have S(v) N R; = S;(v) N R;. In
order to find the closest-pair in S N R, we first try to compute the closest-pair in SN R;
for all ¢ € {1,...,4}. This can be done by querying the sub-structures stored at v. Indeed,
SNR; =S(v)NR; = S;(v)NR; = S;(v)NQ;, where Q; is the quadrant obtained by removing
the two sides of R; that coincide with I, and l,. Therefore, we can query A(S;(v)) with Q;
to find the closest-pair in S N R;. Once the four closest-pairs are computed, we take the
shortest one (i.e., the one of the smallest length) among them and denote it by ¢.

g L

. S3(v) . Sa(v)
’ . . S(V) : . . RB R4
. . . o | R
. . v l
. . Rl RQ v
M . S] (V). . SZ (V)
(a) Ilustrating the subsets S1(v), ..., Sa(v). (b) Hlustrating the rectangles Ry, ..., Ra.

Figure 2 Illustrating S1(v),...,S4(v) and R1,..., Ra4.

73:7

SoCG 2018

73:8

New Bounds for Range Closest-Pair Problems

Clearly, ¢ is not necessarily the closest-pair in ly Ly

SN R as the two points in the closest-pair may belong

to different R;’s. However, as we will see, with ¢ R QF = B
in hand, finding the closest-pair in S N R becomes ° I, 0 & lv
easier. Suppose ly : ¢ = a and [, : y = 3, where -

1 <a<zyand y; < B < ys. Let § be the length 5T5

of . We define P, = [a — §,a + 0] x R (resp.,

P; = R x [3—0,8+94]) and R, = RN P, (resp., Figure 3 Illustrating the rectangles

Rg = RN Py); sce Figure 3. We have the following e and fs.
key observation.

» Lemma 7. The closest-pair in S N R is the shortest one among {¢, pu, dp}, where ¢y
(resp., ¢pg) is the closest-pair in S N Ry, (resp., SN Rg).

Due to the above lemma, it now suffices to compute ¢, and ¢g. Note that R, and Rg are
rectangles, so computing ¢, and ¢g still requires rectangle RCP queries. Fortunately, there
are some additional properties which make it easy to search for the closest-pairs in SN R,
and SN Rg. For a set A of points in R? and a,b € A, we define the x-gap (resp., y-gap)
between a and b in A as the number of the points in A\{a,b} whose z-coordinates (resp.,
y-coordinates) are in between a.x and b.x (resp., a.y and b.y).

» Lemma 8. There exists a constant integer k such that the y-gap (resp., x-gap) between
the two points of ¢o (resp., ¢pg) in SN Ry (resp., SN Rg) is at most k.

We shall properly use the above lemma to help compute ¢, and ¢g. At this point, our two
solutions diverge.

4.1 Preliminary: extreme point data structures

Before presenting our solutions, we introduce the so-called top/bottom extreme point (TBEP)
and left/right extreme point (LREP) data structures. For a query space X’ and a constant
integer k, an (X, k)-TBEP (resp. (X, k)-LREP) data structure stores a given set .S of points
in R? and can report the k topmost/bottommost (resp., leftmost/rightmost) points in SN X
for a query range X € X.

» Lemma 9. Let k be a constant integer. There exists a (PY,k)-TBEP data structure KV
such that for any S C R? of size n, Space(K¥(S)) = O(n) and Qtime(KV(S)) = O(logn).
Symmetrically, there also exists a (P®, k)-LREP data structure KP satisfying the same bounds.

» Lemma 10. Let | be a vertical (resp., horizontal) line and k be a constant integer. There
ezists a (P, k)-TBEP (resp., (P, k)-LREP) data structure K; such that for S o [, I;
where Iy, ..., I, are distinct vertical (resp., horizontal) aligned segments, E[Space(K;(S))] =
O(logn) and E[Qtime(X;(S))] = O(loglogn).

We remark here that the TBEP (resp., LREP) data structures are essentially top-k data
structures when using the y-coordinates (resp., z-coordinates) as weights. Therefore, a 1D
top-k data structure (see for example [7]) can be used to prove Lemma 9. For completeness,
we also give a proof in the full version [12].

