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Abstract
We analyze the computational complexity of the many types of pencil-and-paper-style puzzles
featured in the 2016 puzzle video game The Witness. In all puzzles, the goal is to draw a path
in a rectangular grid graph from a start vertex to a destination vertex. The different puzzle
types place different constraints on the path: preventing some edges from being visited (broken
edges); forcing some edges or vertices to be visited (hexagons); forcing some cells to have certain
numbers of incident path edges (triangles); or forcing the regions formed by the path to be
partially monochromatic (squares), have exactly two special cells (stars), or be singly covered
by given shapes (polyominoes) and/or negatively counting shapes (antipolyominoes). We show
that any one of these clue types (except the first) is enough to make path finding NP-complete
(“witnesses exist but are hard to find”), even for rectangular boards. Furthermore, we show that
a final clue type (antibody), which necessarily “cancels” the effect of another clue in the same
region, makes path finding Σ2-complete (“witnesses do not exist”), even with a single antibody
(combined with many anti/polyominoes), and the problem gets no harder with many antibodies.

1 Now at Google Inc.
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1 Introduction

The Witness [9] is an acclaimed 2016 puzzle video game designed by Jonathan Blow (who
originally became famous for designing the 2008 platform puzzle game Braid, which is
undecidable [5]). The Witness is a first-person adventure game, but the main mechanic of
the game is solving 2D puzzles presented on flat panels (sometimes CRT monitors) within
the game. The 2D puzzles are in a style similar to pencil-and-paper puzzles, such as Nikoli
puzzles. Indeed, one clue type in Witness (triangles) is very similar to the Nikoli puzzle
Slitherlink (which is NP-complete [10]).

In this paper, we perform a systematic study of the computational complexity of all
single-panel puzzle types in The Witness, as well as some of the 3D “metapuzzles” embedded
in the environment itself. Table 1 summarizes our single-panel results, which range from
polynomial-time algorithms (as well as membership in L) to completeness in two complexity
classes, NP (i.e., Σ1) and the next level of the polynomial hierarchy, Σ2. Table 3 summarizes
our metapuzzle results, where PSPACE-completeness typically follows immediately.

For omitted proofs, see [1].

Witness puzzles. Single-panel puzzles in The Witness (which we refer to henceforth as
Witness puzzles) consist of an m×n full rectangular grid;2 one or more start circles (drawn as
a large dot, ); one or more end caps (drawn as half-edges leaving the rectangle boundary);
and zero or more clues (detailed below) each drawn on a vertex, edge, or cell3 of the
rectangular grid. Figure 1 shows a small example and its solution. The goal of the puzzle is
to find a path that starts at one of the start circles, ends at one of the end caps, and satisfies
all the constraints imposed by the clues (again, detailed below). We focus on the case of a
single start circle and single end cap, which makes our hardness proofs the most challenging.

We now describe the clue types and their corresponding constraints. Table 2 lists the
clues by what they are drawn on — grid edge, vertex, or cell — which we refer to as this
edge, vertex, or cell. While the last five clue types are drawn on a cell, their constraint

2 While most Witness puzzles have a rectangular boundary, some lie on a general grid graph. This
generalization is mostly equivalent to having broken-edge clues (defined below) on all the non-edges of
the grid graph, but the change in boundary can affect the decomposition into regions. We focus here on
the rectangular case because it is most common and makes our hardness proofs most challenging.

3 We refer to the unit-square faces of the rectangular grid as cells, given that “squares” are a type of clue
and “regions” are the connected components outlined by the solution path and rectangle boundary.

http://dx.doi.org/10.4230/LIPIcs.FUN.2018.3
https://arXiv.org/abs/1804.10193
https://github.com/edemaine/svgtiler
https://github.com/thefifthmatt/windmill-client/
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Table 1 Our results for one-panel puzzles in The Witness: computational complexity with various
sets of allowed clue types (marked by X). Allowed polyomino clues are either arbitrary (X), or
restricted to be monominoes (X ), vertical dominoes (X ), or rotatable dominoes (X ).

broken edge hexagon square star triangle polyomino antipolyomino antibody
complexity

X ∈ L
X Xvertices NP-complete

Xvertices OPEN
Xedges NP-complete

X1 color ∈ P
X2 colors NP-complete

X1 color OPEN
Xn colors NP-complete

X NP-complete
X X NP-complete

X OPEN
X NP-complete

X X OPEN
X X NP-complete
X NP-complete
X NP-complete

X X X X X X X ∈ NP
X X X X X Xn ∈ NP

X X2 Σ2-complete
X X X1 Σ2-complete

X X X X X X X Xn ∈ Σ2

applies to the region that contains that cell (referred to as this region), where we consider
the regions of cells in the rectangle as decomposed by the (hypothetical) solution path and
the rectangle boundary.

The solution path must satisfy all the constraints given by all the clues. (The meaning
of this statement in the presence of antibodies is complicated; see Section 8.) Note, however,
that if a region has no clue constraining it in a particular way, then it is free of any such
constraints. For example, a region without polyomino or antipolyomino clues has no packing
constraint.

As summarized in Table 1, we prove that most clue types by themselves are enough
to obtain NP-hardness. The exceptions are broken edges, which alone just define a graph
search problem; and vertex hexagons, which are related to Hamiltonian path in rectangular
grid graphs as solved in [6] but remain open. But vertex hexagons are NP-hard when
we also add broken edges. For squares, we determine that exactly two colors are needed
for hardness. For stars, we do not know whether one or any constant number of colors
are hard. For triangles, we know that 1-triangles or 3-triangles alone suffice for hardness,
but for 2-triangles the only hardness proof we know needs broken edges. For polyominoes,
monominoes alone are easy to solve [8], but monominoes plus antimonominoes are hard, as
are rotatable dominoes by themselves and vertical nonrotatable dominoes by themselves. All
problems without antibodies or without (anti)polyominoes are in NP. Antibodies combined
with (anti)polyominoes push the complexity up to Σ2-completeness, but no further.
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3:4 Who witnesses The Witness? Finding witnesses in The Witness is hard/impossible

Figure 1 A small Witness puzzle featuring all clue types (left) and its solution (right). (Not from
the actual video game.)

