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Abstract
Atserias, Kolaitis, and Vardi showed that the proof system of Ordered Binary Decision Diagrams
with conjunction and weakening, OBDD(∧,weakening), simulates CP∗ (Cutting Planes with
unary coefficients). We show that OBDD(∧,weakening) can give exponentially shorter proofs
than dag-like cutting planes. This is proved by showing that the Clique-Coloring tautologies
have polynomial size proofs in the OBDD(∧,weakening) system.

The reordering rule allows changing the variable order for OBDDs. We show that
OBDD(∧,weakening, reordering) is strictly stronger than OBDD(∧,weakening). This is proved
using the Clique-Coloring tautologies, and by transforming tautologies using coded permutations
and orification. We also give CNF formulas which have polynomial size OBDD(∧) proofs but
require superpolynomial (actually, quasipolynomial size) resolution proofs, and thus we partially
resolve an open question proposed by Groote and Zantema.

Applying dag-like and tree-like lifting techniques to the mentioned results, we completely ana-
lyze which of the systems among CP∗, OBDD(∧), OBDD(∧, reordering), OBDD(∧,weakening)
and OBDD(∧,weakening, reordering) polynomially simulate each other. For dag-like proof sys-
tems, some of our separations are quasipolynomial and some are exponential; for tree-like systems,
all of our separations are exponential.
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16:2 Reordering Rule Makes OBDD Proof Systems Stronger

1 Introduction

An Ordered Binary Decision Diagram (OBDD) is a branching program such that variables
are queried in the same order on every path from the source to a sink. OBDDs were
defined by Bryant [3] and have been shown to be useful in a variety of domains, such as
hardware verification, model checking, and other CAD applications [4, 15]. Perhaps their
most important property is that it is possible to carry out operations on OBDDs efficiently,
including Boolean operations, projection, and testing satisfiability.

OBDDs have been used for several approaches to SAT-solving [17, 22]. The first such
algorithms [22] worked by computing an OBDD for bigger and bigger subformulas of the
input formula until obtaining an OBDD for the entire input formula, and then testing the
resulting OBDD for satisfiability. A more attractive algorithm, called symbolic quantifier
elimination, was proposed by Pan and Vardi [17]. Symbolic quantifier elimination loads
clauses of the input formula into the current OBDD one by one and applies projection by a
variables which do not appear in the remaining clauses. In contrast with DPLL algorithms,
symbolic quantifier elimination can solve Tseitin formulas [11] and the pigeonhole principle [6]
in polynomial time.

Atserias-Kolaitis-Vardi [1] defined a proof system based on OBDDs for proving unsatis-
fiability of CNFs, which is now called OBDD(∧,weakening). An OBDD(∧,weakening) proof
is a sequence of π-OBDDs with the ordering π of the variables held fixed. The initial lines
are π-OBDDs expressing the input clauses; the final line is the constant false. Each step of
the proof applies one of the two rules:
Join (or ∧): A conjunction of any two previously derived π-OBDDs is inferred;
Weakening: A π-OBDD is inferred that is semantically implied by some earlier derived

π-OBDD.
The correctness of a proof step can be checked in polynomial time; in particular, checking if
D1 is a weakening of D2 can done by verifying that D2 ∧ ¬D1 is unsatisfiable.

The paper [1] showed that Cutting Planes with unary coefficients (CP∗) is simulated
by OBDD(∧,weakening). This was proved by showing that any linear inequality has a
short π-OBDD representation (under any ordering π) and that addition of two inequalities
may be simulated by join and weakening. Hence, OBDD(∧,weakening) is strictly stronger
than resolution; however, Segerlind [19] showed that tree-like OBDD(∧,weakening) does
not simulate (dag-like) resolution. Additionally, [1] showed that any unsatisfiable system of
linear equation modulo two has a short refutation in OBDD(∧,weakening), while it is open,
whether linear systems have short CP refutations. It is still open whether CP is strictly
stronger than CP∗, and correspondingly it is open whether OBDD(∧,weakening) simulates
CP.

Krajíček [14] proved the first exponential lower bound for OBDD(∧,weakening). His
lower bound consisted of two parts.
1. If a function f is computed by a π-OBDD D, the communication complexity of f under a

partition Π0,Π1 of the variables where the variables in Π0 precede (in the sense of π) the
variables from Π1 is at most dlog |D|e+1. Since every proof system that operates with proof
lines with small communication complexity admits monotone feasible interpolation [13],
there is an ordering π of the variables so that any π-OBDD(∧,weakening) proof of the
Clique-Coloring principle has exponential size. (This was already proven by Atserias et
al. [1]).

2. Formulas which are hard for OBDD(∧,weakening) in some order can be transformed
into formulas that are hard for OBDD(∧,weakening) in all orders. This transformation
behaves well for constant width formulas.
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In the paper we use another transformation due to Segerlind [19]; we use it to prove
Lemma 1 and Theorem 10. This transformation behaves well for formulas which grow
polynomially under “orification”.

Theorem 8, proved in Section 6, gives short (polynomial size) OBDD(∧,weakening)
proofs of the Clique-Coloring principle. Since any CP proof of the Clique-Coloring principle
has exponential size [18], it follows that CP does not simulate OBDD(∧,weakening) and
moreover, that OBDD(∧,weakening) is strictly stronger than CP∗. The existence of the
small proofs of the Clique-Coloring principle implies that OBDD(∧,weakening) does not
have the feasible interpolation property. This is very curious, because the monotone feasible
interpolation property nonetheless helps to prove lower bounds for this system.

Our short proofs of the Clique-Coloring principles are based on Grigoriev et. al [9], who
gave short proofs of Clique-Coloring in LS4, a proof system that uses inequalities of degree 4.
Unfortunately, even inequalities of degree 2 do not have short OBDD representation, in
contrast to inequalities of degree 1. Nevertheless, the proof of [9] may be simulated in
OBDD(∧,weakening) in some order over the variables.

An interesting subsystem of OBDD(∧,weakening) is the system OBDD(∧) that uses only
the join rule; this system is connected with early OBDD algorithms for SAT-solving [22].
Tveretina et al. [21] proved that PHPn+1

n is hard for OBDD(∧). Grut and Zantema [10]
showed that there is an unsatisfiable formula (not in CNF) such that it has an efficient
construction in OBDDs and any resolution proof of its Tseitin transformation has exponential
size. Because of the different translations, the question of an actual separation between
OBDD(∧) and resolution was left open. In Corollary 12 and Lemma 13, we improve their
result by giving CNF formulas which have polynomial size OBDD(∧) proofs but require
superpolynomial (actually, quasipolynomial size) resolution proofs.

Järvisalo [12] claimed an exponential separation between tree-like resolution proofs and
(dag-like) OBDD(∧) proofs. Unfortunately, as is discussed in Section 5, the proof for the
last claim was erroneous. We correct the proof and establish an even stronger result: the
proof of Theorem 32 shows that there is a formula ψn such that in some order π any tree-like
π-OBDD(∧,weakening) proof of ψn has exponential size, but there is a short OBDD(∧)
proof of ψn in another order. Note that tree-like π-OBDD(∧,weakening) simulates tree-like
resolution for any order π.

So far, we have only discussed OBDD proof systems for which proofs consists of π-OBDDs
in the same fixed order π. This constraint is somewhat artificial since there is an algorithm
to transforms an OBDD in one order into an OBDD in another order which runs in time
polynomially bounded by the combined sizes of the input and output OBDDs. Accordingly,
Itsykson et al. [11] introduced the proof system OBDD(∧, reordering). This system includes
a reordering rule which allows changing an OBDD to a different variable ordering. It
also includes the join (∧) rule, but with the condition that the two conjoined OBDDs use
the same variable ordering. They showed that OBDD(∧, reordering) does not have short
proofs of PHPn+1

n or of Tseitin formulas based on expanders. Additionally, they showed that
OBDD(∧, reordering) is strictly stronger than OBDD(∧). In Theorem 10, we resolve an open
question of [11] by showing that OBDD(∧,weakening, reordering) is strictly stronger than
OBDD(∧,weakening).

Theorem 24 constructs formulas that have tree-like OBDD(∧, reordering) proofs of small
size but require superpolynomially larger size (dag-like) OBDD(∧,weakening) proofs. The
proof uses a result of [7] and formulas that have short OBDD(∧) refutations but require
superpolynomial size resolution proofs. This method also allows constructing formulas
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Figure 1 C1 −→ C2 denotes C1 p-simulates C2, and C1 99K C2 denotes C1 does not p-simulate
C2. The results are for the dag-like versions of the systems. New results are labelled with the
relevant theorem. All the separations on the picture are exponential, except the two separations
labeled by “q.p” for “quasipolynomial”.

that are hard for CP but easy for OBDD(∧), see Theorem 23. In Theorem 32, we give
CNF formulas which have polynomial size tree-like OBDD(∧, reordering) proofs but require
exponential size for tree-like OBDD(∧,weakening) proofs.

A summary of the (non-)simulation results for dag-like systems is shown in Figure 1.
There are still a few questions left open about the systems shown there. First, it is
a long-standing open problem whether CP∗ simulates CP. Second, it is open whether
OBDD(∧,weakening) simulates CP. Third, we do not know whether resolution is simu-
lated by OBDD(∧, reordering). In fact, we do not know whether resolution is simulated
by OBDD(∧). A couple of earlier papers have claimed that resolution is not simulated by
OBDD(∧), see Theorem 5 of [21] and Corollary 4 of [12], but we have been unable to verify
their proofs.1

All the other missing arrows in Figure 1 follow from the arrows shown. For instance,
OBDD(∧) does not simulate CP∗, since OBDD(∧, reordering) does not simulate CP∗.

