
A Greedy Algorithm for Subspace Approximation
Problem
Nguyen Kim Thang
IBISC, Univ Evry, University Paris Saclay
Evry, France
thang@ibisc.fr

https://orcid.org/0000-0002-6085-9453

Abstract
In the subspace approximation problem, given m points in Rn and an integer k ≤ n, the goal
is to find a k-dimension subspace of Rn that minimizes the `p-norm of the Euclidean distances
to the given points. This problem generalizes several subspace approximation problems and has
applications from statistics, machine learning, signal processing to biology. Deshpande et al. [4]
gave a randomized O(√p)-approximation and this bound is proved to be tight assuming NP 6= P
by Guruswami et al. [7]. It is an intriguing question of determining the performance guarantee
of deterministic algorithms for the problem. In this paper, we present a simple deterministic
O(√p)-approximation algorithm with also a simple analysis. That definitely settles the status
of the problem in term of approximation up to a constant factor. Besides, the simplicity of the
algorithm makes it practically appealing.
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1 Introduction

Massive data in high dimension emerge naturally in many domains from machine learning to
biology. It has been observed that although data lie in high-dimensional spaces, in practice
they have low intrinsic dimension. Dimension-reduction algorithms are essential in many
domains such as image processing, personalized medicine, etc. In this paper, we consider
the following subspace approximation problem in the context of capturing the underlying
low-dimensional structures of given data.

Subspace Problem. Given points a1, . . . ,am ∈ Rn and integers p ≥ 1 and 0 ≤ k ≤ n. Find
a k-dimensional linear subspace W that minimizes the `p-norms of Euclidean distances of
these points to W , i.e.,

min
W :dim(W )=k

( m∑
i=1

d(ai,W )p

)1/p

The Subspace Problem, which is introduced by Deshpande et al. [4], is a generalization of
several sub-space approximation problems which have been widely studied. For example,
the well-known Least Square Fit Problem is a particular case. In the latter, given a matrix
A ∈ Rm×n and 0 ≤ k ≤ n, find a matrix B ∈ Rm×n of rank at most k that minimizes the
Frobenius norm of the difference ‖A−B‖F :=

(∑
i,j(Aij −Bij)2)1/2. Taking the rows of A

© Nguyen Kim Thang;
licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 30; pp. 30:1–30:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:thang@ibisc.fr
https://orcid.org/0000-0002-6085-9453 
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.30
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


30:2 A Greedy Algorithm for Subspace Approximation

to be a1, . . . ,am and p = 2, Subspace Problem reduces to Least Square Fit Problem. Another
special case of Subspace Problem is Radii Problem. In the latter, given points a1, . . . ,am ∈ Rn,
their outer (n− k) radius is the minimum, over all k-dimensional linear subspaces, of the
maximum Euclidean distances of these points to the subspace. This problem is equivalent
to Subspace Problem with p =∞. Moreover, Subspace Problem is related to other problems
such as the Lp-Grothendieck Problem [8] and `p-Regression Problem [1, 5, 3]. We refer the
reader to [4] for more details about the connection between these problems.

Deshpande et al. [4] introduced the Subspace Problem and gave a randomized O(√p)-
approximation algorithm. In their approach, they consider a convex relaxation that optimizes
over positive semidefinite matrices and the rank constraint is replaced by a trace constraint.
Subsequently, the solution X of the convex relaxation is rounded to a matrix of suitable
rank. Intuitively, the authors divide singular vectors of the solution X into several bins and
constructs one vector for each bin by taking a Bernoulli random linear combination of vectors
within each bin. The analysis is carried out by powerful techniques coupled with properties
of the pth-moment of sums of Bernoulli random variables. Besides, Deshpande et al. [4]
proved that the Subspace Problem is hard to approximate within a factor Ω(√p) assuming
the Unique Games Conjecture (UGC). Later on, bypassing the need for UGC, Guruswami et
al. [7] showed that the problem is indeed NP-hard to approximate within a factor Ω(√p).

Our Contribution. In this paper, we present a deterministic greedy algorithm with the same
O(√p)-approximation guarantee. Informally, at any step, the algorithm greedily extends the
subspace in order to minimizes the marginal cost of the objective functions. The algorithm
(and also the analysis) is extremely simple, which makes it practically appealing. Besides,
our algorithm is deterministic whereas the one in [4] is randomized. The analysis is based on
a smooth inequality (Lemma 2), which has been originally used in the context of algorithmic
game theory in order to bound the quality of equilibrium (price of anarchy) in scheduling
games [2]. This allows us to give a deterministic algorithm instead of the randomized one [4]
which crucially relies on concentration inequalities in functional analysis in order to bound
the moments of sums of Bernoulli random variables. Our result definitely settles the status
of the problem in term of approximation up to a constant factor.