Table 2 Witness puzzle clue types and the definitions of their constraints.

clue drawn on symbol constraint
broken edge edge The solution path cannot include this edge.
hexagon edge The solution path must include this edge.
hexagon vertex The solution path must visit this vertex.
triangle cell There are three kinds of triangle clues ( , , ).

For a clue with i triangles, the path must include
exactly i of the four edges surrounding this cell.

square cell A square clue has a color. This region must not have
any squares of a color different from this clue.

star cell A star clue has a color. This region must have exactly
one other star, exactly one square, or exactly one
antibody of the same color as this clue.

polyomino cell A polyomino clue has a specified polyomino shape,
and is either nonrotatable (if drawn orthogonally,
like ) or rotatable by any multiple of 90◦ (if drawn
at 15◦, like ). Assuming no antipolyominoes, this
region must be perfectly packable by the polyomino
clues within this region.

antipolyomino cell Like polyomino clues, an antipolyomino clue has a
specified polyomino shape and is either rotatable or
not. For some i ∈ {0, 1}, each cell in this region must
be coverable by exactly i layers, where polyominoes
count as +1 layer and antipolyominoes count as
−1 layer (and thus must overlap), with no positive
or negative layers of coverage spilling outside this
region.

antibody cell Effectively “erases” itself and another clue in this
region. This clue also must be necessary, meaning
that the solution path should not otherwise satisfy
all the other clues. See Section 8 for details.
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Table 3 Our results for metapuzzles in The Witness: computational complexity with various
sets of environmental features.

features complexity
sliding bridges PSPACE-complete

elevators and ramps PSPACE-complete
power cables and doors PSPACE-complete

(a) Instance of
grid-graph Hamil-
tonicity

(b) A possible so-
lution to (a)

(c) Corresponding chambers and hallways

Figure 2 An example of the Hamiltonicity framework with r = 1 and s = 4.

Witness metapuzzles. We also consider some of the metapuzzles formed by the 3D envi-
ronment in The Witness, which interact with the 2D single-panel puzzles. See Section 9
for details of these interaction models. Table 3 lists our metapuzzle results, which are all
PSPACE-completeness proofs following the infrastructure of [2] (from FUN 2014).

2 Hamiltonicity Reduction Framework

We introduce a framework for proving NP-hardness of Witness puzzles by reduction from
Hamiltonian cycle in a grid graph G of maximum degree 3. Roughly speaking, we scale G

by a constant scale factor s, and replace each vertex by a block called a chamber; refer to
Figure 2. Precisely, for each vertex v of G at coordinates (x, y), we construct a 2r + 1× 2r + 1
subgrid of vertices {sx− r, . . . , sx + r} × {sy− r, . . . , sy + r}, and all induced edges between
them, called a chamber Cv. This construction requires 2r < s for chambers not to overlap.
For each edge e = {v, w} of G, we construct a straight path in the grid from sv to sw, and
define the hallway Hv,w to be the subpath connecting the boundaries of v’s and w’s chambers,
which consists of s− 2r edges. Figure 2 illustrates this construction on a sample graph G.

FUN 2018
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In each reduction, we define constraints to force the solution path to visit (some part of)
each chamber at least once, to alternate between visiting chambers and traversing hallways
that connect those chambers, and to traverse each hallway at most once. Because G has
maximum degree 3, these constraints imply that each chamber is entered exactly once and
exited exactly once. Next to one chamber on the boundary of G, called the start/end chamber,
we place the start circle and end cap of the Witness puzzle. Thus any solution to the Witness
puzzle induces a Hamiltonian cycle in G. To show that any Hamiltonian cycle in G induces
a solution to the Witness puzzle, we simply need to show that a chamber can be traversed in
each of the

(3
2
)
ways.

3 Hexagons and Broken Edges

Hexagons are placed on vertices or edges of the graph and require the path to pass through
all of the hexagons. Broken edges are edges which cannot be included in the path. We show
the positive result that puzzles with just broken edges are solvable in L, and the negative
results that puzzles with just hexagons on edges are NP-complete and puzzles with just
hexagons on vertices and broken edges are NP-complete. We leave open the question of
puzzles with just hexagons on vertices (and no broken edges).

I Lemma 1. Witness puzzles containing only broken edges, multiple start circles and multiple
end caps are in L.

Proof. We keep two pointers and a counter to track which pairs of starts and ends we have
tried. For each start and end pair we run an (s, t) path existence algorithm, which is in L. If
any of these return yes, the answer is yes. Thus we’ve solved the problem with a quadratic
number of calls to a log-space algorithm, a constant number of pointers, and a counter, all of
which only require logarithmic space. J

I Lemma 2. It is NP-complete to solve Witness puzzles containing only broken edges and
hexagons on vertices.

Proof. Hamiltonian path in grid graphs is a strict subproblem. J

I Theorem 3. It is NP-complete to solve Witness puzzles containing only hexagons on edges
(and no broken edges).