1 The difficult point in the proofs is in Lemma 8 of [21] and in Lemma 4 of [12]. In the former, it is
shown that two distinct nodes in an OBDD B(F,≺) correspond to two distinct nodes in another OBDD
B(F ∪G,≺); however, it does not follow from this that n distinct nodes in B(F,≺) correspond to n
distinct nodes in B(F ∪ G,≺). A similar technique is implicitly used in the latter paper, and it is
possible to give a counterexample to Lemma 4 of [12].
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Further research

Segerlind showed [19] that dag-like resolution does not polynomially simulate tree-like
OBDD(∧,weakening), hence dag-like OBDD(∧,weakening) is strictly stronger than tree-
like OBDD(∧,weakening). It is open whether OBDD(∧), OBDD(∧, reordering) and
OBDD(∧,weakening, reordering) are simulated by their tree-like versions.

It is interesting open question, whether resolution quasipolynomially simulates OBDD(∧).
Any improving of our separation will automatically improve separations between CP vs.
OBDD(∧) and OBDD(∧,weakening) vs. OBDD(∧, reordering).

The major open question is to prove a superpolynomial lower bound on the size of
OBDD(∧,weakening, reordering) refutations.

2 Preliminaries

2.1 Ordered Binary Decision Diagrams
An ordered binary decision diagram (OBDD) is used to represent a Boolean function [3]. Let
Γ = {x1, . . . , xn} be a set of propositional variables. A binary decision diagram (BDD) is a
directed acyclic graph with one source. Each vertex of the graph is labeled by a variable
from Γ or by a constant 0 or 1. If a vertex is labeled by a constant, then it is a sink (has
out-degree 0). If a vertex is labeled by a variable, then it has exactly two outgoing edges:
one edge is labeled by 0 and the other edge is labeled by 1. Every binary decision diagram
defines a Boolean function {0, 1}n → {0, 1}. The value of the function for given values of
x1, . . . , xn is computed as follows: we start a path at the source and at every step follow the
edge that corresponds to the value of the variable labelling the current vertex. Every such
path reaches a sink, which is labelled either 0 or 1: this constant is the value of the function.

Let π be a permutation of the set [n] = {1, . . . , n}. A π-ordered binary decision diagram
(π-OBDD) is a binary decision diagram such that on every path from the source to a sink
every variable has at most one occurrence and the variable xπ(i) can not appear before
xπ(j) if i > j. An ordered binary decision diagram (OBDD) is a π-ordered binary decision
diagram for some permutation π. By convention, every OBDD is associated with a single
fixed permutation π. This π puts a total order on all the variables, even if the OBDD does
not query all variables.

OBDDs have a number of nice properties. Size of an OBDD is the number of vertices in it,
and for a fixed ordering π of variables, every Boolean function has a unique minimal π-OBDD.
Furthermore, the minimal π-OBDD of a function f may be constructed in polynomial time
from any π-OBDD for the same f . There are also polynomial-time algorithms which act
on π-OBDDs and efficiently perform the operations of conjunction, negation, disjunction,
and projection [16]. (Projection is the operation that maps a π-OBDD D computing
the Boolean function f(x, y1, . . . , yn) to a π-OBDD D′ computing the Boolean function
∃x f(x, y1, . . . , yn).) In addition, there is an algorithm running in time polynomial in
the combined sizes of the input and the output which takes as input a π-OBDD D and a
permutation ρ, and returns the minimal ρ-OBDD that represents the same function as D [16].

2.2 Proof Systems

2.2.1 Resolution
For an unsatisfiable CNF formula ϕ, a resolution refutation of ϕ (often called a “resolution
proof”) is a sequence of clauses with the following properties: the last clause is an empty
clause; and every clause is either a clause of the initial formula ϕ, or can be obtained from
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16:6 Reordering Rule Makes OBDD Proof Systems Stronger

previous ones by the resolution rule. The resolution rule allows inferring a clause (B ∨ C)
from clauses (x∨B) and (¬x∨C). The size of a resolution refutation is the number of clauses
in it. It is well known that the resolution proof system is sound and complete. Soundness
means that if a formula has a resolution refutation then it is unsatisfiable. Completeness
means that every unsatisfiable CNF formula has a resolution refutation. If every clause is
used as a premise of the inference rule at most once, then the proof is tree-like.

2.2.2 Cutting Planes

Before we give a definition of this proof system let us define the translation of clauses into
linear inequalities by the following rule: if C =

n∨
i=1

xbii , then L(C) is the following inequality
n∑
i=1

(−1)1−bixi ≥ 1−
n∑
i=1

(1− bi) where x0 denotes ¬x and x1 denotes x. For an unsatisfiable

CNF formula ϕ over the variables x1, . . . , xn, a Cutting Planes refutation of ϕ is a sequence
of inequalities I1, . . . , It of the type

n∑
i=1

aixi ≥ c (where ai, c ∈ Z) such that It is an inequality

0 ≥ 1 and every inequality Ij either is L(C) where C is some clause of the initial formula ϕ
or can be obtained from previous inequalities by the following rules:

Linear Combination: Ij is an inequality
n∑
i=1

(α·ai+β ·bi)xi ≥ αc+βd where for some α, β > 0

and 1 ≤ k, ` < j, Ik is an inequality
n∑
i=1

aixi ≥ c and I` is an inequality
n∑
i=1

bixi ≥ d;

Division: Ij is an inequality
n∑
i=1

aixi ≥ dc/de, where for some k < j, Ik is an inequality
n∑
i=1

daixi ≥ c.

The size of such a refutation is the number of inequalities.
Additionally, we say that an unsatisfiable CNF formula ϕ has CP∗ refutation of size S

iff there is a CP refutation of ϕ such that the sum of absolute values of coefficients in the
inequalities in this proof is at most S.2

We say that an unsatisfiable CNF formula ϕ has a semantic CP refutation (semantic CP∗

refutation) of size S if there is a CP refutation of ϕ of size S such that instead of these rules
we allow deriving any semantic implication of at most two previously derived inequalities.
Note that semantic CP (semantic CP∗) is not a Cook–Reckhow proof system since it is
NP-hard to check the correctness of the semantic rule. A proof is tree-like if every inequality
is used as a premise of an inference at most once.

2.2.3 OBDD-based Proof Systems

Let ϕ be an unsatisfiable CNF formula. An OBDD proof of ϕ is a sequence D1, D2, . . . , Dt of
OBDDs and permutations π1, . . . , πt such that Dt is a πt-OBDD that represents the constant
false function, and such that each Di is either a πi-OBDD which represents a clause of ϕ or
can be obtained from previous OBDDs by one of the following inference rules:
Join (or ∧): Di represents the Boolean function Dk ∧D` for 1 ≤ `, k < i, where Di, Dk, D`

have the same order πi = πk = π`;

2 Many authors define CP∗ differently, by bounding the coefficients by a polynomial of the size of the
formula. All the results for CP∗ stated in the present paper hold under both definitions.
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Weakening: there exists a 1 ≤ j < i such that Di and Dj have the same order πi = πj , and
Dj semantically implies Di. The latter means that every assignment that satisfies Dj

also satisfies Di;
Reordering: Di is a πi-OBDD that is equivalent to a πj-OBDD Dj with 1 ≤ j < i.
Note that although we use terminology “OBDD proof”, it is actually a refutation of ϕ. By
the discussion in the previous section, there is a polynomial time algorithm which recognizes
whether a given D1, . . . , Dt and π1, . . . , πt is a valid OBDD proof of a given ϕ. The size of

this proof is equal to
t∑
i=1
|Di|.

We use several different OBDD proof systems with different sets of allowed rules. For
example, the OBDD(∧,weakening) proof system uses conjunction and weakening rules; hence,
all OBDDs in such a proof have the same order π. We use the notation π-OBDD(∧) proof
and π-OBDD(∧,weakening) proof to explicitly indicate the ordering. If every Di is used as
a premise of the inference rule at most once, then the proof is tree-like.

3 OBDD(∧, weakening, reordering) is Strictly Stronger Than
OBDD(∧, weakening)

This section constructs formulas which are easy for OBDD(∧,weakening, reordering) and
hard for OBDD(∧,weakening). For this, we construct a transformation T = T (ϕ) such that

If a formula ϕ is hard for π-OBDD(∧,weakening) for some order π, then T (ϕ) is hard
for OBDD(∧,weakening); i.e., T (ϕ) is hard for any order.
If a formula ϕ is easy for π-OBDD(∧,weakening) for some order π, then T (ϕ) is easy
OBDD(∧,weakening, reordering).

Then we construct a formula ϕ such that there are two orders π1 and π2 such that ϕ is hard
for π1-OBDD(∧,weakening) but easy for π2-OBDD(∧,weakening). As a corollary, we get
that T (ϕ) separates OBDD(∧,weakening, reordering) and OBDD(∧,weakening).

We will apply this transformation to a formula ϕ expressing the Clique-Coloring principle
(Clique-Coloringn,m) that any (m − 1)-colorable graph on n vertices does not contain
a clique of size m for m ≈

√
n. Atserias, Kolaitis, and Vardi [1] proved (see also Kra-

jíček [14]) that Clique-Coloringn,m is hard for π-OBDD(∧,weakening) for some order π.
However, in Section 6 we show that there is an order π such that Clique-Coloringn,m has
a π-OBDD(∧,weakening) proof of size polynomially bounded by n and m.