Related works. The most closely related to our paper is [4] where the results have been
summarized earlier. For the Least Square Fit Problem, the optimal subspace is spanned by the
top k right singular vector of A and that can be computed in time O(min{n2m,nm2}) [6]. For
the Radii Problem, O(

√
logm)-approximation with k = n−1 can be implied from the works of

Nesterov [10] and Nemirovski et al. [9]. Later on, Varadarajan et al. [11] gave an O(
√

logm)-
approximation algorithm for arbitrary k. Note that it is well-known that `∞-norm can be
approximated by `log m-norm up to a constant factor. Hence, O(

√
logm)-approximation can

be deduced from [4] (so our work) by choosing p = logm.

2 Greedy Algorithm

As in [4], we use a formulation of the Subspace Problem in terms of the orthogonal complement
of the subspace W . Specifically, let z1, . . . ,zn−k be an orthonormal basis for the orthogonal
complement. Let Z ∈ Rn×(n−k) be the matrix with the jth column vector zj . Then
d(ai,W ) = ‖aT

i Z‖2. Hence, the problem is to find an orthonormal basis z1, . . . ,zn−k of a
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(n− k)-dim vector space V so that the corresponding matrix Z minimizes

m∑
i=1
‖aT

i Z‖p
2 =

m∑
i=1

(n−k∑
`=1

(
aT

i z`

)2
)p/2

=
m∑

i=1

n−k∑
j=1

[( j∑
`=1

(
aT

i z`

)2
)p/2

−
(j−1∑

`=1

(
aT

i z`

)2
)p/2

]
,

where conventionally the sum with no term equals 0.

Algorithm. Initially, the subspace U0 = ∅. For 1 ≤ j ≤ n − k, choose a vector uj 6= 0
orthonormal to the subspace Uj−1 spanned by u1, . . . ,uj−1 such that it minimizes the
marginal increase of the objective, i.e.,

uj ∈ arg min
z⊥Uj−1

m∑
i=1

[(
(aT

i z)2 +
j−1∑
`=1

(
aT

i u`

)2
)p/2

−
(j−1∑

`=1

(
aT

i u`

)2
)p/2

]

In fact, vector uj can be computed by solving a convex program. Specifically, let {e1, . . . ,

en−j+1} be an arbitrary orthogonal basis of the vector space U⊥j−1 (which is orthogonal
to Uj−1). Computing uj is equivalent to computing the coefficients b1, . . . , bn−j+1 in the
decomposition of uj in the basis {e1, . . . , en−j+1}. The convex program is

min
b1,...,bn−j+1

m∑
i=1

[((
aT

i ·
n−j+1∑

h=1
bheh

)2 +
j−1∑
`=1

(
aT

i u`

)2
)p/2

−
(j−1∑

`=1

(
aT

i u`

)2
)p/2]

n−j+1∑
h=1

b2
h = 1

b1, . . . , bn−j+1 ∈ R

Note that in the convex program, variables are b1, . . . , bn−j+1 (the vectors u`’s, eh’s have
been already determined).

Analysis. Let V be an optimal n× (n− k) matrix and V be the corresponding vector space
spanned by column vectors of V . In the remaining, we will show that( m∑

i=1
‖aT

i U‖p
2

)1/p

≤ O(γp) ·
( m∑

i=1
‖aT

i V ‖p
2

)1/p

First, we recall the following standard lemma.

I Lemma 1. For any (n−k)-dim subspace V , there exists an orthonormal basis {v1, . . . ,vn−k}
of V such that vj is orthogonal to Uj−1 for 1 ≤ j ≤ n− k.

Proof. We construct an orthogonal basis {v1, . . . ,vn−k} of V by induction. The orthonormal
basis is obtained by standard normalizing procedure. For j = 1, any arbitrary vector v1 ∈ V
is perpendicular to U0. Assume that vectors v1, . . . ,vj for j < (n− k) have been constructed
so that they satisfy the lemma. Since the subspace V has dimension (n− k) which is strictly
larger than j, there exits a vector wj+1 ∈ V which is independent to v1, . . . ,vj . Define
vector vj+1 := wj+1 − Pruj (wj+1) where Pruj (wj+1) is the projection of vector wj+1 onto
the subspace Uj . So vj+1 is orthogonal to uj and is independent to v1, . . . ,vj . J
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30:4 A Greedy Algorithm for Subspace Approximation

I Lemma 2. For any given vector a, for arbitrary vectors u` and v` with 1 ≤ ` ≤ n− k, it
holds that

n−k∑
j=1

[(
(aT vj)2 +

j−1∑
`=1

(
aT u`

)2
)p/2

−
(j−1∑

`=1

(
aT u`

)2
)p/2

]

≤ µ
(n−k∑

`=1

(
aT u`

)2
)p/2

+ λ

(n−k∑
`=1

(
aT v`

)2
)p/2

where λ = O
(
(α · p

2 )
p
2−1) for some constant α and µ = p/2−1

p/2 .