Proof sketch. We use the Hamiltonicity framework; refer to Figure 3. Noting that two edge
hexagons incident to the same vertex must be consecutively traversed by the solution path,
we carefully force the solution path to traverse the boundary of every chamber separate from
the decision of which hallways to use. As with other Hamiltonicity framework reductions,
we force each chamber to be visited with an edge hexagon in its center and can deduce the
corresponding Hamiltonian cycle in the original grid graph from the set of used hallways. J

I Open Problem 1. Is there a polynomial-time algorithm to solve Witness puzzles containing
only hexagons on vertices?

4 Squares

Each square clue has a color and is placed on a cell of the puzzle. Each region formed by the
solution path and puzzle boundary must have at most one color of squares. If a puzzle has
only a single color of squares, no non-trivial constraint is applied.
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(a) Instance corresponding to Figure 2a (b) Solution corresponding to Figure 2b

Figure 3 Example of the Hamiltonicity framework applied to Witness with edge hexagons.

4.1 Tree-Residue Vertex Breaking
Our reduction is from tree-residue vertex breaking [4]. Define breaking a vertex of degree
d to be the operation of replacing that vertex with d vertices, each of degree 1, with the
neighbors of the vertex becoming neighbors of these replacement vertices in a one-to-one way.
The input to the tree-residue vertex breaking problem is a planar multigraph in which each
vertex is labeled as “breakable” or “unbreakable”. The goal is to determine whether there
exists a subset of the breakable vertices such that breaking those vertices (and no others)
results in the graph becoming a tree (i.e., destroying all cycles without losing connectivity).
This problem is NP-hard even if all vertices are degree-4 breakable vertices or degree-3
unbreakable vertices[4].

4.2 Squares with Squares of Two Colors
I Theorem 4. It is NP-complete to solve Witness puzzles containing only squares of two
colors.

Concurrent work [8] also proves this theorem. However, we prove this by showing that
the stronger Restricted Squares Problem is also hard, which will be useful to reduce from in
Section 5.

I Problem 1 (Restricted Squares Problem). An instance of the Restricted Squares Problem
is a Witness puzzle containing only squares of two colors (red and blue), where each cell
in the leftmost and rightmost columns, and each cell in the topmost or bottommost rows,
contains a square clue; and of these square clues, exactly one is blue, and that square clue is
not in a corner cell; and the start vertex and end cap are the two boundary vertices incident
to that blue square; see Figure 4.

I Theorem 5. The Restricted Squares Problem is NP-complete.

FUN 2018
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Figure 4 Boundary of the
Restricted Squares Problem.

(a) Unsolved gadget. (b) The unique solution path.

Figure 5 Unbreakable degree-3 vertex gadget

(a) Unsolved gadget (b) Unbroken solution path. (c) Broken solution path.

Figure 6 Breakable degree-4 vertex gadget

Proof sketch. We reduce from tree-residue vertex breaking and construct gadgets for an
unbreakeable degree 3 vertex (Figure 5) and a breakable degree 4 vertex (Figure 6) out of
squares. We force the solution path to take an Euler tour of these gadgets, which can only
be done if the underlying tree-residue vertex breaking graph is a tree. J

5 Stars

Star clues are in cells of a puzzle. If a region formed by the solution path and boundary of a
puzzle has a star of a given color, then the number of clues (stars, squares, or antibodies) of
that color in that region must be exactly two. A star imposes no constraint on clues with
colors different from that of the star.

I Theorem 6. It is NP-complete to solve Witness puzzles containing only stars (of arbitrarily
many colors).

Proof sketch. We reduce from the Restricted Squares Problem. For every square in the
source instance, I, we use exactly one pair of stars of a distinct color corresponding to
that square, as well as ten auxiliary colors. Figure 7 shows the high level structure of the
reduction. A subrectangle, S, of the puzzle is designated for recreating I. For each pair of
stars corresponding to a square, we place one of the two stars on the boundary of the puzzle,
and the other in S in the same position as the corresponding square in I. The solution
path will be forced to divide the overall puzzle into exactly two regions—an “inside” and
an “outside”—such that all of the boundary stars corresponding to red squares are on the
outside and all of the boundary stars corresponding to blue squares are on the inside. Then,
inside of S, the solution path must ensure that all stars corresponding to red squares are in
the outside region and all stars corresponding to blue squares are in the inside region, or
else the star constraint will be violated. Then the solution path inside of S must correspond
exactly to a solution path in I. J
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2

2

2

22 2

1 1

1 1 11 3

3

3

3

3 3

4 4

4 4R−1R B−1 B

squares instance

Figure 7 The boundary of the reduction. Each visual (color, number) pair represents a distinct
color in the constructed instance. All stars depicted as blue correspond to blue squares in the source
instance and must be in the inside region. Stars depicted as red correspond to red squares and must
be in the outside region. The other stars enforce this.

Table 4 Summary of Slitherlink / Witness triangle constraints. New results are bold.

Clue types Complexity
0 P [10]
1 NP-complete [Theorem 7]
2 Open
3 NP-complete [Theorem 8]
4 P [trivial]
0 and 2 NP-complete

I Open Problem 2. Is it NP-complete to solve Witness puzzles containing only a constant
number of colors of stars?

6 Triangles

Triangles are placed in cells. The number of solution path edges adjacent to that cell
must match the number of triangles. This is similar to Slitherlink, which is known to be
NP-complete [10]; however the proof in [10] relies critically on being able to force zero edges
around a cell using 0-clues, which are not available in The Witness. We characterize all
possibile combinations of constraints of these types for grid graphs. Table 4 summarizes
what is known.

I Open Problem 3. Is it NP-complete to solve Witness puzzles containing only 2-triangle
clues (and no broken edges)?

