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—— Abstract

A partial complement of the graph G is a graph obtained from G by complementing all the
edges in one of its induced subgraphs. We study the following algorithmic question: for a given
graph G and graph class G, is there a partial complement of G which is in G? We show that
this problem can be solved in polynomial time for various choices of the graphs class G, such as
bipartite, degenerate, or cographs. We complement these results by proving that the problem is
NP-complete when G is the class of r-regular graphs.
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1 Introduction

One of the most important questions in graph theory concerns the efficiency of recognition of
a graph class G. For example, how fast we can decide whether a graph is chordal, 2-connected,
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triangle-free, of bounded treewidth, bipartite, 3-colorable, or excludes some fixed graph as a
minor? In particular, the recent developments in parameterized algorithms are driven by the
problems of recognizing of graph classes which do not differ up to a “small disturbance” from
graph classes recognizable in polynomial time. The amount of disturbance is quantified in
“atomic” operations required for modifying an input graph into the “well-behaving” graph class
G. The standard operations could be edge/vertex deletions, additions or edge contractions.
Many problems in graph algorithms fall into this graph modification category: is it possible
to add at most k edges to make a graph 2-edge connected or to make it chordal? Or is it
possible to delete at most k vertices such that the resulting graph has no edges or contains
no cycles?

A rich subclass of modification problems concerns edge editing problems. Here the
“atomic” operation is the change of adjacency, i.e. for a pair of vertices u, v, we can either
add an edge uv or delete the edge uv. For example, the CLUSTER EDITING problem asks to
transform an input graph into a cluster graph, that is a disjoint union of cliques, by flipping
at most k adjacency relations.

Besides the basic edge editing, it is natural to consider problems where the set of removed
and added edges should satisfy some structural constraints. In particular, such problems
were considered for complementation problems. Recall that the complement of a graph G
is a graph H on the same vertices such that two distinct vertices of H are adjacent if and
only if they are not adjacent in G. Seidel (see [19, 20, 21]) introduced the operation that is
now known as the Seidel switch. For a vertex v of a graph G, this operation complements
the adjacencies of v, that is, it removes the edges incident to v and makes v adjacent to the
non-neighbors of v in G. Respectively, for a set of vertices U, the Seidel switching, that is, the
consecutive switching for the vertices of U, complements the adjacencies between U and its
complement V(G)\ U. The study of the algorithmic question whether it is possible to obtain
a graph from a given graph class by the Seidel switch was initiated by Ehrenfeucht et al. [7].
Further results were established in [11, 12, 13, 16, 15]. Another important operation of this
type is the local complementation. For a vertex v of a graph G, the local complementation
of G at v is the graph obtained from G by replacing G[N(v)] by its complement. This
operation plays crucial role in the definition of vertez-minors [17] and was investigated in
this contest (see, e.g. [6, 18]). See also [2, 14] for some algorithmic results concerning local
complementations.

In this paper we study the partial complement of a graph, which was introduced by
Kaminski, Lozin, and Milani¢ in [14] in their study of the clique-width of a graph. A partial
complement of a graph G is a graph obtained from G by complementing all the edges of one
of its induced subgraphs. More formally, for a graph G and S C V(G), we define G & S as
the graph with the vertex set V(G) whose edge set is defined as follows: a pair of distinct
vertices u, v is an edge of G & S if and only if one of the following holds:

w e E(G)AN(ug SVu¢gs), or

w ¢ E(G)ANue SAvES.

Thus when the set S consists only of two vertices {u, v}, then the operation changes the
adjacency between u and v, and for a larger set S, G & S changes the adjacency relations for
all pairs of vertices of S.

We say that a graph H is a partial complement of the graph G if H is isomorphic to
G @ S for some S C V(G). For a graph class G and a graph G, we say that there is a partial
complement of G to G if for some S C V(G), we have G @ S € G. We denote by G the
class of graphs such that its members can be partially complemented to G.

Let G be a graph class. We consider the following generic algorithmic problem.
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PARTIAL COMPLEMENT TO G (PCG)
Input: A simple undirected graph G.
Question: Is there a partial complement of G to G?

