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Abstract
We consider the problem of computing a Euclidean shortest path in the presence of removable
obstacles in the plane. In particular, we have a collection of pairwise-disjoint polygonal obstacles,
each of which may be removed at some cost ci > 0. Given a cost budget C > 0, and a pair of
points s, t, which obstacles should be removed to minimize the path length from s to t in the
remaining workspace? We show that this problem is NP -hard even if the obstacles are vertical
line segments. Our main result is a fully-polynomial time approximation scheme (FPTAS) for
the case of convex polygons. Specifically, we compute an (1 + ε)-approximate shortest path in
time O

(
nh
ε2 logn log n

ε

)
with removal cost at most (1 + ε)C, where h is the number of obstacles,

n is the total number of obstacle vertices, and ε ∈ (0, 1) is a user-specified parameter. Our
approximation scheme also solves a shortest path problem for a stochastic model of obstacles,
where each obstacle’s presence is an independent event with a known probability. Finally, we
also present a data structure that can answer s–t path queries in polylogarithmic time, for any
pair of points s, t in the plane.
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1 Introduction

We consider a variant of the classical shortest-path problem in the presence of polygonal
obstacles, in which the motion planner has the ability to remove some of the obstacles to
reduce the s–t path length. Formally, let P = {P1, . . . , Ph} be a set of h pairwise-disjoint
polygonal obstacles in R2 with n vertices, and let ci > 0 be the cost of removing the obstacle

© Pankaj Agarwal, Neeraj Kumar, Stavros Sintos, and Subhash Suri;
licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 5; pp. 5:1–5:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pankaj@cs.duke.edu
mailto:neeraj@cs.ucsb.edu
mailto:ssintos@cs.duke.edu
mailto:suri@cs.ucsb.edu
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


5:2 Computing Shortest Paths in the Plane with Removable Obstacles

Pi for i = 1, . . . , h. For a path π in R2, we define its cost, denoted by c(π), to be the sum
of the costs of obstacles intersecting π, and its length, denoted by ‖π‖, to be its Euclidean
length. Given two points s, t ∈ R2 and a budget C > 0, we wish to compute a path from s

to t of minimum length whose cost is at most C.
This obstacle-removing shortest path generalizes the classical obstacle-avoiding shortest

path problem, by giving the planner an option of essentially “tunneling” through obstacles
at some cost. Besides an interesting problem in its own right, it is also a natural formulation
of tradeoffs in some motion planning settings. For instance, it might be beneficial to remove
a few critical blockages in a workspace to significantly shorten an often traveled path, just as
an urban commuter may strategically pay money to use certain toll roads or bridges to avoid
traffic obstacles. In general, our model with removable obstacles is useful for applications
where one can adapt the environment to enable better paths such as urban planning or robot
motion planning in a warehouse setting. The problem also generalizes the recent work on
obstacle-violating paths [25, 18], in which the planner is allowed to enter the forbidden space
(obstacles) a fixed number of time. For instance, in [25], a shortest s–t path inside a simple
polygon is desired, but the path is allowed to travel outside the polygon once. In [18], a
shortest path among disjoint convex polygonal obstacles is desired, but is allowed to travel
through at most k obstacles. The latter problem is also an obstacle-removing shortest path
where at most k obstacles can be removed, namely, each obstacle removal has cost 1 and
planner’s budget is k. We will call this the cardinality version of the obstacle-removal to
distinguish it from our cost-based model of obstacle removal.

The obstacle removal problem also has a natural connection to path planning under
uncertainty. Imagine, for instance, a workspace with n obstacles, the presence of each obstacle
is a random event. That is, the presence of the ith obstacle is determined by a Bernoulli
trial with (independent) probability βi. A natural approach to planning a s–t path in such a
workspace is to search for a path that is both short and obstacle-free with high probability.
Given a desired probability of success β, we can ask: what is the shortest path from s to t
that is obstacle free with probability at least β. This problem is easily transformed into our
obstacle removal problem where the obstacle probabilities are mapped to obstacle removal
cost, and β is mapped to the cost budget C.

Our results. We first show that the obstacle-removing shortest path problem is NP-hard
for polygonal obstacles in the plane, even if obstacles are vertical line segments by reducing
the well-known Partition problem to it. This is in contrast with the cardinality version of
the problem, which can be solved exactly in O(k2n logn) time [18].

Our main result is a fully-polynomial time approximation scheme (FPTAS) when each
obstacle is a convex polygon. We first define the notion of the viability graph G, which is
an extension of the well-known visibility graph [11, 13], for geometric paths that can cross
obstacles. Using the viability graph, we present a simple algorithm that returns a path with
length at most the optimal1 but cost at most (1 + ε)C. The approximation algorithm, while
simple, has a worst-case time complexity Θ(n

3

ε polylog(n)). Then, we develop a framework
for a more efficient and practical approximation algorithm, which also results in a number of
related results. Specifically, for any constant ε > 0, we can compute a (1 + ε)-approximate
shortest path whose total removal cost is at most (1 + ε)C in time O

(
nh
ε2 logn log n

ε

)
, where

h is the number of obstacles and n is the total number of vertices in the obstacles. The main
idea behind the improvement is to construct a sparse viability graph, with only O(nε logn)

1 The optimal length is always with respect to the budget C.
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edges. This approximation scheme immediately gives a corresponding result for the uncertain
model of obstacles (see Section 5).