6.1 One Triangle Clues
Proving hardness of Witness puzzles containing only 1-triangle clues is made challenging
by the fact that it is impossible to (locally) force turns on the interior of the puzzle. In
particular, any rectangular interior region can be locally satisfied by a solution path which
either traverses every second row of horizontal edges in the region or every second column of
vertical edges in the region regardless of the configuration of 1-triangle clues in the region.

FUN 2018
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(a) Unsolved. (b) “All” or “active” solution. (c) “Nothing” or “inactive”
solution.

Figure 8 All-or-nothing gadget.

Therefore, any local arguments we want to make about gadgets on the interior of the puzzle
will need to admit the possibility of local solutions which are comprised of just horizontal or
vertical paths straight through.

I Theorem 7. It is NP-complete to solve Witness puzzles containing only 1-triangle clues.

Proof sketch. We reduce from positive 1-in-3SAT, making use of the fact that the solution
path must be a single closed path. We force the solution path to traverse all horizontal
edges except for on the interior of gadgets, in which the solution path is allowed to connect
adjacent horizontal path segments in a controlled manner (see Figure 8 for one key gadget),
such that doing so corresponds to a solution to the source 1-in-3SAT instance. J

6.2 Three Triangle Clues
I Theorem 8. It is NP-complete to solve Witness puzzles containing only 3-triangle clues.

Proof sketch. We use the Hamiltonicity framework. Adjacent 3-triangle clues must be
traversed consecutively by the solution path, so we can use them to for the solution path to
trace the boundary of each chamber. Figure 9 shows the construction of a chamber. J

7 Polyominoes

This section covers various types of polyomino and antipolyomino clues. Polyomino clues can
generally be characterized by the size and shape of the polyomino and whether or not they
can be rotated ( vs. ). For each region, it must be possible to place all polyominoes and
antipolyominoes depicted in that region’s clues (not necessarily within the region) so that
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(a) Unsolved. (b) One possible solution, using the left and
bottom edges.

Figure 9 A chamber with edges to the left, right, and below.
...

{

{

{{

Figure 10 Overview of the rotatable dominoes NP-completeness proof.

for some i ∈ {0, 1}, each cell inside the region is covered by exactly i more polyomino than
antipolyomino and each cell outside the region is covered by the same number of polyominoes
and antipolyominoes. We give several negative results showing that some of the simplest
(anti)polyomino clues suffice for NP-completeness.

Concurrent work [8] shows that Witness puzzles with squares of two colors for which
every cell contains a square clue can be solved in polynomial time. Interestingly, such puzzles
are equivalent to puzzles with only monominoes, by replacing one color of square with
monominoes and the other color with blank cells. The only constraint on the two puzzle
types is that there can be no region with a mix of square colors or, equivalently, monomino
clues and blank cells. However, the question of whether puzzles with only monominoes and
broken edges can be solved in polynomial time is still open.

7.1 Rotatable Dominoes
I Theorem 9. It is NP-complete to solve Witness puzzles containing only rotatable dominoes.

Proof sketch. We reduce from Rectilinear Steiner Tree: given n points with integer coor-
dinates (x′i, y′i) in the plane, i ∈ {1, 2, . . . , n}, and given an integer k, decide whether there
exists a rectilinear tree connecting the n points having total length at most k. As illustrated
in Figure 10, we embed the tree in the cells of a Witness puzzle, putting a domino clue

FUN 2018
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at each vertex of the tree, which the solution path must therefore visit. The total number
of dominoes is proportional to k, such that with careful counting, the area enclosed by
the solution path must “look like” a tree of length exactly k in the original Steiner tree
instance. J

7.2 Monominoes + Antimonominoes
I Theorem 10. It is NP-complete to solve Witness puzzles containing only monominoes and
antimonominoes.

Proof sketch. The reduction is very similar to that of Theorem 9, except that the vertices of
the Steiner tree contain antimonomino clues, and most of the other cells contain monomino
clues. We force the solution path to partition the puzzle into two regions, an “outside” region
which is entirely covered by monominoes, and an “inside” region which contains exactly as
many antimonominoes as monominoes, thereby satisfying both. We show that doing this
corresponds to a solution to the Steiner tree source instance. J

7.3 Nonrotatable Dominoes
I Theorem 11. It is NP-complete to solve Witness puzzles containing only nonrotatable
vertical dominoes.

Proof sketch. We reduce from planar rectilinear monotone 3SAT [7]. Refer to Figure 11.
We construct variable “wires” which are comprised of dominoes arranged on a diagonal which
the solution path must enclose in one of two settings. Each clause needs to “connect” to at
least one of its literals, but can only get close enough to do so if the corresponding variable
is set appropriately. J

I Open Problem 4. Is there a polynomial-time algorithm to solve Witness puzzles containing
only monominoes and broken edges?

8 Antibodies

An antibody ( ) eliminates itself and one other clue in its region. For the antibody to be
satisfied, this region must not be satisfied without eliminating a clue; that is, the antibody
must be necessary. An antibody may be colored, but its color does not restrict which clues it
can eliminate.4 Very few Witness puzzles contain multiple antibodies, making the formal
rules for the interactions between antibodies not fully determined by the in-game puzzles.
We believe the following interpretation is a natural one: each antibody increments a count
of clues that must necessarily be unsatisfied for their containing region to be satisfied. If
there are k antibodies in a region, then there must be k clues which can be eliminated such
that those k clues were unsatisfied and all other clues were satisfied; furthermore, there must
not have been a set of fewer than k unsatisfied clues such that all other clues are satisfied5.
Antibodies cannot eliminate other antibodies. The choice of clue to eliminate need not be

4 Antibody color matters when checking if the antibody is necessary; a region containing only a star and
an antibody of the same color is unsatisfied because the antibody is not necessary.