3.1 Construction of T
The transformation T is the same as a construction of Segerlind [19]. We develop the
definition of T in stages. As a first approximation, we define how to transform a formula
ϕ(x1, . . . , xn) into a formula permSn(ϕ)(z1, . . . , z`, x1, . . . , xn) where ` = dlog(n!)e. Fix an
injective map rep : Sn → {0, 1}` that maps the set of permutations of [n] into binary strings
of length `. The formula permSn(ϕ) is defined by:

permSn(ϕ)(z1, . . . , z`, x1, . . . , xn) =
∧
σ∈Sn

[(∧̀
i=1

zi = rep(σ)i

)
→ ϕ

(
xσ(1), . . . , xσ(n)

)]
∧

∧
t∈{0,1}`\rep(Sn)

¬(z1 = t1 ∧ z2 = t2 ∧ · · · ∧ z` = t`).

Note that it is easy to convert permSn(ϕ) into a formula in CNF. We just add to
each clause of ϕ(xσ(1), . . . , xσ(n)) the literals z1−rep(σ)1

1 , z
1−rep(σ)2
1 , . . . , z

1−rep(σ)`
` , where z0

i

CCC 2018



16:8 Reordering Rule Makes OBDD Proof Systems Stronger

denotes ¬zi, and z1
i denotes zi, and also add the clauses ¬(z1 = t1 ∧ z2 = t2 ∧ · · · ∧

z` = t`). It is easy to see that the formula permSn(ϕ) is unsatisfiable since if a substitution
to variables z1, z2, . . . , z` does not correspond to a representation of some permutation,
then this substitution falsifies the constraint ¬(z1 = t1 ∧ z2 = t2 ∧ · · · ∧ z` = t`) and
if a substitution to the variables z1, z2, . . . , z` corresponds to a permutation σ, then the

formula
( ∧̀
i=1

zi = rep(σ)i
)
→ ϕ(xσ(1), . . . , xσ(n)) is falsified by this substitution, since ϕ is

unsatisfiable.
Applying the partial substitution zi := rep(σ)i for all i to permSn(ϕ)(z1, . . . , z`, x1, . . . , xn)

yields the formula ϕ(xσ(1), . . . , xσ(n)). This implies that if ϕ requires a
π-OBDD(∧,weakening) proof of size S for some order π, then permSn(ϕ) requires an
OBDD(∧,weakening) proof of size S in any order. Indeed, let τ be an order on the vari-
ables z1, z2, . . . , z`, x1, x2, . . . , xn and let σ be the order on the variables x1, . . . , xn induced
by τ . The substitution z1z2 . . . z` := rep(πσ−1) transforms a τ -OBDD(∧,weakening) proof
of permSn(ϕ) to a π-OBDD(∧,weakening) proof of ϕ with no increase in size. Hence the
size of the minimal OBDD(∧,weakening) proof of permSn(ϕ) is at least S.

The problem with the transformation permSn is that permSn(ϕ) can be exponentially
big. So the next idea for a transformation is to consider a small “good” set of permutations
Π ⊆ Sn instead of all of Sn. Letting ` = dlog |Π|e and letting rep now be some injective map
rep : Π→ {0, 1}`, we define analogously

permΠ(ϕ)(z1, . . . , z`, x1, . . . , xn) =
∧
σ∈Π

[(∧̀
i=1

zi = rep(σ)i

)
→ ϕ

(
xσ(1), . . . , xσ(n)

)]
∧

∧
t∈{0,1}`\rep(Π)

¬(z1 = t1 ∧ z2 = t2 ∧ · · · ∧ z` = t`).

The problem with this is that it is possible that πσ−1 does not belong to Π.
To solve this problem we orify variables: each variable xi is replaced by the disjunction ofm

fresh variables yi,1, . . . yi,m; i.e., instead of ϕ(x1, x2, . . . , xn) we consider ϕ∨m(y1,1, . . . , yn,m) =

ϕ

(
m∨
j=1

y1,j , . . . ,
m∨
j=1

yn,j

)
. Now let Π ⊆ Smn and consider permΠ(ϕ∨m). As in previous case

we want to substitute variables to a proof of permΠ(ϕ∨m) in some order and get a proof
of ϕ in order π. However, in this case we substitute not only for the variables z1, . . . , z`,
but also for each k ∈ [n] we substitute zero for all variables yk,i except one. This increases
the number of different permutations of the variables x1, . . . , xn that we can obtain. The
only problem with this transformation is that for some formulas ϕ, size of ϕ∨m may be
exponentially bigger than size of ϕ. However, if each clause of ϕ there is only O(1) negated
literals, then size of ϕ∨m will be polynomially bounded.

Our “good” set of permutations is a set of pairwise independent permutations. Let
t = dlog(n)e and N = 2t, and F be the field GF(N). Define Πn to be the set of all mappings
given by x 7→ ax+ b with a, b ∈ F and a 6= 0. Elements of Πn may be represented by binary
strings of length ` = 2t such that the first t bits are not all zero. Note that Πn ⊆ SN so
we have to add new variables, xn+1, . . . , xN and assume that ϕ does not depend on them.
Then define

perm(ϕ)(z1, . . . , z`, x1, . . . , xN ) =
∧
σ∈Πn

[(∧̀
i=1

zi = rep(σ)i

)
→ ϕ(xσ(1), . . . , xσ(N))

]
∧

t∨
i=1

zi.
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Now we can define the transformation T . Let ϕ be a formula on n variables and m be
the least integer such that 2n3

m + n2

mn−1 < 1, so m = O(n3). Then T (ϕ) = perm(ϕ∨m). The
first property of T given at the beginning of Section 2.2 was established by Segerlind [19]:

I Lemma 1 ([19]). Let ϕ be an unsatisfiable formula in CNF on the variables x1, . . . , xn.
Suppose there is an OBDD(∧,weakening) proof (respectively, an OBDD(∧) proof) of the for-
mula T (ϕ) of size S. Then for every order π on x1, . . . , xn there is a π-OBDD(∧,weakening)
proof (respectively, a π-OBDD(∧) proof) of ϕ of size at most S.

The idea of the proof of lemma is as follows. Suppose τ ∈ Πn is an order on
z1, . . . , z`, x1, . . . , xN , and let π be an order on x1, . . . , xn. Then there are j1, . . . , jn such
the order τ restricted to y1,j1 , . . . , yn,jn is the same as the order π on x1, . . . , xn. Replacing
the variables zi with the constants rep(τ)i, renaming the variables yi,ji to xi, and replacing
all other variables yi,j with 0 thus transforms the OBDD(∧,weakening) or OBDD(∧) proof
of T (ϕ) into a proof of ϕ. For details, consult Segerlind [19].

The second property of T states that if ϕ is easy for OBDD(∧,weakening) in some
order, then T (ϕ) is easy for OBDD(∧,weakening, reordering). Its proof consists of two
parts: First, Lemma 2 shows that if ϕ is easy for OBDD(∧,weakening), then perm(ϕ)
is easy for OBDD(∧,weakening, reordering); then Section 3.2 shows that if ϕ is easy for
OBDD(∧,weakening), then ϕ∨m is easy for OBDD(∧,weakening).

I Lemma 2. Let ϕn(x1, x2, . . . , xn) be a family of unsatisfiable formulas such that for each n,
there is an order τ so that ϕn has a τ -OBDD(∧,weakening) proof P1 of size t(n). Then the
formula perm(ϕn) has an OBDD(∧,weakening, reordering) proof P2 of size t(n)poly(n). If
P1 is tree-like, then so is P2. In addition, if P1 does not use the weakening rule, then neither
does P2.

Proof. Suppose P1 is a τ -OBDD(∧,weakening) proof of ϕn(x1, x2, . . . , xn) of size t(n) using
the order τ on x1, x2, . . . , xn. We describe an OBDD(∧,weakening, reordering) proof P2 of
perm(ϕn). For σ a permutation in Πn, let µσ be the order on z1, z2, . . . , z`, x1, x2, . . . , xn
such that x1, x2, . . . , xn are ordered by τσ−1 and follow the variables z1, z2, . . . , z`. In other
words, µσ orders variables as follows: z1, z2, . . . , z`, xτσ−1(1), xτσ−1(2), . . . , xτσ−1(n).

For σ ∈ Πn, it is easy to transform the proof P1 into a µσ-OBDD(∧) derivation P1,σ of a
diagram that represents ¬

(∧`
i=1 zi = rep(σ)i

)
from the CNF formula

(∧`
i=1 zi = rep(σ)i

)
→

ϕn(xσ(1), . . . , xσ(n)). Namely each diagram D of P1 is replaced by the diagram Dσ ∨
¬
(∧`

i=1 zi = rep(σ)i
)
, where Dσ is D with the variables xi permuted according to σ. Since

the variables z1, z2, . . . , z` precede the variables x1, . . . xn in the order µσ, each diagram
Dσ ∨ ¬

(∧`
i=1 zi = rep(σ)i

)
has size |D|+O(`), where |D| is the size of D. Hence, |P1,σ| is

t(n) · (1 +O(`)).
For σ ∈ Πn, the hypotheses of P1,σ are clauses of perm(ϕn). Therefore combin-

ing the derivations P1,σ gives immediately a derivation of the diagrams which represent

¬
(∧`

i=1 zi = rep(σ)i
)
for σ ∈ Πn and a diagram encoding

∨̀
i=1

zi. Formally, these diagrams

use different orders µσ but these differ only in how they order the variables x1, . . . , xn that do
not occur in the derived diagrams. Thus, the reordering rule can be used to change the orders
in all of these diagrams to some “standard” one, without changing the diagrams. Repeatedly
applying the conjunction rule to these diagrams yields the constant false diagram since
z1z2 . . . z` is equal to rep(σ) for some σ ∈ Πn or z1 = z2 = · · · = zt = 0. All intermediate
diagrams use only ` variables and thus have size at most O(2`). The overall size of the
proof P2 is |Πn| · t(n)(1 +O(`)) +O(2`|Πn|) = t(n)poly(n) since ` = 2t = 2dlogne.