4.2 First solution

We now introduce our first solution, which achieves the desired worst-case bounds. Let k be
the constant integer in Lemma 8. In our first solution, besides the 2D range tree presented

J. Xue, Y. Li, S. Rahul, and R. Janardan

before, we build additionally two 1D range trees 7’ and 7" on S, where T’ (resp., T") is
built on y-coordinates (resp., z-coordinates). For u’ € T’ (resp., u” € T"), we still use S(u’)
(resp., S(u”)) to denote the canonical subset of u’ (resp., u” € T7"). At each node u’ € 77,
we store a P-RCP data structure B(S(u’)) (Theorem 6) and a (P, k)-TBEP data structure
KY(S(u')) (Lemma 9). Similarly, at each node u” € 7", we store a P-RCP data structure
B(S(u")) (Theorem 6) and a (P", k)-LREP data structure K"(S(u”)) (Lemma 9).

We now explain how to compute ¢, and ¢g. Suppose Ry = [Zq,Zh] X [Ya,Yh]. Let
P, = [zq, 2] xR and Py = R X [yq, y,]. To compute ¢, we first find in 7’ the t = O(logn)
canonical nodes uj,...,u} € T’ corresponding to the range [y, y,]. Then U;l S(ul) =

SN Py, and each S(u}) is a set of y-consecutive points in S N P,. Furthermore, S N
R, = Ule S(u}) N P,. We query the sub-structures B(S(u})),...,B(S(u})) with P, to
find the closest-pairs ¢1,...,¢; in S(vi) N Py,...,S(v¢) N Py, respectively. We also query
KY(S(u})),...,KY(S(u})) with P, to obtain the k topmost and bottommost points in
S(u})NP,...,S(u;) N P, respectively; we denote by K the set of the 2kt reported points.
Then we find the closest-pair ¢k in K using the standard divide-and-conquer algorithm. We
claim that ¢, is the shortest one among {¢1, ..., ¢, ¢k }. Suppose ¢, = (a,b). If the two
points of ¢, are both contained in some S(u}), then clearly ¢, = ¢;. Otherwise, by Lemma 8
and the choice of k, the two points of ¢, must belong to K and hence ¢, = ¢x. It follows
that ¢o € {¢1,..., ¢, ¢k }. Furthermore, because the pairs ¢1, ..., ¢, ¢x are all contained
in R,, ¢, must be the shortest one among {¢1,...,d:, dx }. Therefore, with ¢1,..., ¢, ok
in hand, ¢, can be easily computed. The pair ¢z is computed symmetrically using 7".
Finally, taking the shortest one among {¢, ¢o, ¢35}, the query R can be answered.

The 2D range tree together with the two 1D range trees 7' and 7" forms an R-RCP
data structure, which is our first solution. A straightforward analysis gives us the worst-case
space cost and query time of this data structure.

» Theorem 11. There exists an R-RCP data structure Dy such that for any S C R? of size
n, Space(D;(S)) = O(nlog?n) and Qtime(D:(S)) = O(log®n).

Our first solution itself already achieves the desired worst-case bounds, which simultane-
ously improves the results given in [6] and [10].

4.3 Second solution

We now introduce our second solution, which has the desired average-case space cost and
an O(logn) query time (even in worst-case). In our second solution, we only use the 2D
range tree presented before, but we need some additional sub-structures stored at each
secondary node. Let k be the constant integer in Lemma 8. Define S, (v) = S5(v) U S4(v)
(resp., Sy(v) = S1(v) U S2(v)) as the subset of S(v) consisting of the points above (resp.,
below) ly. Similarly, define S¢(v) and Sy (v) as the subsets to the left and right of I,
respectively. Let v € Ty, be a secondary node. Besides A(S1(v)),...,.A(Ss(v)), we store at
v two (P, k)-TBEP data structures K;, (Sa(v)), K;,(Sy(v)) (Lemma 10) and two (P, k)-
LREP data structures K;, (S¢(v)), Ki, (Sp (v)) (Lemma 10). Furthermore, we need a new
kind of sub-structures called range shortest-segment (RSS) data structures. For a query
space X, an X-RSS data structure stores a given set of segments in R? and can report the
shortest segment contained in a query range X € X. We have the following observation.

» Lemma 12. There exists a U-RSS data structure C such that for any set G of m segments
in R?, Space(C(G)) = O(m?) and Qtime(C(G)) = O(logm).

73:9

SoCG 2018

73:10

New Bounds for Range Closest-Pair Problems

Define @, (v) = @, (Sa(v),U"), Py (v) = &1, (Sy(v),UT), P((v) = B, (S¢(V),UT), Bp (V) =
@y, (Sp (v),U). We can view @, (v), Py (v),Pq(v), Py (v) as four sets of segments by
identifying each point-pair (a,b) as a segment [a,b]. Then we store at v four U-RSS data
structures C(P4(v)),C(Py(v)),C(P¢(Vv)),C(Pa(v)) (Lemma 12).