The approximation scheme, as a byproduct, also solves the exact L1 norm shortest path
problem in the cardinality model of obstacle removal: that is, in O(kn log2 n) time, we can
decide which k obstacles to remove for the shortest s–t path, which is roughly a factor of k
faster than the L2-norm result of [18]. Alternatively, we can also decide which k obstacles to
remove so that the shortest s–t path has length at most (1 + ε) times optimal in O(knε log2 n)
time. This is again faster than the result from [18] for constant ε, if k = Ω(logn).

We also construct query data structures for answering approximate obstacle removal
shortest path queries. If the source s is fixed (one point queries), we construct a data
structure of size O(nhε2 logn) such that, given a query point t, it returns a s–t path of length
(1 + ε) times the optimal with cost at most (1 + ε)C in time O( 1

ε log2 n+kst), where kst is the
number of edges in the path. The data structure size can be improved to O( nε2 logn log h

ε ) if
we only return the length of the path. If both points s, t are given in the query (two point
queries), the data structure has size O(n

2h
ε3 log2 n), and the query time is O( 1

ε2 log2 n+ kst).
The size of the data structure can also be improved to O(n

2

ε3 log2 n log h
ε ) if we only return

the length of the path.

Related work. The problem of computing a shortest path in the presence of polygonal
obstacles in the plane is a very well studied problem in computational geometry. See the
books [16, 31], survey paper [28], recent papers [9, 6, 10, 8, 20], and references therein for a
sample of results. In the classical shortest path problem, obstacles are impenetrable, that is,
the shortest path must avoid all the obstacles. Our problem considers a more general scenario
where the obstacles can be removed by paying some cost and falls in the broad category of
geometric optimization problems where some constraints can be violated [2, 30, 26, 17].

Our problem is also closely related to the problem of computing a shortest path through
weighted polygonal regions [23, 24, 27] where the length of a path is defined as the weighted
sum of Euclidean or L1 lengths of the subpaths within each region. However, in our setting
there is only a one-time fixed cost for passing through a region, and therefore does not
depend on the length of the subpath that lies inside the region.

The stochastic formulation of our problem is also related to some shortest path problems
under uncertainty [14, 15, 22, 29]. However, these results assume existence of a graph
whose edges have either an existence probability or a distribution over their lengths. In
contrast, our definition is purely geometric where the existence of obstacles is an uncertain
event. Our problem can also be seen as a variant of geometric bi-criteria shortest path
problem [1, 5, 33, 34, 35], as our objective is to compute the shortest path with a constraint
on the total cost of obstacles that we remove.

Finally, for most geometric shortest path problems, there are efficient data structures to
answer shortest path queries. For instance, the shortest path map [19] has linear size and
can answer Euclidean shortest path queries with a fixed source in O(logn) time. If both
s, t are part of the query, quadratic space data structures [4, 21] exist for L1 shortest path
queries and super quadratic space data structures [12] for L2 shortest path queries. Similar
results exist for rectilinear shortest path queries among disjoint weighted rectilinear and
convex obstacles [4, 7], and for bi-criteria shortest path problems [5, 33, 35].

Overall, our algorithms entail new techniques because (i) in our problems, paths are
allowed to pass through obstacles, (ii) the cost function in our bi-criteria optimization can
be quite general and not necessarily a metric.

SWAT 2018
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Figure 1 Reduction from Partition. The gray segment in the obstacle group Gi has length ai
and can be crossed by paying a cost ai. The tall segments are drawn in black and are placed ±δ
apart from their corresponding gray segment.

2 NP-hardness

Consider the decision version of the obstacle-removing shortest-path problem: Given a set P
of pairwise-disjoint obstacles along with the cost of each object being removed, two points
s, t ∈ R2, and two parameters C,L > 0, is there a path from s to t of length at most L and
cost at most C?

We prove the hardness by a simple reduction from the well-known NP-complete problem
Partition. An instance of Partition is a set of n positive integers A = {a1, a2, . . . , an},
and the problem is to decide whether A can be partitioned into two sets A1 and A2 such
that W (A1) = W (A2) = 1

2W (A), where W (S) is the sum of the integers in S. We place
the source s at (0, 0) and destination t at (n+ 1, 0) on the x-axis. We also set C = 1

2W (A),
L = 1

2W (A) + (n+ 1) and define a parameter δ = 1
8n . For each i ≤ n we create a group of

obstacles, denoted Gi, which consists of five vertical line segments placed close to each other
in the following way. (See also Figure 1.)

The middle segment emi has length ai, and has its midpoint on the x-axis. The coordinates
of its endpoints are (i,−ai/2), (i, ai/2). The cost of this obstacle is ai.
At x-coordinates i− δ and i+ δ we place two vertical segments eli and eri symmetrically
along the x-axis – each with point-sized holes on the x-axis and length 2(L+ 1). The
point sized holes split the segment eli (resp. eri ) into two disjoint tall segments elui , eldi
(resp. erui , erdi ), of length (L+ 1). Each of these segments has cost (C + 1).

I Lemma 1. The set A can be partitioned into two equal-weight subsets if and only if there
is a path from s to t of length at most L and cost at most C.

We thus obtain the following:

I Theorem 2. Let P be a set of n disjoint polygonal obstacles in a plane, where each obstacle
Pi ∈ P has an associated removal cost ci. Given a source and destination pair of points s, t,
a removal budget C and a length L, the problem of deciding if there is a s–t path with cost at
most C and length at most L is NP-hard.

