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Abstract
We continue our research on perversely awful randomized algorithms, which started nearly a
decade ago. Based on the bogo-method we design a bogo-selection algorithm and variants thereof
and analyse them with elementary methods. Moreover, practical experiments are performed.
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1 Introduction

Bogo-sort, also known as Monkey-sort, is according to [6] the archetypical perversely awful
randomized algorithm. It is the equivalent to repeatedly throwing a deck of cards in the air,
picking them up at random, and then testing whether they are in order. The analysis of
bogo-sort carried out in [3] shows that this algorithm, while having best-case expected running
time as low as O(n), achieves an asymptotic expected running time as high as Ω(n · n!)
already in the average case. Although there are other sorting algorithms known such as, e.g.,
Bogobogo-sort, Evil-sort, etc., with even higher inefficiency, the concept of bogusness was
not considered as an algorithm design principle in general. Thus, the question arises, what is
the concept of bogusness? In fact the design of Bogo-sort as stated in the beginning nicely
generalizes to what we call the bogo-method by repeatedly throwing a deck of cards in the
air and picking up sufficient cards at random in order to test whether a certain property is
met. At first glance this design principle looks crazy, but it can be nicely applied to other
problems than sorting such as, e.g., the selection problem or the two-element sum problem.
In the former case the property that has to be met is that the kth largest element of a given
array a[1 . . . n] is exactly on the kth position and that all the elements to the left of a[k]
are smaller while all the element to the right of a[k] are larger – we obviously require that
1 ≤ k ≤ n holds. Thus, it is obvious that we have to pick up all cards at random in order to
verify the stated property.
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23:2 Selection Via the Bogo-Method

Here we will focus on the analysis of several selection algorithms following the bogo-
method. The pseudo code for bogo-select that ensures the property mentioned above reads
as follows:

Listing 1 Algorithm: Bogo-Select (by partitioning)
1 Input array a[1..n] and k with 1<=k<=n
2 while a[1..n] is not partitioned (k) do
3 randomly permute a[1..n]
4 endwhile
5 Output a[k]

The test whether the array is partitioned such that a[i] ≤ a[k], for 1 ≤ i < k, and
a[k] ≤ a[i], for k < i ≤ n as well as the permutation of the array have to be programmed
with some care:

1 procedure partitioned (int: k):
2 // returns true if the array
3 // is partitioned according
4 // to a[k] and false otherwise
5 for i=1 to k-1 do
6 if a[i]>a[k] then
7 return false
8 endif
9 endfor

10 for i=k+1 to n do
11 if a[i]<a[k] then
12 return false
13 endif
14 endfor
15 return true

1 procedure randomly permute :
2 // permutes the array a[1..n]
3 for i=1 to n-1 do
4 j := rand[i..n]
5 swap a[i] and a[j]
6 endfor

The second algorithm was already used for the bogo-sort algorithm and is found, e.g., in [4,
p.139]. The random permutation is done quickly by a single loop, where rand gives a random
value in the specified range. And the test for partitioning according to the element a[k] is
carried out from left to right.

In this work we present a detailed analysis of the bogo-select algorithm in several variations.
It is worth mentioning that we still obtain a randomized selection algorithm if we relax the
condition of being partitioned to a condition that only requires that there are exactly k − 1
elements in a[1 . . . k−1, k+1, . . . n] that are smaller or equal to a[k]; equivalently one requires
that exactly n− k elements in the array a[1 . . . k − 1, k + 1 . . . n] are larger or equal to a[k].
This variant of the bogo-select algorithm will be analyzed later on. Our proofs require only a
basic knowledge of probability and can be readily understood by non-specialists. This makes
the analysis well-suited to be included as motivating example in courses on randomized
algorithms. We will analyze the expected running time for bogo-select under the assumption
that we are given an array x = x1x2 . . . xn containing a permutation of the set of numbers
{1, 2, . . . , n} with n ≥ 2. To analyze the running time of the bogo-select algorithm and the
variants thereof, we on the one hand count the number of comparisons, and on the other
hand the number of swaps. This is similar to the analysis of the bogo-sort algorithm done
in [3]. An immediate observation is that the algorithm isn’t guaranteed to terminate at all.
However, as we will prove that the expectation of the running time T is finite as we see by
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Markov’s inequality

P[T ≥ t] ≤ E[T ]
t
, for t > 0,

that the probability of this event equals 0. There are essentially two different initial
configurations: either the list x is initially partitioned according to the kth element or it
is not. We have to make this distinction as the algorithm is smart enough to detect if the
given list is initially well partitioned, and has much better running time in this case. This
welcome built-in feature also makes the running time analysis of this case very easy: the
number of total comparisons equals n− 1, and the total number of swaps equals zero, since
the while-loop is never entered.

We come to the case where the array is not initially well partitioned. Note that the first
shuffle yields a randomly ordered list, so the behavior of the algorithm does no longer depend
on the initial order – the number of comparisons before the first shuffle still does.

2 Bogo-Select: Selection By Partitioning

2.1 How Long Does it Take to Check Whether the kth Element is on
its Correct Position?

Before the analysis of the procedure partitioned we begin with a detour on inverse
binomial coefficients, since they are mostly not too intensively covered by monographs on
combinatorics – an exception is, e.g., [1]. Obviously, an inverse binomial coefficient obeys
the identity

(
n
k

)−1 = k!(n−k)!
n! . The first theorem is based on the elementary identity(

n

k

)−1
=
(
n− 1
k − 1

)−1
− (n− k)

(n− k + 1)

(
n

k − 1

)−1

on inverse binomial coefficients. The proof of the following theorem is literally taken from [7].

I Theorem 1. For n ≥ 2, we have

∞∑
i=0

(
n+ i

i

)−1
= n

n− 1 .

Proof. The proof is by induction on n. For n = 2, the sum equals

∞∑
i=0

(
2 + i

i

)−1
=
∞∑
i=0

i! · (2 + i− i)!
(2 + i)! = 2

∞∑
i=0

1
(i+ 1)(i+ 2) = 2

∞∑
i=0

(
1

i+ 1 −
1

i+ 2

)
= 2

for the terms pairwise cancel. For n > 2, we observe that

∞∑
i=0

(
n+ i

i

)−1
=
(
n+ 0

0

)−1
+
∞∑
i=1

(
n+ i

i

)−1
= 1 +

∞∑
i=0

(
n+ (i+ 1)
i+ 1

)−1
.

