
Restricted Power – Computational Complexity
Results for Strategic Defense Games

Ronald de Haan
Institute for Logic, Language and Computation, University of Amsterdam, the Netherlands
me@ronalddehaan.eu

https://orcid.org/0000-0003-2023-0586

Petra Wolf
Wilhelm-Schickard-Institut, University of Tübingen, Germany
wolfp@informatik.uni-tuebingen.de

Abstract
We study the game Greedy Spiders, a two-player strategic defense game, on planar graphs and
show PSPACE-completeness for the problem of deciding whether one player has a winning strategy
for a given instance of the game. We also generalize our results in metatheorems, which consider
a large set of strategic defense games. We achieve more detailed complexity results by restricting
the possible strategies of one of the players, which leads us to Σp

2- and Πp
2-hardness results.

2012 ACM Subject Classification Theory of computation → Problems, reductions and com-
pleteness

Keywords and phrases Computational complexity, generalized games, metatheorems

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.17

Funding Ronald de Haan is supported by the Austrian Science Fund (FWF), project J4047.

Acknowledgements We thank Janosch Döcker and Britta Dorn for proof-reading.

1 Introduction

With computational devices in nearly everyone’s pockets nowadays, the opportunities to play
puzzle games on these devices are plentiful. What makes such games so addictive that they
are played every day by millions of people? One possible answer to the suggested question
is that (generalized variants of) these games are computationally intractable [9, 13], which
could explain why it can be so challenging to find a solution or to get a good score.

In this paper, we analyze the two-player strategic defense game Greedy Spiders [3] from a
computational complexity perspective. In the game Player 1 must prevent Player 2 from
reaching designated positions. In particular, we show that the problem of deciding whether
Player 1 or 2 has a winning strategy is PSPACE-complete. We also generalize this result to
state two metatheorems, which can be applied to a larger set of strategic defense games.
These metatheorems additionally claim that the problem becomes Σp

2-hard if we restrict the
possible strategies of Player 1 to those that can be specified by a polynomial-time computable
algorithm that is to be submitted at the beginning of the game – the problem is Πp

2-hard if
we restrict Player 2 in a similar way. In both cases, the question is whether Player 1 has a
winning strategy. We get hardness results for the complementary classes, if we ask whether
Player 2 has a winning strategy.

© Ronald de Haan and Petra Wolf;
licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 17; pp. 17:1–17:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:me@ronalddehaan.eu
https://orcid.org/0000-0003-2023-0586
mailto:wolfp@informatik.uni-tuebingen.de
http://dx.doi.org/10.4230/LIPIcs.FUN.2018.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

17:2 Restricted Power – Computational Complexity Results for Strategic Defense Games

2 Related Work

While two-player board games have been studied well from a computational complexity point
of view in the 80’s [15, 16], two-player computer games are rarely examined till now. Despite
the fact that the first gaming console was released in 1983 [4], it took until 2000 until the
first computer games where studied in terms of their computational complexity. A good
survey is given by Demaine et al. [9] and Kendall et al. [13]. While the first results where
obtained by examining concrete games, Demaine et al. [10] made a first approach to find
more general structures in games by developing a directed graph based framework for which
they showed several hardness results for different versions. The framework was intended to
be “a natural problem to reduce from.” That approach instantly led to complexity results for
games like Sokoban, Rush Hour, Pushing blocks, and many more. This proposal was taken
up by Forišek [12], who coined the term “metatheorem” to describe complexity results for
abstracted games consisting of a combination of game elements, which are often implemented
in real computer games. The reduction from a metatheorem to a concrete computer game
is obtained by proving that all the elements of one metatheorem can be implemented with
the mechanics provided by the game. Note that this is often much easier than finding an
individual reduction from a computationally hard formal problem to a certain computer
game. Viglietta [19] further developed this approach with several metatheorems that are
particularly useful for platform- and puzzle-games. His metatheorems have been used to
study the complexity of the best-known Nintendo games [6]. Demaine, Lockhart and Lynche
also continued the study of metatheorems for platform-games [11]. To our knowledge, very
few of the currently known metatheorems are suitable to describe two-player games (the only
one known to us are given by Demaine and Hearn [10]) and most of the known metatheorems
are applicable to single-player platform- and puzzle-games only.

3 Greedy Spiders

We describe the game Greedy Spiders [3] as a two-player game – in the version of the game
for iOS and Android devices, the user plays as Player 1, and the moves of Player 2 are
determined by the application. In this paper, we consider the most basic variant of the game.
We describe the game in intuitive terms, before we give a fully detailed formal description of
the game.

Informal Description of the Game

Greedy Spiders is a turn-based strategic defense two-player game played on planar graphs
(that represent spider webs). Initially, some nodes of the graph are occupied by spiders, and
some nodes of the graph are occupied by flies. The players alternate turns, and Player 1
plays first. In each turn of Player 1, she removes an edge from the graph, and Player 2 in
each of her turns moves a subset of the spiders (possibly all) along a remaining edge of the
graph to an adjacent node. The flies cannot move. Player 2 wins whenever some spider
occupies the same node as some fly, and Player 1 wins whenever there is no path anymore
from any of the spiders to any of the flies.

Formal Description of the Game

A game situation (for Greedy Spiders) is represented by a triple C = (G,S, F), where G =
(V,E) is an undirected planar graph, S ⊆ V is the set of nodes that are occupied by spiders,
and F ⊆ V is the set of nodes that are occupied by flies.

R. de Haan and P. Wolf 17:3

C1 = S
•

•
F C2 = S

•

•
F C3 = •

•

S
F C4 = •

•

S
F

Figure 1 Example of a run σ = (C1, . . . , C4) that is winning for Player 1.