5 Whether or not a clue is satisfied is usually determined only by the solution path; however, in the case
of polyominoes and antipolyominoes, there might be several choices of packings which satisfy different
sets of clues.
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(a) The puzzle. (b) The solution.

Figure 11 A Witness puzzle produced from (x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ ¬y) and its
solution (x and y are false, z is true). Shaded cells show the domino tiling on the path’s interior.

unique; for instance, a region with three white stars and one antibody is satisfied, even
though the stars are not distinguished. Formally:

I Definition 12 (Simultaneous Antibodies). A region with k antibody clues is satisfied if and
only if there exists a set S of k non-antibody clues such that eliminating all clues in S and
all k antibodies leaves the region satisfied, and there does not exist a set S′ of non-antibody
clues with |S′| < k such that eliminating all clues in S′ and only |S′| of the antibodies leaves
the region satisfied.

I Theorem 13. Witness puzzles containing all clue types except polyominoes and antipoly-
ominoes are in NP.

Proof sketch. Other than antibodies, polyominoes, and antipolyominoes, whether or not a
clue is satisfied can be easily determined from the solution path. Thus, checking whether an
antibody which eliminates such a clue is necessary is easy. J

I Theorem 14. Witness puzzles containing all clue types except antipolyominoes and for
which at least one solution eliminates at most one polyomino in each region are in NP.

Proof sketch. If at least one polyomino is eliminated in a region containing at least two
polyominoes and the region is satisfied as a result, then the region can’t be satisfied without
deleting at least one polyomino because the total area of the polyominoes is greater than
that of the region, and therefore there is no packing. J

I Theorem 15. Witness puzzles containing any set of clue types (including polyominoes,
antipolyominoes, and antibodies) are in Σ2.

FUN 2018
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Proof. Solving this Witness puzzle requires picking clues for antibodies to eliminate and
finding a path which respects the remaining clues, such that the regions cannot be satisfied
if only a subset of antibodies are used to eliminate clues. Membership in Σ2 requires an
algorithm which accepts only when there exists a certificate of validity for which there is
no certificate of invalidity (i.e., one alternation of ∃x∀y). A certificate of invalidity allows a
polynomial-time algorithm to check whether an instance of a given problem is false. Our
certificate of validity is a solution path, a mapping from antibodies to eliminated clues, and
a packing witness for any region with at least one uneliminated polyomino. Our certificate
of invalidity is the solution path (from the certificate of validity), a mapping of a subset of
the antibodies to eliminated clues, and a packing witness for any region with at least one
uneliminated polyomino.

Our verification algorithm begins checking the certificate of validity by verifying the
packing witnesses and checking that the antibody mapping specifies distinct eliminated
clues in the same region as each antibody. Then we remove all antibodies, polyomino and
antipolyomino clues, and eliminated clues from the Witness puzzle and run the algorithm
given in the proof of Theorem 13 to verify that the remaining clues in each region are satisfied
under the solution path.

To verify the certificate of invalidity, we again check its packing witnesses and its (partial)
antibody mapping. Then we remove the used antibodies, polyomino and antipolyomino clues,
and eliminated clues from the Witness puzzle. We replace any unused colored antibodies
with stars of their color if they are in the same region as an (uneliminated) star of that color,
then remove any remaining antibodies. We run the polynomial-time algorithm given in the
proof of Theorem 13 on the resulting Witness puzzle. Our algorithm accepts if and only if
the certificate of validity is valid and all certificates of invalidity are invalid. J

Finally, we will show that Witness puzzles in general are Σ2-complete. We will proceed
in two steps, first considering puzzles which have two (or more) antibodies which might be
eliminating polyominoes in the same region, and then considering puzzles which have only
one antibody but both polyominoes and antipolyominoes. In both cases, we will reduce from
Adversarial-Boundary Edge-Matching, a one-round two-player game defined as follows:

I Problem 2 (Adversarial-Boundary Edge-Matching). A signed color is a sign (+ or −)
together with an element of a set C of colors. Two signed colors match if they have the same
element of C and the opposite sign. A tile is a unit square with a signed color on each of its
edges.

An n × (2m) boundary-colored board is an n × (2m) rectangle together with a signed
color on each of the unit edges along its boundary. Given such a board and a multiset T of
2nm tiles, a tiling is a placement of the tiles at integer locations within the rectangle such
that two adjacent tiles have matching colors along their shared edge, and a tile adjacent to the
boundary has a matching color along the shared edge. There are two types of tiling according
to whether tiles can only be translated or can also be rotated.

The adversarial-boundary edge-matching game is a one-round two-player game played
on a 2n×m boundary-colored board B and a multiset T of 2nm tiles. Name the unit edges
along B’s top boundary e0, e1, . . . , e2n from left to right. During the first player’s turn, for
each even i = 0, 2, 4, . . . , 2n − 2, the first player chooses to leave alone or swap the signed
colors on ei and ei+1. During the second player’s turn, the second player attempts to tile
the resulting boundary-colored board B′ such that signed colors on coincident edges (whether
on tiles or on the boundary of B′) match. If the second player succeeds in tiling, the second
player wins; otherwise, the first player wins.
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The adversarial-boundary edge-matching problem is to decide whether the first player
has a winning strategy for a given adversarial-boundary edge-matching game; that is, whether
there exists a choice of top-boundary swaps such that there does not exist an edge-matching
tiling of the resulting boundary-colored board.

I Lemma 16. Adversarial-boundary edge-matching is Σ2-hard, with or without tile rotation,
even when the first player has a losing strategy.