Applying the elementary equation on inverse binomial coefficients mentioned before the
theorem to the rightmost sum, we have

∞∑
i=0

(
n+ i

i

)−1
= 1 +

∞∑
i=0

[(
n+ i

i

)−1
− n

n+ 1

(
n+ (i+ 1)

i

)−1
]
.
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23:4 Selection Via the Bogo-Method

Assuming
∑∞
i=0
(
n+i
i

)−1 = n
n−1 and hence is finite, we obtain

n

n+ 1

∞∑
i=0

(
(n+ 1) + i

i

)−1
= 1,

completing the proof. J

In the forthcoming we will come across more involved combinatorial sums and series
containing inverse binomial coefficients, which will be evaluated with the help of a more
general approach based on Euler’s Gamma function. This will detailed in Subsection 3.1.

Now we are ready to analyse the procedure partitioned. Recall that we demand n to
be at least 2 as a prerequisite. Thus, we will not state n ≥ 2 explicitly in all theorems and
lemmata to come.

I Theorem 2. Assume x is a random permutation of {1, 2, . . . , n}, and let C denote the
random variable counting the number of comparisons carried out in the test whether x is
partitioned according to the kth element. Then

E[C] =
k−1∑
i=1

1
i

+ 1
k

n−1∑
i=k

(
i

k

)−1
.

It holds E[C] = Hn−1, if k = 1 or k = n, and E[C] ∼ Hk−1 + 1
k−1 , otherwise.

Proof. Let k with 1 ≤ k ≤ n be fixed. In order to calculate E[C] =
∑
i≥1 P[C ≥ i] we

determine the probability for every valid i, that is 1 ≤ i ≤ n− 1 since we can compare a[k]
with at most n− 1 other elements. Observe that the ith comparison is reached if and only if
the algorithm did not drop out at the i− 1 comparisons before. Furthermore observe that
the first comparison within the second loop equals the kth total comparison. Therefore we
consider two cases:
1. Let 1 ≤ i < k. If the routine makes a minimum of i comparisons, the i − 1 first

comparisons needed to be successful in order for the ith one to be carried out, yielding
us x1, x2, . . . , xi−1 ≤ xk. Thus, the probability P[C ≥ i] computes as

P[C ≥ i] =
(
n
i

)
· (i− 1)! · (n− i)!

n! .

The numerator is the product of the number of possibilities to choose i elements to arrange
the (i− 1) smaller ones at the beginning of the array and the number of possibilities to
arrange them, place the maximum from the i chosen elements on position k, and the
number of possibilities to arrange the remaining n− i elements at the uncharted part of
the array, and the denominator is just the total number of arrays of length n. Reducing
this fraction, we obtain P[C ≥ i] = 1

i .
2. For k ≤ i < n we argue in similar veins as above and again find that P[C ≥ i] can be

estimated as

P[C ≥ i] =
(
n
i

)
· (k − 1)! · (i− k)! · (n− i)!

n! .

The numerator is the product of the number of possibilities to choose i elements to arrange
the k − 1 smallest elements at the beginning of the array and the number of possibilities
to arrange them, place the kth largest element on position k, and the remaining i− k
elements just after the kth position and the number of possibilities to arrange them, and
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finally the number of possibilities to arrange the remaining n− i elements at the end part
of the array with the denominator again being the total number of arrays of length n.
Simplifying this fraction, results in P[C ≥ i] = 1

k

(
i
k

)−1.
As the range of C is non-negative, we combine those two cases for P[C ≥ i] for the expected
value of C as follows:

E[C] =
∑
i≥1

P[C ≥ i] =
k−1∑
i=1

1
i

+
n−1∑
i=k

1
k

(
i

k

)−1
.

The former sum can easily be identified as the harmonic number Hk−1 =
∑k−1
i=1

1
i . For the

second term of the expected value above we have to do a little bit more calculation and the
help of Theorem 1 we get:1

n−1∑
i=k

1
k

(
i

k

)−1
= 1
k

n−1−k∑
i=0

(
k + i

k

)−1
≤ 1
k

∞∑
i=0

(
k + i

i

)−1
= 1
k
· k

k − 1 = 1
k − 1 ,

if k ≥ 2. In case k = 1 we find

E[C] =
1−1∑
i=1

1
i

+
n−1∑
i=1

1
1

(
i

1

)−1
=
n−1∑
i=1

1
i
,

which equals the harmonic number Hn−1 similar to above – observe, that for k = 1 and k = n

the values for E[C] are the same further stressing the highly symmetrical nature of this
very algorithm. Putting things together we obtain E[C] = Hn−1, if k = 1 or k = n, and
E[C] ∼ Hk−1 + 1

k−1 , otherwise, as n tends to infinity. This proves the stated claim on the
asymptotics. J

Theorem 2 tells us that we can expect comparisons in the range of Hn to check if a large
array is well partitioned, and for n large enough, this number is about lnn, because Hn

satisfies the asymptotic

Hn ∼ lnn+ γ,

where γ ≈ 0.5772156649 is the Euler-Mascheroni constant. Compare to the worst case, where
we have to compare n − 1 times. This is a noticeable departure from the check for being
sorted from left to right as analysed in [3], where it was shown that on average one only needs
a constant number of comparisons, namely e− 1 ≈ 1.718281828 for large enough arrays.

2.2 The Expected Number of Swaps in Bogo-Select
When computing the expected number of iterations in bogo-select, we concentrate on the
case where the input x is not partitioned according to the kth element; for the other case it

1 With a little bit more effort one can show that
n∑

i=0

(
k + i

i

)−1

= k

k − 1

[
1−
(

n + k

n + 1

)−1
]

,

for k ≥ 2 and n ≥ 0; e.g., see the alternative proof of Theorem 1 given on page 33:9 or [2, page
16, Equation (2.2)]. This allows us to refine the expected value of C to the precise expression
E[C] = Hk−1 + 1

k−1

[
1−
(

n−1
k−1

)−1
]
, for k ≥ 2.
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23:6 Selection Via the Bogo-Method

equals 0, because of the intelligent design of the algorithm. In each iteration, the array is
permuted uniformly at random, and we iterate until we hit a sequence that is well partitioned
for the first time. As a well partitioned ordered sequence w.r.t. the kth element is hit with
probability (k−1)!(n−k)!

n! in each trial, the number of iterations I is a random variable with a
probability as follows:

P[I = i] =
(

1− (k − 1)!(n− k)!
n!

)i−1
· (k − 1)!(n− k)!

n!

That is, I is a geometrically distributed random variable with hitting probability p =
(k−1)!(n−k)!

n! . Simple calculations show that p = 1
k

(
n
k

)−1 and that the expected value of I is
equal to E[I] = p−1 = k ·

(
n
k

)
In each iteration, the array is shuffled and a shuffle costs n− 1 swaps. As the algorithm

operates kind of economically with respect to the number of swaps, these are the only swaps
carried out while running the algorithm. If S denotes the random variable counting the
number of swaps, when asking for the kth element, we have S = (n− 1) · I. By linearity of
expectation, we derive:

I Theorem 3. If S denotes the total number of swaps carried out for an input x of length n,
when asking for the kth element, for 1 ≤ k ≤ n, we have

E[S] =
{

0 if x is well partitioned according to the kth element
k(n− 1)

(
n
k

)
otherwise.