We now explain how to compute ¢, and ¢g. Let us consider ¢,. Recall that ¢, is the
closest-pair in SN Ry, i.e., in S(v)NR,. Let P be the [-anchored strip obtained by removing
the top/bottom bounding line of R,,. If the two points of ¢, are on opposite sides of I, then
by Lemma 8 its two points must be among the k& bottommost points in S, (v) N P and the
k topmost points in Sy (v) N P respectively. Using K;, (Sa(v)) and K, (Sy(v)), we report
these 2k points, and compute the closest-pair among them by brute-force. If the two points
of ¢, are on the same side of [y, then they are both contained in either S, (v) or Sy(v).
So it suffices to compute the closest-pairs in S, (v) N R, and Sy(v) N R,. Without loss of
generality, we only need to consider the closest-pair in S, (v) N R,. We denote by U the
3-sided rectangle obtained by removing the bottom boundary of R,, and by @Q; (resp., Q2)
the quadrant obtained by removing the right (resp., left) boundary of U. We query A(S1(v))
with @1, A(S2(v)) with Q2, and C(P4(v)) with U. Clearly, the shortest one among the three
answers is the closest-pair in S, (v) N R,. Indeed, the three answers are all point-pairs in
Sa(v) N R,. If the two points of the closest-pair in S, (v) N R, are both to the left (resp.,
right) of Iy, A(S1(v)) (resp., A(S2(Vv))) reports it; otherwise, the closest-pair crosses Iy, and
C(®4(v)) reports it. Now we see how to compute ¢, and ¢ can be computed symmetrically.
Finally, taking the shortest one among {¢, ¢, 5}, the query R can be answered.

A straightforward analysis shows that the overall query time is O(logn) even in worst-case.
The worst-case space cost is not near-linear, as the U-RSS data structure C may occupy
quadratic space by Lemma 12. However, we can show that the average-case space cost is in
fact O(nlogn). The crucial thing is to bound the average-case space of the sub-structures
stored at the secondary nodes. The intuition for bounding the average-case space of the
Q-RCP and TBEP/LREP sub-structures comes directly from the average-case performance
of our Q-RCP data structure (Theorem 3) and TBEP/LREP data structure (Lemma 10).
However, to bound the average-case space of the U/-RSS sub-structures is more difficult. By
our construction, the segments stored in these sub-structures are 3-sided candidate pairs that
cross a line. As such, we have to study the expected number of such candidate pairs in a
random dataset. To this end, we recall Lemma 4. Let [be a vertical line, and .S H?:1 I; be
a random dataset drawn from vertical aligned segments I,...,I, as in Lemma 4. Suppose
we build a ¢-RSS data structure C(®) on & = &;(S,U*). Using Lemma 4, a direct calculation
gives us E[|®;(S,U")|] = O(log®n). Unfortunately, this is not sufficient for bounding the
average-case space of C(®), because E[Space(C(®))] = O(E[|®;(S,U*)|?]) and in general
E[|®;(S,U*)|?] # E2[|®;(S,U")|]. Therefore, we need a bound for E[|®;(S,U*)|?], which can
also be obtained using Lemma 4, but requires more work.

» Lemma 13. Let | be a vertical (resp., horizontal) line and S o [[_, I; where I, ... I,
are distinct vertical (resp., horizontal) aligned segments. Then for X € {U+,UT} (resp.,
X e {Uus,u=}), K& (S, X)|] = O(log®n) and E[|;(S, X)[*] = O(log* n).

Now we are ready to prove the bounds of our second solution.

» Theorem 14. There exists an R-RCP data structure Dy such that
For any S C R? of size n, Qtime(D2(S)) = O(logn).
For a random S « R"™ where R is the unit square or more generally an arbitrary axis-
parallel rectangle, E[Space(D2(S))] = O(nlogn).