Proof sketch. We reduce from from QSAT2, which is the Σ2-complete problem of decid-
ing a Boolean statement of the form ∃x1 : ∃x2 : · · · : ∃xn : ∀y1 : ∀y2 : · · · : ∀yn :
f(x1, x2, . . . , xn; y1, y2, . . . , yn) where f is a Boolean formula using and (∧), or (∨), and/or
not (¬). We convert this formula into a circuit, lay out the circuit on a square grid, and
implement each circuit element as a set of tiles, one tile for each valid state (truth table row)
of that element. The first player’s boundary-edge swaps encode a setting of true or false for
the first player’s variables. Then, as part of solving the edge-matching problem, the second
player must exhibit a setting of their variables that makes the formula false; otherwise the
first player wins. J

I Theorem 17. It is Σ2-complete to solve Witness puzzles containing two antibodies and
polyominoes.

Proof. We reduce from adversarial-boundary edge-matching with the guarantee that the
first player has a losing strategy. We create a Witness puzzle containing two antibodies.
We will force the solution path to split the puzzle into two regions, with both antibodies in
the same region and with part of the solution path encoding top-boundary swaps. In the
construction, it will be easy to find a solution path satisfying all non-antibody clues when
both antibodies are used to eliminate clues, but the antibodies themselves are only satisfied if
they are necessary. When only one antibody is used, the remaining polyominoes in one of the
regions, together with the solution path, simulate the adversarial-boundary edge-matching
instance. The remaining polyominoes cannot pack the region (necessitating the second
antibody and making the Witness solution valid) exactly when the adversarial-boundary
edge-matching instance is a YES instance. (In the context of The Witness, the human player
is the first player in an adversarial-boundary edge-matching game, and The Witness is the
second player.)

Encoding signed colors. We encode signed colors on the edges of polyominoes in binary
as unit-square tabs (for positive colors) or pockets (for negative colors) [3, Figure 7]. If the
input adversarial-boundary edge-matching instance has c colors, we need dlog2(c + 1)e bits
to encode the color6. To prevent pockets at the corners of a tile from overlapping, we do not
use the 2× 2 squares at each corner to encode colors, so tiles are built out of squares with
side length w = dlog2(c + 1)e+ 47.

Clue sets. We consider the clues in the Witness puzzle to be grouped into two clue sets, A

and B, which we place far apart on the board. We will argue that any valid solution path
must partition the puzzle into two regions, such that each set is fully contained in one of the
regions. Figure 12 shows (the intended packing of) most of the polyomino clues.

6 We cannot use 0 as a color because we need at least one tab or pocket to determine the sign.
7 At the cost of introducing disconnected polyomino clues, we could leave only one pixel at each corner

out of the color encoding; that pixel is disconnected when the colors on its edges both have pockets
next to it.
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Figure 12 The intended packing of the puzzle after eliminating the medium polyomino (not
to scale). The left and right board-frame polyominoes slot inside the large polyomino, and the
monominoes fill the holes in the left board-frame polyomino. The stamps fill in their matching
handle slots in the large polyomino, leaving only the boundary-colored board for the simulated
adversarial-boundary edge-matching instance.

Clue set A contains:
Two antibodies.
2nw − q monominoes, where q is the total number of pockets minus the total number of
tabs across the “dies” of the “stamps” in clue set B (see below). There are 2n stamps
each having up to dlog2(c + 1)e tabs or pockets, so the total number of monominoes is
between 2nw − 2ndlog2(c + 1)e = 8n and 2nw + 2ndlog2(c + 1)e = 4nw − 8n inclusive.
A w × w square polyomino for each of the 2nm tiles in the adversarial-boundary edge-
matching instance. The edges of each polyomino are modified with tabs and pockets
encoding the signed colors on the corresponding edges of the corresponding tile. Call the
upper-left corner of the w×w square the key pixel of that polyomino (even if tabs caused
other pixels to be further up or to the left).
A “medium” sized polyomino formed from a 2n(w + 3) − 1 ×m(w + 3) + 3 rectangle
polyomino; see Figure 13. Cut a hole out of this rectangle in the image of each tile
polyomino, aligning the key pixel of each tile polyomino to a 2n×m grid with upper-left
point at the fourth row, second column of the rectangle and w + 3 intervals between rows
and columns. Regardless of the pattern of tabs and pockets on each tile, this spacing
ensures at least two rows of pixels above the top row of tile-shaped holes, at least one
row on each other side, and at least one row between adjacent holes. Then add pixels
above the upper-leftmost and upper-rightmost pixel of the rectangle (the horns) and
below the middle-bottommost pixel of the rectangle (the tail). Finally, cut 2nw pixels
out of the top row of the rectangle starting from the third pixel; this cutout is the stamp
accommodation zone.
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Figure 13 The medium polyomino, with boundary-colored holes matching each tile polyomino.

Two board-frame polyominoes. Again, starting from a 2n(w + 3) − 1 ×m(w + 3) + 3
rectangle polyomino, add horns and tail pixels in the same locations. Then cut out
a 2nw ×mw rectangle whose upper-left pixel is the third pixel in the top row of the
rectangle. The left, right and bottom edges of this cutout are modified with tabs and
pockets encoding the signed colors on the corresponding sides of the boundary-colored
board in the adversarial-boundary edge-matching instance. Split the polyomino vertically
along the column of edges immediately to the right of the tail pixel.
Finally, for each monomino in this clue set, cut a pixel out of the left board-frame
polyomino, starting from the second-bottommost pixel in the second column, continuing
across every other column, then continuing with the fourth-bottomost pixel in the second
column, and so on. The left board-frame polyomino has width nw + 3n, we cut pixels
out of every other column, and we do not cut holes in its left or right columns, so we
cut pixels out of nw+3n−2

2 columns. Below the mw-tall cutout and allowing two rows to
ensure cut pixels do not join with pockets encoding signed colors along the edges of the
cutout, we can cut pixels out of 3w−1

2 rows (or 3w
2 , depending on parity). This allows

up to ( nw+3n−2
2 )( 3w−1

2 ) = n(w−4)2+2w(nw−3)+13n+2
4 + 4nw − 8n pixels to be cut out, but

there are at most 4nw − 8n monominoes, so we can always cut enough pixels without
interfering with any other cuts.