Thus we immediately obtain:

I Corollary 4. Let S denote the number of swaps carried out by bogo-select on a given input x
of length n and an integer k with 1 ≤ k ≤ n. Then

E[S] =
{

0 in the best case
k(n− 1)

(
n
k

)
in the worst and average case.

If k = 1, that is, we are interested in obtaining the smallest element in the array, then we
have E[S] = (n− 1) · n = n2 − n. This is not to bad for a bogo-algorithm. In case we are
interested in the last element we come to the same polynomial of E[S] = n2(n− 1). On the
other hand, since the binomial coefficients are uni-modal2 the elements in the middle are
the largest ones. Using the asymptotic estimate of

(
n
k

)
∼ 2n/2
√
πn

, if k = n
2 + O(1) (taken from

from [8]), we estimate that E[S] ∼ n(n−1)·2n/2−1
√
πn

, if k = n
2 + O(1). Therefore, computing the

median induces an exponential number of swaps on average.

3 Two Variations on Bogo-Select

In this section we discuss two natural variants of the bogo-select algorithm by switching
out the procedure partitioned. This will influence the expected number of comparisons
that are needed in order to verify that the kth element is in its correct position and also the
expected number of swaps. We use the generic bogo-select algorithm and replace the probe
algorithm in the second line by another appropriate verifier like, e.g., z-partitioned and
p-counted, which will be detailed in the forthcoming.

2 A finite sequence of numbers is uni-modal if the sequence first increases and then decreases.
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3.1 Bogo-Select by Zig-Zag-Partition
Checking for being well partitioned w.r.t. the kth element is done from left to right, which
corresponds to draw cards from the top of the deck. When using bottom dealing or base
dealing, which is by the way considered as cheating in poker, we would end up in a similar
situation as with drawing cards from the top (aka. top dealing). Thus, it is left to consider
when top and bottom dealing is alternately used for checking well partitioning, i.e., a[1] is
checked against a[k], then a[n] against a[k], followed by a[2] against a[k], etc. If alternation
between top and bottom dealing is not possible anymore, then one continues with top
or bottom dealing only. This results in the bogo-select (by zig-zag-partition), where the
implementation of the checker z-partitioned reads as follows – the pseudo code if k belongs
to the second half of the array is straight forward and therefore left to the interested reader:

1 procedure z- partitioned (int: k):
2 // returns true if the array is
3 // zig -zag partitioned according
4 // to a[k] and false otherwise
5 if k <=(n+1)/2 then
6 // k in the first half
7 ...
8 else
9 // k in the second half

10 ...
11 endif
12 return true

7.1 // k in the first half
7.2 for i=1 to k-1 do
7.3 if a[i]>a[k] then
7.4 return false
7.5 endif
7.6 if a[n+1-i]<a[k] then
7.7 return false
7.8 endif
7.9 endfor

7.10 for i=k+1 to n-k+1 do
7.11 if a[i]<a[k] then
7.12 return false
7.13 endif
7.14 endfor

The analysis of this algorithm is quite similar to before. Again, we encounter a combinat-
orial sum and series with inverse binomial coefficients. A more general approach to evaluate
these sums and series is based on Euler’s well known Beta functions defined by

B(m,n) =
1∫

0

tm−1(1− t)n−1 dt,

for all complex numbers m and n with a positive real part. Since

B(m,n) = Γ(m)Γ(n)
Γ(m+ n) = (m− 1)!(n− 1)!

(m+ n− 1)! ,

where Γ refers to the Gamma function satisfying Γ(n+ 1) = n!, we get(
n

k

)−1
= (n+ 1)

1∫
0

tk(1− t)n−k dt

for all non-negative integers n and k with n ≥ k. Although this is an explicit formula for
the inverse binomial coefficient, it is somehow more convenient to replace inverse binomial
coefficients by factorials and in turn by the Gamma and Beta function and its integral
representation when dealing with combinatorial sums and series. This allows to simplify the
inner terms of a combinatorial sum taking extra factors into account. We demonstrate this
strategy in the following theorem, which is known as Lehmer’s identity [5], and uses basics
on integrals and (inverse) trigonometric functions; the proof is literally taken from [10] to
keep this presentation self contained.
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23:8 Selection Via the Bogo-Method

I Theorem 5 (Lehmer’s Identity). If |x| < 1, then

∞∑
i=1

(2x)2i

i

(
2i
i

)−1
= 2x√

1− x2
arcsin(x).

Proof. We replace the inverse binomial coefficient and the factor 1/i in the infinite sum by
the Gamma function and in turn by the Beta function and its integral definition and obtain

∞∑
i=1

(2x)2i

i

(
2i
i

)−1
=
∞∑
i=1

(2x)2i · i!(i− 1)!
(2i)!

=
∞∑
i=1

(2x)2i · Γ(i+ 1)Γ(i)
Γ(2i+ 1)

=
∞∑
i=1

(2x)2iB(i+ 1, i) =
∞∑
i=1

(2x)2i
1∫

0

ti(1− t)i−1 dt.

After exchanging the sum and the integral and evaluating the geometric sum we find

∞∑
i=1

(2x)2i
1∫

0

ti(1− t)i−1 dt =
1∫

0

∞∑
i=1

(2x)2iti(1− t)i−1 dt

=
1∫

0

1
1− t

∞∑
i=1

(4x2t(1− t))i dt

=
1∫

0

4x2t

1− 4x2t(1− t) dt.

By considering the derivation of denominator we decide to use the substitution s = x(2t− 1)
and hence ds

dt = 2x. Thus the above integral is further equal to

x∫
−x

s

s2 + (1− x2) ds+ x

x∫
−x

1
s2 + (1− x2) ds. (1)

Since

∫ 1
x
dx = ln |x|, and

∫ 1
x2 + a2 dx = 1

a
arctan

(x
a

)

as found in the theoretical computer science cheat sheet3 one observes that the former term

3 The theoretical computer science cheat sheet can be downloaded from, for instance, https://tug.org/
texshowcase/cheat.pdf.

https://tug.org/texshowcase/cheat.pdf
https://tug.org/texshowcase/cheat.pdf
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of Equation (1) evaluates to zero,4 while the latter term of Equation 1 is equal to

x

x∫
−x

1
s2 + (1− x2) ds = x

(
1√

1− x2
arctan

(
s√

1− x2

) ∣∣∣∣x
−x

)

= 2x√
1− x2

arctan
(

x√
1− x2

)
,

because arctan(−x) = arctan(x), for |x| < 1. Thus, we get

∞∑
i=1

(2x)2i

i

(
2i
i

)−1
= 2x√

1− x2
arctan

(
x√

1− x2

)
= 2x√

1− x2
arcsin(x),

since the inverse trigonometry functions arcsin and arctan obey

arcsin(x) = arctan
(

x√
1− x2

)
for |x| < 1

as mentioned in the theoretical computer science cheat sheet. This proves the stated
claim. J

It is worth mentioning that Theorem 1 can be shown in similar way as above by using
the Beta function and its integral definition.