A valid move for Player 1 consists of a tuple (C1, C2), where C1 = (G1, S1, F1) and C2 =
(G2, S2, F2) are game situations, such that S1 = S2, F1 = F2, and G2 is obtained from G1
by removing one edge, that is, G1 = (V,E) and G2 = (V,E \ {e}) for some e ∈ E. A valid
move for Player 2 consists of a tuple (C1, C2), where C1 = (G1, S1, F1) and C2 = (G2, S2, F2)
are game situations, for which holds that G1 = G2 = (V,E); that S2 = { f(s) | s ∈ S1 },
where f : S1 → V is an injective function such that for all s ∈ S1 it holds that {s, f(s)} ∈ E
or f(s) = s; and that F1 = F2.

A game situation (G,S, F) is winning for Player 1 if for each s ∈ S and each f ∈ F , there
is no path in G from s to f . A game situation (G,S, F) is winning for Player 2 if S ∩F 6= ∅.
A game situation is terminal if it is winning for either of the players, and it is non-terminal
otherwise.

A run σ of the game is a finite sequence (C1, . . . , Cn) of game situations where (1) for
each odd i ∈ [n − 1] it holds that (Ci, Ci+1) is a valid move for Player 1, (2) for each
even i ∈ [n− 1] it holds that (Ci, Ci+1) is a valid move for Player 2, (3) for each i ∈ [n− 1]
it holds that Ci is non-terminal, and (4) Cn is terminal. (For each u, v ∈ N, we use [u] to
denote the set {1, . . . , u} and [u, v] to denote the set {u, . . . , v}.) The run σ is winning for
either of the players if and only if Cn is.

I Example 1. See Figure 1 for an example of a run σ of the game Greedy Spiders that is
winning for Player 1. In this figure (as in all figures in this paper), nodes that are occupied
by a spider are marked with S and nodes that are occupied by a fly are marked with F.

We invite the reader to play the game and to verify that there is in fact a winning strategy
for Player 1 for the initial game situation C1 depicted in Figure 1.

A strategy for Player 1 for an initial game situation C1 is a finite tree T where each
node is labeled with a pair (C, j), where C is a game situation and j ∈ [2], that satisfies the
following conditions:
(a) the root of T is labeled with (C1, 1);
(b) whenever a node is labeled with (C, 1), for some non-terminal game situation C, it has

one single child that is labeled with (C ′, 2) such that (C,C ′) is a valid move for Player 1;
(c) whenever a node is labeled with (C, 2), for some non-terminal game situation C, it has m

children nodes that are labeled with (C1, 1), . . . , (Cm, 1), respectively, where {(C,C1), . . . ,
(C,Cm)} is the set of all valid moves for Player 2 that have C as first component; and

(d) whenever a node is labeled with (C, j), for some terminal game situation C and some j ∈
[2], it has no children (i.e., it is a leaf).

In the remainder of this paper, we will often slightly abuse notation by identifying a node
of a strategy T with the pair (C, j) with which it is labeled. A strategy T for Player 1 is
winning if all its leaves are labeled with pairs (C, j) where C is winning for Player 1. (In fact,
it can easily be verified that this can only be the case if each leaf is labeled with a pair (C, 2)
for some game situation C that is winning for Player 1.) Note that any root-to-leaf path in
the strategy T corresponds to a run of the game.

Intuitively, a strategy for Player 1 specifies a sequence of valid moves for Player 1 for
each possible combination of valid moves that Player 2 makes. A winning strategy for
Player 1 specifies what moves Player 1 can make to ensure that she wins the game. (Winning)
strategies for Player 2 are defined analogously. Since Greedy Spiders is a zero-sum game,
there is a winning strategy for Player 1 if and only if there is no winning strategy for Player 2.

FUN 2018

17:4 Restricted Power – Computational Complexity Results for Strategic Defense Games

Decision Problem

We consider the following decision problems in this paper.

Winner Determination for Player 1 Input: An initial game situation C1.
Question: Is there a winning strategy for Player 1 for the game situation C1?

Winner Determination for Player 2 Input: An initial game situation C1.
Question: Is there a winning strategy for Player 2 for the game situation C1?

Because the game Greedy Spiders never ends in a tie (either Player 1 or Player 2 wins), these
problems are complementary. That is, Player 1 has a winning strategy if and only if Player 2
does not have a winning strategy.

4 Preliminaries

We assume the reader to be familiar with basic notions from the theory of computational
complexity, such as the complexity classes P and NP, and polynomial-time (many-to-one)
reductions. For more details, we refer to textbooks on the topic (e.g., see [7]).

The class PSPACE consists of all decision problems that can be solved by an algorithm
that uses a polynomial amount of space (memory). Alternatively, one can characterize the
class PSPACE as all decision problems for which there exists a polynomial-time reduction to
the problem TQBF, that is defined using quantified Boolean formulas as follows. A quantified
Boolean formula (in prenex form) is a formula of the form Q1x1Q2x2 . . . Qnxn.ψ, where all xi

are propositional variables, each Qi is either an existential or a universal quantifier, and ψ
is a (quantifier-free) propositional formula over the variables x1, . . . , xn (called the matrix).
Truth for such formulas is defined in the usual way. The problem TQBF consists of deciding
whether a given quantified Boolean formula is true. It is well-known that the problem TQBF
is PSPACE-complete, and that it remains PSPACE-hard even when restricted to quantified
Boolean formulas whose matrix is in 3CNF.

The class PSPACE can also be characterized using alternating Turing machines (ATMs).
A problem is in PSPACE if and only if it can be solved in polynomial time by an alternating
Turing machine [8]. We refer to textbooks on complexity theory for more details (e.g., see [7]).