The construction preserves the tree-like property, and whether the weakening rule is used,
so Lemma 2 is proved. J
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3.2 Complexity of Composition
We now prove that if ϕ has a small OBDD(∧,weakening) proof, then ϕ∨m has a small
OBDD(∧,weakening) proof. In fact, we prove more a general statement. Let ϕ be a CNF
formula with n variables, and g : {0, 1}k → {0, 1} be a Boolean function. Then ϕ ◦ g denotes
a CNF formula on kn variables that represents ϕ(g(~x1), g(~x2), . . . , g(~xn)), where ~xi denotes
a vector of k new variables. ϕ ◦ g is constructed by applying the substitution to every clause
C of ϕ and converting the resulting function C ◦ g to CNF in some fixed way.

We need the following technical definition. Consider a CNF formula ϕ =
m∧
i=1

Ci. We say

ϕ is S-constructible with respect to (w.r.t.) the order π if there is a binary tree with vertices
labeled by π-OBDDs such that: (1) the root is labeled by a π-OBDD representation of ϕ,
(2) the tree contains m leaves labeled by π-OBDD representations of the clauses Ci, each
clause appears in exactly one leaf, (3) each vertex is labelled by a π-OBDD that represents
the conjunction of labels of its children, and (4) the size of each label is at most S.
I Remark. If ϕ is S-constructible CNF w.r.t. the order π, then there is a tree-like π-OBDD(∧)
derivation of size (2m− 1)S of a π-OBDD that represents ϕ from the clauses of ϕ.

I Proposition 3. Let F = G1 ∨ G2, where G1 and G2 are Boolean functions that depend
on disjoint sets of variables. If the variables of G1 precede variables of G2 in the order π,
then the smallest size of a π-OBDD representation of F is at most the sum of sizes of the
smallest π-OBDD representations of G1 and G2.

Proof. This is obvious. The π-OBDD for F can be obtained by the identifying the source of
the π-OBDD for G2 with the sink of the π-OBDD for G1 labeled by 0. J

I Lemma 4. Let F1, F2, . . . , Fk be CNF formulas with disjoint sets of variables, where
Fj =

∧
i∈Ij

Ci for all j ∈ [k]. Let π1, . . . , πk be orders such that each Fj is S-constructible

w.r.t. πj . Define the order π to order the variables of each Fi according to πi and so that all
the variables of Fi precede all the variables of Fi+1. Let F be the CNF representation of the

function F1 ∨ F2 ∨ · · · ∨ Fk, namely, F =
∧

i1∈I1,...,ik∈Ik

k∨
j=1

Cij . Then F is kS-constructible

w.r.t. π.

Proof. We prove this lemma by induction on k. The basis case is trivial: if k = 1, then
F = F1, hence F is S-constructible. For the induction hypothesis, let G = F1∨F2∨· · ·∨Fk−1.
By the induction hypothesis G is (k−1)S-constructible w.r.t. π. For each clause D of G and
each i ∈ Ik, the clause D ∨ Ci is a clause of F . The formula Fk is S-constructible w.r.t. π
by a tree Tk with |Ik| leaves which are labeled by Ci for i ∈ I`. We wish to replace each
leaf of Tk labelled with a Ci with a tree for G ∨ Ci. Since G is (k−1)S-constructible and
since the variables of Ci are disjoint from those of G, Proposition 3 implies that G ∨ Ci is
kS-constructible w.r.t. π, since we can incorporate the clause Ci into all clauses of the tree
giving the (k − 1)S-constructibility of G. In addition, replace all the diagrams D labelling
vertices in the tree Tk by D ∨ G; by Proposition 3 the size of the updated diagrams is at
most kS. This gives a tree witnessing the kS-constructibility of F1 ∨ · · · ∨ Fk as desired. J

I Theorem 5. Let π be an order on z1, . . . , zm. Let f and g be Boolean functions of
z1, . . . , zm such that f = ¬g and that both f and g have S-constructible CNF representations
w.r.t. π. If ϕ(x1, . . . , xn) is a CNF formula that has an OBDD(∧,weakening) proof of size
L, then ϕ ◦ g has an OBDD(∧,weakening) proof of size poly(|ϕ ◦ g|, S, L).

The statement is also true for OBDD(∧), tree-like OBDD(∧), and tree-like
OBDD(∧,weakening).
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The basic idea of Theorem 5 is that each line of a proof of ϕ can be composed with g to
form a proof of ϕ ◦ g; Lemma 4 is used to handle initial clauses.

Proof. Let ϕ have an OBDD(∧,weakening) proof of size L using the order σ on x1, . . . , xn.
Define the order τ on the variables zi,j as follows. The variables are grouped into blocks,
the i-th block is zi,1, . . . , zi,m. The blocks are ordered according to σ so all variables of
block i precede those of block j iff xi precedes xj according to σ. Within the i-th block,
the variables zi,1, . . . , zi,m are ordered according to the order π. We construct the desired
OBDD(∧,weakening) proof using the order τ .

Lemma 4 implies that, for any clause C, the CNF C ◦ g is S|C|-constructible in order τ .
Note that we need that both g and ¬g are S-constructible to apply Lemma 4, since variables
can appear both positively and negatively in C.

Consider the following τ -OBDD(∧,weakening) proof of ϕ ◦ g: First we create τ -OBDDs
that represent the functions C ◦ g for each clause C of the formula ϕ. Then we repeat the
OBDD(∧,weakening) proof for ϕ, but we do it for ϕ ◦ g. Each a diagram D from the proof
of ϕ is replaced by a diagram for D ◦ g. It is not hard to see that the definition of τ allows us
to replace a splitting over a variable xi in the diagram D by a subdiagram splitting over the
value of the function g(~zi), where ~zi is the vector of the variables zi,1, . . . , zi,m. This increases
the proof size by at most a factor of S. The resulting proof is a correct OBDD(∧,weakening)
proof and its size is at most L · S + |ϕ ◦ g| · S. J

The clause
m∨
i=1

yi and the CNF
m∧
i=1
¬yi are both m-constructible, thus we obtain:

I Corollary 6. If there is a short OBDD(∧,weakening) proof (tree-like OBDD(∧) proof) of
a formula ϕ, then there is a short OBDD(∧,weakening) proof (tree-like OBDD(∧) proof) of
the formula ϕ∨m.

3.3 Separation
We have shown that if a formula ϕ is hard for OBDD(∧,weakening) in one order, but is easy
for OBDD(∧,weakening) in another, then T (ϕ) is hard for OBDD(∧,weakening) but it is
easy for OBDD(∧,weakening, reordering). We will prove this holds for ϕ the Clique-Coloring
principle.

I Definition 7. The Clique-Coloring principle is a formula encoding the statement that it is
impossible that a graph both is (m−1)-colorable and has a m-clique. The Clique-Coloring
principle uses the variables {pi,j}i 6=j∈[n], {ri,l}i∈[n],l∈[m−1], and {qk,i}k∈[m],i∈[n]. Informally
pi,j = 1 if there is an edge between vertices i and j, ri,l = 1 if vertex i has color l, and
qk,i = 1 if vertex i is the k-th vertex in the clique.

More formally, the Clique-Coloring principle is the conjunction of the following statements
written as clauses. For technical reasons we also express the clauses as inequalities with
integer coefficients:

1.
n∨
i=1

qk,i (
n∑
i=1

qk,i ≥ 1) for any k ∈ [m]. This states that the clique has a vertex with

number k.
2. ¬qk,i ∨¬qk′,j ∨ pi,j (qk,i + qk′,j ≤ pi,j + 1) for all i 6= j ∈ [n] and k 6= k′ ∈ [m]. This states

that there is an edge between the i-th and j-th vertices of the clique.
3. ¬qk,i ∨ ¬qk,j (qk,i + qk,j ≤ 1) for any k ∈ [m] and i 6= j ∈ [n]. This states that at most

one element in the clique with number k.
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4. ¬qk,i ∨ ¬qk′,i (qk,i + qk′,i ≤ 1) for all i ∈ [n] and k 6= k′ ∈ [m]. This states that the n
vertices in clique are distinct.

5.
m−1∨
l=1

ri,l (
m−1∑
l=1

ri,l ≥ 1) for all i ∈ [n]. This states that the i-th vertex has a color.

6. ¬pi,j ∨ ¬ri,l ∨ ¬rj,l (pi,j + ri,l + rj,l ≤ 2) for all i 6= j and l. This states that if vertices
i and j have the same color l, there there is no edge between them.

Clique-Coloringn,m denotes the Clique-Coloring principle for n and m. This formula has
size polynomially bounded by m and n.

Note that, usually Clique-Coloring principle is defined without constraints 3. We prove
the next theorem in Section 6.