Alternative Proof of Theorem 1. We show a slightly stronger statement

m∑
i=0

(
n+ i

i

)−1
= n

n− 1

[
1−

(
m+ n

n+ 1

)−1
]
,

for n ≥ 2 and m ≥ 0. If m tends to infinity, we obtain the statement of Theorem 1, because
the inverse binomial coefficient approaches 0.

We proceed as in the proof of Theorem 5. Thus, we replace the inverse binomial coefficient
by its definition, then the factorials by the Gamma function and in turn by the Beta function
and its integral definition. This results in the following calculation:

m∑
i=0

(
n+ i

i

)−1
=

m∑
i=0

i!n!
(n+ i)!

= n

m∑
i=0

Γ(i+ 1)Γ(n)
Γ(n+ i+ 1)

= n

m∑
i=0

B(i+ 1, n) = n

m∑
i=0

1∫
0

ti(1− t)n−1 dt.

4 A simpler argument that
x∫

−x

s

s2 + (1− x2) ds = 0

is that the function f(s) = s/(s2 + (1− x2)) is symmetric to the origin, and thus the integral from −x
to x evaluates to zero.
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23:10 Selection Via the Bogo-Method

Next we exchange the sum and the integral and evaluate the geometric sum. This leads us to

n

m∑
i=0

1∫
0

ti(1− t)n−1 dt = n

1∫
0

m∑
i=0

ti(1− t)n−1 dt

= n

1∫
0

(1− t)n−1
m∑
i=0

ti dt = n

1∫
0

(1− t)n−1 1− tm+1

1− t dt.

To keep the calculation simple we rewrite the above integral by its difference and obtain

n

1∫
0

(1− t)n−1 1− tm+1

1− t dt = n

1∫
0

(1− t)n−2(1− tm+1) dt

= n

1∫
0

(1− t)n−2 dt− n
1∫

0

tm+1(1− t)n−2 dt.

Since n ≥ 2 we find that the former term of the above given difference is equal to

n

1∫
0

(1− t)n−2 dt = n

(
−1
n− 1(1− t)n−1

∣∣∣∣1
0

)

= n

(
−1
n− 1(1− 1)n−1 − −1

n− 1(1− 0)n−1
)

= n

n− 1 ,

while the latter term can be rewritten by the Beta function and in turn by the Gamma
function or by factorials, which reads as

n

1∫
0

tm+1(1− t)n−2 dt = n ·B(m+ 2, n− 1)

= n · Γ(m+ 2)Γ(n− 1)
Γ(m+ n+ 1)

= n · (m+ 1)!(n− 2)!
(m+ n)! = n

n− 1

(
m+ n

m+ 1

)−1

which gives the desired result by putting both terms together and factor n/(n− 1) out. J

We are interested in special values on inverse central binomial coefficients (with some
particular factors). Both values are well known, e.g., see [9]. The value for the first
combinatorial sum is obtained by evaluating Lehmer’s identify for x = 1/2 taking into
account that arcsin(1/2) = π/6. In order to obtain the value for second combinatorial sum
we differentiate Lehmer’s identity, multiply it with x, integrate it, and evaluate it again
at x = 1/2.

I Theorem 6. It holds

∞∑
i=1

1
i

(
2i
i

)−1
= π
√

3
9 and

∞∑
i=0

1
2i+ 1

(
2i
i

)−1
= 2π

√
3

9 .
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Proof. The value for the first combinatorial sum is obtained by evaluating Lehmer’s identify
for x = 1/2 taking into account that arcsin(1/2) = π/6. Thus we have

∞∑
i=1

1
i

(
2i
i

)
= 2√

3
π

6 = π
√

3
9 .

In order to obtain the value for other combinatorial sum we start with the differentiation
of Lehmer’s identity. Differentiation of the polynomial on the left hand-side of Lehmer’s
identity is straight forward and gives

d
dx

∞∑
i=1

(2x)2i

i

(
2i
i

)−1
=
∞∑
i=1

4(2x)2i−1
(

2i
i

)−1
. (2)

On the other hand, the differentiation of the right hand-side involves the product of a quotient
with an arcsin. We find

d
dx

2x√
1− x2

arcsin(x) = 2 arcsin(x)√
1− x2

+ 2x2 arcsin(x)
(1− x2)3/2 + 2x

1− x2 , (3)

where we used
d

dx arcsin(x) = 1√
1− x2

, for |x| < 1.

Equation (3) can be easily verified with a symbolic computation software at hand. Hence,
plugging together (2) and (3) we have

∞∑
i=1

4(2x)2i−1
(

2i
i

)−1
= 2 arcsin(x)√

1− x2
+ 2x2 arcsin(x)

(1− x2)3/2 + 2x
1− x2 , (4)

Then value for the second combinatorial sum
∑∞
i=1

1
2i+1

(2i
i

)−1 is obtained by multiplying
Equation (4) by x and integrating it. For the left hand-side of Equation (4) we thus get∫ ∞∑

i=1
2(2x)2i

(
2i
i

)−1
dx =

∞∑
i=1

∫
2(2x)2i

(
2i
i

)−1
dx

=
∞∑
i=1

22i+1x2i+1

2i+ 1

(
2i
i

)−1
=
∞∑
i=1

(2x)2i+1

2i+ 1

(
2i
i

)−1
. (5)

The integration of the right hand-side of Equation (4) is quite tedious for it is done by parts.
Hence we use a symbolic manipulation software, in order to minimize our work effort. We
obtain∫

x

(
2 arcsin(x)√

1− x2
+ 2x2 arcsin(x)

(1− x2)3/2 + 2x
1− x2

)
dx

= 2 arcsin(x)√
1− x2

− 2 ln
(∣∣∣∣ 1√

1− x2
+ x√

1− x2

∣∣∣∣)− 2x− ln(|x− 1|) + ln(|x+ 1|).

(6)

Thus, by (5) and (6) we have
∞∑
i=1

(2x)2i+1

2i+ 1

(
2i
i

)−1

= 2 arcsin(x)√
1− x2

− 2 ln
(∣∣∣∣ 1√

1− x2
+ x√

1− x2

∣∣∣∣)− 2x− ln(|x− 1|) + ln(|x+ 1|),
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which evaluated at x = 1/2 results in

∞∑
i=1

1
2i+ 1

(
2i
i

)−1
= 4π

6
√

3
− 2 ln

(
3√
3

)
− 1− ln

(
1
2

)
+ ln

(
3
2

)

= 2π
√

3
9 − ln(3) + ln(2) + ln

(
3
2

)
− 1 = 2π

√
3

9 − 1.