One can also restrict the number of quantifier alternations occurring in quantified Boolean
formulas, i.e., the number of times where Qi 6= Qi+1. For each constant k ≥ 1 number of
alternations, this leads to a different complexity class. These classes together constitute
the Polynomial Hierarchy. We consider the complexity classes Σp

k, for each k ≥ 1. The
complexity class Σp

k consists of all decision problems for which there exists a polynomial-time
reduction to the problem TQBF∃,k, that is defined as follows. Instances of the problem are
quantified Boolean formulas of the form ∃x1 . . . ∃x`1∀x`1+1 . . . ∀x`2 . . . Qkx`k−1+1 . . . Qkx`k

.

ψ, where Qk = ∃ if k is odd and Qk = ∀ if k is even, where 1 ≤ `1 ≤ · · · ≤ `k, and where ψ
is quantifier-free. The problem is to decide if the quantified Boolean formula is true. For
each k ≥ 1, the dual problem TQBF∀,k is defined analogously, where the first quantifier
of the formula is universal rather than existential. The complexity class Πp

k consists of
all decision problems for which there exists a polynomial-time reduction to the problem
TQBF∀,k. The class NP coincides with Σp

1 , and the class co-NP coincides with Πp
1 .

R. de Haan and P. Wolf 17:5

5 Complexity Results for Greedy Spiders

In this section, we show that the problems Winner Determination for Player 1 and
Winner Determination for Player 2 for Greedy Spiders are PSPACE-complete. Since
these problems are complementary, we focus on Winner Determination for Player 1.
The result for Winner Determination for Player 2 will then follow immediately, because
PSPACE is closed under complement. We begin with showing membership in PSPACE.

I Lemma 2. Winner Determination for Player 1 for Greedy Spiders is in PSPACE.

Proof. Let C1 = (G,S, F) be an initial game situation, where G = (V,E). Since each valid
move for Player 1 removes an edge from G, we know that every possible run σ that starts
with C1 is of length at most 2|E|−1. Therefore, the problem can be solved in polynomial time
by an alternating Turing machine. We describe the algorithm that is implemented by such an
alternating Turing machine. The algorithm starts with a partial run σ = (C1) that is extended
to a complete run. Then, whenever the partial run σ = (C1, . . . , C`) ends with a non-terminal
game situation C` and is of odd length, the algorithm uses existential nondeterminism to guess
a game situation C`+1 such that (C`, C`+1) is a valid move for Player 1, resulting in the partial
run (C1, . . . , C`+1). Whenever the partial run σ = (C1, . . . , C`) ends with a non-terminal
game situation C` and is of even length, the algorithm uses universal nondeterminism to
guess a game situation C`+1 such that (C`, C`+1) is a valid move for Player 2, resulting in the
partial run (C1, . . . , C`+1). Whenever the partial run σ = (C1, . . . , C`) ends with a terminal
game situation C`, the algorithm accepts if and only if C` is winning for Player 1. J

Next, to show PSPACE-hardness of Winner Determination for Player 1 for Greedy
Spiders, we will need a technical lemma that states that TQBF is PSPACE-hard even when
restricted to instances with a matrix in 3DNF whose incidence graph is planar.

Let ϕ = Q1x1 . . . Qnxn.ψ be a quantified Boolean formula, where ψ is a quantifier-free
DNF formula. Suppose that ψ = d1 ∨ · · · ∨ dm. The incidence graph Gϕ of ϕ is a bipartite
graph that is defined as follows. The nodes Vϕ of Gϕ are the literals and the terms of ψ,
i.e., Vϕ = {x1, . . . , xn,¬x1, . . . ,¬xn} ∪ {d1, . . . , dm}. A node corresponding to a literal l is
connected by an edge to a node corresponding to a term dj if and only if l occurs in the
term dj . The incidence graph of a formula with a matrix in CNF is defined analogously.
(Often a variant of incidence graphs with vertices only for variables, not literals, is used.)

I Lemma 3. TQBF is PSPACE-hard even when restricted to quantified Boolean formulas
(in prenex form) whose incidence graph is planar and whose matrix is a 3DNF formula.

Proof. It has been shown that TQBF remains PSPACE-hard when restricted to quantified
Boolean formulas (in prenex form) whose matrix is a 3CNF formula and whose incidence
graph is planar [14, Theorem 1]. This result can easily be adapted to work also for incidence
graphs with vertices for literals (by introducing existentially quantified copies of variables and
adding clauses to ensure that copies are assigned the same truth value). Then, since PSPACE
is closed under complement, and the negation of a quantified Boolean formula whose matrix
is in 3CNF is equivalent to a formula whose matrix is in 3DNF, the result follows. J

I Theorem 4. Winner Determination for Player 1 for Greedy Spiders is PSPACE-
complete.

Proof. Membership in PSPACE is shown in Lemma 2. We show PSPACE-hardness by
means of a polynomial-time reduction from TQBF. Take an arbitrary instance ϕ =
∃x1.∀x2 . . . ∃xn−1.∀xn.ψ, where ψ = d1 ∨ · · · ∨ dm is a quantifier-free 3DNF formula with n

FUN 2018

17:6 Restricted Power – Computational Complexity Results for Strategic Defense Games

g∃i

◦ yi

◦ yi

= S •
•

•
F

•

•

• yi

• yi

3(i− 1)
(3(n− i) + 1)

(3(n− i) + 1)

Figure 2 Gadget g∃
i for variable xi, for odd i.

g∀i

◦ yi

◦ yi

= S •
•

•

• yi

• yi

3(i− 1)
(3(n− i) + 2)

(3(n− i) + 2)

S F(3(i− 1) + 1)

S F(3(i− 1) + 2)

S F(3(i− 1) + 3)

Figure 3 Gadget g∀
i for variable xi, for even i.

variables and m terms – without loss of generality we may assume that the odd-numbered
variables xi are existentially quantified, and that the even-numbered variables xi are univer-
sally quantified. Moreover, by Lemma 3, we may assume that the incidence graph of ϕ is
planar. Also, without loss of generality, we may assume that n is even and that m ≥ 2.