In other words, how difficult is it to recognize the class G(V? In this paper we show that
there are many well-known graph classes G such that G(*) is recognizable in polynomial time.
We show that

PARTIAL COMPLEMENT TO G is solvable in time O(f(n)-n*+n®) when G is a triangle-free

graph class recognizable in time f(n). For example, this implies that when G is the class

of bipartite graphs, the class G(!) is recognizable in polynomial time.

PARTIAL COMPLEMENT TO G is solvable in time f(n) - n®M when G is a d-degenerate

graph class recognizable in time f(n). Thus when G is the class of planar graphs, class of

cubic graphs, class of graph of bounded treewidth, or class of H-minor free graphs, then
the class G is recognizable in polynomial time.

PARTIAL COMPLEMENT TO G is solvable in polynomial time when G is a class of bounded

clique-width expressible in monadic second-order logic (with no edge set quantification).

In particular, if G is the class of P-free graphs (cographs), then G(!) is recognizable in

polynomial time.

PARTIAL COMPLEMENT TO G is solvable in polynomial time when G can be described by

a 2 x 2 M-partition matrix. Therefore G(U) is recognizable in polynomial time when G is

the class of split graphs, as they can be described by such a matrix.

Nevertheless, there are cases when the problem is NP-hard. In particular, we prove that
this holds when G is the class of r-regular graphs.

2  Partial complementation to triangle-free graph classes

A triangle is a complete graph on three vertices. Many graph classes does not allow the
triangle as a subgraph, for instance trees, forests, or graphs with large girth. In this paper
we show that partial complementation to triangle-free graphs can be decided in polynomial
time.
More precisely, we show that if a graph class G can be recognized in polynomial time and
it is triangle-free, then we can also solve PARTIAL COMPLEMENT TO G in polynomial time.
Our algorithm is constructive, and returns a solution S C V(G), that is a set S such that
G @ S is in G. We say that a solution hits an edge uv (or a non-edge wv), if both v and v
are contained in S.
Our algorithm considers each of the following cases.
(i) There is a solution S of size at most two.
(ii) There is a solution S containing two vertices that are non-adjacent in G.
(iii) There is a solution S such that it form a clique of size at least 3 in G.
(iv) G is a no-instance.

Case (i) can be resolved in polynomial time by brute-force, and thus we start from
analyzing the structure of a solution in Case (7). We need the following observation.

» Observation 1. Let G be a class of triangle-free graphs and let G be an instance of PARTIAL
COMPLEMENT TO G, where S C V(G) is a valid solution. Then

a) G[S] does not contain an independent set of size 3, and

b) for every triangle {u,v,w} C V(G), at least two vertices are in S.

SWAT 2018
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Because all non-edges between vertices in G[S] become edges in G&® .S and vice versa, whereas
all (non-) edges with an endpoint outside S remain untouched, we see that the observation
holds.

Let us recall that a graph G is a split graph if its vertex set can be partitioned into
V(G) = CUI, where C is a clique and [ is an independent set. Let us note that the vertex set
of a split graph can have several split partitions, i.e. partitions into a clique and independent
set. However, the number of split partitions of an n-vertex split graphs is at most n. The
analysis of Case (i¢) is based on the following lemma.

» Lemma 2. Let G be a class of triangle-free graphs and let G be an instance of PARTIAL

COMPLEMENT TO G. Let S C V(G) be a valid solution which is not a clique, and let u,v € S

be distinct vertices such that wv ¢ E(G). Then

a) the entire solution S is a subset of the union of the closed neighborhoods of u and v, that
is S C Ng[u] U Ng[v];

b) every common neighbor of u and v must be contained in the solution S, that is Ng(u) N
Ng(v) C S;

c) the graph G[N(u)\ N(v)] is a split graph. Moreover, (N(u)\ N(v)) NS is a clique and
(N(u)\ N(v))\ S is an independent set.