3 A Simple (1 + ε)-Approximation Algorithm

In this section, we propose a simple polynomial-time approximation scheme for the problem.
We begin by noting that an obstacle-removing shortest path only turns at obstacle vertices
and crosses the boundary of an obstacle at most twice. While these properties follow easily
due to the convexity of P and basic geometry, they are crucial for our algorithms.
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The algorithm constructs a viability graph G = (V,E), whose nodes are all the obstacle
vertices along with s and t. Thus, |V | = n+ 2. The edges of E correspond to pair of nodes
(u, v) for which the line segment uv passes through obstacles of total cost at most C, the
cost budget. For each edge e ∈ E, we associate two parameters: cost c(u, v) and length
‖uv‖, where c(u, v) is the cost of the segment uv. In the worst-case G has Θ(n2) edges. It is
important to note that the cost of a path πst in a viability graph is defined as the sum of
the costs of its edges, whereas the cost of πst in the plane is defined as sum of costs of all
obstacles that it goes through. Moreover, the cost of a path in the plane is at most its cost
in the viability graph. If the path crosses each obstacle at most once (which is the case for
shortest path among convex obstacles), these two costs are the same.

The following algorithm shows how to compute an approximately optimal path in this
viability graph. The main idea is that we construct copies of the vertices and the edges of G
to convert the multi-objective problem to a single-objective problem.

Let κ = min
(

C
mini ci , h

)
. To simplify the approximation error analysis, we first scale

all the costs by κ/C, so that the new target cost is κ. We now construct an auxiliary
graph G′ = (V ′, E′), with O

(⌈ 2κ|V |
ε

⌉)
nodes and O

(⌈ 2κ|E|
ε

⌉)
edges, whose edges only have

the length parameter but not the cost parameter, as follows. We create
⌈ 2κ
ε

⌉
+ 1 copies

v0, v ε2 , vε, v 3
2 ε
. . . , vκ, for each v ∈ V . Then, for each edge (u, v) ∈ E with cost c and for each

0 ≤ i ≤ d2κ/εe, we add the edge (ui ε2 , vj ε2 ), where j ≤ d2κ/εe is the maximum integer with
j ε2 ≤ i

ε
2 + c. All these edge copies have the same length as edge (u, v)—the cost parameter

is now implicitly encoded in the edge copies. Finally we add two new vertices s and t in G′
and connect them to all si and ti respectively with zero length edges, for 0 ≤ i ≤ d2κ/εe.
We now find the minimum length path π from s to t in G′, say, using Dijkstra’s algorithm,
and argue that π is our approximation path.

I Theorem 3. Let P be a set of h convex obstacles with n vertices, s, t be two obstacle
vertices, and C ∈ R be a parameter. Let L∗ also be the length of the shortest s–t path with
cost at most C, and let G = (V,E) be a viability graph induced by this workspace. If there
exists a path π∗ of length at most αL∗ with α ≥ 1 and cost at most C in the graph G, then
a s–t path π with length at most αL∗ and cost at most (1 + ε)C can be computed in time
O
(
κ
ε (|E|+ |V | log |V |ε )

)
, where κ = min

(
C

mini ci , h
)
and 0 < ε < 1 is a parameter.

Proof. First, we construct the auxiliary graph G′ as described above. Next, we construct
a path π′ in G′ corresponding to the path π∗ in G by mapping edges of π∗ to edges in G′.
More precisely, let e = (s, v) be the first edge in π∗ and let ce be its cost. Now let c = 0
and c′ be the value obtained by rounding down ce to the nearest multiple of ε

2 . We map e
to the edge (sc, vc′) in G′. Setting c = c′, we repeat the process for all edges in π∗. This
gives us the path π′ in G′ that has the length same as that of π∗ (at most αL∗). Clearly, the
s–t path π computed using Dijkstra’s algorithm on G′ must also have length at most αL∗.
Moreover, since (scaled) rounded cost of any s–t path in G′ is at most κ, the rounded cost of
π is also at most κ. Now we only need to bound its original (pre-rounded) cost.

Let CR be the true (pre-rounded) cost of the path π in the plane and CA its rounded
cost in G′. The approximation error in the cost (due to rounding) is at most ε/2 for each
obstacle that π passes through, and so if k̄ is the number of obstacles π crosses, we have the
upper bound CR ≤ CA + k̄ε/2. Since CA ≤ κ, we have CR ≤ κ + k̄ε/2. We can bound k̄
by considering the following two cases. If κ = C/mini ci, the minimum cost of an obstacle
is 1, and so for each obstacle crossed, the path π incurs a cost of least 1− ε/2. Therefore,
k̄ ≤ κ

1−ε/2 and CR ≤ κ+ κ
1−ε/2 · ε/2 ≤

1
1−ε/2κ ≤ (1 + ε)κ. Otherwise, we have κ = h, which

trivially implies k̄ ≤ κ since h is the total number of obstacles.

SWAT 2018



5:6 Computing Shortest Paths in the Plane with Removable Obstacles

In conclusion, we have CR ≤ (1 + ε)κ, whose pre-scaled value is (1+ε)κ
(κ/C) = (1 + ε)C, as

claimed. Finally, the time complexity is dominated by an invocation of Dijkstra’s algorithm
on the graph G′, which has O(|V |κ/ε) nodes and O(|E|κ/ε) edges. J

If G is the viability graph constructed in this section then it always contains the shortest
s–t path with cost at most C, i.e. α = 1. Hence, by applying Theorem 3 to G we get a path
of at most the optimum length and cost at most (1 + ε)C in Ω(n

3

ε ) time.
In the next section, we show that if we also allow an (1 + ε) approximation of the path

length, we can improve the running time by roughly an order of magnitude.