At last we shift the sum down to i = 0 as we need this form later on:
∞∑
i=0

1
2i+ 1

(
2i
i

)−1
= 1

2 · 0 + 1

(
2 · 0

0

)−1
+
∞∑
i=1

1
2i+ 1

(
2i
i

)−1
= 1 + 2π

√
3

9 − 1 = 2π
√

3
9

This completes the proof. J

Now we are ready to determine the expected number of comparisons within the procedure
z-partitioned.

I Theorem 7. Assume x is a random permutation of {1, 2, . . . , n}, and let C denote the ran-
dom variable counting the number of comparisons carried out by the procedure z-partitioned
in the test whether x is partitioned according to the kth element, for 1 ≤ k ≤ (n+ 1)/2, then:

E[C] =
k−1∑
j=1

[
1

2j − 1

(
2(j − 1)
j − 1

)−1
+ 1
j

(
2j
j

)−1
]

+ 1
k

n−1∑
i=2k−1

(
i

k

)−1

It holds E[C] = Hn−1, if k = 1, and E[C] ∼ π
√

3
3 + 1

k−1
(2(k−1)
k−1

)−1
, otherwise. The statement

remains valid in case k satisfies (n+ 1)/2 < k ≤ n by replacing k by n− k + 1.

Proof. Let k with 1 ≤ k ≤ n be fixed. We analyse the procedure z-partitioned only for
the case that k lies in the first half of the array, i.e., k ≤ (n + 1)/2. It is easy to see that
if k is in the second half of the array the case is symmetric to the above one by replacing k
by n− k + 1 in the formulas.

Recall that the ith comparison is reached if and only if the algorithm did not drop out
at the i− 1 comparisons before. We therefore consider two cases regarding the number of
successful comparisons counting i – the probabilities are modelled similar to the proof of
Theorem 2.
1. Let 1 ≤ i ≤ 2k − 2, i.e., the algorithm has yet to leave the zig-zag-comparison. Then

we distinguish two subcases, namely whether i is odd or even. In the former case we
have completed j := (i− 1)/2 pairs of comparisons with 0 ≤ j ≤ k − 2, which yields the
probability

P[C ≥ i] =
(
n
i

)
j!j!(n− i)!
n! = 1

2j + 1

(
2j
j

)−1
.

In the latter case the (i− 1)th comparison is carried out at the beginning of the array,
and we find

P[C ≥ i] =
(
n
i

)
j!(j − 1)!(n− i)!

n! = 1
j

(
2j
j

)−1
,

where j := i/2 with 1 ≤ j ≤ k − 1.



M. Holzer and J. T. Maurer 23:13

2. Let 2k − 1 ≤ i < n− 1, i.e., the algorithm is in the second for-loop and therefore outside
the zig-zag-comparison. Then we have

P[C ≥ i] =
(
n
i

)
(k − 1)!(i− 1− (k − 1))!(n− i)!

n! = 1
k

(
i

k

)−1
.

We obtain the expected value of C by summing up the probabilities in every case, since the
range of C is non-negative, and we get

E[C] =
∑
i≥1

P[C ≥ i] =
k−2∑
j=0

1
2j + 1

(
2j
j

)−1
+
k−1∑
j=1

1
j

(
2j
j

)−1
+

n−1∑
i=2k−1

1
k

(
i

k

)−1
(7)

=
k−1∑
j=1

[
1

2j − 1

(
2(j − 1)
j − 1

)−1
+ 1
j

(
2j
j

)−1
]

+ 1
k

n−1∑
i=2k−1

(
i

k

)−1
.

Each of the three sums in Equation (7) can be bounded from above. For the first two sums
we use the estimates from Theorem 6, while for the last one we need a more sophisticated
estimate than the one encountered within the proof of Theorem 2, because the sum is
truncated at the beginning. Consider

n−1∑
i=2k−1

(
i

k

)−1
=
n−k−1∑
i=k−1

(
i+ k

k

)−1
=
n−k−1∑
i=0

(
i+ k

k

)−1
−
k−2∑
i=0

(
i+ k

k

)−1
,

which by the equation given in the footnote on page 5 is equal to

k

k − 1

[
1−

(
n− 1
n− k

)−1
]
− k

k − 1

[
1−

(
2k − 2
k − 1

)−1
]

= k

k − 1

[(
2(k − 1)
k − 1

)−1
−
(
n− 1
n− k

)−1
]

and in the limit is k
k−1

(2(k−1)
k−1

)−1
as n tends to infinity. Therefore E[C] is at most

2π
√

3
9 + π

√
3

9 + 1
k
· k

k − 1

(
2(k − 1)
k − 1

)−1
= π
√

3
3 + 1

k − 1

(
2(k − 1)
k − 1

)−1
,

for k ≥ 2. In case k = 1 the former two combinatorial sums are zero and the remaining terms
sum up to

∑n−1
i=1

1
i , which again equals the harmonic number of Hn−1. This completes our

proof. J

Wasn’t that awesome? Theorem 7 tells us that we need only a constant number of
comparisons on the average to check if a large array is well partitioned w.r.t. k, if k ≥ 2, and
for n large enough, and this number is about

π
√

3
3 ≈ 1.81379936423.

Compare this to Theorem 2 and to to the worst case, where we have to compare n− 1 times.
When considering the expected number of swaps, we find an identical result as in the

case of the original bogo-select (by partition) algorithm, which we state without proof.

I Theorem 8. If S denotes the total number of swaps carried out by the bogo-select (by
zig-zag partition) for an input x of length n, when asking for the kth element, for 1 ≤ k ≤ n,
we have

E[S] =
{

0 if x is well partitioned according to the kth element
k(n− 1)

(
n
k

)
otherwise.
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3.2 Bogo-Selection by Counting
As already mentioned in the introduction we also consider a variant of bogo-select relaxing
the condition of being partitioned to a condition that only requires that there are exactly k−1
elements in a[1 . . . k − 1, k + 1, . . . n] smaller or equal to a[k]; equivalently one requires that
exactly n− k elements in the array a[1 . . . k − 1, k + 1 . . . n] are larger or equal to a[k]. This
slight change of the condition alters the running time of the algorithm significantly. For
instance, in case n = 7 and k = 3 the original bogo-select and its newly introduced variant
would terminate on input x = 1 2 3 4 5 6 7: the values 1 and 2 are smaller or equal than 3
while the remaining values are strictly larger and so the input is well partitioned according
to the 3rd element of x. On the other hand, on input x = 5 6 3 1 2 4 7 the original bogo-select
algorithm starts with randomly permuting the input, because in this case x is not well
partitioned w.r.t. the 3rd element. For the newly introduced variant this second input
x = 5 6 3 1 2 4 7 leads to immediate termination in contrast. The new variant of bogo-select
(now by counting) gives rise to a new procedure named p-counted that requires an additional
counter c initially set to 0 in order to collect the number of elements that are smaller or
equal to a[k]. Observe, that the value of c is only compared to k in the second for-loop (and
once after the for-loop is finished). The procedure p-counted reads as follows:

1 procedure p- counted (int: k):
2 // returns true if exactly k-1 elements
3 // of a[1..k-1,k+1..n] are smaller or
4 // equal than a[k] and false otherwise
5 c := 0
6 for i=1 to k-1 do
7 if a[i]<=a[k] then
8 c := c+1
9 endif

10 endfor
11 for i=k+1 to n do
12 if a[i]<=a[k] then
13 c := c+1
14 if c>=k then
15 return false
16 endif
17 endif
18 endfor
19 if c<k-1 then
20 return false
21 endif
22 return true

Initially, enumerating the number of comparisons of the bogo-select (by counting) al-
gorithm looks more involved, since one has also to take the counter values into consideration.
In fact, the analysis is surprisingly easy.

I Theorem 9. Assume x is a random permutation of {1, 2, . . . , n}, and let C denote the
random variable counting the number of comparisons of array elements carried out by the
procedure p-counted in the test whether x is partitioned according to the kth element. Then

E[C] =
{
Hn−1 if k = 1,
(k − 1) + k(Hn−1 −Hk−1) otherwise.
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Proof. Let k with 1 ≤ k ≤ n be fixed. We proceed as in the previous two proofs. Therefore
we again consider two cases:
1. Let 1 ≤ i < k. Then by the careful design of the algorithm we have

P[C ≥ i] = 1,

because in the first for-loop the procedure p-counted in no case terminates. Furthermore
the first comparison within the second loop is always carried out totalling to a minimum
of k comparisons.

2. Next assume k ≤ i < n. Up until the ith comparison the value of the counter variable c
ranges from 0 to at most k − 1, since otherwise the procedure p-counted would have
already returned false. Thus, in order to determine the value of P[C ≥ i] we first consider
the following example: let n = 10 and k = 4. Assume we are about to reach i = 7
comparisons with counter c set to 3. Then we have hit i elements out of n, that is, for
instance, {1, 3, 4, 7, 8, 9, 10}. Now c indicates that exactly three elements from that sublist
are already smaller than our given element xk, thus yielding us 7 to be xk – in general
xk then equals the (c+ 1)st element. The remaining i− 1 elements from the selected set
can be freely permuted as well as the rest with a size of n− i. A last ith comparison is
then carried out that is allowed to also fail now thus setting no further restrictions on
the input. From this consideration we can derive in general

P[C ≥ i] = k ·
(
n
i

)
(i− 1)!(n− i)!

n! = k

i
.

Summing up gives

E[C] =
∑
i>0

P[C ≥ i] =
k−1∑
i=1

1 +
n−1∑
i=k

k

i
= (k − 1) + k

n−1∑
i=k

1
i
.

The remaining sum is then equal to Hn−1 −Hk−1, yielding

E[C] = (k − 1) + k(Hn−1 −Hk−1),

if k ≥ 2. In case k = 1 the former sum disappears and we end up with
∑n−1
i=1

1
i , which is the

(n− 1)th harmonic number Hn−1. This proves the claimed bounds. J

A more detailed analysis of the procedure p-counted also taking into account the
comparisons of the counter c at lines 14 and 19 is given next. While the upper theorem offers
a complete analysis of p-counted regarding the comparison of array elements it ignores that
counter c is also monitored via a comparison (in line 14). As it turns out this does not factor
into the asymptotics in a meaningful way. Going back to the procedure p-counted we can
see that the only repeated comparison not covered by the analysis above happens in line 14
where the counter c is checked for overflow. This very comparison is only carried out when c
itself has been incremented one line earlier, i.e., the comparison of array elements within
the second loop was successful. We can therefore deduce that the number of comparisons
within the second loop is at maximum double the comparisons we counted in Theorem 9.
Furthermore a last comparison can happen afterwards summing up to an upper bound. Thus,
we have

E[C] ≤ E[Ctot] ≤ E[C] +
{
Hn−1 + 1 if k = 1
k(Hn−1 −Hk−1) + 1 otherwise,
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where Ctot denotes the random variable counting the total number of comparisons (lines 12,
14, and 19) carried out by the procedure p-counted in the test whether x is partitioned
according to the kth element. The next theorem gives a more precise estimate on E[Ctot], by
a more detailed analysis of the p-counted procedure.

I Theorem 10. Assume x is a random permutation of {1, 2, . . . , n}, and let Ctot denote the
random variable counting the total number of comparisons (lines 12, 14, and 19) carried out
by the procedure p-counted in the test whether x is partitioned according to the kth element.
Then

E[Ctot] = E[C] + k + 1
2 − k(k − 1)

2n .

It holds E[Ctot] ∼ E[C] + k+1
2 .

Proof. Let R denote the random variable counting the raises of counter c within the procedure
p-counted. We calculate the expected value using the ansatz E[R] =

∑
i≥0 i · P[R = i].

Since we drop out for c = k we can deduce 0 ≤ i ≤ k. We consider two cases:
1. When c is raised at most 0 ≤ i ≤ k− 1 times there are a total of i smaller elements within

the array and therefore xk has to be the (i+ 1)st element which we hit with a probability
of

P[R = i] = 1
n
.

2. Otherwise c = k, which can be modeled using the complementary probability to the case
above:

P[R = k] = 1−
k−1∑
i=0

1
n

= 1− k

n

Summing it up we get

E[R] =
∑
i≥0

i · P[R = i] =
k−1∑
i=0

i
1
n

+ k

(
1− k

n

)
= 1
n

k−1∑
i=1

i+ k − k2

n

= 1
n

(
(k − 1)k

2

)
+ k − k2

n
= k2 − k + 2kn− 2k2

2n = 2kn− k − k2

2n .

Up next let the random variable R1 count the raises of counter c only within the first
loop. Going over the first k elements we can at most find k − 1 smaller elements. Each
possible counter value fixes us a specific element again, allowing us to calculate the expected
value as follows:

E[R1] =
∑
i≥0

i · P[R = i] =
k−1∑
i=0

i
1
k

= 1
k

k−1∑
i=1

i = 1
k

(
(k − 1)k

2

)
= k − 1

2

Lastly let random variable F indicate whether the final comparison in line 19 is carried out.
We reach this comparison when we have not dropped out before, that is if and only if there
were a maximum of k − 1 smaller elements to xk. In other words xk is one of the k smallest
elements within the array yielding us an expected value of

E[F ] =
∑
i≥0

i · P[F = i] = 0 · P[F = 0] + 1 · P[F = 1] = k

n
.