I Theorem 8. There is an OBDD(∧,weakening) proof of the Clique-Coloringn,m principle
of size polynomial in n and m.

An exponential lower bound on the size of proofs of the formula Clique-Coloringn,m
has been given by Atserias–Kolaitis–Vardi and by Krajíček. Their proofs hold even with the
addition of the constraints 3.

I Theorem 9 ([1, 14]). There is an order π such that any OBDD(∧,weakening) proof of
Clique-Coloringn,√n has size at least 2n1/5 .

These two theorems let us separate the OBDD(∧,weakening, reordering) and
OBDD(∧,weakening) proof systems.

I Theorem 10. There are a family of CNF formulas ϕn and a constant c > 0 such that:
ϕn has size poly(n);
there is an OBDD(∧,weakening, reordering) proof of ϕn of size poly(n);
any OBDD(∧,weakening) proof of ϕn has size Ω(2nc).

Proof. Let us consider ψn = Clique-Coloringn,√n. By Theorem 9 there is an order π such
that any π-OBDD(∧,weakening) proof of the formula ψn has size at least 2nε . Since all clauses
of Clique-Coloringn,√n that contain a negation have constant width, the CNF encoding of
Clique-Coloring∨m

n,
√
n
has size poly(n,m). By Lemma 1, any OBDD(∧,weakening) proof of

the formula T (ψn) has size 2nε . In the definition of T (ψn), we choose m that is polynomially
bounded in the number of variables in Clique-Coloringn,√n. Hence, by Theorem 8 and
Theorem 5, there is an OBDD(∧,weakening) proof of ψ∨mn of size polynomial in n. As a result,
by Lemma 2, there is an OBDD(∧,weakening, reordering) proof of T (ψn) = perm(ψ∨mn ) of
size poly(n,m). Thus, we can use the formula T (ψn) as ϕn. J

4 Quasipolynomial Separations for Dag-like Case

4.1 Resolution Does Not Polynomially Simulate OBDD(∧)
In this section we prove that resolution does not polynomially simulate OBDD(∧). After
that we will apply to this result a lifting technique recently developed by Garg et al. [7] and
get as a corollary that Cutting Planes does not polynomially simulate OBDD(∧), and that
OBDD(∧,weakening) does not polynomially simulate OBDD(∧, reordering).

A Tseitin formula TSG,c is based on an undirected graph G(V,E) and a labelling function
c : V → {0, 1}. In this formula for every edge e ∈ E there is the corresponding propos-
itional variable pe. For every vertex v ∈ V we write down a formula in CNF encoding
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∑
u∈V :(u,v)∈E,u 6=v

p(u,v) ≡ c(v) (mod 2). The conjunction of the formulas described above is

called a Tseitin formula. If
∑
v∈U

c(v) ≡ 1 (mod 2) for some connected component U ⊆ V ,

then the Tseitin formula is unsatisfiable. Indeed, if we sum up (modulo 2) all equalities
corresponding to the vertices from U we get 0 ≡ 1 (mod 2) since each variable has exactly
2 occurrences. If

∑
v∈U

c(v) ≡ 0 (mod 2) for every connected component U , then the Tseitin

formula is satisfiable ([23, Lemma 4.1]).
Tseitin formulas based on constant degree expanders are known to be hard for resolu-

tion [23]. Itsykson et al. [11] showed that they are also hard for OBDD(∧, reordering) by
giving a 2Ω(|V |) lower bound. There are, of course, resolution refutations of size O(2|E|)
since there are |E| many variables. Accordingly, we consider Tseitin formulas based on the
complete graph Klogn on blognc vertices, so as to have |V | = o(|E|).

By the definition of a Tseitin formula, TSKlogn ,c
is a system of blognc linear equations

and every equation depends on blognc − 1 variables. Hence, TSKlogn ,c
is a (blognc − 1)-CNF

formula with O(log2 n) variables and O(n logn) clauses.

I Lemma 11. Let F be a canonical CNF representation of an unsatisfiable linear system A

over F2 that contains m equations and n variables. Then for every order of variables, F has
a tree-like OBDD(∧) proof of size at most 8m|F |2 +mn2m + 2m.

Proof. First of all, for every linear equation of A we deduce an OBDD representing this
equation. Assume that a linear equation contains r variables, then its canonical CNF
representation contains 2r−1 clauses, hence |F | ≥ 2r−1. We deduce an OBDD representation
of the equation by joining all the clauses that represent this equation. The conjunction of
several clauses that represent the equation is a Boolean function from r variables, hence
it has an OBDD representation of size at most 2r+1 + 1 (this is the size of an OBDD that
corresponds to the complete decision tree). Hence, the size of the derivation is at most 8|F |2.
And the size of the derivation of all OBDDs for all equations is at most 8m|F |2.

Finally, we join all OBDDs representing linear equations one by one and we get the
constant false OBDD. The size of the described derivation may be estimated using the
following claim.

I Claim. For any order over the variables there is an OBDD of size at most n2m + 2 that
represents the system of m linear equations over F2 with n variables.

Let us fix some order on the variables. The described OBDD will have n levels. Nodes
on the i-th level are labeled with i-th variable in the chosen order.

Assume that we already tested the values of the first i− 1 variables. For every equation
we compute the sum modulo 2 of the values of these i−1 variables that occur in the equation.
So we will have a vector of m parities. The i-th level of the OBDD contains 2m nodes
corresponding to all the possible values of the vector of parities that we get after the reading
of the first i− 1 edges. Each node on the i-th level has two outgoing edges to nodes on the
(i+ 1)-th level corresponding to the way how values of variables change the partial sum. The
node on the first level corresponding to all zero values of parities is the source of the OBDD
(all nodes that are not reachable from the source should be removed). Outgoing edges for
every node on the last level lead to a sink labelled 1 or 0 depending whether or not all the
equations are satisfied. This proves the claim, and hence Lemma 11. J

I Corollary 12. If TSKlogn ,c
is unsatisfiable Tseitin formula, then there is a tree-like OBDD(∧)

proof of TSKlogn ,c
of size at most poly(n).
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I Lemma 13. Every resolution proof of TSKlogn ,c
has size at least 2Ω(log2 n).

The proof of Lemma 13 is based on the width based lower bound by Ben-Sasson and
Wigderson [2]. The width of a clause is the number of literals in it. For a CNF formula ϕ, the
width w(ϕ) of ϕ is the maximum width of its clauses. The width of a resolution refutation is
a width of the largest used clause. w(` ϕ) denotes the minimum width of any resolution
proof of ϕ.

I Theorem 14 ([2]). The size of the shortest resolution refutation of any CNF formula ϕ
with n variables is at least 2Ω((w(`ϕ)−w(ϕ))2/n).

I Theorem 15 ([2]). The minimal width of a resolution proof of a Tseitin formula based on
a graph G(V,E) is at least e(G), where e(G) is the minimal number of edges between U and
V \ U over all set of vertices U of size between |V |/3 and 2|V |/3.

I Corollary 16. If TSKlogn,c is an unsatisfiable Tseitin formula, then w(` TSKlogn,c) =
Ω(log2 n).

Proof. It is straightforward that e(Klogn) = Ω(log2 n). So by Theorem 13, w(` TSKlogn,c) =
Ω(log2 n). J

Proof of Lemma 13. It is easy to see that w(TSKlogn,c) = O(logn) and TSKlogn,f contains
O(log2 n) variables. Thus, by Theorem 14 and by Corollary 16, size of the shortest resolution
proof of TSKlogn,f is at least 2Ω(log2 n). J

Corollary 12 and Lemma 13 give a superpolynomial separation between resolution and
tree-like OBDD(∧). The next sections describe how to lift this to separate cutting planes
and tree-like OBDD(∧).

4.2 Lifting from Resolution Width
This subsection briefly describes the results by Garg et al. [7] that allows maping formulas
with large resolution width to formulas that are hard for several stronger proof systems.

Let G be a family of functions {0, 1}n → {0, 1} and ϕ be an unsatisfiable formula over n
variables. The G-refutation of ϕ is a directed acyclic graph of fan-out at most 2 with each
node v labeled by a function gv ∈ G such that the following constraints are satisfied.

Source: There is a distinguished source node r with fan-in 0, and gr is constant 0 function.
Non-sinks: For each non-sink node v with children u1 and u2, we have g−1

v (0) ⊆ g−1
u1

(0) ∪
g−1
u2

(0). And if v has only one child u, then g−1
v (0) ⊆ g−1

u (0).
Sinks: Each sink node v is labeled by a clause C of ϕ such that g−1

v (0) ⊆ C−1(0) (i.e. every
assignment that satisfies C also satisfies gv).

The size of a G-refutation is the size of the graph.
The notion of G-refutation extends several proof systems including resolution (if functions

from G are represented by clauses), Cutting Planes (if functions from G are represented
by linear inequalities) and OBDD(∧,weakening) (if functions from G are represented by
OBDDs). G-refutations are commonly called “semantic refutations”.

Let Π = (X,Y ) be a partition of [n] into two disjoint parts. We say that G is Π-
rectangular if for every function g ∈ G, the set g−1(0) is a rectangle, i.e. g−1(0) = A× B,
where A ⊆ {0, 1}X and B ⊆ {0, 1}Y . We say that G has Π-communication complexity at
most c iff for every g ∈ G the communication complexity of g with respect to the partition Π
is at most c. Notice that if G is Π-rectangular, then it has Π-communication complexity at
most 2.
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I Lemma 17 ([20]). Let ϕ be an unsatisfiable CNF formula with n variables and Π = (X,Y )
be a partition of [n] into two disjoint parts. Assume that π has a G-refutation of size S and
G has Π-communication complexity at most c. Then there is a Π-rectangular set G′ such that
ϕ has a G′-refutation of size at most 23cS.