Proof. We will prove each point separately, and in order.

a) Assume for the sake of contradiction that the solution S contains a vertex w ¢ Ng[u] U
Ng[v]. But then {u,v,w} is an independent set in G, which contradicts item a) of
Observation 1.

b) Assume for the sake of contradiction that the solution S does not contain a vertex
w € Ng(u) N Ng(v). Then the edges uw and vw will both be present in G & S, as well as
the edge uv. Together, these forms a triangle.

c) We first claim that the solution S is a vertex cover for G[N(u)\ N(v)]. If it was not, then
there would exist an edge ujuz of G[N(u) \ N(v)] such that both endpoints ui,us & S,
vet u1,ue would form a triangle with u in G @ S, which would be a contradiction. Hence
(N(u)\ N(v))\ S is an independent set. Secondly, we claim that (N (u)\ N(v))N.S forms
a clique. If not, then there would exist uy,uz € (N(u)\ N(v)) NS which are nonadjacent.
In this case {u1,uz,v} is an independent set, which contradicts item a) of Observation 1.
Taken together, these claims imply the last item of the lemma. |

We now move on to examine the structure of a solution for the third case, when there exists

a solution which is a clique of size at least three.

» Lemma 3. Let G be a class of triangle-free graphs and let G be an instance of PARTIAL

COMPLEMENT TO G. Let S C V(G) be a solution such that |S| > 3 and G[S] is a clique. Let

u,v € S be distinct. Then

a) the solution S is contained in their common neighborhood, that is S C Ng[u] N Nglv], and

b) the graph G[Ng[u] N Ng[v]] s a split graph where (Ng[u] N Ng[v]) \ S is an independent
set.

Proof. We prove each point separately, and in order.

a) Assume for the sake of contradiction that the solution S contains a vertex w which is not
in the neighborhood of both u and v. This contradicts that S is a clique.

b) We claim that S is a vertex cover of G[Ng[u] N Ng[v]]. Because S is also a clique,
the statement of the lemma will then follow immediately. Assume for the sake of
contradiction that S is not a vertex cover. Then there exist an uncovered edge w;ws,
where wy,wy € Nglu] N Ng[v], and also wy,wq ¢ S. Since {u,wy,ws} form a triangle,
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we have by b) of Observation 1 that at least two of these vertices are in S. That is a
contradiction, so our claim holds. <
We now have everything in place to present the algorithm.

» Algorithm 4 (PARTIAL COMPLEMENT TO G where G is triangle-free).
Input: An instance G of PCG where G is a triangle-free graph class recognizable in time
f(n) for some function f.
Output: A set S C V(G) such that G@® S is in G, or a correct report that no such set exists.
1. By brute force, check if there is a solution of size at most 2. If yes, return this solution.
2. For every non-edge uv of G:
a. If either G[N(u) \ Ng(v)] or G[Ng(u) \ Ng(v)] is not a split graph, skip this iteration
and try the next non-edge.
b. Let (I,,C,) and (I,,C,) denote a split partition of G[Ng(u) \ Ng(v)] and G[Ng(v) \
N¢(u)] respectively. For each pair of split partitions (I, Cy), (Iy, Cy):
i. Construct solution candidate S’ := {u,v} U (Ng(u) N Ng(v)) U C, UC,
ii. If G@® S’ is a member of G, return S’
3. Find a triangle {z,y,2} of G
4. For each edge in the triangle wv € {zy,zz,yz}:
a. If G[Ng(u) N Ng(v)] is not a split graph, skip this iteration and try the next edge.
b. For each possible split partition (I,C) of G[Ng(u) N Ng(v)]:
i. Construct solution candidate S’ := {u,v} UC
i. If G® S isa member of G, return S’
5. Return ‘NONE’

» Theorem 5. Let G be a class of triangle-free graphs such that deciding whether an n-vertex
graph is in G is solvable in time f(n) for some function f. Then PARTIAL COMPLEMENT
TO G is solvable in time O(n® +n* - f(n)).

Proof. We will prove that Algorithm 4 is correct, and that its running time is O(n* - (n? +
f(n))). We begin by proving correctness. Step 1 is trivially correct. After Step 1 we can
assume that any valid solution has size at least three, and we have handled Case (i) when
there exists a solution of size at most two. We have the three cases left to consider: (i7)
There exists a solution which hits a non-edge, (ii7) there is a solution S such that in G & S
vertices of S form a clique of size at least 3, and (iv) no solution exists.