Proof sketch. The query time can be shown via a direct analysis. To bound the average-case
space cost, let S o< R"™. Since a 2D range tree built on a dataset of n points has a fixed

J. Xue, Y. Li, S. Rahul, and R. Janardan

tree structure independent of the dataset (while depending on the number n), Dy(S) can
be viewed as a fixed 2D range tree with random sub-structures. Let v € Ty be a secondary
node. We want to bound the expected space cost of the sub-structures stored at v. To
this end, we take advantage of Theorem 3, Lemma 10, and Lemma 13. However, before
this, there is a crucial issue to be handled. We notice that Theorem 3, Lemma 10, and
Lemma 13 assume the random dataset is independently and uniformly generated from either
an axis-parallel rectangle or a set of aligned segments. Unfortunately, the underlying datasets
of the sub-structures stored at v, which are S1(v),...,Ss(v) and Sy (v), Sy(v), S¢(v), Sp (V),
are neither (independently and uniformly) generated from a rectangle nor generated from
aligned segments. To handle this issue is the technical part of this proof, and we only give
some intuition here (the details can be found in the complete proof). The key idea is to fix a
configuration of the points outside the random dataset under consideration, which makes the
random dataset distributed independently and uniformly on a certain rectangle. For instance,
if we fix a configuration of S\S(v), then S;(v) can be viewed as independently and uniformly
generated from a rectangle and thus Theorem 3 applies to bound the expected space cost of
A(S1(v)). In this way, we show that the expected space cost of the sub-structures stored at
v is poly-logarithmic in |S(v)|. It follows immediately that E[Space(D2(S))] = O(nlogn). A
complete proof can be found in [12]. <

4.4 Combining the two solutions

We now combine the two data structures Dy (Theorem 11) and Dy (Theorem 14) to obtain
a single data structure D that achieves the desired worst-case and average-case bounds
simultaneously. For a dataset S C R? of size n, if Space(D(S)) > nlog® n, we set D(S) =
D1(S), otherwise we set D(S) = Dy(S). The worst-case bounds of D follows directly, while
the average-case bounds follows from an analysis using Markov’s inequality.

» Theorem 15. There exists an R-RCP data structure D such that
For any S C R? of size n, Space(D(S)) = O(nlog®n) and Qtime(D(S)) = O(log® n).
For a random S o< R"™ where R is the unit square or more generally an arbitrary azis-
parallel rectangle, E[Space(D(S))] = O(nlogn) and E[Qtime(D(S))] = O(logn).

5 Halfplane query

We consider the RCP problem for halfplane queries, i.e., the

H-RCP problem. In order to solve the H-RCP problem, it W;

suffices to consider the H-RCP problem. Let S C R? be the a/bi) o

dataset of size n. : H \/
We shall apply the standard duality technique [3]. A non- T "b"f/ i "

vertical line [: y = uz +v in R? is dual to the point I* = (u, —v)
and a point p = (s,t) € R? is dual to the line p* : y = sx — t.
A basic property of duality is that p € T (resp., p € IV) iff Figure 4 Tllustrating the
I* € (p*)! (resp., I* € (p*)¥). To make the exposition cleaner, upward-open wedge W;.

we distinguish between primal space and dual space, which are

primal space dual space

two copies of RZ. The dataset S and query ranges are assumed to lie in the primal space,
while their dual objects are assumed to lie in the dual space. Duality allows us to transform
the HT-RCP problem into a point location problem as follows. Let H = [T € H' be a query
range. The line [bounding H is dual to the point [* in the dual space; for convenience, we

73:11

SoCG 2018

73:12

New Bounds for Range Closest-Pair Problems

also call [* the dual point of H. If we decompose the dual space into “cells” such that the
query ranges whose dual points lie in the same cell have the same answer, then point location
techniques can be applied to solve the problem directly. Note that this decomposition must be
a polygonal subdivision I" of R?, which consists of vertices, straight-line edges, and polygonal
faces (i.e., cells). This is because the cell-boundaries must be defined by the dual lines of
the points in S. In order to analyze the space cost and query time, we need to study the
complexity |I'| of I'. An O(n?) trivial upper bound for |I'| follows from the fact that the
subdivision formed by the n dual lines of the points in S has an O(n?) complexity. In what
follows, we shall show |I"| = O(n) by using the additional properties of the problem, which is
a key ingredient of our result in this section.

Suppose @(S,H') = {¢1,...,¢m} where ¢; = (a;,b;) and @1, ..., ¢, are sorted in
increasing order of their lengths. It was shown in [1] that m = O(n), and the candidate pairs
do not cross each other, i.e., the segments [a;,b;] and [a;, b;] do not cross for any i # j. The
non-crossing property of the candidate pairs is important and will be used later for proving
Lemma 16. With this in hand, we now consider the subdivision I'. Let H =" € H' be a
query range. By the property of duality, ¢; is contained in H iff I* € (a})" and I* € (b})T,
i.e., I* is in the upward-open wedge W; generated by the lines a} and b (in the dual space);
see Figure 4.

