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Abstract
Over the past decade, polyhedral meshing has been gaining popularity as a better alternative to
tetrahedral meshing in certain applications. Within the class of polyhedral elements, Voronoi cells
are particularly attractive thanks to their special geometric structure. What has been missing
so far is a Voronoi mesher that is sufficiently robust to run automatically on complex models. In
this video, we illustrate the main ideas behind the VoroCrust algorithm, highlighting both the
theoretical guarantees and the practical challenges imposed by realistic inputs.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases sampling, surface reconstruction, polyhedral meshing, Voronoi

Digital Object Identifier 10.4230/LIPIcs.SoCG.2018.77

Category Multimedia Exposition

Related Version See the corresponding paper in these proceedings [2], http://dx.doi.org/10.
4230/LIPIcs.SoCG.2018.1.

Funding This material is based upon work supported by the U.S. Department of Energy, Office
of Science, Office of Advanced Scientific Computing Research (ASCR), Applied Mathematics
Program.

Acknowledgements Sandia National Laboratories is a multi-mission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-NA0003525.

1 Supported in part by a contract from Sandia, #1439100, and a grant from NIH, R01-GM117594

© Ahmed Abdelkader, Chandrajit L. Bajaj, Mohamed S. Ebeida, Ahmed H. Mahmoud,
Scott A. Mitchell, John D. Owens, and Ahmad A. Rushdi;
licensed under Creative Commons License CC-BY

34th International Symposium on Computational Geometry (SoCG 2018).
Editors: Bettina Speckmann and Csaba D. Tóth; Article No. 77; pp. 77:1–77:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:akader@cs.umd.edu
http://dx.doi.org/10.4230/LIPIcs.SoCG.2018.77
http://dx.doi.org/10.4230/LIPIcs.SoCG.2018.1
http://dx.doi.org/10.4230/LIPIcs.SoCG.2018.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


77:2 VoroCrust Illustrated: Theory and Challenges

1 Introduction

Mesh generation is a fundamental problem in computational geometry, geometric modeling,
computer graphics, scientific computing and engineering simulations. There has been a
growing interest in polyhedral meshes as an alternative to tetrahedral or hex-dominant
meshes [17]. Polyhedra are less sensitive to stretching, which enables the representation of
complex geometries without excessive refinement. In addition, polyhedral cells have more
neighbors even at corners and boundaries, which offers better approximations of gradients
and local flow distributions. Even compared to hexahedra, fewer polyhedral cells are needed
to achieve a desired accuracy in certain applications. This can be very useful in several
numerical methods [7]. In particular, the accuracy of a number of important solvers, e.g., the
two-point flux approximation for conservation laws [14], greatly benefits from a conforming
mesh which is orthogonal to its dual as naturally satisfied by Voronoi meshes. Such solvers
play a crucial role in hydrology [19] and computational fluid dynamics [8].

A conforming volume mesh exhibits two desirable properties simultaneously: (1) a
decomposition of the enclosed volume, and (2) a reconstruction of the bounding surface.
Conforming Delaunay meshing is well-studied [11], but Voronoi meshing is less mature. A
common practical approach to polyhedral meshing is to dualize a tetrahedral mesh and
clip each cell by the bounding surface [15]. Unfortunately, clipping does not guarantee the
convexity and connectedness of cells [13]. Another approach is to mirror Voronoi sites across
the surface [20], but we are not aware of any approximation guarantees in this category.

The desired mesher takes as input a description of the geometric model for which a
conforming Voronoi mesh is to be generated, e.g., a set of surface samples or a complete
computer-aided design (CAD) model. Having access to a CAD model allows the mesher
to accurately sample new points as needed; a crucial requirement for high quality meshing.
Deferring the sampling problem, we start in an idealized setting that allows us to establish
strong theoretical guarantees on the correctness of the underlying approach. In a forthcoming
paper [3], we describe the design and implementation of the complete VoroCrust algorithm,
which can handle realistic inputs possibly having sharp features, can estimate a sizing function
and generate samples, and can guarantee the quality of the output mesh.