Notice that the set of all clauses is Π-rectangular for every partition Π. The set of
π-OBDDs of size S has Π-communication complexity logS + 1 for partitions Π = (X,Y )
where the variables of X precede the variables of Y in the order π.

In order to capture Cutting Planes we say that G is Π-triangular if for every g ∈ G there
are functions a : {0, 1}X → R and b : {0, 1}Y → R such that g−1(0) = {x ∈ {0, 1}X , y ∈
{0, 1}y | a(x) < b(y)}. Note that the set of all linear inequalities with integer coefficients
over Boolean variables is Π-triangular for every partition Π.

Let Indm : {0, 1}blogmc × {0, 1}m → {0, 1} be a Boolean function such that
Indm(z1, . . . , zblogmc, y1, . . . , ym) = yb, where b is the integer with binary representation
z1 . . . zblogmc.

I Theorem 18 ([7]). Let ϕ be an unsatisfiable CNF formula ϕ with n variables. Let m = nδ,
where δ is some global constant. Let Π = (X,Y ) be the following partition of variables of
ϕ ◦ Indm: all z-variables go to X, all y-variables go to Y . If G is Π-rectangular or G is
Π-triangular, then every G-refutation of ϕ ◦ Indm has size at least nΩ(w(`ϕ)).

I Corollary 19. Under the conditions of Theorem 18, if G has Π-communication complexity
at most c, then every G-refutation of ϕ ◦ Indm has size at least 2−3cnΩ(w(`ϕ)).

Proof. By Lemma 17, if there is a G-refutation of ϕ ◦ Indm of size S, there exists a G′-
refutation of ϕ ◦ Indm of size at most 23cS such that G′ is Π-rectangular. By Theorem 18,
23cS ≥ nΩ(w(`ϕ)), hence S ≥ 2−3cnΩ(w(`ϕ)). J

I Corollary 20. Under the conditions of Theorem 18, every Cutting Planes proof of ϕ ◦ Indm
has size at least nΩ(w(`ϕ)).

Proof. The statement follows from Theorem 18, since the set of linear inequalities is Π-
triangular for every partition Π. J

4.3 Cutting Planes Does Not Polynomially Simulates OBDD(∧)
I Lemma 21. Both functions Indm and ¬Indm have poly(m)-constructible CNF representa-
tions.

Proof. Let us consider the following formula for Indm,
m∧
i=1

(bin(z1, . . . , zblogmc) = i)→ yi,

where bin(z1, . . . , zblogmc) = i is the conjunction of literals stating that z1, . . . , zblogmc is

the binary representation of i. For ` ∈ [m], let ϕ` be the formula
∧̀
i=1

(bin(z1, . . . , zblogmc) =

i) → yi, and let ϕm = Indm. We claim that for all ` ∈ [m] the formula ϕ` has an OBDD
representation of size poly(m) in the order z1, . . . , zblogmc, y1, . . . , ym. Indeed, such an OBDD
has the following structure: it starts with the complete decision tree over all the variables zi;
consider a leaf of this decision tree that corresponds to a number i. If i ≤ `, then we add to
this leaf a node of OBDD labeled with yi and the outgoing edge labeled with 0 going to the

CCC 2018



16:16 Reordering Rule Makes OBDD Proof Systems Stronger

0-sink and the outgoing edge labeled with 1 going to the 1-sink. If i > `, then we identify
this leaf with 1-sink. Hence, there is a poly(m)-constructible CNF representation of Indm.

The same argument works also for ¬Indm, since ¬Indm(z1, . . . , zblogmc, y1, y2, . . . , ym) =
Indm(z1, . . . , zblogmc,¬y1,¬y2, . . . ,¬ym). J

I Lemma 22. The formula TSKlogn ,c
◦ Indm has at most mO(logn) clauses of size

O(logn logm) and O(m log2 n) variables.

Proof. Each clause of TSKlogn ,c
consists of dlogne−1 literals and by Lemma 21 there is CNF

representations of Indm and ¬Indm with m clauses. Hence, for each clause C of TSKlogn ,c
,

the formula C ◦ Indm has mdlogne−1 clauses each of length (dlogne − 1)(blogmc+ 1). J

I Theorem 23. Let TSKlogn ,c
be unsatisfiable Tseitin formula based on a complete graph

Klogn on blognc vertices.
Let m = (logn)2δ, where δ is the constant from Theorem 18. Then

1. TSKlogn ,c
◦ Indm has a tree-like OBDD(∧) proof of size (logn)O(logn) and

2. every Cutting Planes proof of TSKlogn ,c
◦ Indm has size at least (logn)Ω(log2 n).

Proof.
1. By Lemma 21, both Indm and ¬Indm are poly(m)-constructible. By Corollary 12, there

is a tree-like OBDD(∧) refutation of TSKlogn ,c
of size poly(n). By Lemma 22, the size of

the formula TSKlogn ,c
◦ Indm is at most mO(logn). Hence, by Theorem 5, there is a tree-

like OBDD(∧) refutation of TSKlogn ,c
◦ Indm of size poly(poly(n),mO(logn), poly(n)) =

(logn)O(logn).
2. By Corollary 16, w(` TSKlogn,c) = Ω(log2 n). Hence, by Corollary 20, every Cutting

Planes proof of TSKlogn,c ◦ Indm has size at least (log2 n)Ω(log2 n) = (logn)Ω(log2 n). J

4.4 OBDD(∧, weakening) Does Not Polynomially Simulate
OBDD(∧, reordering)

I Theorem 24. There is a family of formulas ϕn such that:
the size of ϕn is (logn)O(logn log logn) and number of variables in ϕn is poly(logn);
there is a tree-like OBDD(∧, reordering) proof of ϕn of size (logn)O(logn log logn);
every OBDD(∧,weakening) proof of ϕn has size at least (logn)Ω(log2 n).

I Lemma 25. Let TSKlogn,c be an unsatisfiable Tseitin formula. Let m = (logn)2δ, where δ
is the constant from Theorem 18.

There is a family of orders {πn}n∈N over the variables of the formulas TSKlogn,c◦Indm such
that every πn-OBDD(∧,weakening) proof of TSKlogn,c ◦ Indm has size at least (logn)Ω(log2 n).

Proof. Let πn be an order on variables of TSKlogn,c ◦ Indm, where all z-variables precedes all
y-variables. Consider some πn-OBDD(∧,weakening) proof of TSKlogn,c ◦ Indm; let S denote
its total size. Hence, the number of proof lines and sizes of all OBDDs are at most S. Consider
a partition Π = (X,Y ) of the variables of TSKlogn,c◦Indm such that X contains all z-variables
and Y contains all y-variables. The communication complexity of computing an OBDD of size
S w.r.t. the partition Π is at most logS + 1. Therefore, the πn-OBDD(∧,weakening) proof
can be viewed as a G-refutation, where G has Π-communication complexity at most logS + 1.
Hence, by Corollary 19, S ≥ 2−3 logS−3(log2 n)Ω(log2 n). Thus, S ≥ (log2 n)Ω(log2 n) =
(logn)Ω(log2 n). J



Sam Buss, Dmitry Itsykson, Alexander Knop, and Dmitry Sokolov 16:17

Proof of Theorem 24. Let TSKlogn,c be an unsatisfiable Tseitin formula. Let m = (logn)2δ,
where δ is the constant from Theorem 18.

Let us consider ϕn = T (TSKlogn,c ◦ Indm), where T is the transformation defined in
Section 3.1. By Corollary 12, there is a tree-like OBDD(∧) proof of TSKlogn,c of size
poly(n). By Lemma 22, TSKlogn,c ◦ Indm has lognO(logn) clauses of size O(logn log logn)
and poly(logn) variables By Lemma 21, Indm is poly(m)-constructible; hence, by Theorem 5,
there is a tree-like OBDD(∧) proof of TSKlogn,c ◦ Indm of size lognO(logn).

Recall that ϕn = T (TSKlogn,c ◦ Indm) = perm((TSKlogn,c ◦ Indm)∨k), where k =
poly(logn).

The formula (TSKlogn,c ◦ Indm)∨k has size (logn)O(logn log logn); by Theorem 5 there is a
tree-like OBDD(∧) proof of (TSKlogn,c ◦ Indm)∨k of size (logn)O(logn log logn).

Thus, by Lemma 2, there is a tree-like OBDD(∧, reordering) proof of T (TSKlogn,c ◦ Indm)
of size (logn)O(logn log logn).

Note that, by Lemma 25 and Lemma 1, every OBDD(∧,weakening) proof of T (TSKlogn,c◦
Indm) has size at least (log2 n)Ω(log2 n) = (logn)Ω(log2 n). J

5 Exponential Separations for Tree-like Case

In this section we exhibit a formula which is hard for tree-like OBDD(∧,weakening) and
easy for tree-like OBDD(∧, reordering) in another order. An example of such a formula can
be obtained from a construction of Göös and Pitassi [8]. We use a pebbling contradiction as
the base of our example.

I Definition 26. Let G be a directed acyclic graph with one sink t. The CNF formula PebG
(pebbling contradiction for a graph G), uses a variable xv for each vertex v of G and has the
following clauses:
¬xt;

for each vertex v, the clause xv ∨
d∨
i=1
¬xpi where p1, . . . , pd are all the immediate prede-

cessors of v (d = 0 if v is a source).