As such, the closest-pair in SN H to be reported is ¢,, for n = min{i : {* € W;}. Therefore,
I' can be constructed by successively overlaying the wedges W1, ..., W, (similarly to what
we see in Section 2). Formally, we begin with a trivial subdivision Iy of R?, which consists
of only one face, the entire plane. Suppose [;_1 is constructed, which has an outer face
F;_1 equal to the complement of U;;ll W; in R2. Now we construct a new subdivision I}
by “inserting” W; to I;_1. Specifically, I'; is obtained from I';_; by decomposing the outer
face F;_1 via the wedge W;; that is, we decompose F;_; into several smaller faces: one is
F;_1\W; and the others are the connected components of F;_; N W,. Note that F;_1\W;
is the complement of U;:l W;, which is connected (as one can easily verify) and becomes
the outer face F; of I';. In this way, we construct I, ..., I}, in order, and it is clear that
I, = I'. The linear upper bound for |I'| follows from the following technical result.

» Lemma 16. |I;| — |I;_1| = O(1) fori e {1,...,m}. In particular, |I'| = O(m).

Proof sketch. We denote by OW; the boundary of the wedge W;, which consists of two
rays (emanating from a point) contained in a} and b} respectively. We observe that, to
prove |I;| — |I;—1] = O(1), it suffices to show the number of the connected components of
OW,; N F;_; is constant. This can be further reduced to considering one ray of OW; (say
the ray r contained in af). We notice that r N F;_; = 7\ U;;ll (r N Wj), and each r N W
is a connected portion of r. Let I; be the line through a;,b; and I} be the line through a;
that is perpendicular to I;, then [} is the initial point of r and (I})*
crucial observation here is that each r N W for j € {1,...,7 — 1} satisfies at least one of

is a point on a;. The

the four conditions: (i) » N W; is empty; (ii) » N W, contains the initial point of r; (iii)

*

r N W; contains the infinite end of r; (iv) » N W; contains the point (I;)*. The proof of
this observation requires us to carefully analyze various cases using the properties of duality
and the problem itself. Basically, we consider three cases: (1) a;,b; € I3 (2) aj,b; € I}; (3)
one of a;,b; is strictly above [; while the other is strictly below [;. The first two cases are
not very difficult, and are analyzed using duality and some geometry. The last case is the
most subtle one. To handle it requires a careful use of the facts that ¢;, ¢; do not cross
(i.e., the segments [a;,b;] and [a;, b;] do not cross) and ¢; is shorter than ¢, (because j < i
and @1, ..., o, are sorted in increasing order of their lengths), as well as some properties
of duality. We omit the detailed analysis in this sketch. Once the observation is proved, it

J. Xue, Y. Li, S. Rahul, and R. Janardan

follows readily that U;;ll(r N W;) has at most three connected components and r N F;_; has

at most two. As such, |I;| — |I;-1] = O(1). A complete proof can be found in [12]. <

With the above result in hand, we can build an optimal point-location data structure for
I' using O(m) space with O(logm) query time to solve the RCP problem. Since m = O(n),
we obtain an H-RCP data structure using O(n) space and O(logn) query time in worst-case.

Next, we analyze the average-case bounds of the above data structure. In fact, it suffices
to bound the expected number of the candidate pairs. Similarly to the quadrant case, we
can prove a poly-logarithmic bound.

» Lemma 17. For S oc R™ where R is an axis-parallel rectangle, E[|®(S,H)|] = O(log® n).
Now we are able to conclude the following.

» Theorem 18. There exists an H-RCP data structure € such that

For any S C R? of size n, Space(£(S)) = O(n) and Qtime(E(S)) = O(logn).