In the case that there exists a solution S hitting a non-edge uv, we will at some point guess
this non-edge in Step 2 of the algorithm. By Lemma 2, we have that both G[Ng(u) \ Ng(v)]
and G[Ng(u) \ Ng(v)] are split graphs, so we do not miss the solution S in Step 2a. Since
we try every possible combinations of split partitions in Step 2b, we will by Lemma 2 at
some point construct S’ correctly such that S’ = S.

In the case that there exist only solutions which hits exactly a clique, we first find some
triangle {z,y, 2z} of G. It must exist, since a solution S is a clique of size at least three. By
Observation 1b, at least two vertices of the triangle must be in the S. At some point in step
4 we guess these vertices correctly. By Lemma 3b we know that G[Ng(u) N Ng(v)] is a split
graph, so we will not miss S in Step 4a. Since we try every split partition in Step 4b, we will
by Lemma 3 at some point construct S’ correctly such that S’ = S.

Lastly, in the case that there is no solution, we know that there neither exists a solution
of size at most two, nor a solution which hits a non-edge, nor a solution which hits a clique of
size at least three. Since these three cases exhaust the possibilities, we can correctly report
that there is no solution when none was found in the previous steps.

21:5
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For the runtime, we start by observing that Step 1 takes time O(n? - f(n)). The sub-
procedure of Step 2 is performed O(n?) times, where step 2a takes time O(nlogn). The
sub-procedure of Step 2b takes time at most O(n? + f(n)), and it is performed at most
O(n?) times. In total, Step 2 will use no longer than O(n* - (n? + f(n))) time. Step 3 is
trivially done in time O(n?). The sub-procedure of Step 4 is performed at most three times.
Step 4a is done in O(nlogn) time, and step 4b is done in O(n - (n? 4+ f(n)) time, which also
becomes the asymptotic runtime of the entire step 4. The worst running time among these
steps is Step 2, and as such the runtime of Algorithm 4 is O(n* - (n? + f(n))). <

3 Complement to degenerate graphs

For d > 0, we say that a graph G is d-degenerate, if every induced (not necessarily proper)
subgraph of G has a vertex of degree at most d. For example, trees are 1-degenerate, while
planar graphs are 5-degenerate.

» Theorem 6. Let G be a class of d-degenerate graphs such that deciding whether an n-vertex
graph is in G is solvable in time f(n) for some function f. Then PARTIAL COMPLEMENT
TO G is solvable in time f(n) 27

Proof. Let G be an n-vertex graph. We are looking for a vertex subset S of G such that
GoSegd.

We start from trying all vertex subsets of GG of size at most 2d as a candidate for S. Thus,
in time O(n?? - f(n)) we either find a solution or conclude that a solution, if it exists, should
be of size more than 2d.

Now we assume that |S| > 2d. We try all subsets of V(G) of size 2d + 1. Then if G
can be complemented to G, at least one of these sets, say X, is a subset of S. In total, we
enumerate (del) sets.

First we consider the set Y of all vertices in V/(G) \ X with at least d 4+ 1 neighbors in X.
The observation here is that most vertices from Y are in S. More precisely, if more than

| X| 2d+1

o= <d—|—1) d+1= (d—|—1> ~d+1
vertices of Y are not in S, then G & S contains a complete bipartite graph Gg41,4+1 as a
subgraph, and hence G @ S is not d-degenerate. Thus, we make at most (Z) guesses on which
subset of Y is in S.

Similarly, when we consider the set Z of all vertices from V(G) \ X with at most d
neighbors in X, we have that at most a of vertices from Z could belong to S. Since
V(G) =X UY U Z, if there is a solution S, it will be found in at least one from

n 2 2(9(‘1)
<2d + 1) «=n

of the guesses. Since for each set S we can check in time f(n) whether G ® S € G, this
concludes the proof. <

4 Complement to M-partition

Many graph classes can be defined by whether it is possible to partition the vertices of graphs
in the class such that certain internal and external edge requirements of the parts are met.
For instance, a complete bipartite graph is one which can be partitioned into two sets such
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that every edge between the two sets is present (external requirement), and no edge exists
within any of the partitions (internal requirements). Other examples are split graphs and
k-colorable graphs. Feder et al. [8] formalized such partition properties of graph classes by
making use of a symmetric matrix over {0, 1,x}, called an M -partition.