Clue set B contains:
A stamp polyomino for each of the 2n edge segments of the top edge of the boundary-
colored board. Each stamp is composed of a w × 2 rectangle modified to encode the
signed color on the corresponding edge segment (called the die), a pixel centered above
that rectangle, and a 2× h rectangular handle whose bottom-right pixel is immediately
above that pixel, where h = max(m(w + 3) + 7, n). Stamps corresponding to 1-indexed
edge segments 2i and 2i + 1 have pockets encoding i in binary cut into the left edge of
their handle, starting from the second-to-top row of the handle.
A “large” sized polyomino built from a 2n(w +3)+1× t rectangular polyomino, where t is
the total area of all other polyominoes so far defined. Modify this polyomino by cutting out
the middle pixel of the bottom row, the 2n(w +3)−1×m(w +3)+3 horizontally-centered
rectangle immediately above that removed pixel, and the pixels above the upper-left
and upper-right removed pixels. (That is, cut out space for the medium polyomino,
including the horns and tail but not including the stamp accommodation zone.) Then
cut out the image of each stamp in the order of their corresponding edge segments in
the adversarial-boundary edge-matching instance, aligning the leftmost-bottom pixel of
the first stamp’s die two pixels to the right of the upper-left removed pixel and aligning
successive dies immediately adjacent to one another.
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Figure 14 Because both antibodies are surrounded by monominoes, any region containing an
antibody also contains at least one monomino.

Puzzle. The Witness puzzle is a 2n(w + 3) + 1× t rectangle. The start circle and end cap
are at the middle two vertices of the bottom row of vertices.

Placement of A clues. We place a monomino from clue set A in the cell having the start
circle and end cap as vertices, then place an antibody above that monomino, surrounded
by a monomino in each of its other three neighbors. We then place the other antibody,
surrounded by monominoes in its neighboring cells, three cells above the first antibody.
(See Figure 14.) It is always possible to surround the antibodies in this way because there
are at least 8n monominoes. We place the remaining clues from clue set A inside the
2n(w + 3)− 1×m(w + 3) + 3 rectangle one row above the bottom of the puzzle; this is always
possible because |A| ≤ 4nw − 8n + 2nm + 5.

Placement of B clues. We place the large polyomino clue in the upper-left cell of the
board and the stamp clues in the 2n cells to its right.

Argument. In any valid solution to the resulting puzzle, the large polyomino is not elim-
inated. If it were, it must be in the same region as an antibody. Because each antibody
is surrounded by monomino clues, the number of polyomino clues in this region is strictly
greater than the number of antibodies, so the region must be packed by the non-eliminated
polyomino clues. The nearest (upper) antibody is t − 4 columns and nw + 3n rows away
from the large polyomino clue, so this region has area at least t. Recall that t is the total
area of all polyomino clues except the large polyomino. If the large polyomino is eliminated,
there is no way to pack this region, even if all other polyomino clues are used.

The large polyomino is as wide and as tall as the entire puzzle, so it has a unique placement.
The large polyomino intersects its bounding box everywhere except one unit-length edge
aligned with the start vertex and end cap, so any valid solution path can only touch the
boundary at the start and end. Thus the solution path divides the puzzle into at most two
regions (an inside and an outside).

Suppose the solution path places the entire puzzle into a single region; that is, suppose
the solution path proceeds (in either direction) from the start vertex to the end cap without
leaving the boundary. Then by the assumption that the first player has a losing strategy
in the input adversarial-boundary edge-matching instance, we can pack the region while
eliminating only one clue. The large polyomino’s placement is fixed. We eliminate the
medium polyomino, place the two board-frame polyominoes inside the large polyomino, and
place the monominoes in the pixels cut out of the left board-frame polyomino. It remains
to place the stamps and tiles. By the assumption, there is a losing set of top-boundary
swaps; we swap the corresponding pairs of stamps when placing them into the cutouts in the
large polyomino, and then place the tiles in the remaining uncovered area bordered by the
board-frame polyominoes and stamp dies. Because we satisfied all non-antibody constraints
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after eliminating only one clue, the unused antibody is unsatisfied, so any solution path
resulting in a single region is not a valid solution to the puzzle. Thus there are exactly two
regions.

The cells containing the stamp clues are covered by the large polyomino, so any valid
solution places the stamps in the same region as the large polyomino. The handles of the
stamps are taller than the cutout in the bottom-middle of the large polyomino, so they must
instead be placed in the stamp-shaped cutouts in the large polyomino. The pockets cut
into the left edges of the handles ensure that stamps can only swap places corresponding to
top-boundary swaps in the adversarial-boundary edge-matching instance.