For a random S o< R™ where R is the unit square or more generally an arbitrary axis-

parallel rectangle, E[Space(£(S))] = O(log® n) and E[Qtime(£(S))] = O(loglogn).
Our data structure can be built in worst-case O(nlog? n) time. We only give the high-level
idea here, and the details can be found in [12]. We first observe that if the candidate pairs
@1, ..., 0m are already given, then the subdivision I" can be constructed in O(mlogm) time.
The idea is to begin with Iy and iteratively construct I from I;_1 by “inserting” the wedge
W, dual to ¢;. Each I'; can be constructed in amortized O(logm) time (from I';_;) by using
a (balanced) BST to maintain the outer face and properly exploiting the behavior of W;
observed in Lemma 16. It follows that I' can be constructed in O(mlogm) time. Now
consider the general case in which ¢, ..., ¢, are not given. We use an approach in [1] to
compute in O(nlog?n) time a set ¥ of O(nlogn) point-pairs in S such that &(S, H") C @.
By considering the pairs in ¥ in increasing order of their lengths, we can efficiently verify
whether each pair is a candidate pair or not, and update the subdivision (using the method
above) whenever a candidate pair is recognized. The overall process takes O(n log? n) time.

6 Conclusion and future work

We revisited the range closest-pair (RCP) problem, which aims to preprocess a set S of
points in R? into a data structure such that for any query range X, the closest-pair in SN X
can be reported efficiently. We proposed new RCP data structures for various query types
(including quadrants, strips, rectangles, and halfplanes). Both worst-case and average-case
analyses were applied, resulting in new bounds for the RCP problem (see Table 1).

We now list some open questions for future study. First, as mentioned in Section 1.1,
the preprocessing for our orthogonal RCP data structures remains open. It is not clear how
to build these data structures in sub-quadratic time. Besides, the RCP problem for other
query types is also open. One important example is the disk query, which is usually much
harder than the rectangle query and halfplane query in traditional range search. For an easier
version, we can focus on the case where the query disks have a fixed radius, or equivalently,
the query ranges are translates of a fixed disk. Along this direction, one can also consider
translation queries of some shape other than a disk. For instance, if the query ranges are
translates of a fixed rectangle, can we have more efficient data structures than our rectangle
RCP data structure in Section 47 Finally, the RCP problem in higher dimensions is quite
open. To our best knowledge, the only known result for this is a simple data structure given
in [6] constructed by explicitly storing all the candidate pairs, which only has guaranteed
average-case performance.

73:13

SoCG 2018

73:14

New Bounds for Range Closest-Pair Problems

—— References

1

10

11
12

Mohammad Ali Abam, Paz Carmi, Mohammad Farshi, and Michiel Smid. On the power of
the semi-separated pair decomposition. In Workshop on Algorithms and Data Structures,
pages 1-12. Springer, 2009.

Pankaj K Agarwal, Jeff Erickson, et al. Geometric range searching and its relatives. Con-
temporary Mathematics, 223:1-56, 1999.

M. de Berg, M. van Kreveld, M. Overmars, and O. C. Schwarzkopf. Computational geom-
etry. In Computational geometry, pages 1-17. Springer, 2000.

Herbert Edelsbrunner, Leonidas J Guibas, and Jorge Stolfi. Optimal point location in a
monotone subdivision. SIAM Journal on Computing, 15(2):317-340, 1986.

Prosenjit Gupta. Range-aggregate query problems involving geometric aggregation opera-
tions. Nordic journal of Computing, 13(4):294-308, 2006.

Prosenjit Gupta, Ravi Janardan, Yokesh Kumar, and Michiel Smid. Data structures
for range-aggregate extent queries. Computational Geometry: Theory and Applications,
2(47):329-347, 2014.

Saladi Rahul and Yufei Tao. On top-k range reporting in 2D space. In Proceedings of
the 34th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
pages 265—275. ACM, 2015.

Neil Sarnak and Robert E Tarjan. Planar point location using persistent search trees.
Communications of the ACM, 29(7):669-679, 1986.

Jing Shan, Donghui Zhang, and Betty Salzberg. On spatial-range closest-pair query. In In-
ternational Symposium on Spatial and Temporal Databases, pages 252-269. Springer, 2003.
R Sharathkumar and Prosenjit Gupta. Range-aggregate proximity queries. IIIT Hyderabad,
Telangana, 500032, 2007.

Michiel Smid. Closest point problems in computational geometry. Citeseer, 1995.

Jie Xue, Yuan Li, Saladi Rahul, and Ravi Janardan. New bounds for range closest-pair
problems. arXiv preprint arXiv:1712.09749, 2017.

	Introduction
	Our contributions, techniques, and related work
	Notations and Preliminaries

	Quadrant query
	Strip query
	Rectangle query
	Preliminary: extreme point data structures
	First solution
	Second solution
	Combining the two solutions

	Halfplane query
	Conclusion and future work