Proof. Denote bj = (aT vj)2 and cj = (aT uj)2 for 1 ≤ j ≤ n − k. The lemma inequality
reads

n−k∑
j=1

[(
bj +

j−1∑
`=1

c`

)p/2
−
(j−1∑

`=1
c`

)p/2
]
≤ µ

(n−k∑
`=1

c`

)p/2
+ λ

(n−k∑
`=1

b`

)p/2

The inequality holds for λ = O
(
(α · p

2 )
p
2−1) for some constant α and µ = p/2−1

p/2 , which has
been proved in [2] in the context of algorithmic game theory. For completeness, we put the
proof of the above inequality in the appendix (Lemma 5). J

I Theorem 3. The greedy algorithm is O(√p)-approximation.

Proof. Recall that U be the solution of the algorithm where the jth column vector is uj for
1 ≤ j ≤ n− k. Let v1, . . . ,vn−k be an orthonormal basis of V that satisfies Lemma 1. We
have

m∑
i=1
‖aT

i U‖p
2 =

m∑
i=1

n−k∑
j=1

[( j∑
`=1

(
aT

i u`

)2
)p/2

−
(j−1∑

`=1

(
aT

i u`

)2
)p/2

]

≤
m∑

i=1

n−k∑
j=1

[(
(aT

i vj)2 +
j−1∑
`=1

(
aT

i u`

)2
)p/2

−
(j−1∑

`=1

(
aT

i u`

)2
)p/2

]

≤
m∑

i=1

[
µ

(n−k∑
`=1

(
aT

i u`

)2
)p/2

+ λ

(n−k∑
`=1

(
aT

i v`

)2
)p/2

]

= µ

m∑
i=1
‖aT

i U‖p
2 + λ

m∑
i=1
‖aT

i V ‖p
2

The first inequality is due to the choice of the algorithm at any step j (note that vj⊥Uj−1 so
vj is a candidate at step j). The second inequality holds by Lemma 2 where λ = O

(
(α· p2 )

p
2−1)

for some constant α and µ = p/2−1
p/2 . Rearranging the terms and taking the pth-root, we get

(
m∑

i=1
‖aT

i U‖p
2

)1/p

≤ O(√p) ·
(

m∑
i=1
‖aT

i V ‖p
2

)1/p

J
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Appendix: Technical Lemmas

In this section, we show technical lemmas. The following lemma has been proved in [2]. We
give it here for completeness.

I Lemma 4 ([2]). Let k be a positive integer. Let 0 < a(k) ≤ 1 be a function on k. Then,
for any x, y > 0, it holds that

y(x+ y)k ≤ k

k + 1a(k)xk+1 + b(k)yk+1

where α is some constant and

b(k) =



Θ
(
αk ·

(
k

log ka(k)

)k−1
)

if limk→∞(k − 1)a(k) =∞, (1a)

Θ
(
αk · kk−1) if (k − 1)a(k) are bounded ∀k, (1b)

Θ
(
αk · 1

ka(k)k

)
if limk→∞(k − 1)a(k) = 0. (1c)

Proof. Let f(z) := k
k+1a(k)zk+1 − (1 + z)k + b(k). To show the claim, it is equivalent to

prove that f(z) ≥ 0 for all z > 0.

SWAT 2018



30:6 A Greedy Algorithm for Subspace Approximation

We have f ′(z) = ka(k)zk − k(1 + z)k−1. We claim that the equation f ′(z) = 0 has an
unique positive root z0. Consider the equation f ′(z) = 0 for z > 0. It is equivalent to(

1
z

+ 1
)k

· 1
z

= a(k)

The left-hand side is a strictly decreasing function and the limits when z tends to 0 and ∞
are ∞ and 0, respectively. As a(k) is a positive constant, there exists an unique root z0 > 0.