» Definition 7 (M-partition). For a k x k matrix M, we say that a graph G belongs to the
graph class Gy if its vertices can be partitioned into k (possibly empty) sets X1, Xo, ..., Xk
such that, for every i € [k], if

MTi,i] = 1, then X; is a clique and if M[i,i] = 0, then X, is an independent set, and
for every i,j € [k], i # j,

if Mi,j] =1, then every vertex of X; is adjacent to all vertices of X,

if M[i, j] = 0, then there is no edges between X; and Xj.
Note that if M[i, j] = %, then there is no restriction on the edges between vertices from X;
and Xj;.

For example, for matrix

v=(25)

the corresponding class of graphs is the class of bipartite graphs, while matrix

v=(21)

identifies the class of split graphs.
In this section we prove the following theorem.

» Theorem 8. Let G = Gy be a graph class described by an M -partition matrix of size 2 X 2.
Then PARTIAL COMPLEMENT TO G is solvable in polynomial time.

In particular, Theorem 8 yields polynomial algorithms for PARTIAL COMPLEMENT TO G
when G is the class of split graphs or (complete) bipartite graphs. The proof of our theorem
is based on the following beautiful dichotomy result of Feder et al. [8] on the recognition of
classes Gy described by 4 X 4 matrices.

» Proposition 9 ([8, Corollary 6.3]). Suppose M is a symmetric matriz over {0,1,%} of size
k = 4. Then the recognition problem for Gas is
NP-complete when M contains the matriz for 3-coloring or its complement, and no
diagonal entry is x.
Polynomial time solvable otherwise.

» Lemma 10. Let M be a symmetric k X k matriz giving rise to the graph class Gy = G.
Then there exists a 2k x 2k matriz M’ such that for any input G to PARTIAL COMPLEMENT
TO G, it is a yes-instance if and only if G belongs to G-

Proof. Given M, we construct a matrix M’ in linear time. We let M’ be a matrix of
dimension 2k x 2k, where entry M’[i, j] is defined as M[[ %], [%H if at least one of 4, j is even,
and —.M[%, %] if 4, j are both odd. Here, =1 =0, =0 = 1, and —x = . For example, for
matrix

we(17)

21:7
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the above construction results in

1 0 % %
;100 % %
M= * % 0 1

*~ % 1 1

We prove the two directions separately.

(=) Assume there is a partial complementation G & S into Gpr. Let X1, Xo,..., X
be an M-partition of G & S. We define partition X1, X5,..., X}, of G as follows. For every
vertex v € X;, 1 <4 <k, we assign v to X}, _, if v € S and to X}, otherwise.

We now show that every edge of G respects the requirements of M’. Let uv € E(G) be
an edge, and let u € X; and v € X;. If at least one vertex from {u,v}, say v is not in S,
then wv is also an edge in G @ S, thus M[i, j] # 0. Since v € S, it belongs to set v € Xéj.
Vertex u is assigned to set X, where ¢ is either 2¢ or 2 — 1, depending whether u belongs to
S or not. But because 2j is even irrespectively of ¢, M'[¢,2j] = M]3, j] # 0.

Now consider the case when both u,v € S. Then the edge does not persist after the
partial complementation by S, and thus M[i, j] # 1. We further know that u is assigned to
X3;—1 and v to Xj3; ;. Both 2i — 1 and 2j — 1 are odd, and by the construction of M’, we
have that M'[2i — 1,25 — 1] # 0, and again the edge uwv respects M’. An analogous argument
shows that also all non-edges respect M’.

(<= ) Assume that there is a partition X7, X3,..., X}, of G according to M’. Let the
set S consist of all vertices in odd-indexed parts of the partition. We now show that G & S
can be partitioned according to M. We define partition X, Xo,..., X by assigning each
vertex u € X/ to X(%W' It remains to show that X, Xs,..., X} is an M-partition of G @ S.