M. Holzer and J. T. Maurer 23:17

Now observe that every comparison within procedure p-counted that was not covered
by random variable C of the theorem 9 happens either when the counter is raised within
the second loop or in line 19 after the complete array has been covered. So the random
variable Ctot counting the total number of comparison within procedure p-counted is given
by

Ctot = C + (R−R1) + F.

By linearity of the expected value we can calculate

E[Ctot] = E[C] + E[R]− E[R1] + E[F ],

where

E[R]− E[R1] + E[F ] = 2kn− k − k2

2n − k − 1
2 + k

n
= kn+ k − k2 + n

2n
and therefore

E[Ctot] = E[C] + kn+ k − k2 + n

2n = E[C] + k + 1
2 − k(k − 1)

2n ,

yielding the stated result. Thus, asymptotically E[Ctot] ∼ E[C] + k+1
2 , as n tends to

infinity. J

This completes the more detail analysis of the procedure p-counted.
Finally, for the total number of swaps of the bogo-select (by counting) algorithm we

obtain the following result. A permutation (or array) x satisfying

|{ i | xi ≤ xk, for 1 ≤ i ≤ n and i 6= k }| = k − 1

is said to be p-counted w.r.t. the kth element.

I Theorem 11. If S denotes the total number of swaps carried out by bogo-select by counting
for an input x of length n, when asking for the kth element, for 1 ≤ k ≤ n, we have

E[S] =
{

0 if x is p-counted w.r.t the kth element
n(n− 1) otherwise.

Proof. We argue as in the case of the bogo-select algorithm. The hitting probability for a
permutation to be p-counted by the kth element is (n−1)!

n! in each trial; the kth element is fixed
and the remaining n− 1 elements can be arbitrarily arranged. The number of iterations I
is a geometrically distributed variable with hitting complexity p = 1

n and E[I] = p−1 = n.
Since each iteration costs n− 1 swaps the expected number of swaps counted by the random
variable S is equal to E[S] = n(n− 1), if the input is not p-counted w.r.t. the kth element of
the array, and E[S] = 0, otherwise. J

4 Experimental Results

We have implemented the considered algorithms in Lua5 and have performed some experi-
ments. The source code as well as the test scripts are available on request by email to one of

5 Lua is a powerful, efficient, lightweight, embeddable scripting language that can be downloaded form
https://www.lua.org as a small package that builds out-of-the-box on all platforms that have a
standard C compiler.
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Figure 1 The expected number of comparisons carried out by the three considered probe
procedures (i) partitioned, (ii) z-partitioned, and (iii) p-counted – diagrams are from left to
right. Observe, that the vertical axis is scaled differently on the rightmost diagram.
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Figure 2 The expected number of swaps carried out by the three considered randomized selection
algorithms bogo-select (i) by partition, (ii) by zig-zag-partition, and (iii) by counting – diagrams are
from left to right. Observe, that the vertical axis is differently scaled on the rightmost diagram.

the authors. The experiments were conducted on an iMac (mid 2011 version) with an Intel
Core i5 processor (2.7 GHz) and 4GB main memory. It took quite some time to collect our
results, but this was no problem, since we started in early January with our experiments.
We first implemented every investigated variant of the bogo-select as-is in order to observe
the performance on the given machine depending on different input sizes.

We ran all three probe procedures on every possible permutation of input array a[1 . . . n]
up to length n = 10 in order to track the arithmetic mean of the number of comparisons.
As expected our experimental values for every valid combination of n, k exactly match the
expected value calculated earlier. The results on the number of comparisons are shown in
Figure 1. Since the number of possible inputs grows superexponentially, exact values for
higher input sizes become quite costly and would necessitate further experiments.

It is important to note that our calculations for the number of swaps are based on the
premise that the input does not comply to the property at hand initially. Furthermore
neither the number of swaps nor the state of the input from iteration 2 onward in any way
depend on the original input – as we already stated in the introduction. We therefore take
an array that meets the given property – i.e., a fully ordered one – and swap entries xk, xk+1
yielding us an input as required. Via the insertion of a counter variable we tracked the swaps
carried out in 10.000 runs for every valid combination of n, k up to n = 10. The experimental
results depicted in Figure 2 nicely line up with the theoretical values. A more detailed
statistical analysis for the number of swaps is given next. When we consider the swaps the
analysis is not that simple for we counted them over r = 10000 randomized runs of each
algorithm. First up we use their arithmetic mean S as an unbiased estimate for the expected
value due to the number of runs r being sufficiently large – as stated earlier the values lined
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Figure 3 Confidence intervals for the number of swaps performed in bogo-select (by zig-zag-
partition) with n = 7 and k ∈ {2, 3, 4, 5, 6}. The expected number of swaps is drawn blue.

up reasonably well with the theoretical results. We also calculated the sample standard
deviation via σ =

√
1
r−1

∑r
i=1 (Si − S)2 to quantify how far the experimental results are

dispersed in relation to the arithmetic mean. Having this information we now perform some
statistical analysis upon the experimentally produced data sets – we do not factor in our
theoretical results to reach a second (and independent) conclusion.

The generally known hypothesis test does not offer further insight here since it is only
significant when it comes to rejecting an hypothesis while our objective is to verify the
theoretical results as calculated earlier. Based on our experimental data it is good practise
to calculate a confidence interval for the expected value of the number of swaps E[S] instead.
It is a statistical technique that gives an interval covering the underlying expected value of
a given probe with a fixed probability α. In our case we make no preconception about the
distribution at hand and have a probe size r sufficiently large. Therefore we can calculate
the confidence interval as [S ± t∞,1−α/2

σ√
r
] with t∞,1−α/2 being the 1− α/2 quantile of the

t-distribution with unlimited degrees of freedom.

With this method we are now able to check whether our theoretically calculated expected
value falls into the range that covers the expected value within the experiments (with
probability α = 95%). E.g. looking into the results for bogo-select (by zig-zag-partition), we
can see that for n = 7 and k = 5 we have an expected value of E[S] = 630 that comfortably
sits in the confidence interval of I ≈ 630.68± 10.5 we have generated experimentally. On
the other hand for n = 7 and k = 3 the expected value of E[S] = 630 misses the confidence
interval I ≈ 615.79±10.253 by a noticeable margin. Still the overall fit for n = 7 is quite good
as we can see in Figure 3. Deviations like the above are to be expected since the confidence
interval itself depends upon the randomness inherent to the experiments. In order to further
quantify how often the individual confidence intervals match with our theoretical results we
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Table 1 We cumulated the ratio whether the confidence intervals cover the theoretical values
(Conf) for all three bogo-select variants as well as the maximum deviation between arithmetic mean
and theoretical value relative to the latter (maxDev = max

(
|E[S]−S|

E[S]

)
).