4 A Faster (1 + ε)-Approximation Algorithm

In this section, we describe our algorithm for sparsifying the graph G = (V,E). We augment
the graph by adding some vertices so that the number of viability edges can be sharply
reduced, while approximately preserving the path lengths within the cost budget. Throughout
the following discussion, we will respect the cost budget C, and only allow the path lengths
to increase slightly. With that in mind, we use the notation dG(u, v) to denote the length of
the shortest path in G from u to v whose cost is at most C. In this section we only use the
definition of the cost of a path with respect to a viability graph. Recall that the cost of a
path in a graph is the sum of the costs of the edges in the path.

Our sparse graph Hε = (Xε, Tε) is defined for any ε > 0, with V ⊆ Xε, and satisfies the
following two conditions:
1. dG(u, v) ≤ dHε(u, v) ≤ (1 + ε)dG(u, v) for all pairs u, v ∈ V .
2. The number of vertices and edges is O(nε logn), that is, |Xε|, |Tε| = O(nε logn).

We construct Hε in two stages. In the first stage we construct a graph H = (X,Γ) with
X ⊇ V , |X|, |Γ| = O(n logn), and dG(u, v) ≤ dH(u, v) ≤

√
2dG(u, v) for all u, v ∈ V . Next,

we make O(1/ε) “copies” of H and combine them to construct Hε. Once the graphs H and
Hε are constructed, we use the machinery of the previous section, namely Theorem 3, to
efficiently find the approximately optimal shortest path within the cost budget.

Recall that all the obstacles in our input are convex, and therefore the shortest path in G
does not cross the boundary of an obstacle more than twice. To avoid degenerate cases, we
assume that all obstacle vertices are in general position, namely, no three vertices are collinear
and all obstacles have non-zero area. We can, therefore, simplify the problem by replacing all
the obstacles by their constituent boundary segments, where each obstacle vertex is assigned
to its incident segment in the clockwise order. We now allocate the “obstacle removal” cost
to these segments as follows: if ci is the removal cost of obstacle i, then we allocate cost ci/2
to each boundary segment of obstacle i. This ensures that any shortest path crossing the
ith obstacle incurs a cost of ci, while allowing us to reason about the geometry of just line
segment obstacles.

We describe the construction of the sparse viability graph by explaining how to sparsify
the “neighborhood” of an obstacle vertex, say, p. That is, we show which additional vertices
are added and which viability edges are incident to p in the final sparse graph H. To simplify
the discussion, we assume that p is at the origin, and we only discuss the edges incident to p
that lie in the positive (north-east) quadrant; the remaining three quadrants are processed
in the same way.
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Figure 2 Steiner vertices due to vertical (left) and horizontal (right) split lines. Projections are
shown with white dots, bypass vertices as squares, bypass edges shown in blue have cost zero.

4.1 An O(1)-Approximation Algorithm
In this subsection we describe the construction of H = (X,Γ) such that |X|, |Γ| = O(n logn),
and dG(u, v) ≤ dH(u, v) ≤

√
2dG(u, v) for all u, v ∈ V .

For a segment pq we use ‖pq‖1 to denote its L1-length, i.e., ‖pq‖1 = |xp − xq|+ |yp − yq|,
where p = (xp, yp) and q = (xq, yq). For a polygonal path π = p0p1 . . . pk, we use ‖π‖1 to
denote its L1-length, i.e., ‖π‖1 =

∑k
i=1 ‖pi−1pi‖1. We note that ‖π‖1 ≤

√
2‖π‖. We will

construct a graph H = (X,Γ) with the following property: For a pair of vertices u, v ∈ V if
G contains a path π from u to v of cost at most C, H contains a path π̄ from u to v of cost
at most C such that ‖π̄‖1 ≤ ‖π‖1. Hence ‖π̄‖ ≤

√
2‖π‖ and thus dH(u, v) ≤

√
2dG(u, v).

We are now ready to describe the algorithm for constructing H. It is a simple recursive
algorithm and consists of the following steps:

1. Let xm be the median x-coordinate of the points in V . We consider the vertical split line
`v : x = xm that partitions V into two almost equal-sized subsets Vl and Vr.
a. For each point v ∈ V , consider its projection v′ = (xm, vy) on the line `v. If c(v, v′) ≤ C,

then add the projection vertex v′ to X and the corresponding edge e = (v, v′) to Γ
with length ‖vv′‖1 and cost c(v, v′).

b. Let s′ be the first obstacle segment with positive slope that the projection segment
vv′ intersects. If s′ intersects the split line `v, we add bypass vertices and edges to
H as follows. Let v1 be the point where vv′ intersects s′, and let v2 be the point
where s′ intersects `v. We add bypass vertices v1, v2 on the segment s′. If v2 lies
above v1, the bypass vertices are considered to be above the segment s′, otherwise they
are considered below the segment s′. (See also Figure 2.) We add the edges (v, v1)
and (v1, v2) to Γ with lengths ‖vv1‖1, ‖v1v2‖1 and costs c(v, v1), c(v1, v2), respectively.
Observe that c(v1, v2) = 0.

c. We repeat the procedure above for the first negative slope segment that vv′ intersects.
d. For two consecutive Steiner vertices w,w′ (projection or bypass) on `v, if c(w,w′) ≤ C,

then add the edge e = (w,w′) to Γ with length ‖ww′‖1 and cost c(w,w′).
e. Recurse on the subsets Vl and Vr until |Vl|, |Vr| ≤ 1.