Let v € X;, v € X;. Suppose first that wv € E(G & S). If at least one of u,v is not in
S, we assume without loss of generality that v ¢ S. Then uv € F(G) and v € X3;. For
vertex u € X, irrespectively, whether £ is 2¢ or 2i — 1, we have that M’[¢,2j] = M|i, j| # 0.
But then M[i, j] # 0. Otherwise we have u,v € S. Then uv is a non-edge in G, and thus
M'[2i — 1,25 — 1] # 1. But by the construction of M’, we have that M[i, j] # 0, and there is
no violation of M. An analogous argument shows that if u and v are not adjacent in G & .S,
it holds that M[i, j] # 1. Thus X1, Xo, ..., X is an M-partition of G & S, which concludes
the proof. <

Now we are ready to prove Theorem 8.

Proof of Theorem 8. For a given matrix M, we use Lemma 10 to construct a matrix M’.
Let us note that by the construction of matrix M’ for every 2 x 2 matrix M we have that
matrix M’ has at most two 1’s and at most two 0’s along the diagonal. Then by Proposition 9,
the recognition of whether G admits M’-partition is in P. Thus by Lemma 10, PARTIAL
COMPLEMENT TO @ is solvable in polynomial time <

5 Partial complementation to graph classes of bounded clique-width

We show that PARTIAL COMPLEMENT TO G can be solved in polynomial time when G has
bounded clique-width and can be expressed by an MSO; property. We refer to the book [3]
for the basic definitions. We will use the following result of Hlinény and Oum [10].

» Proposition 11 ([10]). There is an algorithm that for every integer k and graph G in time
O(|V(G)]?) either computes a (28T — 1) expression for a graph G or correctly concludes that
the clique-width of G is more than k.
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Note that the algorithm of Hlinény and Oum only approximates the clique-width but
does not provide an algorithm to construct an optimal k-expression tree for a graph G of
clique-width at most k. But this approximation is usually sufficient for algorithmic purposes.

Courcelle, Makowsky and Rotics [4] proved that every graph property that can be
expressed in MSQO; can be recognized in linear time for graphs of bounded clique-width
when given a k-expression.

» Proposition 12 ([4, Theorem 4]). Let G be some class of graphs of clique-width at most k
such that for each graph G € G, a corresponding k-expression can be found in O(f(n,m))
time. Then every MSO; property on G can be recognized in time O(f(n,m) + n).

The nice property of graphs with bounded clique-width is that their partial complemen-
tation is also bounded. In particular, Kaminski, Lozin, and Milani¢ in [14] observed that if
G is a graph of clique-width &, then any partial complementation of G is of clique-width at
most g(k) for some computable function g. For completeness, we provide a more accurate
upper bound whose proof is omitted in this extended abstract.

» Lemma 13. Let G be a graph, S C V(G). Then cwD(G @ S) < 3cwD(G).

» Lemma 14. Let ¢ be an MSO; property describing the graph class G. Then there exists
an MSO; property ¢ describing the graph class GV of size || € O(|p)|).

Proof. We will construct ¢ from ¢ in the following way: We start by prepending 35 C V(G).
Then for each assessment of the existence of an edge in ¢, say uwv € E(G), replace that
term with (u ¢ SVo ¢ S)Auw € E(G))V (u € SAv € SAuw ¢ E(G)). Symmetrically,
for each assessment of the non-existence of an edge uv ¢ E(G), replace that term with
((ug SV S)Auv ¢ E(G))V(ueSAveSAu € EQ)).

We observe that if ¢ is satisfiable for some graph G, then for every S C V(G), the partial
complementation G @ S will yield a satisfying assignment to ¢. Conversely, if ¢ is satisfiable
for a graph G, then there exist some S such that ¢ is satisfied for G & S. For the size, we
note that each existence check for edges blows up by a constant factor. |

We are ready to prove the main result of this section.

» Theorem 15. Let G be a graph class expressible in MSO1 which has bounded clique-width.
Then PARTIAL COMPLEMENT TO G is solvable in polynomial time.