Bogo-select by. . . Conf maxDev

partitioning 81.81% 2.507619%
z-partitioning 89.09% 2.255524%
p-counting 94.54% 2.73%

analyse the generated data sets with the powerful statistical programming language R.6 First
we calculated the percentage for said matches regarding every bogo-select variant that was
analysed within this paper. As you can see (in the first column of the Table 1) the coverage
is quite high. Please note that this ratio is not directly related to the significance of the
confidence intervals. The given level only ensures that a specific interval under identical
conditions covers the real value in 95% of all cases. In our experiments on the other hand
we only calculated a single confidence interval for every valid pair of n and k. Additionally
we are interested how much the experimental value differs from the theoretical results in
general. For this reason we also included the biggest distance between the two (relatively to
the theoretical expected value) in Table 1.

As one can see we stay well below a 3% discrepancy for every algorithm. In summary
it is safe to say that our experiments also support our theoretical analysis regarding the
number of swaps.

5 Conclusions

We continued our research on the still unexplored research field of pessimal algorithm design
with a theoretical and experimental study of bogo-select and variants thereof, which are
archetypical perversely awful algorithms. Remarkably, the expected running time of these
algorithms in terms of the number of swaps and comparisons can be determined exactly using
only elementary methods in probability and combinatorics. Though optimizing the running
time seems somewhat out of place in the field of pessimal algorithm design, it can be quite
revealing for beginners in both fields of optimal and pessimal algorithm design to see how a
single optimization step can yield a dramatic speed-up. The very first obvious optimization
step in all aforementioned algorithms is to swap two elements only if this makes sense. That
is, before swapping a pair, we check if it is an inversion: a pair of positions (i, j) in the
array a[1 . . . n] is an inversion if i < j and a[i] > a[j]. This leads to an optimized variant
of bogo-select (by partitioning or zig-zag partition), which we refer to as bogo-selectopt.
As there are at most

(
n
2
)
inversions, this number gives an immediate upper bound on the

number of swaps for the optimized bogo-select variants. Thus a single optimization step
yields polynomial running time. This can be shown with a similar proof based on the coupon
collectors’ problem as given in [3] for an appropriate optimized inversion based bogo-sort
variant.

6 The statistical programming language R is a industry standard to analyse huge amounts of data with a
vast library of statistical functions available out of the box.
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Correction of Theorem 7

In Theorem 7 the expected value of the random variable C that counts the number of
comparisons carried out by the procedure z-partitioned was determined to be

E[C] =
k−1∑
j=1

[
1

2j − 1

(
2(j − 1)
j − 1

)−1
+ 1
j

(
2j
j

)−1
]

+ 1
k

n−1∑
i=2k−1

(
i

k

)−1
. (8)

Then the asymptotic value of E[C] that comes from the first sum was overestimated under
the constraints that k is fixed and that n, the number of elements, tends to infinite. Under
these prerequisites Theorem 7 must read as follows, where (8) is also simplified:

I Theorem 7∗. Assume x is a random permutation of {1, 2, . . . , n}, and let C denote
the random variable counting the number of comparisons carried out by the procedure z-
partitioned in the test whether x is partitioned according to the kth element, for 1 ≤ k ≤
(n+ 1)/2, then:

E[C] = 3
k−1∑
j=1

1
j

(
2j
j

)−1
+ 1
k

n−1∑
i=2k−1

(
i

k

)−1

It holds E[C] = Hn−1, if k = 1, and

π
√

3
3 − 1

k − 1

(
2(k − 1)
k − 1

)−1
≤ E[C] ≤ π

√
3

3 + 1
k − 1

(
2(k − 1)
k − 1

)−1
,

otherwise. The statement remains valid in case k satisfies (n+ 1)/2 < k ≤ n by replacing k
by n− k + 1.

Observe, that the left term of the first sum in (8) can be rewritten as

1
2j − 1

(
2(j − 1)
j − 1

)−1
= 1

2j − 1 ·
(j − 1)!(j − 1)!

(2j − 2)! = 2j
j · j

· j!j!(2j)! = 2
j

(
2j
j

)−1

and therefore the former sum simplifies to

k−1∑
j=1

[
1

2j − 1

(
2(j − 1)
j − 1

)−1
+ 1
j

(
2j
j

)−1
]

= 3
k−1∑
j=1

1
j

(
2j
j

)−1
.

Next, in order to determine the bounds on E[C] we have to estimate the error in terms
of k that is induced by partial summation. To this end we use the following upper and lower
bound result from [1] on approximation of finite sums: let S =

∑∞
i=1 ai and let the kth

partial sum be Sk =
∑k
i=1 ai. Suppose that the sequence a1, a2, . . . is a positive decreasing

sequence and limi→∞
ai+1
ai

= q < 1. Then we distinguish two cases:
1. If ai+1

ai
decreases to the limit q, then

S − ak+1

1− ak+1
ak

≤ Sk ≤ S − ak
q

1− q .

2. If ai+1
ai

increases to the limit q, then

S − ak
q

1− q ≤ Sk ≤ S −
ak+1

1− ak+1
ak

.



In other words, the kth partial sum Sk can be bounded from above and below in terms
of the last element from the partial sum and its successor element, that is already outside
the partial sum.

Consider the first sum

3
k−1∑
j=1

1
j

(
2j
j

)−1
=
k−1∑
j=1

ai,

in Theorem 7∗, where ai = 3
i

(2i
i

)−1. Obviously, the infinite sequence a1, a2, . . . is positive
and decreasing and

lim
i→∞

ai+1

ai
= lim
i→∞

3
(i+ 1) ·

(i+ 1)!(i+ 1)!
(2i+ 2)! · i3 ·

(2i)!
i!i! = lim

i→∞

i(i+ 1)
(2i+ 1)(2i+ 2) = 1

4 ,

By inspection, the sequence ai+1
ai

increases to the limit q := 1
4 leading to the second case

for bounding the partial summation. Since q
1−q = 1

3 , we therefore bound the sum of the
(k − 1)st partial sum of the ai’s by

π
√

3
9 − ak−1 ·

1
3 ≤

k−1∑
j=1

aj ≤
∞∑
j=1

aj = π
√

3
9 ,

where the last equality follows from Lehmer’s identity. Since ak−1 = 3
k−1

(2(k−1)
k−1

)−1
, together

with the already correctly stated upper bound 1
k−1

(2(k−1)
k−1

)−1
of the second sum in Theorem 7∗

in the original proof, one observes that E[C] lies in between

π
√

3
3 − 1

k − 1

(
2(k − 1)
k − 1

)−1
≤ E[C] ≤ π

√
3

3 + 1
k − 1

(
2(k − 1)
k − 1

)−1
.

This proves the stated result.
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bound of the expected number of comparisons for one of the methods.
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