2. Repeat the above process but this time using median y-coordinate ym and a horizontal
split line `h at y = ym.

3. We add edges between consecutive vertices on the boundary of obstacles with cost 0.

At each recursive step of our algorithm, we need to find the first positive (negative) slope
obstacle segment intersected by the projection segment vv′, and compute the cost of all edges
we add. In order to find the first positive (negative) slope segment say s′, we can simply
perform a point location query in O(logn) time [32] on positive (negative) slope segments.
If s′, intersects both the projection segment vv′ and the split line passing through v′, we add
the bypass vertices. For computing the edges costs, observe that bypass edges and the edges

SWAT 2018
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Figure 3 The region Rpq is shown shaded. If Rpq does not contain obstacle vertices, the type
A,B,C obstacle segments that may intersect Rpq are shown on the right. Observe that type B and
type C segments cannot both exist in Rpq.

on the boundary of obstacles have both cost zero, and all other edges are either horizontal
or vertical line segments, so we just need to compute the total cost of obstacle segments
intersected by an axis aligned segment. We show how to do this for a horizontal projection
segment vv′ and all other cases follow similarly. We preprocess all the obstacle segments in a
segment tree based data structure S. Using fractional cascading and increasing the fan-out
of the segment tree [3, 32], a (weighted) counting query runs in O(logn) time. During each
recursive call, we simply query S to compute the cost of the segment vv′. However, we need
to be careful in including the cost of the obstacle segment that v lies on. More precisely, if
Pi is the obstacle incident to v, we include the cost ci/2 to the cost of segment vv′ only if
vv′ intersects the interior of Pi (which we can decide in constant time).

We can easily obtain the following lemma.

I Lemma 4. Every input vertex adds Steiner vertices on O(logn) split lines. Moreover,
graph H has size O(n logn) and can be constructed in O(n log2 n) time.

It is important to note here that a similar recursive algorithm was first used by Clarkson
et al. [13] to compute L1 shortest obstacle-avoiding paths in the plane – each vertex was
projected on O(logn) split lines and on the obstacle closest to it in all four directions. This
was enough to capture obstacle-avoiding shortest paths (as they lie entirely in free space)
but since obstacle-removing shortest paths can also go through obstacles, things get quite
complicated. In particular, it is not clear that which of the O(n) nearby obstacles (in each
direction) should a vertex be projected on. We address this challenge in Step 1b of our
algorithm by adding bypass vertices. Since we need to guarantee that the sparsification
preserves the L1 length as well as the cost of the shortest path, our correctness argument is
quite different and can be viewed as a more general form of the result by [13].

4.2 Proof of Correctness
We now prove that dH(u, v) ≤

√
2dG(u, v) for all u, v ∈ V . More precisely, if we set the

length of each edge e = (u, v) in G to be ‖uv‖1, then we show that dH(u, v) ≤ dG(u, v). We
basically show that for any edge e = (u, v) in G there is a path πe from u to v in H such
that c(πe) ≤ c(u, v) and ‖πe‖1 ≤ ‖uv‖1. This claim is established in Lemma 7, whose proof
relies on the following Lemmas 5 and 6.

For convenience, we introduce the notion of the region Rpq defined by two obstacle
vertices p, q ∈ V . Let R̄pq be the rectangle with p and q as lower left and upper right
corners respectively. Now, let sx (resp. sy) be the first obstacle segment of positive
slope that intersects the two sides of R̄pq below (resp. above) the diagonal pq. We define
Rpq = R̄pq \ (B(sx) ∪ A(sy)), where B(sx) is the area below segment sx, and A(sy) is the
area above sy. If a segment sx or sy does not exist then B(sx) = ∅ and A(sy) = ∅. (See also
Figure 3.)
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I Lemma 5. Let (p, q) be an edge in G with cost c(p, q). If the region Rpq does not contain
an obstacle vertex, then there exists a path πpq in H that is entirely contained in Rpq such
that ‖πpq‖1 = ‖pq‖1 and c(πpq) = c(p, q).

Proof. Since Rpq does not contain any obstacle vertex there are only three types of obstacle
segments that intersect Rpq. (See also Figure 3.)
1. Type A : these obstacle segments have negative slope and intersect both vertical and

horizontal segments of Rpq adjacent to either p or q.
2. Type B : obstacle segments that intersect both vertical segments of Rpq.
3. Type C : obstacle segments that intersect both horizontal segments of Rpq.
It is easy to see that segments of type B and C cannot both exist in Rpq because the obstacle
segments are non-intersecting. From the construction of H there is always a vertical and a
horizontal split line between two obstacle vertices. Let `v (`h) be the first vertical (horizontal)
split line in the recursion that we consider between the vertices p, q. There are three cases.

Only Type A segments exist in Rpq. This case is taken care by the Steiner vertices on the
vertical (or horizontal) split line `v. More precisely, `v may intersect both sx and sy, one
of them, or even neither of them. We show what happens in the case where `v intersects
both sx and sy and the other cases follow easily. Since there are no obstacle vertices in
Rpq, sx, sy are the first positive slope segments intersected by the projections of p, q on
`v. So we have created bypass vertices p1, p2 and q1, q2 on sx, sy. The path πpq is defined
as πpq = pp1p2q2q1q and it is easy to see that ‖πpq‖1 = ‖pq‖1. Moreover, both πpq and
the edge pq cross one time the same set of obstacle segments (only type A), so we have
that c(πpq) = c(p, q).
Type B segments exist in Rpq. In this case, observe that type B edges do not intersect
with the horizontal projection segments adjacent to p and q on the vertical split line, and
therefore we can use the exact same path πpq as the previous case. The cost of the type
B segments needs to be included but since the edge pq must cross these segments, we
have that c(πpq) = c(p, q).
Type C segments exist in Rpq. This case is symmetric to the previous case using the
horizontal split line `h. J

I Lemma 6. Let (p, q) be an edge in G with cost c(p, q). If the region Rpq contains one or more
obstacle vertices, then there exists an obstacle vertex r ∈ Rpq such that ‖pr‖1 +‖rq‖1 = ‖pq‖1,
and c(p, r) + c(r, q) ≤ c(p, q).