We construct a game situation C1 = (G,S, F) as follows. We construct the planar
graph G = (V,E), together with the sets S ⊆ V and F ⊆ V by connecting various gadgets
for the variables and terms of ϕ.

The idea of the reduction is as follows. We introduce gadgets g∃i that allow Player 1 to
choose a truth assignment for variable xi, for odd i. Similarly, for even i, we have gadgets g∀i
that allow Player 2 to choose a truth assignment for variable xi. These choices are made one
after the other, so that they can depend on the truth assignment of preceding variables. The
choices in these first gadgets consist of sending a spider on one of two paths. Then, we have
gadgets ki and k′i, that serve to let the spiders from gadgets g∃i and g∀i pass onwards, while
giving Player 1 time to cut free flies in all but one of the gadgets hj representing the terms
of ψ. If the chosen truth assignment satisfies a term dj , Player 1 can safely leave the fly in
gadget hj unprotected (and cut free the flies in all other gadgets hj′). In order to make this
function properly, we additionally have gadgets f`, forcing Player 1 to cut free a fly in this
gadget in one of her first ` turns. Figure 7 illustrates this for an example.

For each existentially quantified variable xi – that is, for every odd i ∈ [n] – we add the
gadget g∃i as depicted in Figure 2. For each universally quantified variable xi – that is, for
every even i ∈ [n] – we add the gadget g∀i as depicted in Figure 3. In these figures, nodes in S
are marked with S and nodes in F are marked with F. Also, each edge that is marked with a
number ` represents a path containing ` edges (where each of the non-depicted nodes are
neither in S nor in F). In particular, if ` = 0, the two nodes adjacent to this edge coincide.

Intuitively, the gadgets g∃i and g∀i simulate the quantification over the truth assignments
to the variables x1, . . . , xn. For each i ∈ [n], in Player 1’s (3(i− 1) + 1)-th, (3(i− 1) + 2)-th
and (3(i− 1) + 3)-th turn, she is forced to make a move in gadget g∃i or g∀i (depending on
the parity of i), in order to prevent the spider in this gadget from capturing a fly in this
gadget. Moreover, in gadgets g∃i , her choices for these moves determine which of the two
paths leading to the nodes labeled yi and yi, respectively, are still available to the spider in
this gadget. In the gadgets g∀i , Player 2 is free to choose on which of the two paths, leading
to the nodes labeled yi and yi, respectively, the spider in this gadget moves. Moving a spider
on the path towards yi corresponds to setting variable xi to true, and moving a spider on
the path towards yi corresponds to setting variable xi to false. Thus, in this way, Player 1
can choose the truth values for the odd-numbered variables xi and Player 2 can choose the
truth values for the even-numbered variables xi.

R. de Haan and P. Wolf 17:7

◦yi ki ◦ xi = •yi

•
•

•
•

... •

•
•

•
•

... • · · · •

•
•

•
•

... • xi m

2m− 2 edges

Figure 4 Secondary gadget ki for literal xi. The secondary gadget k¬
i for literal xi is entirely

similar, replacing yi by yi and xi by xi.

f` = S F`

Figure 5 Gadget f` in which Player 1 is forced to remove an edge in her `-th turn (at the latest).

Then, for each i ∈ [n], we identify the node labeled with yi in the gadget g∃i or g∀i with the
node labeled with yi in the gadget ki that is depicted in Figure 4. We similarly identify the
node labeled with yi in the gadget g∃i or g∀i with the node labeled with yi in the gadget k¬i ,
which is entirely similar to the gadget depicted in Figure 4 – the only difference is that the
node label yi is replaced by yi and the node label xi is replaced by xi. These gadgets consist
of m− 1 successive pieces, each consisting of m parallel paths of length 2 – here m is the
number of terms occurring in the matrix ψ of the quantified Boolean formula ϕ. Intuitively,
the purpose of these gadgets ki and k¬i is to ensure that there remains a path of length 2m−2
from the node labeled with yi to the node labeled with xi, even after the next 2m− 2 moves
(and similarly for the nodes labeled with yi and xi).

For each even ` ∈ [3n+ 1, 3n+ 2m− 2] (so not the odd values), we add the gadget f`, as
depicted in Figure 5. These gadgets force Player 1 to make a move in gadget f` in her `-th
turn (at the latest). As a result, Player 1 has no way of preventing any spider to move from
a node labeled with yi to a node labeled with xi in her (3n+ 1)-th until her (3n+ 2m− 2)-th
turn (while also preventing the flies in the gadgets f` from getting captured by a spider).
However, notably, for each odd ` ∈ [3n+ 1, 3n+ 2m− 2], Player 1 is not forced to delete any
particular edge in the graph in her `-th turn (in order to avoid losing directly after that turn).
This free choice for Player 1 will play a role in the next type of gadget that we will add.

For each term dj of ψ, we add the gadget hj , as depicted in Figure 6. The leftmost nodes
in this gadget are labeled with xi or xi. We identify these leftmost nodes with the nodes
in gadgets ki and k¬i that have identical labels. Suppose that dj = (lj,1 ∧ lj,2 ∧ lj,3), where
each lj,u, for u ∈ [3], is either xi or xi for some i ∈ [n]. Then the leftmost nodes in the
gadget hj coincide with the nodes in gadgets ki and k¬i that are labeled with lj,u, denoting
the complementary literal of lj,u. For example, if dj = (x1 ∧x2 ∧x3), then the leftmost nodes
in the gadget hj are identified with the nodes labeled with x1, x2 and x3 in gadgets k¬1 , k2
and k¬3 .