In this multimedia contribution, we illustrate the basic constructions underlying the
proposed algorithm and briefly explain why it works. A number of meshes generated by a
preliminary implementation is shown. Finally, we highlight the main technical challenges
imposed by realistic inputs along with an illustration of each. The rest of this abstract follows
the same structure and concludes by a summary of the methods used in preparing the video
content.

2 The abstract algorithm

An abstract version of the proposed algorithm, geared towards volumes bounded by smooth
surfaces, can be described as follows. The points used in defining the Voronoi diagram are
referred to as seeds. Figure 1 illustrates the steps in 2D.
1. Take as input a sample P on the surfaceM bounding the volume O.
2. Define a ball Bi centered at each sample pi, with a suitable radius ri, and let U = ∪iBi.
3. Initialize the set of seeds S with the corners of ∂U , S↑ and S↓, on both sides ofM.
4. Optionally, generate additional seeds S↓↓ in the interior of O, and include S↓↓ into S.
5. Compute the Voronoi diagram Vor(S) and retain the cells with seeds in S↓ ∪ S↓↓ as the

volume mesh Ô, where the facets between S↑ and S↓ yield a surface approximation M̂.
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(a) Seeds from union of balls. (b) Isotopic reconstruction. (c) Conforming decomposition.

Figure 1 Screen captures from the video illustrating the algorithmic steps on a planar curve.

Under appropriate conditions on the sampling, the union of balls U is isotopic to the
bounding surfaceM [10]. In addition, the Voronoi facets in Vor(S) separating S↑ and S↓,
which constitute the surface reconstruction M̂, are in fact the medial axis of U [6], which is
isotopic toM if the balls have suitable spacing and radii [9]. The sparsity condition helps in
bounding the quality of mesh elements; the cells are fat. Finally, the enclosed volume can
easily be refined without disrupting the surface reconstruction.

In particular, we assume P is an ε-sample with a weak σ-sparsity condition dictating
d(pi, pj) ≥ σε · lfs(pj) whenever lfs(pi) ≥ lfs(pj). The union of balls U is defined by setting
ri = δ · lfs(pi). Fixing δ = 2ε, the sampling conditions for non-uniform approximation are
satisfied when ε is sufficiently small [10]. We also fix σ = 3/4 to give U a particularly nice
structure which guarantees all samples appear as vertices in the surface reconstruction.

In this setting, we establish a number of geometric properties of the construction. This
allows us to bound the distance between seeds in S↑ ∪ S↓ and their separating facets, which
in turns bounds the inradius of Voronoi cells in the resulting decomposition Ô. To bound the
outradius of cells, we proceed to seed the interior of O. Assuming O is shifted and scaled to
fit in the root box of the octree, we refine octree boxes until their sizes match an extension
of lfs. Once refinement terminates, we insert into S↓↓ additional seeds at the centers of all
boxes which are empty of seeds in S↑ ∪ S↓. This scheme allows us to bound the ratio of
outradius to inradius for all cells, and also to bound the number of seeds. See [2] for the
details and [4] for some earlier related work using a different scheme.

3 Dealing with realistic inputs

Unlike the idealized setting studied above, realistic inputs pose a number of challenges.
Namely, sharp features do not fit well with the ε-sampling paradigm and require extra care
to bound the quality of mesh elements in their neighborhoods. Even without sharp features,
estimating the local feature size is impractical. In addition, for applications requiring surface
approximations with good normals, extra steps are needed to iron out any irregularities that
the basic approach might yield. We address these issues in a forthcoming publication [3].

4 Video production

We used ParaView [5] and the Processing programming language [18] to generate our
animations. Speech was synthesized via the Bing Speech API [12] and the video was
composed using OpenShot [16]. A low-quality version of the video will be hosted on the
conference website [1].
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