All clues in set A are in the other region. The monomino clue in the cell having both the
start circle and end cap as vertices cannot be in the same region as the large polyomino (else
the path could not divide the puzzle into two regions). Because each antibody is surrounded
by monomino clues, the number of polyomino clues in this region is strictly greater than the
number of antibodies, so the region must be packed by the non-eliminated polyomino clues.
When both antibodies are used to eliminate clues, they must eliminate both board-frame
polyominoes, and when only one is used, it must eliminate the medium polyomino; any
other elimination leaves polyomino clues with too much or too little area to pack the area of
the puzzle not yet covered by the large polyomino or the stamps. Thus either the medium
polyomino or both board-frame polyominoes will not be eliminated. The medium polyomino
and board-frame polyominoes have unique placements within the large polyomino determined
by the horns and tail. The intersection of the outlines of these placements covers all the A

clues, so they are all in the same other region.
By this division of the clues into regions, any valid solution path traces the inner boundary

of the large polyomino and the dies of the stamps (possibly after swapping some pairs). It
remains to show that the solution path is valid exactly when the implied set of top-boundary
swaps is a winning strategy in the adversarial-boundary edge-matching instance.

When using both antibodies to eliminate the board-frame polyominoes, the remaining
polyominoes always pack their region. The medium polyomino’s placement is fixed by the
horns and tail; the stamp accommodation zone ensures this placement is legal regardless
of the pattern of tabs on the dies of the stamps. The tile polyominoes fit directly into the
cutouts in the medium polyomino and there are exactly enough monominoes to fill in the
uncovered area in the stamp accommodation zone and the pockets of the dies.

The solution path is only valid if both antibodies are necessary. When using one antibody
to eliminate the medium polyomino, the board-frame polyominoes’ position is forced by the
horns and tail. The monominoes are the only way to fill the single-pixel holes in the left
board-frame polyomino and there are exactly enough monominoes to do so. Then the dies of
the stamps and the edges of the rectangular cutout in the board-frame polyominoes models
the boundary-colored board of the input adversarial-boundary edge-matching instance (see
Figure 12). The tile polyominoes cannot pack this area, necessitating the second antibody
and making the solution path valid, exactly when the set of top-boundary swaps is a winning
strategy in the adversarial-boundary edge-matching instance. J

I Theorem 18. It is Σ2-complete to solve Witness puzzles containing one antibody, poly-
ominoes and antipolyominoes.

Proof sketch. As in the proof of Theorem 17, we reduce from adversarial-boundary edge-
matching, and the reduction is similar. The primary difference is that the medium polyomino
is also the singular board-frame polyomino. Besides the antibody and the tile polyominoes
(same as before), clue set A contains an antipolyomino called the antikit shaped like a 1-
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pixel-wide tree with the tile polyominoes (as antipolyominoes) at the leaves and a polyomino
shaped like the 1-pixel-wide tree (the sprue). The medium polyomino has the kit polyomino
attached to its right side and a cutout for the sprue and for the boundary-colored board.

The stamps must be placed in the large polyomino as in the previous proof. When
the antibody eliminates the medium polyomino, the antikit annihilates the sprue and tile
polyominoes, leaving no (anti)polyominoes in the inner region (so it is trivially satisfied).
When the antibody is not used, the antikit annihilates the kit-shaped part of the medium
polyomino and the sprue fits in the cutout in the medium polyomino, leaving only a boundary-
colored board for the tile polyominoes to be placed. Placing the tile polyominoes is impossible,
necessitating the antibody and making the solution path valid, exactly when the top-boundary
swaps are a winning strategy in the adversarial-boundary edge-matching instance. J

By Theorem 14, Theorem 17 and Theorem 18 are tight.

9 Metapuzzles

In this section, we analyze several of the metapuzzles that appear in The Witness. Metapuzzles
are puzzles which have one or more puzzle panels as a sub-component of the puzzle, and in
which solving the puzzle panel affects the surrounding world in a way that depends on the
choice of solution that was used to solve the panel.

9.1 Sliding Bridges
The marsh area contains sliding bridges. In this metapuzzle, each bridge has a corresponding
puzzle panel, and solving the puzzle causes the bridge to move into the position depicted by
the outline of the solution path. The following theorem demonstrates that, regardless of the
difficulty of the puzzle panels (i.e., even if it is easy to find all solutions of each individual
panel), it is PSPACE-complete to solve sliding bridge metapuzzles.

I Theorem 19. It is PSPACE-complete to solve Witness metapuzzles containing sliding
bridges.

Proof sketch. We straightforwardly construct the one-way and door gadgets of [2], which
are known to be sufficient for PSPACE-completeness. J

9.2 Elevators and Ramps
Another metapuzzle which appears in The Witness consists of groups of platforms that move
vertically at one or both ends to form an elevator or ramp, controlled by the path drawn
on puzzle panels. Because the player cannot jump or fall in The Witness, the player can
walk onto an elevator platform only if it is at the same height as the player. The player can
adjust the height of the platforms from anywhere with line-of-sight to the controlling panel,
including while on the platforms themselves. Besides the sawmill, the other building in the
quarry contains a ramp and an elevator. The marsh contains a single puzzle with a 3× 3
grid of elevators controlled by two identical panels; as a metapuzzle, our puzzle could be
built out of multiple marsh puzzles with two platforms and one panel each.

I Theorem 20. It is PSPACE-complete to solve Witness metapuzzles containing elevator
reconfiguration, even when each panel controls at most one elevator.

Proof sketch. We construct one-way and door gadgets similar to Theorem 19. J
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9.3 Power Cables and Doors
In the introductory area of The Witness, there are panels with two solutions, each of which
activates a power cable. Activated cables can power one other panel (allowing it to the
solved) or one door (opening it). If a cable connected to a door is depowered, the door closes.
Cables cannot be split and panels can power at most one cable at a time.

I Theorem 21. It is PSPACE-complete to solve Witness metapuzzles containing power
cables and doors.

Proof sketch. Again we construct one-way and door gadgets, with the slight complication
that all powered doors in The Witness are initially closed, so we need to give the player a
way to open exactly the set of doors which are initially open in the source instance. J
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