It is not hard to see that PebG has short tree-like OBDD(∧) proofs:

I Theorem 27. For any directed acyclic graph G(V,E) with n vertices and maximum
in-degree d there is a tree-like OBDD(∧) proof of PebG of size poly(n).

Proof. For a vertex v ∈ V , we let pv,1, . . . , pv,lv be the immediate predecessors of v. For
any set S ⊆ V such that if v ∈ S, then pv,1, . . . , pv,lv are also in S (we call such a set

closed under predecessors), the formula
∧
v∈S

(
xv ∨

lv∨
i=1
¬xpv,i

)
is equivalent to

∧
v∈S

xv. Thus∧
v∈S

(
xv ∨

lv∨
i=1
¬xpv,i

)
has an OBDD representation of size poly(n, d).

Let v1, . . . , vn be a topological ordering of vertices of G. Consider an order π and a se-

quence D1, . . . , Dn+1 of π-OBDDs such that Di represents the formula
i∧

j=1

(
xvi∨

lvi∨
k=1
¬xpvi,k

)
for all 1 ≤ i ≤ n and Dn+1 is the constant false diagram. We claim that, together
with π-OBDDs representing the initial clauses, D1, . . . , Dn+1 is an OBDD(∧) refutation
of PebG of total size O(n2). Indeed, since for all i ∈ [n] the set {v1, v2, . . . , vi} is closed

under predecessors, Di =
i∧

j=1
xvi has size 2i + 2. It is easy to see that Di+1 is equal to

Di ∧
(
xvi+1 ∨

lvi+1∨
i=1
¬xpvi+1,i

)
. J
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I Corollary 28 (Lemma 2, [12]). For any directed acyclic graph G(V,E) with n vertices and
maximum in-degree d there is a tree-like OBDD(∧) proof of Peb∨2

G of size poly(n, 2d).

Proof. Since PebG is a formula in (d + 1)-CNF, size of the formula Peb∨2
G is at most

O(|PebG|2d). The Corollary follows from Theorem 27 and Theorem 5. J

Corollary 28 was presented earlier as [12, Lemma 2], however, there was a flaw in previous
proof. The proof of [12, Lemma 2] was based on the following statement ([12, Lemma 1]):
Let G be a dag on n nodes, and j be a node in G with parents i1, . . . , ik where k = O(logn).
Consider the clauses (xi1,0 ∨xi1,1), . . . , (xik,0 ∨xik,1) and (¬xi1,a1 ∨ · · · ∨¬xik,ak ∨xj,0 ∨xj,1)
for all (a1, . . . , ak) ∈ {0, 1}k. For any variable order π, there is a polynomial-size π-OBDD(∧)
derivation of xj,0∨xj,1 from these clauses. However, [12, Lemma 1] is incorrect, for example for
k = 1 it claims that it is possible to derive (a∨ b) from A = {(¬x∨a∨ b), (¬y∨a∨ b), (x∨y)}
in OBDD(∧). Assume that (a ∨ b) is the conjunction of clauses from B ⊆ A. Notice
that (x ∨ y) 6∈ B, since otherwise it would be possible to satisfy (a ∨ b) by substitution
x := 0, y := 0. It is easy to see that B can not be empty, hence B is non empty subset of
{(¬x ∨ a ∨ b), (¬y ∨ a ∨ b)}. In this case it should be possible to satisfy a ∨ b by substitution
x := 0, y := 0. Thus, [12, Lemma 1] is incorrect.

Järvisalo [12] used Corollary 28 in order to give a family of formulas that are easy
for OBDD(∧) but hard for tree-like Resolution. The lower bound was proved by Buresh-
Oppenheim and Pitassi [5], who proved that there is a family of graphs {Gn}n∈N with n
vertices and maximum in-degree 2 such that any tree-like resolution proof of ϕn = Peb∨2

Gn

has size at least 2Ω(n/ log(n)).
Let ϕ(x1, . . . , xn, y1, . . . , yn) =

m∧
i=1

Ci(x1, . . . , xn, y1, . . . , yn). The relation Searchϕ ⊆

{0, 1}n × {0, 1}n × [m] is defined by

(x, y, i) ∈ Searchϕ iff Ci(x1, . . . , xn, y1, . . . , yn) = 0.

Consider the following communication game: Alice knows values of variables x1, x2, . . . , xn
and Bob knows variables y1, y2, . . . , yn. The goal of the communication game is to compute
some i ∈ [m] such that (x1, . . . , xn, y1, . . . , yn, i) ∈ Searchϕ.

Göös and Pitassi [8] proved the following theorem:

I Theorem 29 ([8]). There are a family of directed acyclic graphs {Gn}n∈N with constant
degree such that Gn has n vertices, and a CNF formula g on variables x1, x2, y1, y2 such
that the deterministic communication complexity of SearchPebGn◦g is at least Ω(

√
n) if Alice

knows variables {x1,1, x1,2, . . . , xn,1, xn,2} and Bob knows variables {y1,1, y1,2, . . . , yn,1, yn,2}.

In fact Theorem 29 is true even for randomized communication complexity, but the
deterministic version is enough for our applications.

I Lemma 30. Let a function f be computed by a π-OBDD D, the communication complexity
of f under a partition Π0,Π1 of the variables where the variables in Π0 precede (in the sense
of π) the variables from Π1 is at most dlog |D|e+ 1.

Proof. Alice starts the computation of f according D using her variables. Finally Alice
reaches vertex v of D reading all her variables. Alice sends to Bob number of the vertex v, it
has at most dlog |D|e bits. Bob continues computing f starting from v using his variables
and sends the result of the computation (it is 1 bit) to Alice. J

I Theorem 31. Let ϕ(x1, . . . , xn, y1, . . . , yn) be an unsatisfiable CNF formula. Suppose the
the communication complexity of the relation Searchϕ is equal to t if Alice knows the values
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of variables xi and Bob knows the variables yi. Let π be an ordering of the variables of ϕ such
that variables xi precede variables yi. Then the size of any tree-like π-OBDD(∧,weakening)
refutation of ϕ is at least 2O(

√
t).

Proof. Consider a tree-like π-OBDD(∧,weakening) proof D1, . . . , D` of the formula ϕ of
size S. Based on this proof we construct a communication protocol for Searchϕ of complexity
at most O(log2 S). The protocol consists of ` = O(logS) steps. At each step we consider
some tree Ti that is known by both players. The inner vertices of the tree are labelled with
π-OBDDs and the leaves are labelled with clauses of ϕ or with trivially satisfied clauses. In
the first step, the tree T1 is the tree of our tree-like proof. Ti ⊆ Ti−1. At each step, the two
players know that the clause at the root of Ti is falsified by the input assignment, and that
there exists some clause at a leaf of Ti that is falsified. In the end, the tree T` consists of a
single vertex; hence it provides clause of ϕ. that is falsified by the input assignment.

Now we describe how we obtain the tree Ti+1 from the tree Ti. Let v be a vertex of tree
Ti such that a subtree T ′ with root v satisfies the following condition: 1

3 |Ti| ≤ |T
′| ≤ 2

3 |Ti|
(such a vertex v players can find without communication). Let D be the OBDD labelling v;
if the input assignment evaluates diagram D to zero, then Ti+1 equals T ′. The players can
evaluate the π-OBDD D on the input assignment with at most dlog |D|+ 1e ≤ 2 logS bits
of communication by Lemma 30. Otherwise, Ti+1 := Ti \ T ′.

It is easy to see that if the value of D equals zero then there is a leaf with falsified clause
in the tree T ′. Otherwise there is a leaf with falsified clause in the tree Ti \ T ′. Also, at each
step the players use at most 2 log(S) bits of communication and there are at most O(log(S))
steps (since |Ti| ≤ 2

3 |Ti+1|). Hence, the players use at most O(log2 S) bits of communication.
Therefore S = 2Ω(

√
t). J

As a result we obtain the following separation.

I Theorem 32. There are a family of formulas ϕn in CNF and a constant c > 0 such that:
size of ϕn and number of variables in ϕn are polynomially bounded by n;
there is a tree-like OBDD(∧, reordering) proof of ϕn of size polynomial in n;
any tree-like OBDD(∧,weakening) proof of ϕn has size at least 2Ω(n1/4).

Proof. Let g be a CNF formula on the variables x1, x2, y1, y2 and let {Gn}n∈N be a family of
graphs so that Theorem 29 holds. Consider the formula ψn = PebGn ◦ g. By Theorem 29 and
Theorem 31 there exists an order π such that the size of every tree-like π-OBDD(∧,weakening)
refutation of ψn has size at least 2O(n1/4). By Lemma 1 any tree-like OBDD(∧,weakening)
proof of the formula ϕn := T (ψn) has size 2Ω(n1/4).

By Theorems 27 and 5, ψn has a tree-like OBDD(∧) proof of size poly(n). Then, by
Lemma 2, there is a OBDD(∧, reordering) proof of T (ψn) of size poly(n). J

6 Clique-Coloring is Easy for OBDD(∧, weakening)

In this section we prove Theorem 8. Let π be the following order on the variables of
Clique-Coloringn,m:

p1,1, . . . , pn,n, q1,1, . . . , qm,1, r1,1, . . . , r1,m,

q1,2 . . . , qm,2, r2,1, . . . , r2,m, . . . , q1,n, . . . , qm,n, rn,1 . . . , rn,m.