Proof. Let ¢ be the MSO; formula which describes G, and let G be an n-vertex input graph.
We apply Proposition 11 for G and in time O(n?) either obtain a (23**! — 1) expression for
G or conclude that the clique-width of G is more than 3k. In the latter case, by Lemma 13,
G cannot be partially complemented to G.

We then obtain an MSO; formula ¢ from Lemma 14, and apply Proposition 12, which
works in time f(k,¢) - n for some function f. In total, the runtime of the algorithm is
Flkid) -n+ b, <

We remark that if clique-width expression is provided along with the input graphs, and G
can be expressed in MSO1, then there is a linear time algorithm for PARTIAL COMPLEMENT
TO G. This follows directly from Lemma 14 and Proposition 12.

Theorem 15 implies that for every class of graphs G of bounded clique-width characterized
by a finite set of finite forbidden induced subgraphs, e.g. Ps-free graphs (also known as
cographs) or classes of graphs discussed in [1], the PARTIAL COMPLEMENT TO G problem
is solvable in polynomial time. However, Theorem 15 does not imply that PARTIAL COM-
PLEMENT TO G is solvable in polynomial time for G being of the class of graphs having
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Figure 1 The graph GDGy,, is built of k parts, namely a clique K1, and k—1 complete bipartite
graphs KTI’T, AU Kf;l with some rewiring.

clique-width at most k. This is because such a class G cannot be described by MSQO;. Inter-
estingly, for the related class G of graphs of bounded rank-width (see [5] for the definition)
at most k, the result of Oum and Courcelle [6] combined with Theorem 15 implies that
PARrRTIAL COMPLEMENT TO G is solvable in polynomial time.

6 Hardness of partial complementation to r-regular graphs

Let us remind that a graph G is r-regular if all its vertices are of degree r. We consider the
following restricted version of PARTIAL COMPLEMENT TO G.

PARTIAL COMPLEMENT TO r-REGULAR (PCrR)
Input: A simple undirected graph G, a positive integer 7.
Question: Does there exist a vertex set S C V(@) such that G @ S is r-regular?

In this section, we show that PARTIAL COMPLEMENT TO r-REGULAR is NP-complete by a
reduction from CLIQUE IN r-REGULAR GRAPH.

CLIQUE IN r-REGULAR GRAPH (KrR)
Input: A simple undirected graph G which is r-regular, a positive integer k.
Question: Does G contain a clique on k vertices?

We will need the following well-known proposition.
» Proposition 16 ([9]). CLIQUE IN 7-REGULAR GRAPH is NP-complete.
» Theorem 17. PARTIAL COMPLEMENT TO 7-REGULAR is NP-complete.

Proof. We begin by defining a gadget which we will use in the reduction. For integers r > k
such that r — k is even, we build the graph GDGy,, as follows. Initially, we let GDGy, , consist
of one clique on k — 1 vertices, as well as k — 1 distinct copies of K,.,. These are all the
vertices of the gadget, which is a total of (k — 1) + 2r - (k — 1) vertices. We denote the

vertices of the clique c¢1,ca, ..., cx_1, and we let the complete bipartite graphs be denoted by
K} K2, ...,KF' Fora bipartite graph K7 ., let the vertices of the two parts be denoted
by at,ab, ..., al and b%, b}, ... bl respectively.

We will now do some rewiring of the edges to complete the construction of GDGy . Recall
that » — k is even and positive. For each vertex ¢; of the clique, add one edge from ¢; to each

of a},ah,...,a’_,. Similarly, add an edge from ¢; to each of bi,b5,...,b"_,. Now remove
2 2



F.V. Fomin, P. A. Golovach, T. J.F. Stremme, and D. M. Thilikos

the edges aibi,abbb, ..., a%_, b’_,. Once this is done for every i € [k — 1], the construction
2 2
is complete. See Figure 1.

We observe the following property of vertices ajv, b;, and ¢; of GDGy, ;.

» Observation 18. For every i € [k — 1] and j € [r], it holds that the degrees of aé- and bé- in
GDGy, are both exactly v, whereas the degree of ¢; is r — 1.