Intuitively, the gadgets hj all contain a fly that needs to be protected from the incoming
spiders on the paths from xi and xi. Player 1 has time to remove the edges adjacent to the
flies in exactly m − 1 of these gadgets hj – she has time to do this in her `-th turns, for
odd values of ` ∈ [3n + 1, 3n + 2m − 2]. In other words, Player 1 needs to choose exactly
one j ∈ [m] such that the fly in gadget hj is out of reach of the spiders, for her next two
turns.

Finally, we add the gadgets f`, as depicted in Figure 5, for both ` ∈ [3n+2m−1, 3n+2m]
to ensure that after rescuing the flies in all but one of the gadgets hj , Player 1 has to make a

FUN 2018

17:8 Restricted Power – Computational Complexity Results for Strategic Defense Games

hj

◦lj,1

◦lj,2

◦lj,3

=

•lj,1

•lj,2

•lj,3

• F

Figure 6 Gadget hj for the term dj = (lj,1 ∧ lj,2 ∧ lj,3).

move in these gadgets in her next two turns. In other words, if the fly in the unique gadget hj

whose safety she did not ensure by deleting its adjacent edge is being approached by some
spider within distance 2, this spider will then be able to capture the fly. If this is not the
case, Player 1 can ensure the safety of this final fly in her (3n+ 2m+ 1)-th turn.

Clearly, this reduction runs in polynomial time. Moreover, since the incidence graph of ϕ
is planar, the graph G that we constructed is also planar.

Verifying the correctness of this reduction is straightforward using the intuitions behind
and explanations of the workings of the gadgets g∃i , g∀i , ki, k¬i , f`, and hj – that we gave
above – together with the following observations.

The first observation is that for each odd i ∈ [n], Player 1 can decide which of the two
paths, towards the nodes labeled with yi or yi, are left open for the spider in gadget g∃i , and
she can base this choice on her choices in the gadgets g∃i′ , for odd i′ ∈ [i] and Player 2’s
choices in the gadgets g∀i′ , for even i′ ∈ [i]. Similarly, for each even i ∈ [n], Player 2 can
decide which of the two paths, towards the nodes labeled with yi or yi, are taken by the
spider in gadget g∀i , and she can base this choice on her choices in gadgets g∀i′ , for even i′ ∈ [i]
and Player 1’s choices in the gadgets g∃i′ , for odd i′ ∈ [i].

The second observation is that whenever a truth assignment satisfies ψ, it must satisfy
some term dj of ψ. This means that it must satisfy all literals in dj , and thus must make
all their complements false. Therefore, if (and only if) the spiders are on their way towards
the nodes labeled with xi and xi in such a way that the corresponding truth assignment
satisfies ψ (and thus satisfies dj for some j ∈ [m]), Player 1 can safely leave the fly in
gadget hj unprotected during her (3n+ 1)-th until (3n+ 2m)-th turn.

This concludes our proof of PSPACE-hardness. J

I Example 5. Consider the quantified Boolean formula ϕ = ∃x1.∀x2.∃x3.∀x4.[d1 ∨ d2],
where d1 = (x1 ∧ x2 ∧ x3) and d2 = (x1 ∧ x2 ∧ x3). The game situation C1 = (G,S, F) as
constructed in the proof of Theorem 4 is depicted (schematically) in Figure 7. (Note that the
last universally quantified variable (x4) does not occur in the terms d1 and d2 – its presence
makes n even.)

I Corollary 6. Winner Determination for Player 2 for Greedy Spiders is PSPACE-
complete.

Proof. This follows directly from Theorem 4, since PSPACE is closed under complement and
the problems Winner Determination for Player 1 and Winner Determination for
Player 2 are complementary. J

6 Metatheorems

For our metatheorems, we consider games that are turn-based two-player games modeled
on graphs. In the unrestricted version, the players alternate turns and every player has
unlimited resources in every turn to calculate her next move. A player is called strategically

R. de Haan and P. Wolf 17:9

◦ ◦

h1

◦

g∃1

◦

◦ g∀2

◦

◦

g∀4

◦

◦

g∃3

◦

◦

h2

◦

k¬2

k2

◦

k¬4

◦

k4

k1

◦

k3

◦

k¬1 k¬3

f14 f15 f16

Figure 7 The game situation C1 = (G,S, F) that is constructed from the quantified Boolean
formula ϕ = ∃x1.∀x2.∃x3.∀x4.[(x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3)] in the proof of Theorem 4 – see
Example 5. (The nodes that are drawn in this picture between two gadgets are the nodes that
belong to both gadgets, and are identified – e.g., the node drawn between the gadgets g∃

1 and k¬
1 is

the node labeled with y1 that appears in both gadgets.)

restricted if she chooses in her first move a deterministic polynomial-time algorithm with a
polynomial-size description, that determines all of her moves on that game instance. The
algorithm is then disclosed to the opposing player. This means that the other player can
then calculate the reaction of her opponent for any possible situation in polynomial time.

We consider the following game mechanics. A game is said to implement defense positions,
if there exist positions which must not be reached by attackers of Player 2. Paths that can
be eliminated or permanently blocked by Player 1 are called destroyable paths. Player 1 has
the ability to destroy one destroyable path in each of her turns, while Player 2, in each of
her turns, moves all of her attackers (towards the defense positions of Player 1) over one
edge each. Player 1 wins the game if there is no path left from any attacker of Player 2 to
any defense position of Player 1. Conversely, Player 2 wins if at least one of her attackers
has reached a defense position of Player 1.

The decision problems Winner Determination for Player 1 and Winner Deter-
mination for Player 2 for games that implement defense positions and destroyable paths
are defined analogously as for the game of Greedy Spiders (see Section 3).