This order places at the beginning the variables encoding a graph, after them the variables
encoding the number of the first vertex in clique, after them the variables encoding the color
of the first vertex and so on. All OBDDs used in this section are π-OBDDs.
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I Lemma 33. For any integer constants c, cq, cr, and sets I ⊆ [n], K ⊆ [m], and L ⊆ [m−1]
the inequality∑

i∈I

(∑
k∈K

qk,i − cq
)(∑

l∈L

ri,l − cr
)
≥ c (1)

has a π-OBDD representation of size polynomial in cr, cq, m, and n.

Proof. The order π was picked to make it convenient to evaluate the left hand side of (1)
with a π-OBDD. The OBDD is constructed in levels, one level per variable. Each level
has vertices corresponding to the values of partial sums used to compute the left hand side
of (1). Specifically, let Qi,k =

∑
k′∈K,k′≤k

(qk′,i − cq), let Ri,l =
∑

l′∈L,l′≤l
(ri,l′ − cr), and let

Si =
∑

i′∈I,i′<i
Qi,m+1Ri,m. Note S1+max(I) equals the left hand side of (1).

The vertices of the OBDD at the level corresponding to a variable qk,i encode the values
of Si and Qi,k. The vertices at the level corresponding to a variable ri,l encode the values of
Si, Qi,m+1, and Ri,l. The number of possible values at each level is polynomially bounded
by cr, cq,m, n. To finalize the π-OBDD for evaluating (1), the vertices in the final level that
correspond to a value ≥ c are sinks labeled with 1, and the remaining vertices in the final
level are sinks with label 0. J

Proof of Theorem 8. The idea of the proof is to first derive a π-OBDD which represents the
inequality

∑
k,i,l

qk,iri,l ≥ m, stating that every vertex of clique is colored, and second to derive

a π-OBDD which represents the inequality
∑
k,i,l

qk,iri,l ≤ m− 1 stating roughly that there is

at most one vertex per color. Combining this these with conjunction derives a contradiction.

1. We first describe the derivation of the OBDD representing
∑
k,i,l

qk,iri,l ≥ m. For i ∈ [n],

the derivation starts with an OBDD representing the inequality
m−1∑
l=1

ri,l ≥ 1; note that

Clique-Coloringn,m has such a clause. For each k ∈ m, using the weakening rule (in
fact multiplying the inequality by qk,i) gives an OBDD that represents the inequality

m−1∑
l=1

qk,iri,l ≥ qk,i. (2)

Since this is equivalent to qk,i
m−1∑
l=1

(ri,l − 1) ≥ 0, Lemma 33 implies that the OBDD

representing (2) has polynomial size. Summing the inequalities (2) for all i ∈ [n] gives

n∑
i=1

m−1∑
l=1

qk,iri,l ≥
n∑
i=1

qk,i. (3)

To derive an OBDD representation of the inequality (3) for a fixed value of k, we add
the inequalities (2) for i ∈ [n] one by one. The addition of two inequalities may be
expressed by a conjunction followed by a weakening rule. The intermediate inequalities

can be expressed as
u∑
i=1

qk,i
m−1∑
l=1

(ri,l − 1) ≥ 0; hence by Lemma 33, they have OBDD

representations of size poly(n,m). This allows the derivation of polynomial size OBDDs
representing (3) for each k.
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The inequality
n∑
i=1

qk,i ≥ 1 is expressed by a clause of Clique-Coloringn,m; combining

this with the inequality (3) using the conjunction and weakening rules gives an OBDD
representing

n∑
i=1

m−1∑
l=1

qk,iri,l ≥ 1. (4)

The size of an OBDD representation of (4) is polynomially bounded, again by Lemma 33.
Finally, to get the desired inequality

∑
k,i,l

qk,iri,l ≥ m we sum the inequalities (4) for all

k ∈ [m]. As in the previous cases, we do this iteratively, combining the inequalities (4)
one by one with the conjunction and weakening rules. The intermediate OBDDs are∑
k<u

∑
i,l

qk,iri,l ≥ u and are polynomially bounded by Lemma 33.

2. The second part derives an OBDD representation of the inequality
∑
k,i,l

qk,iri,l ≤ m− 1.

If we derive
m∑
k=1

n∑
i=1

qk,iri,l ≤ 1 (5)

for each l ∈ [m − 1] and sum them as we do earlier we get the desired inequality. All
intermediate inequalities have small OBDD representations by Lemma 33.
For each l, the inequality (5) will be derived from the inequalities (6) and (9) as described
below. For k ∈ [m], we derive (an OBDD representing) the inequality (6)

n∑
i=1

qk,iri,l ≤ 1. (6)

stating that there is at most one vertex with number k in clique which has color l. The
inequality (6) follows by weakening from the inequality

n∑
i=1

qk,i ≤ 1. (7)

To derive (7), we derive inequalities
u∑
i=1

qk,i ≤ 1 for all u ∈ [n]. For u = n this inequality

is the same as (7). For u = 1 this inequality is the constant true statement. For u+ 1 it
is a weakening of the conjunction of

u∑
i=1

qk,i ≤ 1 and

u∧
i=1

(qk,i + qk,u+1 ≤ 1). (8)

Each inequality qk,i + qk,u+1 ≤ 1 is a clause of Clique-Coloringn,m but we need to check
that their u-fold conjunctions (8) have polynomial size OBDD derivations. For this, we

iteratively derive
t∧
i=1

(qk,i + qk,u+1 ≤ 1) for all t ∈ [u]. For each t, this inequality has

a small OBDD representation since it is equivalent to
(

t∨
i=1

qk,i

)
→ ¬qk,u+1; the latter

clearly has a polynomial size OBDD representation. Thus there are short refutations of
constraints (8) and as a result, of inequalities (7) and (6).
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To derive (5), we also need

n∑
i=1

qk,iri,l +
n∑
i=1

qk′,iri,l ≤ 1 (9)

for all k 6= k′ ∈ [m]. Before deriving inequality (9) we show how to derive (5) from (6)
and (9). This derivation is similar to derivation of (7) but it is slightly more complicated
to show that all intermediate inequalities have polynomial size OBDD representations.
To derive (5), we derive successively the inequalities

u∑
k=1

n∑
i=1

qk,iri,l ≤ 1. (10)

for all u ∈ [n]. Each inequality (10) has a polynomial size OBDD representation by
Lemma 33. For u = 1, (10) is the same as (6). Let us show how to derive inequality (10)
for u+ 1 from the inequality (10) for u. For this, it suffices to derive the inequality

u∧
k=1

(
n∑
i=1

qk,iri,l +
n∑
i=1

qu+1,iri,l ≤ 1
)

(11)

and then use the conjunction and weakening rules. Each inequality from the conjunction
is an instance of inequality (9). We must show the conjunction (11) has a small derivation.

To derive (11), we iteratively derive
t∧

k=1

(
n∑
i=1

qk,iri,l +
n∑
i=1

qu+1,iri,l ≤ 1
)

for all t ∈ [u].

This conjunction is equal to
t∨

k=1

n∨
i=1

qk,i ∧ ri,l → ¬
n∨
i=1

qu+1,i ∧ ri,l. Hence it has a small

OBDD representation by the choice of π.
We conclude the proof of Theorem 8 by proving the inequality (9) for k and k′. For this
we will first derive the inequalities

t∑
i=1

qk,iri,l = 0 ∨
t∑
i=1

qk′,iri,l = 0 ∨

∨
i∈[t]

(
qk,iri,l = qk′,iri,l = 1 ∧

∧
j∈[n]\{i}

(qk,jrj,l = qk′,jrj,l = 0)
)

(12)

for all t ∈ [n]. The inequality (12) for t = n and the conjunction
n∧
i=1
¬qk,i ∨¬qk′,i implies

n∑
i=1

qk,iri,l = 0 ∨
n∑
i=1

qk′,iri,l = 0. (13)

Each clause in the conjunction
n∧
i=1
¬qk,i ∨ ¬qk′,i is a clause of Clique-Coloringn,m. The

conjunction derived iteratively using the conjunction and weakening rules; all intermediate
constraints have polynomial sized π-OBDD representations since π orders the variables
qk,i first by i and second by k.
The constraint (13) and the two inequalities (6) for k, l and for k′, l imply (9). The
constraint (12) is derived from the inequalities

qk,iri,l + qk′,jrj,l ≤ 1 (14)
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for i 6= j ∈ [n].
The inequality (12) is equivalent to the conjunction of inequalities (14) for all i 6= j ∈ [t],
and it is clear that these have polynomial size π-OBDD representations. We show there
is a small OBDD derivation of this conjunction, that is, of (12), by deriving it for
successive values of t. For t = 0, (12) the constant true statement. We claim there
is a short derivation of (12) for t = u + 1 from (12) for t = u. Indeed, (14) together
with (12) for t = u implies

∧u
i=1 (qk,iri,l + qk′,u+1ru+1,l ≤ 1). It is easy to see that this

latter inequality has a small OBDD representation since it is equivalent to the constraint( u∨
i=1

qk,iri,l = 1
)
→ qk′,u+1ru+1,l = 0.

Now the only thing left to derive is the inequality (14). Clique-Coloringn,m contains
the clauses ¬qk,i ∨ ¬qk′,j ∨ pi,j and ¬pi,j ∨ ¬ri,l ∨ ¬rj,l. From these, we can derive (14)
using the conjunction rule and the weakening rules. J
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