Observe that function f is decreasing in (0, z0) and increasing in (z0,+∞), so f(z) ≥ f(z0)
for all z > 0. Hence, by choosing

b(k) =
∣∣∣ k

k + 1a(k)zk+1
0 − (1 + z0)k

∣∣∣ = (1 + z0)k−1
(

1 + z0
k + 1

)
(2)

it follows that f(z) ≥ 0 ∀z > 0.
We study the positive root z0 of equation

a(k)zk − (1 + z)k−1 = 0 (3)

Note that f ′(1) = k(a(k) − 2k−1) < 0 since 0 < a(k) ≤ 1. Thus, z0 > 1. For the sake
of simplicity, we define the function g(k) such that z0 = k−1

g(k) where 0 < g(k) < k − 1.
Equation (3) is equivalent to(

1 + g(k)
k − 1

)k−1
g(k) = (k − 1)a(k)

Note that ew/2 < 1 + w < ew for w ∈ (0, 1). For w := g(k)
k−1 , we obtain the following upper

and lower bounds for the term (k − 1)a(k):

eg(k)/2g(k) < (k − 1)a(k) < eg(k)g(k) (4)

Recall the definition of Lambert W function. For each y ∈ R+, W (y) is defined to be
solution of the equation xex = y. Note that, xex is increasing with respect to x, hence W (·)
is increasing.

By definition of the Lambert W function and Equation (4), we get that

W ((k − 1)a(k)) < g(k) < 2W
(

(k − 1)a(k)
2

)
(5)

First, consider the case where limk→∞(k − 1)a(k) = ∞. The asymptotic sequence for
W (x) as x → +∞ is the following: W (x) = ln x − ln ln x + ln ln x

ln x + O
(( ln ln x

ln x

)2). So, for
large enough k, W ((k − 1)a(k)) = Θ(log((k − 1)a(k))). Since z0 = k−1

g(k) , from Equation (5),

we get z0 = Θ
(

k
log(ka(k))

)
. Therefore, by (2) we have b(k) = Θ

(
αk ·

(
k

log ka(k)

)k−1
)

for
some constant α.

Second, consider the case where (k− 1)a(k) is bounded by some constants. So by (5), we
have g(k) = Θ(1). Therefore z0 = Θ(k) which again implies b(k) = Θ

(
αk · kk−1) for some

constant α.
Third, we consider the case where limk→∞(k − 1)a(k) = 0. We focus on the Taylor series

W0 of W around 0. It can be found using the Lagrange inversion and is given by

W0(x) =
∞∑

i=1

(−i)i−1

i! xi = x− x2 +O(1)x3.
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Thus, for k large enough g(k) = Θ((k − 1)a(k)). Hence, z0 = Θ(1/a(k)). Once again that
implies b(k) = Θ

(
αk · 1

ka(k)k

)
for some constant α. J

I Lemma 5. For any sequences of non-negative real numbers {a1, a2, . . . , an} and {b1, b2, . . . ,

bn} and for any polynomial g of degree k with non-negative coefficients, it holds that

n∑
i=1

g(bi +
i−1∑
j=1

aj

)
− g
(i−1∑

j=1
aj

) ≤ λ(k) · g
( n∑

i=1
bi

)
+ µ(k) · g

( n∑
i=1

ai

)

where µ(k) = k−1
k and λ(k) = Θ

(
kk−1). The same inequality holds for µ(k) = k−1

k ln k and
λ(k) = Θ

(
(α · k ln k)k−1) for some constant α.

Proof. Let g(z) = g0z
k + g1z

k−1 + ·+ gk with gt ≥ 0 ∀t. The lemma holds since it holds for
every zt for 0 ≤ t ≤ k. Specifically,

n∑
i=1

g(bi +
i−1∑
j=1

aj

)
− g
(i−1∑

j=1
aj

) =
k∑

t=1
gk−t ·

n∑
i=1

(bi +
i−1∑
j=1

aj

)t

−
(i−1∑

j=1
aj

)t


≤
k∑

t=1
gk−t ·

t · bi ·
(
bi +

i−1∑
j=1

aj

)t−1
 ≤ k∑

t=1
gk−t ·

[
λ(t)

( n∑
i=1

bi

)t

+ µ(t)
( n∑

i=1
ai

)t
]

≤ λ(k) · g
( n∑

i=1
bi

)
+ µ(k) · g

( n∑
i=1

ai

)
The first inequality follows the convex inequality (x+ y)k+1 − xk+1 ≤ (k + 1)y(x+ y)k. The
second inequality follows Lemma 4 (Case (1b) and a(k) = 1/(k + 1)). The last inequality
holds since µ(t) ≤ µ(k) and λ(t) ≤ λ(k) for t ≤ k. J
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