I Metatheorem 7. For a round-based two-player game implementing defense positions and
destroyable paths, the problem Winner Determination for Player 1 is:
(1) PSPACE-hard if neither of the players is strategically restricted;
(2) Σp

2-hard, if Player 1 is strategically restricted; and
(3) Πp

2-hard, if Player 2 is strategically restricted.
These hardness results hold even when the game is restricted to planar graphs.

Proof (idea). Statement (1) follows as a corollary from the proof of our hardness result
for Theorem 4. The reduction used in this proof is entirely based on the game mechanics
of defense positions and destroyable paths. We will prove Statement (2) by modifying the
hardness reduction from the proof of Theorem 4 to a reduction from the Σp

2-complete problem

FUN 2018

17:10 Restricted Power – Computational Complexity Results for Strategic Defense Games

TQBF∃,2 – we will explain this in more detail below. Similarly, we will prove Statement (3)
by modifying the same reduction to a reduction from an appropriate Πp

2-complete variant of
the problem TQBF∀,3 – we also work this out in more detail below. All these reductions
also work when restricted to planar graphs. J

Asking the converse question (i.e., whether Player 2 can win) leads to the following
metatheorem.

I Metatheorem 8. For a round-based two-player game implementing defense positions and
destroyable paths, the problem Winner Determination for Player 2 is:
(1) PSPACE-hard if neither of the players is strategically restricted;
(2) Πp

2-hard, if Player 1 is strategically restricted; and
(3) Σp

2-hard, if Player 2 is strategically restricted.
These hardness results hold even when the game is restricted to planar graphs.

Proof. Because the problems Winner Determination for Player 1 and Winner
Determination for Player 2 are complementary, these statements follow directly from
Metatheorem 7. J

We now turn to proving Metatheorem 7(2–3).

Proof of Metatheorem 7(2). We describe how the hardness reduction from the proof of
Theorem 4 can be used to form a reduction from TQBF∃,2 to Winner Determination for
Player 1 where Player 1 is strategically restricted. Let ϕ = ∃x1 . . . ∃xn1∀xn1+1 . . . ∀xn.ψ

be an instance of TQBF∃,2. Without loss of generality, we may assume that ψ is in 3DNF
and has a planar incidence graph.

We consider the formula ϕ′ = ∃x1∀y1 . . . ∃xn1−1∀yn1−1∃xn1∀xn1+1∃yn1+1 . . . ∀xn−1∃yn−1
∀xn.ψ, where the variables in Y = {y1, . . . , yn1−1, yn1+1, . . . , yn−1} are fresh variables that
do not occur in ψ. That is, ϕ′ differs from ϕ only in that variables from Y are added
to the quantifier prefix to ensure that existential and universal quantifiers alternate. We
know that ϕ is true if and only if ϕ′ is true. Then, because the quantifiers in ϕ′ alternate
between existential and universal quantifiers, we can employ the reduction from the proof of
Theorem 4 to construct a game situation C1 where Player 1 has a winning strategy if and
only if ϕ′ is true (which is the case if and only if ϕ is true).

All that remains to show that whenever Player 1 has a winning strategy for C1, she
can – in her first turn – submit an algorithm (whose description is of polynomial size) that
computes the moves of her winning strategy in polynomial time. By construction of the
game instance C1, and because the variables y1, . . . , yn1−1 do not occur in ψ, we know that
any winning strategy for Player 1 does not depend on Player 2’s moves in the gadgets g∀i
corresponding to the variables y1, . . . , yn1−1. Moreover, since the variables yn1+1, . . . , yn−1
do not occur in ψ, Player 1’s optimal strategy in the gadgets g∃i corresponding to the
variables yn1+1, . . . , yn−1 is easy to determine. Player 1’s only moves that depend on the
choice of Player 2 in the gadgets g∀i are Player 1’s moves in the gadgets hj , and Player 1’s
optimal moves in these latter gadgets are easy to determine – these moves correspond to
evaluating ψ once the truth value of each variable is set. Therefore, the optimal moves for
carrying out her winning strategy can be generated by a polynomial-time algorithm that
she can submit at the beginning of the game. Thus, this reduction works for the case where
Player 1 is strategically restricted. J

In order to prove Metatheorem 7(3), we consider a Σp
2-complete variant of TQBF∃,3.

R. de Haan and P. Wolf 17:11

I Lemma 9. There is a class of quantified Boolean formulas of the form ϕ = ∃x1 . . . ∃x`1

∀y1 . . . ∀y`2∃z1 . . . ∃z`3 .ψ with the following properties:
(1) TQBF∃,3 restricted to this class of quantified Boolean formulas is Σp

2-complete;
(2) each quantified Boolean formula ϕ in this class has a matrix in 3CNF and has a planar

incidence graph; and
(3) for each quantified Boolean formula ϕ = ∃x1 . . . ∃x`1∀y1 . . . ∀y`2∃z1 . . . ∃z`3 .ψ in this class,

and for each truth assignment α : {x1, . . . , x`1 , y1, . . . , y`2} → {0, 1}, it can be decided in
polynomial time (given ϕ and α) if there exists a truth assignment β : {z1, . . . , z`3} →
{0, 1} such that ψ[α∪β] evaluates to true, and such a truth assignment β can be computed
in polynomial time, if it exists.

Proof. We provide a reduction from TQBF∃,2 to TQBF∃,3 and show that the class of
quantified Boolean formulas that are produced by this reduction has Properties (1)–(3).
Hardness for Σp

2 for the problem TQBF∃,3 restricted to this class of quantified Boolean
formulas follows immediately from this reduction.