Proof. We prove the lemma by exhibiting a vertex r such that (i) the triangle ∆prq does
not contain any other obstacle vertex, and (ii) no obstacles segment intersects the interiors
of both pr and rq. Such a choice of r suffices for our proof since r ∈ Rpq implies that
‖pr‖1 + ‖rq‖1 = ‖pq‖1 and we get c(p, r) + c(r, q) ≤ c(p, q) because any obstacle segment
crossing either pr or rq must also cross pq, otherwise that obstacle segment would terminate
inside the triangle which contradicts the choice of r. Next, we show how to find such a vertex.
We restrict our search for this vertex r in a convex polygon Tpq ⊆ Rpq which we construct in
the following way. (See also Figure 4.) Observe that the diagonal pq divides the region Rpq
into two subsets – one above and one below it. We consider the subset R′pq that contains
at least one obstacle vertex. Since, Rpq contains at least one obstacle vertex, such a subset
always exists. Without loss of generality, we can assume that R′pq lies above pq. Now, let
Spq be the set of all obstacle segments that intersect a vertical or a horizontal segment of the
boundary ∂R′pq, and let sp, sq ∈ Spq be the segments that intersect ∂R′pq closest to p and q
respectively. From the endpoints of sp, sq that lie in R′pq, let w be the endpoint closest to the
segment pq. Moreover, let lw be the line parallel to pq that passes through w. Now we simply
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p

q

p
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sp

sq

w
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r

Figure 4 The region Tpq is shown shaded on left. If r ∈ Tpq is the vertex closest to pq, then the
region T ′pq ⊆ Tpq(shown shaded in dark on right) cannot contain an obstacle vertex.

clip off the region of R′pq that lies above lw. More precisely, this gives us the quadrilateral
R′′pq = R′pq \ A(lw), where we use A(s) for the region above segment s. Finally, we define
the convex polygon Tpq = R′′pq \ (A(s′p) ∪ A(s′q)), where s′p, s′q are the subsegements of sp, sq
respectively that lie inside the quadrilateral R′′pq.

From the set of obstacle vertices that lie inside or on the boundary of Tpq, we choose the
vertex r to be the one that minimizes the area of the triangle ∆prq, or equivalently, be the
one that has the minimum distance from the segment pq. Observe that the boundary of
region Tpq contains the obstacle vertex w, so we will always find one such r. It is easy to
see that the triangle ∆prq is a subset of Tpq and does not contain an obstacle vertex or else
it would not have the minimum area. It remains to show that there cannot be an obstacle
segment that crosses both pr and rq. To this end, let lr be a line parallel to pq passing
through r. Observe that the region T ′pq = Tpq \ A(lr), i.e., the region in Tpq that lies below
lr, cannot contain an obstacle vertex by the choice of r. So any obstacle segment sj that
crosses both pr and rq must intersect ∂R′pq at either the vertical segment between p and sp
or the horizontal segment between sq and q which is a contradiction. (See also Figure 4.) J

Finally, we prove the main result of this section.

I Lemma 7. Let (p, q) be an edge in G with cost c(p, q). There is a path πpq ∈ H such that
‖πpq‖1 = ‖pq‖1 and c(πpq) ≤ c(p, q). Moreover, the path πpq lies in the region Rpq.

Proof. We prove this by induction on the number of obstacle vertices in the region Rpq. Our
base case is when the region Rpq does not contain an obstacle vertex. Applying Lemma 5
gives us the desired path πpq in H. For the inductive step, let j be the number of obstacle
vertices in the region Rpq and assume that the lemma holds for all edges (u, v) such that the
region Ruv contains i < j obstacle vertices. Using Lemma 6 we find an intermediate vertex r
such that ‖pr‖1 + ‖rq‖1 = ‖pq‖1 and c(p, r) + c(r, q) ≤ c(p, q). This gives us two disjoint sub-
regions Rpr ⊂ Rpq and Rrq ⊂ Rpq each with at least one less obstacle vertex than the region
Rpq. By our induction hypothesis, we get the disjoint subpaths πpr from p to r and πrq from
r to q in H. We then join these two paths at vertex r to obtain path πpq that lies within the
region Rpq. Moreover, we have that ‖πpq‖1 = ‖πpr‖1 + ‖πrq‖1 = ‖pr‖1 + ‖rq‖1 = ‖pq‖1
and c(πpq) = c(πpr) + c(πrq) ≤ c(p, r) + c(r, q) ≤ c(p, q). J

4.3 An (1 + ε)-Approximation Algorithm
We now describe how to use the preceding construction to define our final sparse graph Hε.
A direction in R2 can be represented as a unit vector u ∈ S1. Let N ⊂ S1 be a set of O(1/ε)
unit vectors such that the angle between two consecutive points of N is at most ε. For each
u ∈ N, we construct a graph Hu by running the algorithm in Section 4.1 but regarding u
to be the y axis — i.e., by rotating the plane so that u becomes parallel to the y-axis and
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measure L1-distance in the rotated plane. Set Hε =
⋃

u∈N H
u. Notice that the number of

vertices and edges in Hε is O(nε logn). The following lemma follows easily by the discussion
above.

I Lemma 8. For any pair u, v ∈ V , we have that dHε(u, v) ≤ (1 + ε)dG(u, v).

From the above lemma, it follows that the graph Hε preserves pairwise shortest path
distances within a factor of (1 + ε) and at most the same cost with graph G. Let L∗ be the
length of the shortest s–t path in the plane that has cost at most C. Since there exists a s–t
path of length at most L∗ and cost at most C in the viability graph G, there exists a s–t
path in Hε of length (1 + ε)L∗ and the same cost. Applying Theorem 3 with α = (1 + ε) on
Hε gives the following result.