We are now ready to prove that CLIQUE IN r-REGULAR GRAPH is many-one reducible to
PARTIAL COMPLEMENT TO r-REGULAR.

» Algorithm 19 (Reduction KR to PCrR).

Input: An instance (G, k) of KrR.

Output: An instance (G’,r) of PCrR such that it is a yes-instance if and only if (G, k) is a
yes-instance of KrR.

1. If k < 7or k > r, solve the instance of KrR by brute force. If it is a yes-instance, return a

trivial yes-instance to PCrR, if it is a no-instance, return a trivial no-instance to PCrR.

2. If r — k is odd, modify G by taking two copies of G which are joined by a perfect matching
between corresponding vertices. Then r increase by one, whereas k remains the same.

3. Construct the graph G’ by taking the disjoint union of G' and the gadget GDGy, . Here, r
denotes the regularity of G after step 2 is performed. Return (G’,r).

Let n = |[V(G)|. We observe that the number of vertices in the returned instance is at most
2n + (k — 1) + 2r - (k — 1), which is O(n?). The running time of the algorithm is O(n”) and
thus is polynomial.

The correction of the reduction follows from the following two lemmata.

» Lemma 20. Let (G, k) be the input of Algorithm 19, and let (G',r) be the returned result.
If (G, k) is a yes-instance to CLIQUE IN r-REGULAR GRAPH, then (G',r) is a yes-instance
of PARTIAL COMPLEMENT TO 7-REGULAR.

Proof. Let C C V(G) be a clique of size k in G. If the clique is found in step 1, then (G, r)
is a trivial yes-instance, so the claim holds. Thus, we can assume that the graph G’ was
constructed in step 3. If G was altered in step 2, we let C be the clique in one of the two
copies that was created. Let S C V(G’) consist of the vertices of C' as well as the vertices of
the clique K_1 of the gadget GDGy .. We claim that S is a valid solution to (G',).

We show that G’ @ S is r-regular. Any vertex not in S will have the same number of
neighbors as it had in G’. Since the only vertices that weren’t originally of degree r were
those in the clique K} _1, all vertices outside S also have degree r in G’ & S. What remains
is to examine the degrees of vertices of C' and of Kj_1.

Let ¢; be a vertex of Ki_; in G’. Then ¢; lost its k — 2 neighbors from Kj_1, gained k
neighbors from C, and kept r — k neighbors in Kf;yr. We see that its new neighborhood has
sizek+r—k=r.

Let u € C be a vertex of the clique from G. Then w lost k — 1 neighbors from C, gained
k — 1 neighbors from Kj_1, and kept r — (k — 1) neighbors from G — C. In total, u will have
r—(k—1)+ (k—1) = r neighbors in G’ & S. Since every vertex of G’ ® S has degree r, it is
r-regular, and thus (G’,r) is a yes-instance. <

» Lemma 21. Let (G, k) be the input of Algorithm 19, and let (G',r) be the returned result.
If (G',r) is a yes-instance to PARTIAL COMPLEMENT TO r-REGULAR, then (G,k) is a
yes-instance of CLIQUE IN 7-REGULAR GRAPH.
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Proof of Lemma 21 is omitted due to space constraints. Lemmata 20 and 21 together
with Proposition 16 conclude the proof of NP-hardness. Membership in NP is trivial, so
NP-completeness holds. |

We remark that if r is a constant not given with the input, the problem becomes polynomial
time solvable by Theorem 6.

7 Conclusion and open problems

In this paper we initiated the study of PARTIAL COMPLEMENT TO G. Many interesting
questions remain open. In particular, what is the complexity of the problem when G is

the class of chordal graphs,

the class of interval graphs,

the class of graph excluding a path P5 as an induced subgraph,

the class graphs with max degree < r, or

the class of graphs with min degree > r

More broadly, it is also interesting to see what happens as we allow more than one partial
complementation; how quickly can we recognize the class G*) for some class G? It will also
be interesting to investigate what happens if we combine partial complementation with other
graph modifications, such as the Seidel switch.
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