Let ϕ be an instance of TQBF∃,2. Without loss of generality, we may assume that ϕ
has a matrix ψ in 3DNF. We then transform the matrix ψ to 3CNF using the standard
Tseitin transformation [18], by adding additional existentially quantified variables at the
end of the quantifier prefix – this will result in an equivalent quantified Boolean formula ϕ′
with an “∃∀∃” quantifier prefix. We then transform ϕ′ into an equivalent quantified Boolean
formula ϕ′′ with a matrix in 3CNF and a planar incidence graph using the gadgets used in
the proof that 3SAT restricted to planar formulas is NP-hard [14, Theorem 1] – this will add
additional existentially quantified variables at the end of the quantifier prefix.

The reduction clearly results in quantified Boolean formulas that satisfy Property (2). The
resulting formulas also satisfy Property (3). Once the variables from the original quantified
Boolean formula ϕ have been instantiated, only clauses corresponding to the introduced
gadgets in the two-step reduction described above (containing only existentially quantified
variables) remain – finding satisfying truth assignments for these remaining clauses can be
done in polynomial time. This is because both steps in the reduction have the property
that given any satisfying truth assignment α for the matrix of the original formula, one can
compute in polynomial time a truth assignment β such that α ∪ β satisfies the matrix of the
constructed formula – and that both steps of the reduction are reversible in polynomial time.
For the first step of the reduction (where the matrix ψ is transformed to 3CNF) this is the
case because the introduced clauses form a renamable Horn formula – thus after instantiating
the formula with α, a renamable Horn formula remains, and a satisfying truth assignment
for renamable Horn formulas can be found in polynomial time. For the second step of the
reduction (where the formula is transformed to an equivalent formula that has a planar
incidence graph) this property follows directly from the shape of the gadgets used in the
reduction [14, Theorem 1].

As a result of Property (3), we get membership in Σp
2 for the problem TQBF∃,3 restricted

to quantified Boolean formulas produced by the reduction above. Together with Σp
2-hardness,

this gives us Property (1). J

The main idea behind the proof of Σp
2-hardness is to apply Tseitin transformations [18]

to inputs of the problem TQBF∃,2. We denote the problem TQBF∃,3 restricted to the class
of quantified Boolean formulas identified in Lemma 9 by TQBF?

∃,3. Similarly, we consider
the Πp

2-complete dual problem TQBF?
∀,3, that concerns formulas that are equivalent to the

negation of instances of TQBF?
∃,3.

FUN 2018

17:12 Restricted Power – Computational Complexity Results for Strategic Defense Games

Proof (sketch) of Metatheorem 7(3). We modify the proof of Theorem 4 to a reduction
from the problem TQBF?

∀,3. These modifications are entirely analogous to the modifications
in the proof of Metatheorem 7(2). That is, we introduce new variables (not occurring in the
matrix of the quantified Boolean formula) to ensure that existential and universal quantifiers
alternate strictly.

In the resulting game, whenever Player 2 has a winning strategy that corresponds to a
way of assigning the universally quantified variables that makes the remaining formula false
(for any assignment to the existentially quantified variables), the optimal moves for carrying
out this strategy can be generated by a polynomial-time algorithm that she can submit at
the beginning of the game. This is because her only moves that (non-trivially) depend on
the choice of Player 1 in the gadgets g∃i are her moves in the gadgets g∀i corresponding to
the variables in the third quantified block and her moves in the gadgets hj , and Player 2’s
optimal moves in these latter gadgets are easy to determine – this is due to Lemma 9(3).
Thus, this reduction works for the case where Player 2 is strategically restricted. J

7 Application of Metatheorems

In this section we describe how to apply our metatheorems to tower-defense games. Games of
this genre can be described as two-player games where the defending Player 1 must prevent
the attackers of Player 2 from reaching designated locations on the playing field. For this
purpose Player 1 can place towers on the field which damage every attacker in their reach.
To place the towers, Player 1 usually has to pay some amount of a currency which is steadily
credited to Player 1 over time. In most tower-defense games Player 1 is played by the user,
while Player 2 is played by the computer. The strategy of Player 2 is fixed per instance, but
differs from instance to instance, so we will apply Metatheorem 7(3).

To apply Metatheorem 7(3), we have to show that all elements of the metatheorem
can be modeled within the game. Defense positions are naturally a part of tower-defense
games, since they all include positions which have to be protected from the attacking enemies.
Destroyable paths are implemented in the following way. A path is said to be destroyed if
no attacker can cross it (and survive). Therefore we can destroy a path by placing a strong
enough tower somewhere on the path to kill every attacker in its reach. The accessible
environment of this tower is regarded as the destroyed path. Every spot on the map where a
tower can be placed represents therefore a destroyable path. While most tower defense-games
are not round-based in a strong sense, we can still model them as round-based. To implement
the game elements, we only have to consider one type of attackers and one type of towers.
Since Player 1 earns coins of a currency every fixed amount of time we can graduate the
time in steps which are as long as it takes Player 1 to earn enough coins to buy one tower
instance. The step range of the attackers of Player 2 is therefore as long as the distance
they can walk in one time step. Thus we can assume the game to be round-based. Since all
criteria of Metatheorem 7(3) can be implemented, this shows that tower-defense games in
general are Πp

2-hard.
In concrete terms, the above described implementation works among others for games

like Bloons Tower Defense 5 [2], Warcraft 3 [1], and Starcraft [5].

8 Conclusion

We showed PSPACE-completeness for the problem of deciding whether Player 1 has a winning
strategy for the game Greedy Spiders, as well as for the problem of deciding whether

R. de Haan and P. Wolf 17:13

Player 2 has a winning strategy. Afterwards we generalized the idea of our proof to give
two metatheorems referring to [11, 12, 19], which granulate the computational complexity
of the core element of the game by restricting the computational power of the players. In
particular, we showed that Winner Determination for Player 1 in a turn-based two-
player game containing defense positions and destroyable paths is in general PSPACE-hard,
becomes Σp

2-hard if Player 1 is strategically restricted, and Πp
2-hard if Player 2 is strategically

restricted. The reverse question of Winner Determination for Player 2 is in general
PSPACE-hard, becomes Πp

2-hard if Player 1 is strategically restricted, and Σp
2-hard if Player 2

is strategically restricted. Finally, we discussed the applicability of our metatheorems on
tower-defense games and mentioned some specific games to which our metatheorems can be
applied.