I Theorem 9. Let P be a set of h convex polygonal obstacles with n vertices, s, t be two
obstacle vertices and C ∈ R be a parameter. If L∗ is the length of the shortest s–t path with
cost at most C, a s–t path with length at most (1 + ε)L∗ and cost at most (1 + ε)C can be
computed in O(nhε2 logn log n

ε ) time.

5 Shortest Path Queries

We now describe a near-linear space data structure to answer approximate distance queries
from a fixed obstacle vertex s subject to the obstacle removal budget in O( 1

ε log2 n) time.
The data structure is then extended to handle two-point shortest path queries in O( 1

ε2 log2 n)
time with near-quadratic space.

The key idea relies on the following observation. Without loss of generality, assume that
the points s and t lie in the exterior of all obstacles and let us also assume that s, t were part
of the input. Now consider the shortest s–t path in the graph Hε and let t′ be the vertex
preceding t in this path. It is easy to see that t′ must be a Steiner vertex (projection or
bypass) as there are no direct edges in Hε between two input vertices that do not lie on the
same obstacle. All such edges must cross some split line at Steiner vertices. Therefore, the
last edge (t′, t) in the path is the segment obtained by projecting t on some split line `. Now,
suppose we have precomputed the paths to all Steiner vertices on all split lines, then we can
find the shortest path to t by simply finding the neighbor of t′ on `. Using Lemma 4, we
know that t can be projected on O( 1

ε logn) split lines, which gives O( 1
ε logn) choices for `.

Preprocessing. We apply the algorithm preceding Theorem 3 on the graph Hε that we
constructed in the previous section. More precisely, first we multiply the cost of all obstacles
by h/C so that the target cost becomes h. Next we create an auxiliary graph H ′ε with O(hε )
copies of each vertex in Hε. Running Dijkstra’s algorithm on H ′ε with source s computes
a shortest path to each vertex in H ′ε. Now for each vertex v in Hε, we maintain arrays
distv, predv each with size 1 + h

ε = O(hε ). We store the length of the shortest path found by
Dijkstra’s algorithm from s to viε (i-th copy of vertex v) at distv(i) and its predecessor in
predv(i). In addition, for each direction u ∈ N that we defined in the previous section we
maintain two data structures:

A segment tree [3] based data structure Su that we also used in Section 4.1 to compute
the cost of an axis aligned segment in O(logn) time.
A balanced search tree Tu over all the vertical (resp. horizontal) split lines, which is
basically the recursion tree corresponding to the algorithm from Section 4.1. More
precisely, the root of Tu is the split line `m (at the median x-coordinate xm), and the left
and right children are the split lines added during recursive processing of points to the
left and right of `m respectively.
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v

Figure 5 Computing path from a query point t to one of the vertices in Hε – using a split line
that already exists in Hε (left) and using a new split line `∗ added at query time (right). The suffix
path πvt is shown shaded in red.

Moreover, for every split line `, we maintain a search tree over all the Steiner vertices that
lie on `. Overall, our data structure consists of all arrays distv, predv, O(nε ) search trees, and
O( 1

ε ) segment trees Su. The size of the data structure is O(nhε2 logn) and the preprocessing
time is O(nhε2 logn log n

ε ).

Query. The query procedure consists of two parts. Given the target query point t, we first
find a subset of O( 1

ε logn) split lines L that we need to search. Next, for each line ` ∈ L,
we find the Steiner vertex t′ created by projecting t on ` and then find the path to t using
one of the two neighbors of t′ on `. Let v denote a neighbor of t′ on `. Finally, we take the
shortest of all O( 1

ε logn) candidate paths.
In order to find the subset of split lines we use the search tree Tu over the set of all split

lines for a direction u ∈ N. For a node z ∈ Tu, if t lies in the region left of split line at z we
search the left child, else we search the right child. Searching Tu in this way, we reach a leaf
node such that the associated region contains exactly one obstacle vertex w and the query
point t. In this case we add a new split line `∗ between w and t and add Steiner vertices for
the obstacle vertex w on `∗. This gives us a total of O(logn) + 1 split lines per direction
that we need to search.

To compute the candidate paths, for a given a split line `, we consider the Steiner vertices –
projection t′ and bypass t1, t2 – for the query point t. The shortest path from ` to t may either
be t′ → t or t2 → t1 → t. We find a neighbor v of t′ or t2 on ` (at most two neighbors are
possible). We now consider the section of the path πvt from v to t. If the arrays distv, predv
are not precomputed, which can happen if v is the projection of an obstacle vertex w on the
new split line `∗, we set v = w and include the path from w to t along the split line `∗ to
πvt. (See also Figure 5.)

At this point we have found a vertex v such that distv, predv are precomputed for all
cost values 0, ε, 2ε, . . . , h. Since the cost of bypass edges is zero, and all other segments in
the path πvt are axis-aligned, we can compute the cost c(πvt) using the segment tree Su.
The remaining cost budget is h − c(πvt) which we round up for lookup in the distv, predv
arrays. More precisely, let j be the smallest integer such that h − c(πvt) ≤ jε, then we
compute the length of the candidate s–t path via v as distv(j) + ‖πvt‖1. Finally, we take
the minimum over all O( 1

ε logn) choices of v to obtain the shortest path πst using the pred
arrays. Using a similar argument as in the proof of Theorem 3, one can show that the length
of πst is at most (1 + ε) times optimal and the cost is (1 + ε)C. The total query time is
O( 1

ε logn · logn) = O( 1
ε log2 n).

Instead of computing the path itself, one may ask to just find the length of the shortest
s–t path of cost at most C for some query point t. We can answer such queries approximately
in O( 1

ε log2 n) time using O( nε2 logn log h
ε ) space. The main idea is that instead of storing
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O(hε ) distance values in distv for cost 0, ε, 2ε, . . . , hε ε, we store a subset of O( 1
ε log h

ε ) values.
More precisely, we only store the distance values corresponding to the cost jε where j is the
smallest integer such that ε(1 + ε)i ≤ jε, for all i in 0, 1, 2, . . . , log1+ε

h
ε . The size of distv

arrays for each vertex v is therefore O(log1+ε
h
ε ) = O( 1

ε log h
ε ). Let πvt be the path from

v to t. The length of a s–t path via v has length distv(i) + ‖πvt‖1, where i is the smallest
integer with h− c(πvt) ≤ ε(1 + ε)i. Finally we take the minimum over all O( 1

ε logn) choices
of v to obtain the shortest path πst. We can show that the cost of πst is at most (1 + 5ε)C.
Constructing the data structure for ε← ε/5 we obtain the following theorem.

I Theorem 10. Let P be a set of h convex polygonal obstacles with n vertices, s be an
obstacle vertex, and C ∈ R be a parameter. A data structure of O(nhε2 logn) size can be
constructed in O(nhε2 logn log n

ε ) time such that, given a query point t ∈ R2, a path πst can be
returned with cost (1 + ε)C and length at most (1 + ε) times the optimal in O

( 1
ε log2 n+ kst

)
time, where kst is the number of edges of πst. The length of the path πst can be returned in
time O

( 1
ε log2 n

)
using a data structure of size O( nε2 logn log h

ε ).

Two point queries. Now we briefly explain how to extend the above data structure to
handle two point queries. That is, both s, t are part of the query. During the preprocessing,
we store distance values distuv (similarly preduv) for every pair of vertices u, v in Hε for all
cost values 0, ε, 2ε, . . . , h. The idea now is to find the neighbor u of s on some split line `s
and neighbor v of t on split line `t. We compute the cost of paths πsv and πvt as before and
set the length of this candidate s–t path to be distuv(j) + ‖πsu‖1 + ‖πvt‖1. Here j is the
smallest integer such that h− c(πsu)− c(πvt) ≤ jε. We take the minimum across O( 1

ε2 log2 n)
choices of u and v.

I Theorem 11. Let P be a set of h convex polygonal obstacles with n vertices, and C ∈ R be
a parameter. A data structure of O(n

2h
ε3 log2 n) size can be constructed in O(n

2h
ε3 log2 n log n

ε )
time such that, given two query points s, t ∈ R2, a path πst can be returned with cost at most
(1 + ε)C and length at most (1 + ε) times the optimal in O( 1

ε2 log2 n+ kst) time, where kst is
the number of edges of πst. The length of the path πst can be returned in O( 1

ε2 log2 n) time
using a data structure of size O(n

2

ε3 log2 n log h
ε ).

6 Stochastic Shortest Path

In this section, we consider a stochastic model of obstacles where the existence of each
obstacle Pi ∈ P is an independent event with known probability βi. That is, Pi is part of the
input with probability βi and is not part of the input with probability 1− βi. We define the
probability of path πst as

∏
Pi∈S(1− βi) where S ⊆ P is the set of obstacles that this path

goes through (assuming they did not exist). In such a setting, our goal is to compute the
approximate shortest path that has probability more than a given threshold β ∈ (e−1, 1].

Let Lβ denote the length of the shortest path from s to t with probability at least β. We
convert the multiplicative costs to additive costs by setting ci = − ln(1−βi) for each obstacle
and setting C = − ln β. Using Theorem 9, we find a path πst with length L(πst) ≤ (1 + ε)Lβ
and cost c(πst) ≤ (1 + ε)C. It can be shown that πst has probability at least (1− ε)β.

I Theorem 12. Let P be a set of h convex polygonal obstacles with n vertices, where each
obstacle Pi ∈ P exists independently with a probability βi, s, t be two obstacle vertices and
β ∈ (e−1, 1] be a parameter. If Lβ is the length of the shortest s–t path with probability at
least β, a s–t path with length at most (1 + ε)Lβ and probability at least (1 − ε)β can be
computed in O(nhε2 logn log n

ε ) time.
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Most likely path. We now consider the following question – given a bound L on the length
of the path, what is the s–t path with maximum probability? We need a bound on the
path length or else there is always a path of probability 1. To answer this question, we can
again take negative logarithms of probabilities to transform into an additive cost model and
construct the graph Hε as before. Now instead of applying Theorem 3 on Hε, we construct
a new graph H∗ε that is exactly the same as Hε, but with length and cost parameters on
edges interchanged. More precisely, for an edge e ∈ Hε with length le and cost ce, we have
an edge e∗ ∈ H∗ε with length ce and cost le. Next we apply Theorem 3 on the graph H∗ε
with C = (1 + ε)L, and scale all costs with a parameter O( n

Cε logn), such that the target
cost is scaled to O(nε logn). We choose this value because a shortest path in Hε can have
O(nε logn) edges. This gives us the following result.

I Theorem 13. Let P be a set of h convex obstacles with n vertices, s, t be two obstacle
vertices, and L ∈ R be a parameter. If βM is the maximum probability of a path from s to t
with length at most L, a path πst with length at most (1 + ε)L and probability at least βM
can be computed in O(n

2

ε3 log2 n log n
ε ) time.
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