Finding metatheorems for the computational complexity of computer games has recently
become more and more of a focus. With tower-defense games, we grazed with our metatheo-
rems a previously untouched game genre in terms of computational complexity and provided
new tools to investigate them. As most metatheorems are discovered in the area of platform-
and puzzle-games, they can only be applied to single-player games. Therefore with our
metatheorems, we give new impulses in looking for metatheorems, which describe multiplayer
(specifically two-player) games. To our knowledge, our results are the first hardness results
for the complexity classes Σp

2 and Πp
2 in the field of computational complexity of computer

games.
A possibility for further research in this field is to look at two-player games and restrict

the computational power of one of the players. This approach could also be applied to well
studied board games like Chess, Checkers, or Mill. In general the field of multiplayer strategy
games seems to afford more yet undiscovered metatheorems and should be investigated in
the future. Beside tower-defense games, our metatheorem should also be applicable to other
strategic games, such as war simulations or any game in which one player has the role of a
defender who has to prevent the other player (with the role of an attacker) from reaching
certain locations in the game. Over the last few years, more and more complex and modern
games have been explored, resulting in metatheorems which are applicable to state of the
art games. Since many modern computer games provide scripting languages with whom
the players can modify the game, the games themselves are instantly Turing-complete. We
think that examining restricted versions of these games is still worth a try and can lead to
metatheorems for the essential elements of the games, taking off the focus from the scripting
languages.

References
1 Blizzard Entertainment: Warcraft III. http://eu.blizzard.com/en-gb/games/war3/.

Accessed: 2018-02-17.
2 Bloons Tower Defense 5. http://bloons.wikia.com/wiki/Bloons_Tower_Defense_5. Ac-

cessed: 2018-02-17.
3 Greedy Spiders. http://greedyspiders.com/. Accessed: 2018-02-17.
4 Nintendo Entertainment System (NES). http://www.pcgames.de/

Nintendo-Entertainment-System-NES-Konsolen-255246/. Accessed: 2018-02-01.
5 StarCraft: Remastered. https://starcraft.com/en-us/. Accessed: 2018-02-17.
6 Greg Aloupis, Erik D. Demaine, Alan Guo, and Giovanni Viglietta. Classic Nintendo Games

are (Computationally) Hard. Theoretical Computer Science, 586:135–160, 2015.
7 Sanjeev Arora and Boaz Barak. Computational Complexity – A Modern Approach. Cam-

bridge University Press, 2009.

FUN 2018

http://eu.blizzard.com/en-gb/games/war3/
http://bloons.wikia.com/wiki/Bloons_Tower_Defense_5
http://greedyspiders.com/
http://www.pcgames.de/Nintendo-Entertainment-System-NES-Konsolen-255246/
http://www.pcgames.de/Nintendo-Entertainment-System-NES-Konsolen-255246/
https://starcraft.com/en-us/

17:14 Restricted Power – Computational Complexity Results for Strategic Defense Games

8 Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. J. of the
ACM, 28(1):114–133, 1981.

9 Erik D. Demaine. Playing Games with Algorithms: Algorithmic Combinatorial Game
Theory. In Proceedings of the 26th International Symposium on Mathematical Foundations
of Computer Science (MFCS), pages 18–33. Springer, 2001.

10 Erik D. Demaine and Robert A. Hearn. Constraint Logic: A Uniform Framework for
Modeling Computation as Games. In Proceedings of the 23rd Annual IEEE Conference on
Computational Complexity, 2008 (CCC 2008), pages 149–162. IEEE, 2008.

11 Erik D. Demaine, Joshua Lockhart, and Jayson Lynch. The Computational Complexity of
Portal and Other 3D Video Games. arXiv preprint 1611.10319, 2016.

12 Michal Forišek. Computational Complexity of Two-Dimensional Platform Games. In Pro-
ceedings of the 5th International Conference on Fun with Algorithms (FUN 2010), pages
214–227. Springer, 2010.

13 Graham Kendall, Andrew J. Parkes, and Kristian Spoerer. A Survey of NP-complete
Puzzles. ICGA Journal, 31(1):13–34, 2008.

14 David Lichtenstein. Planar Formulae and Their Uses. SIAM J. Comput., 11(2):329–343,
1982.

15 John Michael Robson. The Complexity of Go. In IFIP Congress, pages 413–417, 1983.
16 John Michael Robson. N by N Checkers is Exptime complete. SIAM J. Comput., 13(2):252–

267, 1984.
17 Jörg Siekmann and Graham Wrightson, editors. Automation of reasoning. Classical Papers

on Computer Science 1967–1970, volume 2. 1983.
18 G. S. Tseitin. Complexity of a Derivation in the Propositional Calculus. Zap. Nauchn. Sem.

Leningrad Otd. Mat. Inst. Akad. Nauk SSSR, 8:23–41, 1968. English transl. repr. in [17].
19 Giovanni Viglietta. Gaming is a hard job, but someone has to do it! Theory Comput. Syst.,

54(4):595–621, 2014. doi:10.1007/s00224-013-9497-5.

http://dx.doi.org/10.1007/s00224-013-9497-5

	Introduction
	Related Work
	Greedy Spiders
	Preliminaries
	Complexity Results for Greedy Spiders
	Metatheorems
	Application of Metatheorems
	Conclusion

